]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_reserv.c
MFV 354917, 354918, 354919
[FreeBSD/FreeBSD.git] / sys / vm / vm_reserv.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2002-2006 Rice University
5  * Copyright (c) 2007-2011 Alan L. Cox <alc@cs.rice.edu>
6  * All rights reserved.
7  *
8  * This software was developed for the FreeBSD Project by Alan L. Cox,
9  * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23  * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT
24  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
27  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
30  * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 /*
35  *      Superpage reservation management module
36  *
37  * Any external functions defined by this module are only to be used by the
38  * virtual memory system.
39  */
40
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43
44 #include "opt_vm.h"
45
46 #include <sys/param.h>
47 #include <sys/kernel.h>
48 #include <sys/lock.h>
49 #include <sys/malloc.h>
50 #include <sys/mutex.h>
51 #include <sys/queue.h>
52 #include <sys/rwlock.h>
53 #include <sys/sbuf.h>
54 #include <sys/sysctl.h>
55 #include <sys/systm.h>
56 #include <sys/counter.h>
57 #include <sys/ktr.h>
58 #include <sys/vmmeter.h>
59 #include <sys/smp.h>
60
61 #include <vm/vm.h>
62 #include <vm/vm_param.h>
63 #include <vm/vm_object.h>
64 #include <vm/vm_page.h>
65 #include <vm/vm_pageout.h>
66 #include <vm/vm_phys.h>
67 #include <vm/vm_pagequeue.h>
68 #include <vm/vm_radix.h>
69 #include <vm/vm_reserv.h>
70
71 /*
72  * The reservation system supports the speculative allocation of large physical
73  * pages ("superpages").  Speculative allocation enables the fully automatic
74  * utilization of superpages by the virtual memory system.  In other words, no
75  * programmatic directives are required to use superpages.
76  */
77
78 #if VM_NRESERVLEVEL > 0
79
80 #ifndef VM_LEVEL_0_ORDER_MAX
81 #define VM_LEVEL_0_ORDER_MAX    VM_LEVEL_0_ORDER
82 #endif
83
84 /*
85  * The number of small pages that are contained in a level 0 reservation
86  */
87 #define VM_LEVEL_0_NPAGES       (1 << VM_LEVEL_0_ORDER)
88 #define VM_LEVEL_0_NPAGES_MAX   (1 << VM_LEVEL_0_ORDER_MAX)
89
90 /*
91  * The number of bits by which a physical address is shifted to obtain the
92  * reservation number
93  */
94 #define VM_LEVEL_0_SHIFT        (VM_LEVEL_0_ORDER + PAGE_SHIFT)
95
96 /*
97  * The size of a level 0 reservation in bytes
98  */
99 #define VM_LEVEL_0_SIZE         (1 << VM_LEVEL_0_SHIFT)
100
101 /*
102  * Computes the index of the small page underlying the given (object, pindex)
103  * within the reservation's array of small pages.
104  */
105 #define VM_RESERV_INDEX(object, pindex) \
106     (((object)->pg_color + (pindex)) & (VM_LEVEL_0_NPAGES - 1))
107
108 /*
109  * The size of a population map entry
110  */
111 typedef u_long          popmap_t;
112
113 /*
114  * The number of bits in a population map entry
115  */
116 #define NBPOPMAP        (NBBY * sizeof(popmap_t))
117
118 /*
119  * The number of population map entries in a reservation
120  */
121 #define NPOPMAP         howmany(VM_LEVEL_0_NPAGES, NBPOPMAP)
122 #define NPOPMAP_MAX     howmany(VM_LEVEL_0_NPAGES_MAX, NBPOPMAP)
123
124 /*
125  * Number of elapsed ticks before we update the LRU queue position.  Used
126  * to reduce contention and churn on the list.
127  */
128 #define PARTPOPSLOP     1
129
130 /*
131  * Clear a bit in the population map.
132  */
133 static __inline void
134 popmap_clear(popmap_t popmap[], int i)
135 {
136
137         popmap[i / NBPOPMAP] &= ~(1UL << (i % NBPOPMAP));
138 }
139
140 /*
141  * Set a bit in the population map.
142  */
143 static __inline void
144 popmap_set(popmap_t popmap[], int i)
145 {
146
147         popmap[i / NBPOPMAP] |= 1UL << (i % NBPOPMAP);
148 }
149
150 /*
151  * Is a bit in the population map clear?
152  */
153 static __inline boolean_t
154 popmap_is_clear(popmap_t popmap[], int i)
155 {
156
157         return ((popmap[i / NBPOPMAP] & (1UL << (i % NBPOPMAP))) == 0);
158 }
159
160 /*
161  * Is a bit in the population map set?
162  */
163 static __inline boolean_t
164 popmap_is_set(popmap_t popmap[], int i)
165 {
166
167         return ((popmap[i / NBPOPMAP] & (1UL << (i % NBPOPMAP))) != 0);
168 }
169
170 /*
171  * The reservation structure
172  *
173  * A reservation structure is constructed whenever a large physical page is
174  * speculatively allocated to an object.  The reservation provides the small
175  * physical pages for the range [pindex, pindex + VM_LEVEL_0_NPAGES) of offsets
176  * within that object.  The reservation's "popcnt" tracks the number of these
177  * small physical pages that are in use at any given time.  When and if the
178  * reservation is not fully utilized, it appears in the queue of partially
179  * populated reservations.  The reservation always appears on the containing
180  * object's list of reservations.
181  *
182  * A partially populated reservation can be broken and reclaimed at any time.
183  *
184  * r - vm_reserv_lock
185  * d - vm_reserv_domain_lock
186  * o - vm_reserv_object_lock
187  * c - constant after boot
188  */
189 struct vm_reserv {
190         struct mtx      lock;                   /* reservation lock. */
191         TAILQ_ENTRY(vm_reserv) partpopq;        /* (d, r) per-domain queue. */
192         LIST_ENTRY(vm_reserv) objq;             /* (o, r) object queue */
193         vm_object_t     object;                 /* (o, r) containing object */
194         vm_pindex_t     pindex;                 /* (o, r) offset in object */
195         vm_page_t       pages;                  /* (c) first page  */
196         uint16_t        popcnt;                 /* (r) # of pages in use */
197         uint8_t         domain;                 /* (c) NUMA domain. */
198         char            inpartpopq;             /* (d, r) */
199         int             lasttick;               /* (r) last pop update tick. */
200         popmap_t        popmap[NPOPMAP_MAX];    /* (r) bit vector, used pages */
201 };
202
203 #define vm_reserv_lockptr(rv)           (&(rv)->lock)
204 #define vm_reserv_assert_locked(rv)                                     \
205             mtx_assert(vm_reserv_lockptr(rv), MA_OWNED)
206 #define vm_reserv_lock(rv)              mtx_lock(vm_reserv_lockptr(rv))
207 #define vm_reserv_trylock(rv)           mtx_trylock(vm_reserv_lockptr(rv))
208 #define vm_reserv_unlock(rv)            mtx_unlock(vm_reserv_lockptr(rv))
209
210 /*
211  * The reservation array
212  *
213  * This array is analoguous in function to vm_page_array.  It differs in the
214  * respect that it may contain a greater number of useful reservation
215  * structures than there are (physical) superpages.  These "invalid"
216  * reservation structures exist to trade-off space for time in the
217  * implementation of vm_reserv_from_page().  Invalid reservation structures are
218  * distinguishable from "valid" reservation structures by inspecting the
219  * reservation's "pages" field.  Invalid reservation structures have a NULL
220  * "pages" field.
