]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_reserv.c
Merge vendor lld/docs directory from r337145
[FreeBSD/FreeBSD.git] / sys / vm / vm_reserv.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2002-2006 Rice University
5  * Copyright (c) 2007-2011 Alan L. Cox <alc@cs.rice.edu>
6  * All rights reserved.
7  *
8  * This software was developed for the FreeBSD Project by Alan L. Cox,
9  * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23  * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT
24  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
27  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
30  * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 /*
35  *      Superpage reservation management module
36  *
37  * Any external functions defined by this module are only to be used by the
38  * virtual memory system.
39  */
40
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43
44 #include "opt_vm.h"
45
46 #include <sys/param.h>
47 #include <sys/kernel.h>
48 #include <sys/lock.h>
49 #include <sys/malloc.h>
50 #include <sys/mutex.h>
51 #include <sys/queue.h>
52 #include <sys/rwlock.h>
53 #include <sys/sbuf.h>
54 #include <sys/sysctl.h>
55 #include <sys/systm.h>
56 #include <sys/counter.h>
57 #include <sys/ktr.h>
58 #include <sys/vmmeter.h>
59 #include <sys/smp.h>
60
61 #include <vm/vm.h>
62 #include <vm/vm_param.h>
63 #include <vm/vm_object.h>
64 #include <vm/vm_page.h>
65 #include <vm/vm_pageout.h>
66 #include <vm/vm_phys.h>
67 #include <vm/vm_pagequeue.h>
68 #include <vm/vm_radix.h>
69 #include <vm/vm_reserv.h>
70
71 /*
72  * The reservation system supports the speculative allocation of large physical
73  * pages ("superpages").  Speculative allocation enables the fully automatic
74  * utilization of superpages by the virtual memory system.  In other words, no
75  * programmatic directives are required to use superpages.
76  */
77
78 #if VM_NRESERVLEVEL > 0
79
80 /*
81  * The number of small pages that are contained in a level 0 reservation
82  */
83 #define VM_LEVEL_0_NPAGES       (1 << VM_LEVEL_0_ORDER)
84
85 /*
86  * The number of bits by which a physical address is shifted to obtain the
87  * reservation number
88  */
89 #define VM_LEVEL_0_SHIFT        (VM_LEVEL_0_ORDER + PAGE_SHIFT)
90
91 /*
92  * The size of a level 0 reservation in bytes
93  */
94 #define VM_LEVEL_0_SIZE         (1 << VM_LEVEL_0_SHIFT)
95
96 /*
97  * Computes the index of the small page underlying the given (object, pindex)
98  * within the reservation's array of small pages.
99  */
100 #define VM_RESERV_INDEX(object, pindex) \
101     (((object)->pg_color + (pindex)) & (VM_LEVEL_0_NPAGES - 1))
102
103 /*
104  * The size of a population map entry
105  */
106 typedef u_long          popmap_t;
107
108 /*
109  * The number of bits in a population map entry
110  */
111 #define NBPOPMAP        (NBBY * sizeof(popmap_t))
112
113 /*
114  * The number of population map entries in a reservation
115  */
116 #define NPOPMAP         howmany(VM_LEVEL_0_NPAGES, NBPOPMAP)
117
118 /*
119  * Number of elapsed ticks before we update the LRU queue position.  Used
120  * to reduce contention and churn on the list.
121  */
122 #define PARTPOPSLOP     1
123
124 /*
125  * Clear a bit in the population map.
126  */
127 static __inline void
128 popmap_clear(popmap_t popmap[], int i)
129 {
130
131         popmap[i / NBPOPMAP] &= ~(1UL << (i % NBPOPMAP));
132 }
133
134 /*
135  * Set a bit in the population map.
136  */
137 static __inline void
138 popmap_set(popmap_t popmap[], int i)
139 {
140
141         popmap[i / NBPOPMAP] |= 1UL << (i % NBPOPMAP);
142 }
143
144 /*
145  * Is a bit in the population map clear?
146  */
147 static __inline boolean_t
148 popmap_is_clear(popmap_t popmap[], int i)
149 {
150
151         return ((popmap[i / NBPOPMAP] & (1UL << (i % NBPOPMAP))) == 0);
152 }
153
154 /*
155  * Is a bit in the population map set?
156  */
157 static __inline boolean_t
158 popmap_is_set(popmap_t popmap[], int i)
159 {
160
161         return ((popmap[i / NBPOPMAP] & (1UL << (i % NBPOPMAP))) != 0);
162 }
163
164 /*
165  * The reservation structure
166  *
167  * A reservation structure is constructed whenever a large physical page is
168  * speculatively allocated to an object.  The reservation provides the small
169  * physical pages for the range [pindex, pindex + VM_LEVEL_0_NPAGES) of offsets
170  * within that object.  The reservation's "popcnt" tracks the number of these
171  * small physical pages that are in use at any given time.  When and if the
172  * reservation is not fully utilized, it appears in the queue of partially
173  * populated reservations.  The reservation always appears on the containing
174  * object's list of reservations.