221  *
222  * vm_reserv_from_page() maps a small (physical) page to an element of this
223  * array by computing a physical reservation number from the page's physical
224  * address.  The physical reservation number is used as the array index.
225  *
226  * An "active" reservation is a valid reservation structure that has a non-NULL
227  * "object" field and a non-zero "popcnt" field.  In other words, every active
228  * reservation belongs to a particular object.  Moreover, every active
229  * reservation has an entry in the containing object's list of reservations.  
230  */
231 static vm_reserv_t vm_reserv_array;
232
233 /*
234  * The per-domain partially populated reservation queues
235  *
236  * These queues enable the fast recovery of an unused free small page from a
237  * partially populated reservation.  The reservation at the head of a queue
238  * is the least recently changed, partially populated reservation.
239  *
240  * Access to this queue is synchronized by the per-domain reservation lock.
241  */
242 struct vm_reserv_domain {
243         struct mtx lock;
244         TAILQ_HEAD(, vm_reserv) partpop;
245 } __aligned(CACHE_LINE_SIZE);
246
247 static struct vm_reserv_domain vm_rvd[MAXMEMDOM];
248
249 #define vm_reserv_domain_lockptr(d)     (&vm_rvd[(d)].lock)
250 #define vm_reserv_domain_lock(d)        mtx_lock(vm_reserv_domain_lockptr(d))
251 #define vm_reserv_domain_unlock(d)      mtx_unlock(vm_reserv_domain_lockptr(d))
252
253 static SYSCTL_NODE(_vm, OID_AUTO, reserv, CTLFLAG_RD, 0, "Reservation Info");
254
255 static counter_u64_t vm_reserv_broken = EARLY_COUNTER;
256 SYSCTL_COUNTER_U64(_vm_reserv, OID_AUTO, broken, CTLFLAG_RD,
257     &vm_reserv_broken, "Cumulative number of broken reservations");
258
259 static counter_u64_t vm_reserv_freed = EARLY_COUNTER;
260 SYSCTL_COUNTER_U64(_vm_reserv, OID_AUTO, freed, CTLFLAG_RD,
261     &vm_reserv_freed, "Cumulative number of freed reservations");
262
263 static int sysctl_vm_reserv_fullpop(SYSCTL_HANDLER_ARGS);
264
265 SYSCTL_PROC(_vm_reserv, OID_AUTO, fullpop, CTLTYPE_INT | CTLFLAG_RD, NULL, 0,
266     sysctl_vm_reserv_fullpop, "I", "Current number of full reservations");
267
268 static int sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS);
269
270 SYSCTL_OID(_vm_reserv, OID_AUTO, partpopq, CTLTYPE_STRING | CTLFLAG_RD, NULL, 0,
271     sysctl_vm_reserv_partpopq, "A", "Partially populated reservation queues");
272
273 static counter_u64_t vm_reserv_reclaimed = EARLY_COUNTER;
274 SYSCTL_COUNTER_U64(_vm_reserv, OID_AUTO, reclaimed, CTLFLAG_RD,
275     &vm_reserv_reclaimed, "Cumulative number of reclaimed reservations");
276
277 /*
278  * The object lock pool is used to synchronize the rvq.  We can not use a
279  * pool mutex because it is required before malloc works.
280  *
281  * The "hash" function could be made faster without divide and modulo.
282  */
283 #define VM_RESERV_OBJ_LOCK_COUNT        MAXCPU
284
285 struct mtx_padalign vm_reserv_object_mtx[VM_RESERV_OBJ_LOCK_COUNT];
286
287 #define vm_reserv_object_lock_idx(object)                       \
288             (((uintptr_t)object / sizeof(*object)) % VM_RESERV_OBJ_LOCK_COUNT)
289 #define vm_reserv_object_lock_ptr(object)                       \
290             &vm_reserv_object_mtx[vm_reserv_object_lock_idx((object))]
291 #define vm_reserv_object_lock(object)                           \
292             mtx_lock(vm_reserv_object_lock_ptr((object)))
293 #define vm_reserv_object_unlock(object)                         \
294             mtx_unlock(vm_reserv_object_lock_ptr((object)))
295
296 static void             vm_reserv_break(vm_reserv_t rv);
297 static void             vm_reserv_depopulate(vm_reserv_t rv, int index);
298 static vm_reserv_t      vm_reserv_from_page(vm_page_t m);
299 static boolean_t        vm_reserv_has_pindex(vm_reserv_t rv,
300                             vm_pindex_t pindex);
301 static void             vm_reserv_populate(vm_reserv_t rv, int index);
302 static void             vm_reserv_reclaim(vm_reserv_t rv);
303
304 /*
305  * Returns the current number of full reservations.
306  *
307  * Since the number of full reservations is computed without acquiring any
308  * locks, the returned value is inexact.
309  */
310 static int
311 sysctl_vm_reserv_fullpop(SYSCTL_HANDLER_ARGS)
312 {
313         vm_paddr_t paddr;
314         struct vm_phys_seg *seg;
315         vm_reserv_t rv;
316         int fullpop, segind;
317
318         fullpop = 0;
319         for (segind = 0; segind < vm_phys_nsegs; segind++) {
320                 seg = &vm_phys_segs[segind];
321                 paddr = roundup2(seg->start, VM_LEVEL_0_SIZE);
322                 while (paddr + VM_LEVEL_0_SIZE > paddr && paddr +
323                     VM_LEVEL_0_SIZE <= seg->end) {
324                         rv = &vm_reserv_array[paddr >> VM_LEVEL_0_SHIFT];
325                         fullpop += rv->popcnt == VM_LEVEL_0_NPAGES;
326                         paddr += VM_LEVEL_0_SIZE;
327                 }
328         }
329         return (sysctl_handle_int(oidp, &fullpop, 0, req));
330 }
331
332 /*
333  * Describes the current state of the partially populated reservation queue.
334  */
335 static int
336 sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS)
337 {
338         struct sbuf sbuf;
339         vm_reserv_t rv;
340         int counter, error, domain, level, unused_pages;
341
342         error = sysctl_wire_old_buffer(req, 0);
343         if (error != 0)
344                 return (error);
345         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
346         sbuf_printf(&sbuf, "\nDOMAIN    LEVEL     SIZE  NUMBER\n\n");
347         for (domain = 0; domain < vm_ndomains; domain++) {
348                 for (level = -1; level <= VM_NRESERVLEVEL - 2; level++) {
349                         counter = 0;
350                         unused_pages = 0;
351                         vm_reserv_domain_lock(domain);
352                         TAILQ_FOREACH(rv, &vm_rvd[domain].partpop, partpopq) {
353                                 counter++;
354                                 unused_pages += VM_LEVEL_0_NPAGES - rv->popcnt;
355                         }
356                         vm_reserv_domain_unlock(domain);
357                         sbuf_printf(&sbuf, "%6d, %7d, %6dK, %6d\n",
358                             domain, level,
359                             unused_pages * ((int)PAGE_SIZE / 1024), counter);
360                 }
361         }
362         error = sbuf_finish(&sbuf);
363         sbuf_delete(&sbuf);
364         return (error);
365 }
366
367 /*
368  * Remove a reservation from the object's objq.
369  */
370 static void
371 vm_reserv_remove(vm_reserv_t rv)
372 {
373         vm_object_t object;
374
375         vm_reserv_assert_locked(rv);
376         CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d",
377             __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq);
378         KASSERT(rv->object != NULL,
379             ("vm_reserv_remove: reserv %p is free", rv));
380         KASSERT(!rv->inpartpopq,
381             ("vm_reserv_remove: reserv %p's inpartpopq is TRUE", rv));
382         object = rv->object;
383         vm_reserv_object_lock(object);
384         LIST_REMOVE(rv, objq);
385         rv->object = NULL;
386         vm_reserv_object_unlock(object);
387 }
388
389 /*
390  * Insert a new reservation into the object's objq.
391  */
392 static void
393 vm_reserv_insert(vm_reserv_t rv, vm_object_t object, vm_pindex_t pindex)
394 {
395         int i;
396
397         vm_reserv_assert_locked(rv);
398         CTR6(KTR_VM,
399             "%s: rv %p(%p) object %p new %p popcnt %d",
400             __FUNCTION__, rv, rv->pages, rv->object, object,
401            rv->popcnt);
402         KASSERT(rv->object == NULL,
403             ("vm_reserv_insert: reserv %p isn't free", rv));
404         KASSERT(rv->popcnt == 0,
405             ("vm_reserv_insert: reserv %p's popcnt is corrupted", rv));
406         KASSERT(!rv->inpartpopq,
407             ("vm_reserv_insert: reserv %p's inpartpopq is TRUE", rv));
408         for (i = 0; i < NPOPMAP; i++)
409                 KASSERT(rv->popmap[i] == 0,
410                     ("vm_reserv_insert: reserv %p's popmap is corrupted", rv));
411         vm_reserv_object_lock(object);
412         rv->pindex = pindex;
413         rv->object = object;
414         rv->lasttick = ticks;
415         LIST_INSERT_HEAD(&object->rvq, rv, objq);
416         vm_reserv_object_unlock(object);
417 }
418
419 /*
420  * Reduces the given reservation's population count.  If the population count
421  * becomes zero, the reservation is destroyed.  Additionally, moves the
422  * reservation to the tail of the partially populated reservation queue if the
423  * population count is non-zero.
424  */
425 static void
426 vm_reserv_depopulate(vm_reserv_t rv, int index)
427 {
428         struct vm_domain *vmd;
429
430         vm_reserv_assert_locked(rv);
431         CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d",
432             __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq);
433         KASSERT(rv->object != NULL,
434             ("vm_reserv_depopulate: reserv %p is free", rv));
435         KASSERT(popmap_is_set(rv->popmap, index),
436             ("vm_reserv_depopulate: reserv %p's popmap[%d] is clear", rv,
437             index));
438         KASSERT(rv->popcnt > 0,
439             ("vm_reserv_depopulate: reserv %p's popcnt is corrupted", rv));
440         KASSERT(rv->domain < vm_ndomains,
441             ("vm_reserv_depopulate: reserv %p's domain is corrupted %d",
442             rv, rv->domain));
443         if (rv->popcnt == VM_LEVEL_0_NPAGES) {
444                 KASSERT(rv->pages->psind == 1,
445                     ("vm_reserv_depopulate: reserv %p is already demoted",
446                     rv));
447                 rv->pages->psind = 0;
448         }
449         popmap_clear(rv->popmap, index);
450         rv->popcnt--;
451         if ((unsigned)(ticks - rv->lasttick) >= PARTPOPSLOP ||
452             rv->popcnt == 0) {
453                 vm_reserv_domain_lock(rv->domain);
454                 if (rv->inpartpopq) {
455                         TAILQ_REMOVE(&vm_rvd[rv->domain].partpop, rv, partpopq);
456                         rv->inpartpopq = FALSE;
457                 }
458                 if (rv->popcnt != 0) {
459                         rv->inpartpopq = TRUE;
460                         TAILQ_INSERT_TAIL(&vm_rvd[rv->domain].partpop, rv,
461                             partpopq);
462                 }
463                 vm_reserv_domain_unlock(rv->domain);
464                 rv->lasttick = ticks;
465         }
466         vmd = VM_DOMAIN(rv->domain);
467         if (rv->popcnt == 0) {
468                 vm_reserv_remove(rv);
469                 vm_domain_free_lock(vmd);
470                 vm_phys_free_pages(rv->pages, VM_LEVEL_0_ORDER);
471                 vm_domain_free_unlock(vmd);
472                 counter_u64_add(vm_reserv_freed, 1);
473         }
474         vm_domain_freecnt_inc(vmd, 1);
475 }
476
477 /*
478  * Returns the reservation to which the given page might belong.
479  */
480 static __inline vm_reserv_t
481 vm_reserv_from_page(vm_page_t m)
482 {
483
484         return (&vm_reserv_array[VM_PAGE_TO_PHYS(m) >> VM_LEVEL_0_SHIFT]);
485 }
486
487 /*
488  * Returns an existing reservation or NULL and initialized successor pointer.
489  */
490 static vm_reserv_t
491 vm_reserv_from_object(vm_object_t object, vm_pindex_t pindex,
492     vm_page_t mpred, vm_page_t *msuccp)
493 {
494         vm_reserv_t rv;
495         vm_page_t msucc;
496
497         msucc = NULL;
498         if (mpred != NULL) {
499                 KASSERT(mpred->object == object,
500                     ("vm_reserv_from_object: object doesn't contain mpred"));
501                 KASSERT(mpred->pindex < pindex,
502                     ("vm_reserv_from_object: mpred doesn't precede pindex"));
503                 rv = vm_reserv_from_page(mpred);
504                 if (rv->object == object && vm_reserv_has_pindex(rv, pindex))
505                         goto found;
506                 msucc = TAILQ_NEXT(mpred, listq);
507         } else
508                 msucc = TAILQ_FIRST(&object->memq);
509         if (msucc != NULL) {
510                 KASSERT(msucc->pindex > pindex,
511                     ("vm_reserv_from_object: msucc doesn't succeed pindex"));
512                 rv = vm_reserv_from_page(msucc);
513                 if (rv->object == object && vm_reserv_has_pindex(rv, pindex))
514                         goto found;
515         }
516         rv = NULL;
517
518 found:
519         *msuccp = msucc;
520
521         return (rv);
522 }
523
524 /*
525  * Returns TRUE if the given reservation contains the given page index and
526  * FALSE otherwise.