175  *
176  * A partially populated reservation can be broken and reclaimed at any time.
177  *
178  * r - vm_reserv_lock
179  * d - vm_reserv_domain_lock
180  * o - vm_reserv_object_lock
181  * c - constant after boot
182  */
183 struct vm_reserv {
184         struct mtx      lock;                   /* reservation lock. */
185         TAILQ_ENTRY(vm_reserv) partpopq;        /* (d) per-domain queue. */
186         LIST_ENTRY(vm_reserv) objq;             /* (o, r) object queue */
187         vm_object_t     object;                 /* (o, r) containing object */
188         vm_pindex_t     pindex;                 /* (o, r) offset in object */
189         vm_page_t       pages;                  /* (c) first page  */
190         uint16_t        domain;                 /* (c) NUMA domain. */
191         uint16_t        popcnt;                 /* (r) # of pages in use */
192         int             lasttick;               /* (r) last pop update tick. */
193         char            inpartpopq;             /* (d) */
194         popmap_t        popmap[NPOPMAP];        /* (r) bit vector, used pages */
195 };
196
197 #define vm_reserv_lockptr(rv)           (&(rv)->lock)
198 #define vm_reserv_assert_locked(rv)                                     \
199             mtx_assert(vm_reserv_lockptr(rv), MA_OWNED)
200 #define vm_reserv_lock(rv)              mtx_lock(vm_reserv_lockptr(rv))
201 #define vm_reserv_trylock(rv)           mtx_trylock(vm_reserv_lockptr(rv))
202 #define vm_reserv_unlock(rv)            mtx_unlock(vm_reserv_lockptr(rv))
203
204 static struct mtx_padalign vm_reserv_domain_locks[MAXMEMDOM];
205
206 #define vm_reserv_domain_lockptr(d)     &vm_reserv_domain_locks[(d)]
207 #define vm_reserv_domain_lock(d)        mtx_lock(vm_reserv_domain_lockptr(d))
208 #define vm_reserv_domain_unlock(d)      mtx_unlock(vm_reserv_domain_lockptr(d))
209
210 /*
211  * The reservation array
212  *
213  * This array is analoguous in function to vm_page_array.  It differs in the
214  * respect that it may contain a greater number of useful reservation
215  * structures than there are (physical) superpages.  These "invalid"
216  * reservation structures exist to trade-off space for time in the
217  * implementation of vm_reserv_from_page().  Invalid reservation structures are
218  * distinguishable from "valid" reservation structures by inspecting the
219  * reservation's "pages" field.  Invalid reservation structures have a NULL
220  * "pages" field.
221  *
222  * vm_reserv_from_page() maps a small (physical) page to an element of this
223  * array by computing a physical reservation number from the page's physical
224  * address.  The physical reservation number is used as the array index.
225  *
226  * An "active" reservation is a valid reservation structure that has a non-NULL
227  * "object" field and a non-zero "popcnt" field.  In other words, every active
228  * reservation belongs to a particular object.  Moreover, every active
229  * reservation has an entry in the containing object's list of reservations.  
230  */
231 static vm_reserv_t vm_reserv_array;
232
233 /*
234  * The partially populated reservation queue
235  *
236  * This queue enables the fast recovery of an unused free small page from a
237  * partially populated reservation.  The reservation at the head of this queue
238  * is the least recently changed, partially populated reservation.
239  *
240  * Access to this queue is synchronized by the free page queue lock.
241  */
242 static TAILQ_HEAD(, vm_reserv) vm_rvq_partpop[MAXMEMDOM];
243
244 static SYSCTL_NODE(_vm, OID_AUTO, reserv, CTLFLAG_RD, 0, "Reservation Info");
245
246 static counter_u64_t vm_reserv_broken = EARLY_COUNTER;
247 SYSCTL_COUNTER_U64(_vm_reserv, OID_AUTO, broken, CTLFLAG_RD,
248     &vm_reserv_broken, "Cumulative number of broken reservations");
249
250 static counter_u64_t vm_reserv_freed = EARLY_COUNTER;
251 SYSCTL_COUNTER_U64(_vm_reserv, OID_AUTO, freed, CTLFLAG_RD,
252     &vm_reserv_freed, "Cumulative number of freed reservations");
253
254 static int sysctl_vm_reserv_fullpop(SYSCTL_HANDLER_ARGS);
255
256 SYSCTL_PROC(_vm_reserv, OID_AUTO, fullpop, CTLTYPE_INT | CTLFLAG_RD, NULL, 0,
257     sysctl_vm_reserv_fullpop, "I", "Current number of full reservations");
258
259 static int sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS);
260
261 SYSCTL_OID(_vm_reserv, OID_AUTO, partpopq, CTLTYPE_STRING | CTLFLAG_RD, NULL, 0,
262     sysctl_vm_reserv_partpopq, "A", "Partially populated reservation queues");
263
264 static counter_u64_t vm_reserv_reclaimed = EARLY_COUNTER;
265 SYSCTL_COUNTER_U64(_vm_reserv, OID_AUTO, reclaimed, CTLFLAG_RD,
266     &vm_reserv_reclaimed, "Cumulative number of reclaimed reservations");
267
268 /*
269  * The object lock pool is used to synchronize the rvq.  We can not use a
270  * pool mutex because it is required before malloc works.
271  *
272  * The "hash" function could be made faster without divide and modulo.
273  */
274 #define VM_RESERV_OBJ_LOCK_COUNT        MAXCPU
275
276 struct mtx_padalign vm_reserv_object_mtx[VM_RESERV_OBJ_LOCK_COUNT];
277
278 #define vm_reserv_object_lock_idx(object)                       \
279             (((uintptr_t)object / sizeof(*object)) % VM_RESERV_OBJ_LOCK_COUNT)
280 #define vm_reserv_object_lock_ptr(object)                       \
281             &vm_reserv_object_mtx[vm_reserv_object_lock_idx((object))]
282 #define vm_reserv_object_lock(object)                           \
283             mtx_lock(vm_reserv_object_lock_ptr((object)))
284 #define vm_reserv_object_unlock(object)                         \
285             mtx_unlock(vm_reserv_object_lock_ptr((object)))
286
287 static void             vm_reserv_break(vm_reserv_t rv);
288 static void             vm_reserv_depopulate(vm_reserv_t rv, int index);
289 static vm_reserv_t      vm_reserv_from_page(vm_page_t m);
290 static boolean_t        vm_reserv_has_pindex(vm_reserv_t rv,
291                             vm_pindex_t pindex);
292 static void             vm_reserv_populate(vm_reserv_t rv, int index);
293 static void             vm_reserv_reclaim(vm_reserv_t rv);
294
295 /*
296  * Returns the current number of full reservations.
297  *
298  * Since the number of full reservations is computed without acquiring the
299  * free page queue lock, the returned value may be inexact.
300  */
301 static int
302 sysctl_vm_reserv_fullpop(SYSCTL_HANDLER_ARGS)
303 {
304         vm_paddr_t paddr;
305         struct vm_phys_seg *seg;
306         vm_reserv_t rv;
307         int fullpop, segind;
308
309         fullpop = 0;
310         for (segind = 0; segind < vm_phys_nsegs; segind++) {
311                 seg = &vm_phys_segs[segind];
312                 paddr = roundup2(seg->start, VM_LEVEL_0_SIZE);
313                 while (paddr + VM_LEVEL_0_SIZE <= seg->end) {
314                         rv = &vm_reserv_array[paddr >> VM_LEVEL_0_SHIFT];
315                         fullpop += rv->popcnt == VM_LEVEL_0_NPAGES;
316                         paddr += VM_LEVEL_0_SIZE;
317                 }
318         }
319         return (sysctl_handle_int(oidp, &fullpop, 0, req));
320 }
321
322 /*
323  * Describes the current state of the partially populated reservation queue.
324  */
325 static int
326 sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS)
327 {
328         struct sbuf sbuf;
329         vm_reserv_t rv;
330         int counter, error, domain, level, unused_pages;
331
332         error = sysctl_wire_old_buffer(req, 0);
333         if (error != 0)
334                 return (error);
335         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
336         sbuf_printf(&sbuf, "\nDOMAIN    LEVEL     SIZE  NUMBER\n\n");
337         for (domain = 0; domain < vm_ndomains; domain++) {
338                 for (level = -1; level <= VM_NRESERVLEVEL - 2; level++) {
339                         counter = 0;
340                         unused_pages = 0;
341                         vm_reserv_domain_lock(domain);
342                         TAILQ_FOREACH(rv, &vm_rvq_partpop[domain], partpopq) {
343                                 counter++;
344                                 unused_pages += VM_LEVEL_0_NPAGES - rv->popcnt;
345                         }
346                         vm_reserv_domain_unlock(domain);
347                         sbuf_printf(&sbuf, "%6d, %7d, %6dK, %6d\n",
348                             domain, level,
349                             unused_pages * ((int)PAGE_SIZE / 1024), counter);
350                 }
351         }
352         error = sbuf_finish(&sbuf);
353         sbuf_delete(&sbuf);
354         return (error);
355 }
356
357 /*
358  * Remove a reservation from the object's objq.
359  */
360 static void
361 vm_reserv_remove(vm_reserv_t rv)
362 {
363         vm_object_t object;
364
365         vm_reserv_assert_locked(rv);
366         CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d",
367             __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq);
368         KASSERT(rv->object != NULL,
369             ("vm_reserv_remove: reserv %p is free", rv));
370         KASSERT(!rv->inpartpopq,
371             ("vm_reserv_remove: reserv %p's inpartpopq is TRUE", rv));
372         object = rv->object;
373         vm_reserv_object_lock(object);
374         LIST_REMOVE(rv, objq);
375         rv->object = NULL;
376         vm_reserv_object_unlock(object);
377 }
378
379 /*
380  * Insert a new reservation into the object's objq.