527  */
528 static __inline boolean_t
529 vm_reserv_has_pindex(vm_reserv_t rv, vm_pindex_t pindex)
530 {
531
532         return (((pindex - rv->pindex) & ~(VM_LEVEL_0_NPAGES - 1)) == 0);
533 }
534
535 /*
536  * Increases the given reservation's population count.  Moves the reservation
537  * to the tail of the partially populated reservation queue.
538  */
539 static void
540 vm_reserv_populate(vm_reserv_t rv, int index)
541 {
542
543         vm_reserv_assert_locked(rv);
544         CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d",
545             __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq);
546         KASSERT(rv->object != NULL,
547             ("vm_reserv_populate: reserv %p is free", rv));
548         KASSERT(popmap_is_clear(rv->popmap, index),
549             ("vm_reserv_populate: reserv %p's popmap[%d] is set", rv,
550             index));
551         KASSERT(rv->popcnt < VM_LEVEL_0_NPAGES,
552             ("vm_reserv_populate: reserv %p is already full", rv));
553         KASSERT(rv->pages->psind == 0,
554             ("vm_reserv_populate: reserv %p is already promoted", rv));
555         KASSERT(rv->domain < vm_ndomains,
556             ("vm_reserv_populate: reserv %p's domain is corrupted %d",
557             rv, rv->domain));
558         popmap_set(rv->popmap, index);
559         rv->popcnt++;
560         if ((unsigned)(ticks - rv->lasttick) < PARTPOPSLOP &&
561             rv->inpartpopq && rv->popcnt != VM_LEVEL_0_NPAGES)
562                 return;
563         rv->lasttick = ticks;
564         vm_reserv_domain_lock(rv->domain);
565         if (rv->inpartpopq) {
566                 TAILQ_REMOVE(&vm_rvd[rv->domain].partpop, rv, partpopq);
567                 rv->inpartpopq = FALSE;
568         }
569         if (rv->popcnt < VM_LEVEL_0_NPAGES) {
570                 rv->inpartpopq = TRUE;
571                 TAILQ_INSERT_TAIL(&vm_rvd[rv->domain].partpop, rv, partpopq);
572         } else {
573                 KASSERT(rv->pages->psind == 0,
574                     ("vm_reserv_populate: reserv %p is already promoted",
575                     rv));
576                 rv->pages->psind = 1;
577         }
578         vm_reserv_domain_unlock(rv->domain);
579 }
580
581 /*
582  * Allocates a contiguous set of physical pages of the given size "npages"
583  * from existing or newly created reservations.  All of the physical pages
584  * must be at or above the given physical address "low" and below the given
585  * physical address "high".  The given value "alignment" determines the
586  * alignment of the first physical page in the set.  If the given value
587  * "boundary" is non-zero, then the set of physical pages cannot cross any
588  * physical address boundary that is a multiple of that value.  Both
589  * "alignment" and "boundary" must be a power of two.
590  *
591  * The page "mpred" must immediately precede the offset "pindex" within the
592  * specified object.
593  *
594  * The object must be locked.
595  */
596 vm_page_t
597 vm_reserv_alloc_contig(vm_object_t object, vm_pindex_t pindex, int domain,
598     int req, vm_page_t mpred, u_long npages, vm_paddr_t low, vm_paddr_t high,
599     u_long alignment, vm_paddr_t boundary)
600 {
601         struct vm_domain *vmd;
602         vm_paddr_t pa, size;
603         vm_page_t m, m_ret, msucc;
604         vm_pindex_t first, leftcap, rightcap;
605         vm_reserv_t rv;
606         u_long allocpages, maxpages, minpages;
607         int i, index, n;
608
609         VM_OBJECT_ASSERT_WLOCKED(object);
610         KASSERT(npages != 0, ("vm_reserv_alloc_contig: npages is 0"));
611
612         /*
613          * Is a reservation fundamentally impossible?
614          */
615         if (pindex < VM_RESERV_INDEX(object, pindex) ||
616             pindex + npages > object->size)
617                 return (NULL);
618
619         /*
620          * All reservations of a particular size have the same alignment.
621          * Assuming that the first page is allocated from a reservation, the
622          * least significant bits of its physical address can be determined
623          * from its offset from the beginning of the reservation and the size
624          * of the reservation.
625          *
626          * Could the specified index within a reservation of the smallest
627          * possible size satisfy the alignment and boundary requirements?
628          */
629         pa = VM_RESERV_INDEX(object, pindex) << PAGE_SHIFT;
630         if ((pa & (alignment - 1)) != 0)
631                 return (NULL);
632         size = npages << PAGE_SHIFT;
633         if (((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0)
634                 return (NULL);
635
636         /*
637          * Look for an existing reservation.
638          */
639         rv = vm_reserv_from_object(object, pindex, mpred, &msucc);
640         if (rv != NULL) {
641                 KASSERT(object != kernel_object || rv->domain == domain,
642                     ("vm_reserv_alloc_contig: domain mismatch"));
643                 index = VM_RESERV_INDEX(object, pindex);
644                 /* Does the allocation fit within the reservation? */
645                 if (index + npages > VM_LEVEL_0_NPAGES)
646                         return (NULL);
647                 domain = rv->domain;
648                 vmd = VM_DOMAIN(domain);
649                 vm_reserv_lock(rv);
650                 /* Handle reclaim race. */
651                 if (rv->object != object)
652                         goto out;
653                 m = &rv->pages[index];
654                 pa = VM_PAGE_TO_PHYS(m);
655                 if (pa < low || pa + size > high ||
656                     (pa & (alignment - 1)) != 0 ||
657                     ((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0)
658                         goto out;
659                 /* Handle vm_page_rename(m, new_object, ...). */
660                 for (i = 0; i < npages; i++)
661                         if (popmap_is_set(rv->popmap, index + i))
662                                 goto out;
663                 if (!vm_domain_allocate(vmd, req, npages))
664                         goto out;
665                 for (i = 0; i < npages; i++)
666                         vm_reserv_populate(rv, index + i);
667                 vm_reserv_unlock(rv);
668                 return (m);
669 out:
670                 vm_reserv_unlock(rv);
671                 return (NULL);
672         }
673
674         /*
675          * Could at least one reservation fit between the first index to the
676          * left that can be used ("leftcap") and the first index to the right
677          * that cannot be used ("rightcap")?
678          *
679          * We must synchronize with the reserv object lock to protect the
680          * pindex/object of the resulting reservations against rename while
681          * we are inspecting.