381  */
382 static void
383 vm_reserv_insert(vm_reserv_t rv, vm_object_t object, vm_pindex_t pindex)
384 {
385         int i;
386
387         vm_reserv_assert_locked(rv);
388         CTR6(KTR_VM,
389             "%s: rv %p(%p) object %p new %p popcnt %d",
390             __FUNCTION__, rv, rv->pages, rv->object, object,
391            rv->popcnt);
392         KASSERT(rv->object == NULL,
393             ("vm_reserv_insert: reserv %p isn't free", rv));
394         KASSERT(rv->popcnt == 0,
395             ("vm_reserv_insert: reserv %p's popcnt is corrupted", rv));
396         KASSERT(!rv->inpartpopq,
397             ("vm_reserv_insert: reserv %p's inpartpopq is TRUE", rv));
398         for (i = 0; i < NPOPMAP; i++)
399                 KASSERT(rv->popmap[i] == 0,
400                     ("vm_reserv_insert: reserv %p's popmap is corrupted", rv));
401         vm_reserv_object_lock(object);
402         rv->pindex = pindex;
403         rv->object = object;
404         rv->lasttick = ticks;
405         LIST_INSERT_HEAD(&object->rvq, rv, objq);
406         vm_reserv_object_unlock(object);
407 }
408
409 /*
410  * Reduces the given reservation's population count.  If the population count
411  * becomes zero, the reservation is destroyed.  Additionally, moves the
412  * reservation to the tail of the partially populated reservation queue if the
413  * population count is non-zero.
414  */
415 static void
416 vm_reserv_depopulate(vm_reserv_t rv, int index)
417 {
418         struct vm_domain *vmd;
419
420         vm_reserv_assert_locked(rv);
421         CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d",
422             __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq);
423         KASSERT(rv->object != NULL,
424             ("vm_reserv_depopulate: reserv %p is free", rv));
425         KASSERT(popmap_is_set(rv->popmap, index),
426             ("vm_reserv_depopulate: reserv %p's popmap[%d] is clear", rv,
427             index));
428         KASSERT(rv->popcnt > 0,
429             ("vm_reserv_depopulate: reserv %p's popcnt is corrupted", rv));
430         KASSERT(rv->domain < vm_ndomains,
431             ("vm_reserv_depopulate: reserv %p's domain is corrupted %d",
432             rv, rv->domain));
433         if (rv->popcnt == VM_LEVEL_0_NPAGES) {
434                 KASSERT(rv->pages->psind == 1,
435                     ("vm_reserv_depopulate: reserv %p is already demoted",
436                     rv));
437                 rv->pages->psind = 0;
438         }
439         popmap_clear(rv->popmap, index);
440         rv->popcnt--;
441         if ((unsigned)(ticks - rv->lasttick) >= PARTPOPSLOP ||
442             rv->popcnt == 0) {
443                 vm_reserv_domain_lock(rv->domain);
444                 if (rv->inpartpopq) {
445                         TAILQ_REMOVE(&vm_rvq_partpop[rv->domain], rv, partpopq);
446                         rv->inpartpopq = FALSE;
447                 }
448                 if (rv->popcnt != 0) {
449                         rv->inpartpopq = TRUE;
450                         TAILQ_INSERT_TAIL(&vm_rvq_partpop[rv->domain], rv, partpopq);
451                 }
452                 vm_reserv_domain_unlock(rv->domain);
453                 rv->lasttick = ticks;
454         }
455         vmd = VM_DOMAIN(rv->domain);
456         if (rv->popcnt == 0) {
457                 vm_reserv_remove(rv);
458                 vm_domain_free_lock(vmd);
459                 vm_phys_free_pages(rv->pages, VM_LEVEL_0_ORDER);
460                 vm_domain_free_unlock(vmd);
461                 counter_u64_add(vm_reserv_freed, 1);
462         }
463         vm_domain_freecnt_inc(vmd, 1);
464 }
465
466 /*
467  * Returns the reservation to which the given page might belong.
468  */
469 static __inline vm_reserv_t
470 vm_reserv_from_page(vm_page_t m)
471 {
472
473         return (&vm_reserv_array[VM_PAGE_TO_PHYS(m) >> VM_LEVEL_0_SHIFT]);
474 }
475
476 /*
477  * Returns an existing reservation or NULL and initialized successor pointer.
478  */
479 static vm_reserv_t
480 vm_reserv_from_object(vm_object_t object, vm_pindex_t pindex,
481     vm_page_t mpred, vm_page_t *msuccp)
482 {
483         vm_reserv_t rv;
484         vm_page_t msucc;
485
486         msucc = NULL;
487         if (mpred != NULL) {
488                 KASSERT(mpred->object == object,
489                     ("vm_reserv_from_object: object doesn't contain mpred"));
490                 KASSERT(mpred->pindex < pindex,
491                     ("vm_reserv_from_object: mpred doesn't precede pindex"));
492                 rv = vm_reserv_from_page(mpred);
493                 if (rv->object == object && vm_reserv_has_pindex(rv, pindex))
494                         goto found;
495                 msucc = TAILQ_NEXT(mpred, listq);
496         } else
497                 msucc = TAILQ_FIRST(&object->memq);
498         if (msucc != NULL) {
499                 KASSERT(msucc->pindex > pindex,
500                     ("vm_reserv_from_object: msucc doesn't succeed pindex"));
501                 rv = vm_reserv_from_page(msucc);
502                 if (rv->object == object && vm_reserv_has_pindex(rv, pindex))
503                         goto found;
504         }
505         rv = NULL;
506
507 found:
508         *msuccp = msucc;
509
510         return (rv);
511 }
512
513 /*
514  * Returns TRUE if the given reservation contains the given page index and
515  * FALSE otherwise.