682          */
683         first = pindex - VM_RESERV_INDEX(object, pindex);
684         minpages = VM_RESERV_INDEX(object, pindex) + npages;
685         maxpages = roundup2(minpages, VM_LEVEL_0_NPAGES);
686         allocpages = maxpages;
687         vm_reserv_object_lock(object);
688         if (mpred != NULL) {
689                 if ((rv = vm_reserv_from_page(mpred))->object != object)
690                         leftcap = mpred->pindex + 1;
691                 else
692                         leftcap = rv->pindex + VM_LEVEL_0_NPAGES;
693                 if (leftcap > first) {
694                         vm_reserv_object_unlock(object);
695                         return (NULL);
696                 }
697         }
698         if (msucc != NULL) {
699                 if ((rv = vm_reserv_from_page(msucc))->object != object)
700                         rightcap = msucc->pindex;
701                 else
702                         rightcap = rv->pindex;
703                 if (first + maxpages > rightcap) {
704                         if (maxpages == VM_LEVEL_0_NPAGES) {
705                                 vm_reserv_object_unlock(object);
706                                 return (NULL);
707                         }
708
709                         /*
710                          * At least one reservation will fit between "leftcap"
711                          * and "rightcap".  However, a reservation for the
712                          * last of the requested pages will not fit.  Reduce
713                          * the size of the upcoming allocation accordingly.
714                          */
715                         allocpages = minpages;
716                 }
717         }
718         vm_reserv_object_unlock(object);
719
720         /*
721          * Would the last new reservation extend past the end of the object?
722          *
723          * If the object is unlikely to grow don't allocate a reservation for
724          * the tail.
725          */
726         if ((object->flags & OBJ_ANON) == 0 &&
727             first + maxpages > object->size) {
728                 if (maxpages == VM_LEVEL_0_NPAGES)
729                         return (NULL);
730                 allocpages = minpages;
731         }
732
733         /*
734          * Allocate the physical pages.  The alignment and boundary specified
735          * for this allocation may be different from the alignment and
736          * boundary specified for the requested pages.  For instance, the
737          * specified index may not be the first page within the first new
738          * reservation.
739          */
740         m = NULL;
741         vmd = VM_DOMAIN(domain);
742         if (vm_domain_allocate(vmd, req, npages)) {
743                 vm_domain_free_lock(vmd);
744                 m = vm_phys_alloc_contig(domain, allocpages, low, high,
745                     ulmax(alignment, VM_LEVEL_0_SIZE),
746                     boundary > VM_LEVEL_0_SIZE ? boundary : 0);
747                 vm_domain_free_unlock(vmd);
748                 if (m == NULL) {
749                         vm_domain_freecnt_inc(vmd, npages);
750                         return (NULL);
751                 }
752         } else
753                 return (NULL);
754         KASSERT(vm_phys_domain(m) == domain,
755             ("vm_reserv_alloc_contig: Page domain does not match requested."));
756
757         /*
758          * The allocated physical pages always begin at a reservation
759          * boundary, but they do not always end at a reservation boundary.
760          * Initialize every reservation that is completely covered by the
761          * allocated physical pages.
762          */
763         m_ret = NULL;
764         index = VM_RESERV_INDEX(object, pindex);
765         do {
766                 rv = vm_reserv_from_page(m);
767                 KASSERT(rv->pages == m,
768                     ("vm_reserv_alloc_contig: reserv %p's pages is corrupted",
769                     rv));
770                 vm_reserv_lock(rv);
771                 vm_reserv_insert(rv, object, first);
772                 n = ulmin(VM_LEVEL_0_NPAGES - index, npages);
773                 for (i = 0; i < n; i++)
774                         vm_reserv_populate(rv, index + i);
775                 npages -= n;
776                 if (m_ret == NULL) {
777                         m_ret = &rv->pages[index];
778                         index = 0;
779                 }
780                 vm_reserv_unlock(rv);
781                 m += VM_LEVEL_0_NPAGES;
782                 first += VM_LEVEL_0_NPAGES;
783                 allocpages -= VM_LEVEL_0_NPAGES;
784         } while (allocpages >= VM_LEVEL_0_NPAGES);
785         return (m_ret);
786 }
787
788 /*
789  * Allocate a physical page from an existing or newly created reservation.
790  *
791  * The page "mpred" must immediately precede the offset "pindex" within the
792  * specified object.
793  *
794  * The object must be locked.
795  */
796 vm_page_t
797 vm_reserv_alloc_page(vm_object_t object, vm_pindex_t pindex, int domain,
798     int req, vm_page_t mpred)
799 {
800         struct vm_domain *vmd;
801         vm_page_t m, msucc;
802         vm_pindex_t first, leftcap, rightcap;
803         vm_reserv_t rv;
804         int index;
805
806         VM_OBJECT_ASSERT_WLOCKED(object);
807
808         /*
809          * Is a reservation fundamentally impossible?
810          */
811         if (pindex < VM_RESERV_INDEX(object, pindex) ||
812             pindex >= object->size)
813                 return (NULL);
814
815         /*
816          * Look for an existing reservation.
817          */
818         rv = vm_reserv_from_object(object, pindex, mpred, &msucc);
819         if (rv != NULL) {
820                 KASSERT(object != kernel_object || rv->domain == domain,
821                     ("vm_reserv_alloc_page: domain mismatch"));
822                 domain = rv->domain;
823                 vmd = VM_DOMAIN(domain);
824                 index = VM_RESERV_INDEX(object, pindex);
825                 m = &rv->pages[index];
826                 vm_reserv_lock(rv);
827                 /* Handle reclaim race. */
828                 if (rv->object != object ||
829                     /* Handle vm_page_rename(m, new_object, ...). */
830                     popmap_is_set(rv->popmap, index)) {
831                         m = NULL;
832                         goto out;
833                 }
834                 if (vm_domain_allocate(vmd, req, 1) == 0)
835                         m = NULL;
836                 else
837                         vm_reserv_populate(rv, index);
838 out:
839                 vm_reserv_unlock(rv);
840                 return (m);
841         }
842
843         /*
844          * Could a reservation fit between the first index to the left that
845          * can be used and the first index to the right that cannot be used?
846          *
847          * We must synchronize with the reserv object lock to protect the
848          * pindex/object of the resulting reservations against rename while
849          * we are inspecting.
850          */
851         first = pindex - VM_RESERV_INDEX(object, pindex);
852         vm_reserv_object_lock(object);
853         if (mpred != NULL) {
854                 if ((rv = vm_reserv_from_page(mpred))->object != object)
855                         leftcap = mpred->pindex + 1;
856                 else
857                         leftcap = rv->pindex + VM_LEVEL_0_NPAGES;
858                 if (leftcap > first) {
859                         vm_reserv_object_unlock(object);
860                         return (NULL);
861                 }
862         }
863         if (msucc != NULL) {
864                 if ((rv = vm_reserv_from_page(msucc))->object != object)
865                         rightcap = msucc->pindex;
866                 else
867                         rightcap = rv->pindex;
868                 if (first + VM_LEVEL_0_NPAGES > rightcap) {
869                         vm_reserv_object_unlock(object);
870                         return (NULL);
871                 }
872         }
873         vm_reserv_object_unlock(object);
874
875         /*
876          * Would the last new reservation extend past the end of the object?
877          *
878          * If the object is unlikely to grow don't allocate a reservation for
879          * the tail.
880          */
881         if ((object->flags & OBJ_ANON) == 0 &&
882             first + VM_LEVEL_0_NPAGES > object->size)
883                 return (NULL);
884
885         /*
886          * Allocate and populate the new reservation.
887          */
888         m = NULL;
889         vmd = VM_DOMAIN(domain);
890         if (vm_domain_allocate(vmd, req, 1)) {
891                 vm_domain_free_lock(vmd);
892                 m = vm_phys_alloc_pages(domain, VM_FREEPOOL_DEFAULT,
893                     VM_LEVEL_0_ORDER);
894                 vm_domain_free_unlock(vmd);
895                 if (m == NULL) {
896                         vm_domain_freecnt_inc(vmd, 1);
897                         return (NULL);
898                 }
899         } else
900                 return (NULL);
901         rv = vm_reserv_from_page(m);
902         vm_reserv_lock(rv);
903         KASSERT(rv->pages == m,
904             ("vm_reserv_alloc_page: reserv %p's pages is corrupted", rv));
905         vm_reserv_insert(rv, object, first);
906         index = VM_RESERV_INDEX(object, pindex);
907         vm_reserv_populate(rv, index);
908         vm_reserv_unlock(rv);
909
910         return (&rv->pages[index]);
911 }
912
913 /*
914  * Breaks the given reservation.  All free pages in the reservation
915  * are returned to the physical memory allocator.  The reservation's
916  * population count and map are reset to their initial state.
917  *
918  * The given reservation must not be in the partially populated reservation
919  * queue.
920  */
921 static void
922 vm_reserv_break(vm_reserv_t rv)
923 {
924         u_long changes;
925         int bitpos, hi, i, lo;
926
927         vm_reserv_assert_locked(rv);
928         CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d",
929             __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq);
930         vm_reserv_remove(rv);
931         rv->pages->psind = 0;
932         hi = lo = -1;
933         for (i = 0; i <= NPOPMAP; i++) {
934                 /*
935                  * "changes" is a bitmask that marks where a new sequence of
936                  * 0s or 1s begins in popmap[i], with last bit in popmap[i-1]
937                  * considered to be 1 if and only if lo == hi.  The bits of
938                  * popmap[-1] and popmap[NPOPMAP] are considered all 1s.
939                  */
940                 if (i == NPOPMAP)
941                         changes = lo != hi;
942                 else {
943                         changes = rv->popmap[i];
944                         changes ^= (changes << 1) | (lo == hi);
945                         rv->popmap[i] = 0;
946                 }
947                 while (changes != 0) {
948                         /*
949                          * If the next change marked begins a run of 0s, set
950                          * lo to mark that position.  Otherwise set hi and
951                          * free pages from lo up to hi.
952                          */
953                         bitpos = ffsl(changes) - 1;
954                         changes ^= 1UL << bitpos;
955                         if (lo == hi)
956                                 lo = NBPOPMAP * i + bitpos;
957                         else {
958                                 hi = NBPOPMAP * i + bitpos;
959                                 vm_domain_free_lock(VM_DOMAIN(rv->domain));
960                                 vm_phys_enqueue_contig(&rv->pages[lo], hi - lo);
961                                 vm_domain_free_unlock(VM_DOMAIN(rv->domain));
962                                 lo = hi;
963                         }
964                 }
965         }
966         rv->popcnt = 0;
967         counter_u64_add(vm_reserv_broken, 1);
968 }
969
970 /*
971  * Breaks all reservations belonging to the given object.
972  */
973 void
974 vm_reserv_break_all(vm_object_t object)
975 {
976         vm_reserv_t rv;
977
978         /*
979          * This access of object->rvq is unsynchronized so that the
980          * object rvq lock can nest after the domain_free lock.  We
981          * must check for races in the results.  However, the object
982          * lock prevents new additions, so we are guaranteed that when
983          * it returns NULL the object is properly empty.
984          */
985         while ((rv = LIST_FIRST(&object->rvq)) != NULL) {
986                 vm_reserv_lock(rv);
987                 /* Reclaim race. */
988                 if (rv->object != object) {
989                         vm_reserv_unlock(rv);
990                         continue;
991                 }
992                 vm_reserv_domain_lock(rv->domain);
993                 if (rv->inpartpopq) {
994                         TAILQ_REMOVE(&vm_rvd[rv->domain].partpop, rv, partpopq);
995                         rv->inpartpopq = FALSE;
996                 }
997                 vm_reserv_domain_unlock(rv->domain);
998                 vm_reserv_break(rv);
999                 vm_reserv_unlock(rv);
1000         }
1001 }
1002
1003 /*
1004  * Frees the given page if it belongs to a reservation.  Returns TRUE if the
1005  * page is freed and FALSE otherwise.
1006  */
1007 boolean_t
1008 vm_reserv_free_page(vm_page_t m)
1009 {
1010         vm_reserv_t rv;
1011         boolean_t ret;
1012
1013         rv = vm_reserv_from_page(m);
1014         if (rv->object == NULL)
1015                 return (FALSE);
1016         vm_reserv_lock(rv);
1017         /* Re-validate after lock. */
1018         if (rv->object != NULL) {
1019                 vm_reserv_depopulate(rv, m - rv->pages);
1020                 ret = TRUE;
1021         } else
1022                 ret = FALSE;
1023         vm_reserv_unlock(rv);
1024
1025         return (ret);
1026 }
1027
1028 /*
1029  * Initializes the reservation management system.  Specifically, initializes
1030  * the reservation array.
1031  *
1032  * Requires that vm_page_array and first_page are initialized!
1033  */
1034 void
1035 vm_reserv_init(void)
1036 {
1037         vm_paddr_t paddr;
1038         struct vm_phys_seg *seg;
1039         struct vm_reserv *rv;
1040         int i, segind;
1041
1042         /*
1043          * Initialize the reservation array.  Specifically, initialize the
1044          * "pages" field for every element that has an underlying superpage.
1045          */
1046         for (segind = 0; segind < vm_phys_nsegs; segind++) {
1047                 seg = &vm_phys_segs[segind];
1048                 paddr = roundup2(seg->start, VM_LEVEL_0_SIZE);
1049                 while (paddr + VM_LEVEL_0_SIZE > paddr && paddr +
1050                     VM_LEVEL_0_SIZE <= seg->end) {
1051                         rv = &vm_reserv_array[paddr >> VM_LEVEL_0_SHIFT];
1052                         rv->pages = PHYS_TO_VM_PAGE(paddr);
1053                         rv->domain = seg->domain;
1054                         mtx_init(&rv->lock, "vm reserv", NULL, MTX_DEF);
1055                         paddr += VM_LEVEL_0_SIZE;
1056                 }
1057         }
1058         for (i = 0; i < MAXMEMDOM; i++) {
1059                 mtx_init(&vm_rvd[i].lock, "VM reserv domain", NULL, MTX_DEF);
1060                 TAILQ_INIT(&vm_rvd[i].partpop);
1061         }
1062
1063         for (i = 0; i < VM_RESERV_OBJ_LOCK_COUNT; i++)
1064                 mtx_init(&vm_reserv_object_mtx[i], "resv obj lock", NULL,
1065                     MTX_DEF);
1066 }
1067
1068 /*
1069  * Returns true if the given page belongs to a reservation and that page is
1070  * free.  Otherwise, returns false.