516  */
517 static __inline boolean_t
518 vm_reserv_has_pindex(vm_reserv_t rv, vm_pindex_t pindex)
519 {
520
521         return (((pindex - rv->pindex) & ~(VM_LEVEL_0_NPAGES - 1)) == 0);
522 }
523
524 /*
525  * Increases the given reservation's population count.  Moves the reservation
526  * to the tail of the partially populated reservation queue.
527  *
528  * The free page queue must be locked.
529  */
530 static void
531 vm_reserv_populate(vm_reserv_t rv, int index)
532 {
533
534         vm_reserv_assert_locked(rv);
535         CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d",
536             __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq);
537         KASSERT(rv->object != NULL,
538             ("vm_reserv_populate: reserv %p is free", rv));
539         KASSERT(popmap_is_clear(rv->popmap, index),
540             ("vm_reserv_populate: reserv %p's popmap[%d] is set", rv,
541             index));
542         KASSERT(rv->popcnt < VM_LEVEL_0_NPAGES,
543             ("vm_reserv_populate: reserv %p is already full", rv));
544         KASSERT(rv->pages->psind == 0,
545             ("vm_reserv_populate: reserv %p is already promoted", rv));
546         KASSERT(rv->domain < vm_ndomains,
547             ("vm_reserv_populate: reserv %p's domain is corrupted %d",
548             rv, rv->domain));
549         popmap_set(rv->popmap, index);
550         rv->popcnt++;
551         if ((unsigned)(ticks - rv->lasttick) < PARTPOPSLOP &&
552             rv->inpartpopq && rv->popcnt != VM_LEVEL_0_NPAGES)
553                 return;
554         rv->lasttick = ticks;
555         vm_reserv_domain_lock(rv->domain);
556         if (rv->inpartpopq) {
557                 TAILQ_REMOVE(&vm_rvq_partpop[rv->domain], rv, partpopq);
558                 rv->inpartpopq = FALSE;
559         }
560         if (rv->popcnt < VM_LEVEL_0_NPAGES) {
561                 rv->inpartpopq = TRUE;
562                 TAILQ_INSERT_TAIL(&vm_rvq_partpop[rv->domain], rv, partpopq);
563         } else {
564                 KASSERT(rv->pages->psind == 0,
565                     ("vm_reserv_populate: reserv %p is already promoted",
566                     rv));
567                 rv->pages->psind = 1;
568         }
569         vm_reserv_domain_unlock(rv->domain);
570 }
571
572 /*
573  * Attempts to allocate a contiguous set of physical pages from existing
574  * reservations.  See vm_reserv_alloc_contig() for a description of the
575  * function's parameters.
576  *
577  * The page "mpred" must immediately precede the offset "pindex" within the
578  * specified object.
579  *
580  * The object must be locked.
581  */
582 vm_page_t
583 vm_reserv_extend_contig(int req, vm_object_t object, vm_pindex_t pindex,
584     int domain, u_long npages, vm_paddr_t low, vm_paddr_t high,
585     u_long alignment, vm_paddr_t boundary, vm_page_t mpred)
586 {
587         struct vm_domain *vmd;
588         vm_paddr_t pa, size;
589         vm_page_t m, msucc;
590         vm_reserv_t rv;
591         int i, index;
592
593         VM_OBJECT_ASSERT_WLOCKED(object);
594         KASSERT(npages != 0, ("vm_reserv_alloc_contig: npages is 0"));
595
596         /*
597          * Is a reservation fundamentally impossible?
598          */
599         if (pindex < VM_RESERV_INDEX(object, pindex) ||
600             pindex + npages > object->size || object->resident_page_count == 0)
601                 return (NULL);
602
603         /*
604          * All reservations of a particular size have the same alignment.
605          * Assuming that the first page is allocated from a reservation, the
606          * least significant bits of its physical address can be determined
607          * from its offset from the beginning of the reservation and the size
608          * of the reservation.
609          *
610          * Could the specified index within a reservation of the smallest
611          * possible size satisfy the alignment and boundary requirements?
612          */
613         pa = VM_RESERV_INDEX(object, pindex) << PAGE_SHIFT;
614         if ((pa & (alignment - 1)) != 0)
615                 return (NULL);
616         size = npages << PAGE_SHIFT;
617         if (((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0)
618                 return (NULL);
619
620         /*
621          * Look for an existing reservation.