1071  */
1072 bool
1073 vm_reserv_is_page_free(vm_page_t m)
1074 {
1075         vm_reserv_t rv;
1076
1077         rv = vm_reserv_from_page(m);
1078         if (rv->object == NULL)
1079                 return (false);
1080         return (popmap_is_clear(rv->popmap, m - rv->pages));
1081 }
1082
1083 /*
1084  * If the given page belongs to a reservation, returns the level of that
1085  * reservation.  Otherwise, returns -1.
1086  */
1087 int
1088 vm_reserv_level(vm_page_t m)
1089 {
1090         vm_reserv_t rv;
1091
1092         rv = vm_reserv_from_page(m);
1093         return (rv->object != NULL ? 0 : -1);
1094 }
1095
1096 /*
1097  * Returns a reservation level if the given page belongs to a fully populated
1098  * reservation and -1 otherwise.
1099  */
1100 int
1101 vm_reserv_level_iffullpop(vm_page_t m)
1102 {
1103         vm_reserv_t rv;
1104
1105         rv = vm_reserv_from_page(m);
1106         return (rv->popcnt == VM_LEVEL_0_NPAGES ? 0 : -1);
1107 }
1108
1109 /*
1110  * Breaks the given partially populated reservation, releasing its free pages
1111  * to the physical memory allocator.
1112  */
1113 static void
1114 vm_reserv_reclaim(vm_reserv_t rv)
1115 {
1116
1117         vm_reserv_assert_locked(rv);
1118         CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d",
1119             __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq);
1120         vm_reserv_domain_lock(rv->domain);
1121         KASSERT(rv->inpartpopq,
1122             ("vm_reserv_reclaim: reserv %p's inpartpopq is FALSE", rv));
1123         KASSERT(rv->domain < vm_ndomains,
1124             ("vm_reserv_reclaim: reserv %p's domain is corrupted %d",
1125             rv, rv->domain));
1126         TAILQ_REMOVE(&vm_rvd[rv->domain].partpop, rv, partpopq);
1127         rv->inpartpopq = FALSE;
1128         vm_reserv_domain_unlock(rv->domain);
1129         vm_reserv_break(rv);
1130         counter_u64_add(vm_reserv_reclaimed, 1);
1131 }
1132
1133 /*
1134  * Breaks the reservation at the head of the partially populated reservation
1135  * queue, releasing its free pages to the physical memory allocator.  Returns
1136  * TRUE if a reservation is broken and FALSE otherwise.
1137  */
1138 boolean_t
1139 vm_reserv_reclaim_inactive(int domain)
1140 {
1141         vm_reserv_t rv;
1142
1143         while ((rv = TAILQ_FIRST(&vm_rvd[domain].partpop)) != NULL) {
1144                 vm_reserv_lock(rv);
1145                 if (rv != TAILQ_FIRST(&vm_rvd[domain].partpop)) {
1146                         vm_reserv_unlock(rv);
1147                         continue;
1148                 }
1149                 vm_reserv_reclaim(rv);
1150                 vm_reserv_unlock(rv);
1151                 return (TRUE);
1152         }
1153         return (FALSE);
1154 }
1155
1156 /*
1157  * Determine whether this reservation has free pages that satisfy the given
1158  * request for contiguous physical memory.  Start searching from the lower
1159  * bound, defined by low_index.
1160  */
1161 static bool
1162 vm_reserv_test_contig(vm_reserv_t rv, u_long npages, vm_paddr_t low,
1163     vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
1164 {
1165         vm_paddr_t pa, size;
1166         u_long changes;
1167         int bitpos, bits_left, i, hi, lo, n;
1168
1169         vm_reserv_assert_locked(rv);
1170         size = npages << PAGE_SHIFT;
1171         pa = VM_PAGE_TO_PHYS(&rv->pages[0]);
1172         lo = (pa < low) ?
1173             ((low + PAGE_MASK - pa) >> PAGE_SHIFT) : 0;
1174         i = lo / NBPOPMAP;
1175         changes = rv->popmap[i] | ((1UL << (lo % NBPOPMAP)) - 1);
1176         hi = (pa + VM_LEVEL_0_SIZE > high) ?
1177             ((high + PAGE_MASK - pa) >> PAGE_SHIFT) : VM_LEVEL_0_NPAGES;
1178         n = hi / NBPOPMAP;
1179         bits_left = hi % NBPOPMAP;
1180         hi = lo = -1;
1181         for (;;) {
1182                 /*
1183                  * "changes" is a bitmask that marks where a new sequence of
1184                  * 0s or 1s begins in popmap[i], with last bit in popmap[i-1]
1185                  * considered to be 1 if and only if lo == hi.  The bits of
1186                  * popmap[-1] and popmap[NPOPMAP] are considered all 1s.
1187                  */
1188                 changes ^= (changes << 1) | (lo == hi);
1189                 while (changes != 0) {
1190                         /*
1191                          * If the next change marked begins a run of 0s, set
1192                          * lo to mark that position.  Otherwise set hi and
1193                          * look for a satisfactory first page from lo up to hi.
1194                          */
1195                         bitpos = ffsl(changes) - 1;
1196                         changes ^= 1UL << bitpos;
1197                         if (lo == hi) {
1198                                 lo = NBPOPMAP * i + bitpos;
1199                                 continue;
1200                         }
1201                         hi = NBPOPMAP * i + bitpos;
1202                         pa = VM_PAGE_TO_PHYS(&rv->pages[lo]);
1203                         if ((pa & (alignment - 1)) != 0) {
1204                                 /* Skip to next aligned page. */
1205                                 lo += (((pa - 1) | (alignment - 1)) + 1) >>
1206                                     PAGE_SHIFT;
1207                                 if (lo >= VM_LEVEL_0_NPAGES)
1208                                         return (false);
1209                                 pa = VM_PAGE_TO_PHYS(&rv->pages[lo]);
1210                         }
1211                         if (((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0) {
1212                                 /* Skip to next boundary-matching page. */
1213                                 lo += (((pa - 1) | (boundary - 1)) + 1) >>
1214                                     PAGE_SHIFT;
1215                                 if (lo >= VM_LEVEL_0_NPAGES)
1216                                         return (false);
1217                                 pa = VM_PAGE_TO_PHYS(&rv->pages[lo]);
1218                         }
1219                         if (lo * PAGE_SIZE + size <= hi * PAGE_SIZE)
1220                                 return (true);
1221                         lo = hi;
1222                 }
1223                 if (++i < n)
1224                         changes = rv->popmap[i];
1225                 else if (i == n)
1226                         changes = bits_left == 0 ? -1UL :
1227                             (rv->popmap[n] | (-1UL << bits_left));
1228                 else
1229                         return (false);
1230         }
1231 }
1232
1233 /*
1234  * Searches the partially populated reservation queue for the least recently
1235  * changed reservation with free pages that satisfy the given request for
1236  * contiguous physical memory.  If a satisfactory reservation is found, it is
1237  * broken.  Returns true if a reservation is broken and false otherwise.