622          */
623         rv = vm_reserv_from_object(object, pindex, mpred, &msucc);
624         if (rv == NULL)
625                 return (NULL);
626         KASSERT(object != kernel_object || rv->domain == domain,
627             ("vm_reserv_extend_contig: Domain mismatch from reservation."));
628         index = VM_RESERV_INDEX(object, pindex);
629         /* Does the allocation fit within the reservation? */
630         if (index + npages > VM_LEVEL_0_NPAGES)
631                 return (NULL);
632         domain = rv->domain;
633         vmd = VM_DOMAIN(domain);
634         vm_reserv_lock(rv);
635         if (rv->object != object)
636                 goto out;
637         m = &rv->pages[index];
638         pa = VM_PAGE_TO_PHYS(m);
639         if (pa < low || pa + size > high || (pa & (alignment - 1)) != 0 ||
640             ((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0)
641                 goto out;
642         /* Handle vm_page_rename(m, new_object, ...). */
643         for (i = 0; i < npages; i++) {
644                 if (popmap_is_set(rv->popmap, index + i))
645                         goto out;
646         }
647         if (!vm_domain_allocate(vmd, req, npages))
648                 goto out;
649         for (i = 0; i < npages; i++)
650                 vm_reserv_populate(rv, index + i);
651         vm_reserv_unlock(rv);
652         return (m);
653
654 out:
655         vm_reserv_unlock(rv);
656         return (NULL);
657 }
658
659 /*
660  * Allocates a contiguous set of physical pages of the given size "npages"
661  * from newly created reservations.  All of the physical pages
662  * must be at or above the given physical address "low" and below the given
663  * physical address "high".  The given value "alignment" determines the
664  * alignment of the first physical page in the set.  If the given value
665  * "boundary" is non-zero, then the set of physical pages cannot cross any
666  * physical address boundary that is a multiple of that value.  Both
667  * "alignment" and "boundary" must be a power of two.
668  *
669  * Callers should first invoke vm_reserv_extend_contig() to attempt an
670  * allocation from existing reservations.
671  *
672  * The page "mpred" must immediately precede the offset "pindex" within the
673  * specified object.
674  *
675  * The object and free page queue must be locked.
676  */
677 vm_page_t
678 vm_reserv_alloc_contig(int req, vm_object_t object, vm_pindex_t pindex, int domain,
679     u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
680     vm_paddr_t boundary, vm_page_t mpred)
681 {
682         struct vm_domain *vmd;
683         vm_paddr_t pa, size;
684         vm_page_t m, m_ret, msucc;
685         vm_pindex_t first, leftcap, rightcap;
686         vm_reserv_t rv;
687         u_long allocpages, maxpages, minpages;
688         int i, index, n;
689
690         VM_OBJECT_ASSERT_WLOCKED(object);
691         KASSERT(npages != 0, ("vm_reserv_alloc_contig: npages is 0"));
692
693         /*
694          * Is a reservation fundamentally impossible?
695          */
696         if (pindex < VM_RESERV_INDEX(object, pindex) ||
697             pindex + npages > object->size)
698                 return (NULL);
699
700         /*
701          * All reservations of a particular size have the same alignment.
702          * Assuming that the first page is allocated from a reservation, the
703          * least significant bits of its physical address can be determined
704          * from its offset from the beginning of the reservation and the size
705          * of the reservation.
706          *
707          * Could the specified index within a reservation of the smallest
708          * possible size satisfy the alignment and boundary requirements?
709          */
710         pa = VM_RESERV_INDEX(object, pindex) << PAGE_SHIFT;
711         if ((pa & (alignment - 1)) != 0)
712                 return (NULL);
713         size = npages << PAGE_SHIFT;
714         if (((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0)
715                 return (NULL);
716
717         /*
718          * Callers should've extended an existing reservation prior to
719          * calling this function.  If a reservation exists it is
720          * incompatible with the allocation.
721          */
722         rv = vm_reserv_from_object(object, pindex, mpred, &msucc);
723         if (rv != NULL)
724                 return (NULL);
725
726         /*
727          * Could at least one reservation fit between the first index to the
728          * left that can be used ("leftcap") and the first index to the right
729          * that cannot be used ("rightcap")?
730          *
731          * We must synchronize with the reserv object lock to protect the
732          * pindex/object of the resulting reservations against rename while
733          * we are inspecting.
734          */
735         first = pindex - VM_RESERV_INDEX(object, pindex);
736         minpages = VM_RESERV_INDEX(object, pindex) + npages;
737         maxpages = roundup2(minpages, VM_LEVEL_0_NPAGES);
738         allocpages = maxpages;
739         vm_reserv_object_lock(object);
740         if (mpred != NULL) {
741                 if ((rv = vm_reserv_from_page(mpred))->object != object)
742                         leftcap = mpred->pindex + 1;
743                 else
744                         leftcap = rv->pindex + VM_LEVEL_0_NPAGES;
745                 if (leftcap > first) {
746                         vm_reserv_object_unlock(object);
747                         return (NULL);
748                 }
749         }
750         if (msucc != NULL) {
751                 if ((rv = vm_reserv_from_page(msucc))->object != object)
752                         rightcap = msucc->pindex;
753                 else
754                         rightcap = rv->pindex;
755                 if (first + maxpages > rightcap) {
756                         if (maxpages == VM_LEVEL_0_NPAGES) {
757                                 vm_reserv_object_unlock(object);
758                                 return (NULL);
759                         }
760
761                         /*
762                          * At least one reservation will fit between "leftcap"
763                          * and "rightcap".  However, a reservation for the
764                          * last of the requested pages will not fit.  Reduce
765                          * the size of the upcoming allocation accordingly.
766                          */
767                         allocpages = minpages;
768                 }
769         }
770         vm_reserv_object_unlock(object);
771
772         /*
773          * Would the last new reservation extend past the end of the object?
774          */
775         if (first + maxpages > object->size) {
776                 /*
777                  * Don't allocate the last new reservation if the object is a
778                  * vnode or backed by another object that is a vnode. 
779                  */
780                 if (object->type == OBJT_VNODE ||
781                     (object->backing_object != NULL &&
782                     object->backing_object->type == OBJT_VNODE)) {
783                         if (maxpages == VM_LEVEL_0_NPAGES)
784                                 return (NULL);
785                         allocpages = minpages;
786                 }
787                 /* Speculate that the object may grow. */
788         }
789
790         /*
791          * Allocate the physical pages.  The alignment and boundary specified
792          * for this allocation may be different from the alignment and
793          * boundary specified for the requested pages.  For instance, the
794          * specified index may not be the first page within the first new
795          * reservation.
796          */
797         m = NULL;
798         vmd = VM_DOMAIN(domain);
799         if (vm_domain_allocate(vmd, req, npages)) {
800                 vm_domain_free_lock(vmd);
801                 m = vm_phys_alloc_contig(domain, allocpages, low, high,
802                     ulmax(alignment, VM_LEVEL_0_SIZE),
803                     boundary > VM_LEVEL_0_SIZE ? boundary : 0);
804                 vm_domain_free_unlock(vmd);
805                 if (m == NULL) {
806                         vm_domain_freecnt_inc(vmd, npages);
807                         return (NULL);
808                 }
809         } else
810                 return (NULL);
811         KASSERT(vm_phys_domain(m) == domain,
812             ("vm_reserv_alloc_contig: Page domain does not match requested."));
813
814         /*
815          * The allocated physical pages always begin at a reservation
816          * boundary, but they do not always end at a reservation boundary.
817          * Initialize every reservation that is completely covered by the
818          * allocated physical pages.
819          */
820         m_ret = NULL;
821         index = VM_RESERV_INDEX(object, pindex);
822         do {
823                 rv = vm_reserv_from_page(m);
824                 KASSERT(rv->pages == m,
825                     ("vm_reserv_alloc_contig: reserv %p's pages is corrupted",
826                     rv));
827                 vm_reserv_lock(rv);
828                 vm_reserv_insert(rv, object, first);
829                 n = ulmin(VM_LEVEL_0_NPAGES - index, npages);
830                 for (i = 0; i < n; i++)
831                         vm_reserv_populate(rv, index + i);
832                 npages -= n;
833                 if (m_ret == NULL) {
834                         m_ret = &rv->pages[index];
835                         index = 0;
836                 }
837                 vm_reserv_unlock(rv);
838                 m += VM_LEVEL_0_NPAGES;
839                 first += VM_LEVEL_0_NPAGES;
840                 allocpages -= VM_LEVEL_0_NPAGES;
841         } while (allocpages >= VM_LEVEL_0_NPAGES);
842         return (m_ret);
843 }
844
845 /*
846  * Attempts to extend an existing reservation and allocate the page to the
847  * object.
848  *
849  * The page "mpred" must immediately precede the offset "pindex" within the
850  * specified object.
851  *
852  * The object must be locked.
853  */
854 vm_page_t
855 vm_reserv_extend(int req, vm_object_t object, vm_pindex_t pindex, int domain,
856     vm_page_t mpred)
857 {
858         struct vm_domain *vmd;
859         vm_page_t m, msucc;
860         vm_reserv_t rv;
861         int index;
862
863         VM_OBJECT_ASSERT_WLOCKED(object);
864
865         /*
866          * Could a reservation currently exist?
867          */
868         if (pindex < VM_RESERV_INDEX(object, pindex) ||
869             pindex >= object->size || object->resident_page_count == 0)
870                 return (NULL);
871
872         /*
873          * Look for an existing reservation.
874          */
875         rv = vm_reserv_from_object(object, pindex, mpred, &msucc);
876         if (rv == NULL)
877                 return (NULL);
878
879         KASSERT(object != kernel_object || rv->domain == domain,
880             ("vm_reserv_extend: Domain mismatch from reservation."));
881         domain = rv->domain;
882         vmd = VM_DOMAIN(domain);
883         index = VM_RESERV_INDEX(object, pindex);
884         m = &rv->pages[index];
885         vm_reserv_lock(rv);
886         /* Handle reclaim race. */
887         if (rv->object != object ||
888             /* Handle vm_page_rename(m, new_object, ...). */
889             popmap_is_set(rv->popmap, index)) {
890                 m = NULL;
891                 goto out;
892         }
893         if (vm_domain_allocate(vmd, req, 1) == 0)
894                 m = NULL;
895         else
896                 vm_reserv_populate(rv, index);
897 out:
898         vm_reserv_unlock(rv);
899
900         return (m);
901 }
902
903 /*
904  * Attempts to allocate a new reservation for the object, and allocates a
905  * page from that reservation.  Callers should first invoke vm_reserv_extend()
906  * to attempt an allocation from an existing reservation.