1238  */
1239 boolean_t
1240 vm_reserv_reclaim_contig(int domain, u_long npages, vm_paddr_t low,
1241     vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
1242 {
1243         vm_paddr_t pa, size;
1244         vm_reserv_t rv, rvn;
1245
1246         if (npages > VM_LEVEL_0_NPAGES - 1)
1247                 return (false);
1248         size = npages << PAGE_SHIFT;
1249         vm_reserv_domain_lock(domain);
1250 again:
1251         for (rv = TAILQ_FIRST(&vm_rvd[domain].partpop); rv != NULL; rv = rvn) {
1252                 rvn = TAILQ_NEXT(rv, partpopq);
1253                 pa = VM_PAGE_TO_PHYS(&rv->pages[0]);
1254                 if (pa + VM_LEVEL_0_SIZE - size < low) {
1255                         /* This entire reservation is too low; go to next. */
1256                         continue;
1257                 }
1258                 if (pa + size > high) {
1259                         /* This entire reservation is too high; go to next. */
1260                         continue;
1261                 }
1262                 if (vm_reserv_trylock(rv) == 0) {
1263                         vm_reserv_domain_unlock(domain);
1264                         vm_reserv_lock(rv);
1265                         if (!rv->inpartpopq) {
1266                                 vm_reserv_domain_lock(domain);
1267                                 if (!rvn->inpartpopq)
1268                                         goto again;
1269                                 continue;
1270                         }
1271                 } else
1272                         vm_reserv_domain_unlock(domain);
1273                 if (vm_reserv_test_contig(rv, npages, low, high,
1274                     alignment, boundary)) {
1275                         vm_reserv_reclaim(rv);
1276                         vm_reserv_unlock(rv);
1277                         return (true);
1278                 }
1279                 vm_reserv_unlock(rv);
1280                 vm_reserv_domain_lock(domain);
1281                 if (rvn != NULL && !rvn->inpartpopq)
1282                         goto again;
1283         }
1284         vm_reserv_domain_unlock(domain);
1285         return (false);
1286 }
1287
1288 /*
1289  * Transfers the reservation underlying the given page to a new object.
1290  *
1291  * The object must be locked.
1292  */
1293 void
1294 vm_reserv_rename(vm_page_t m, vm_object_t new_object, vm_object_t old_object,
1295     vm_pindex_t old_object_offset)
1296 {
1297         vm_reserv_t rv;
1298
1299         VM_OBJECT_ASSERT_WLOCKED(new_object);
1300         rv = vm_reserv_from_page(m);
1301         if (rv->object == old_object) {
1302                 vm_reserv_lock(rv);
1303                 CTR6(KTR_VM,
1304                     "%s: rv %p object %p new %p popcnt %d inpartpop %d",
1305                     __FUNCTION__, rv, rv->object, new_object, rv->popcnt,
1306                     rv->inpartpopq);
1307                 if (rv->object == old_object) {
1308                         vm_reserv_object_lock(old_object);
1309                         rv->object = NULL;
1310                         LIST_REMOVE(rv, objq);
1311                         vm_reserv_object_unlock(old_object);
1312                         vm_reserv_object_lock(new_object);
1313                         rv->object = new_object;
1314                         rv->pindex -= old_object_offset;
1315                         LIST_INSERT_HEAD(&new_object->rvq, rv, objq);
1316                         vm_reserv_object_unlock(new_object);
1317                 }
1318                 vm_reserv_unlock(rv);
1319         }
1320 }
1321
1322 /*
1323  * Returns the size (in bytes) of a reservation of the specified level.
1324  */
1325 int
1326 vm_reserv_size(int level)
1327 {
1328
1329         switch (level) {
1330         case 0:
1331                 return (VM_LEVEL_0_SIZE);
1332         case -1:
1333                 return (PAGE_SIZE);
1334         default:
1335                 return (0);
1336         }
1337 }
1338
1339 /*
1340  * Allocates the virtual and physical memory required by the reservation
1341  * management system's data structures, in particular, the reservation array.
1342  */
1343 vm_paddr_t
1344 vm_reserv_startup(vm_offset_t *vaddr, vm_paddr_t end)
1345 {
1346         vm_paddr_t new_end, high_water;
1347         size_t size;
1348         int i;
1349
1350         high_water = phys_avail[1];
1351         for (i = 0; i < vm_phys_nsegs; i++) {
1352                 if (vm_phys_segs[i].end > high_water)
1353                         high_water = vm_phys_segs[i].end;
1354         }
1355
1356         /* Skip the first chunk.  It is already accounted for. */
1357         for (i = 2; phys_avail[i + 1] != 0; i += 2) {
1358                 if (phys_avail[i + 1] > high_water)
1359                         high_water = phys_avail[i + 1];
1360         }
1361
1362         /*
1363          * Calculate the size (in bytes) of the reservation array.  Round up
1364          * from "high_water" because every small page is mapped to an element
1365          * in the reservation array based on its physical address.  Thus, the
1366          * number of elements in the reservation array can be greater than the
1367          * number of superpages. 
1368          */
1369         size = howmany(high_water, VM_LEVEL_0_SIZE) * sizeof(struct vm_reserv);
1370
1371         /*
1372          * Allocate and map the physical memory for the reservation array.  The
1373          * next available virtual address is returned by reference.
1374          */
1375         new_end = end - round_page(size);
1376         vm_reserv_array = (void *)(uintptr_t)pmap_map(vaddr, new_end, end,
1377             VM_PROT_READ | VM_PROT_WRITE);
1378         bzero(vm_reserv_array, size);
1379
1380         /*
1381          * Return the next available physical address.
1382          */
1383         return (new_end);
1384 }
1385
1386 /*
1387  * Initializes the reservation management system.  Specifically, initializes
1388  * the reservation counters.
1389  */
1390 static void
1391 vm_reserv_counter_init(void *unused)
1392 {
1393
1394         vm_reserv_freed = counter_u64_alloc(M_WAITOK); 
1395         vm_reserv_broken = counter_u64_alloc(M_WAITOK); 
1396         vm_reserv_reclaimed = counter_u64_alloc(M_WAITOK); 
1397 }
1398 SYSINIT(vm_reserv_counter_init, SI_SUB_CPU, SI_ORDER_ANY,
1399     vm_reserv_counter_init, NULL);
1400
1401 /*
1402  * Returns the superpage containing the given page.
1403  */
1404 vm_page_t
1405 vm_reserv_to_superpage(vm_page_t m)
1406 {
1407         vm_reserv_t rv;
1408
1409         VM_OBJECT_ASSERT_LOCKED(m->object);
1410         rv = vm_reserv_from_page(m);
1411         if (rv->object == m->object && rv->popcnt == VM_LEVEL_0_NPAGES)
1412                 m = rv->pages;
1413         else
1414                 m = NULL;
1415
1416         return (m);
1417 }
1418
1419 #endif  /* VM_NRESERVLEVEL > 0 */