907  *
908  * The page "mpred" must immediately precede the offset "pindex" within the
909  * specified object.
910  *
911  * The object and free page queue must be locked.
912  */
913 vm_page_t
914 vm_reserv_alloc_page(int req, vm_object_t object, vm_pindex_t pindex, int domain,
915     vm_page_t mpred)
916 {
917         struct vm_domain *vmd;
918         vm_page_t m, msucc;
919         vm_pindex_t first, leftcap, rightcap;
920         vm_reserv_t rv;
921         int index;
922
923         VM_OBJECT_ASSERT_WLOCKED(object);
924
925         /*
926          * Is a reservation fundamentally impossible?
927          */
928         if (pindex < VM_RESERV_INDEX(object, pindex) ||
929             pindex >= object->size)
930                 return (NULL);
931
932         /*
933          * Callers should've extended an existing reservation prior to
934          * calling this function.  If a reservation exists it is
935          * incompatible with the allocation.
936          */
937         rv = vm_reserv_from_object(object, pindex, mpred, &msucc);
938         if (rv != NULL)
939                 return (NULL);
940
941         /*
942          * Could a reservation fit between the first index to the left that
943          * can be used and the first index to the right that cannot be used?
944          *
945          * We must synchronize with the reserv object lock to protect the
946          * pindex/object of the resulting reservations against rename while
947          * we are inspecting.
948          */
949         first = pindex - VM_RESERV_INDEX(object, pindex);
950         vm_reserv_object_lock(object);
951         if (mpred != NULL) {
952                 if ((rv = vm_reserv_from_page(mpred))->object != object)
953                         leftcap = mpred->pindex + 1;
954                 else
955                         leftcap = rv->pindex + VM_LEVEL_0_NPAGES;
956                 if (leftcap > first) {
957                         vm_reserv_object_unlock(object);
958                         return (NULL);
959                 }
960         }
961         if (msucc != NULL) {
962                 if ((rv = vm_reserv_from_page(msucc))->object != object)
963                         rightcap = msucc->pindex;
964                 else
965                         rightcap = rv->pindex;
966                 if (first + VM_LEVEL_0_NPAGES > rightcap) {
967                         vm_reserv_object_unlock(object);
968                         return (NULL);
969                 }
970         }
971         vm_reserv_object_unlock(object);
972
973         /*
974          * Would a new reservation extend past the end of the object? 
975          */
976         if (first + VM_LEVEL_0_NPAGES > object->size) {
977                 /*
978                  * Don't allocate a new reservation if the object is a vnode or
979                  * backed by another object that is a vnode. 
980                  */
981                 if (object->type == OBJT_VNODE ||
982                     (object->backing_object != NULL &&
983                     object->backing_object->type == OBJT_VNODE))
984                         return (NULL);
985                 /* Speculate that the object may grow. */
986         }
987
988         /*
989          * Allocate and populate the new reservation.
990          */
991         m = NULL;
992         vmd = VM_DOMAIN(domain);
993         if (vm_domain_allocate(vmd, req, 1)) {
994                 vm_domain_free_lock(vmd);
995                 m = vm_phys_alloc_pages(domain, VM_FREEPOOL_DEFAULT,
996                     VM_LEVEL_0_ORDER);
997                 vm_domain_free_unlock(vmd);
998                 if (m == NULL) {
999                         vm_domain_freecnt_inc(vmd, 1);
1000                         return (NULL);
1001                 }
1002         } else
1003                 return (NULL);
1004         rv = vm_reserv_from_page(m);
1005         vm_reserv_lock(rv);
1006         KASSERT(rv->pages == m,
1007             ("vm_reserv_alloc_page: reserv %p's pages is corrupted", rv));
1008         vm_reserv_insert(rv, object, first);
1009         index = VM_RESERV_INDEX(object, pindex);
1010         vm_reserv_populate(rv, index);
1011         vm_reserv_unlock(rv);
1012
1013         return (&rv->pages[index]);
1014 }
1015
1016 /*
1017  * Breaks the given reservation.  All free pages in the reservation
1018  * are returned to the physical memory allocator.  The reservation's
1019  * population count and map are reset to their initial state.
1020  *
1021  * The given reservation must not be in the partially populated reservation
1022  * queue.  The free page queue lock must be held.
1023  */
1024 static void
1025 vm_reserv_break(vm_reserv_t rv)
1026 {
1027         int begin_zeroes, hi, i, lo;
1028
1029         vm_reserv_assert_locked(rv);
1030         CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d",
1031             __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq);
1032         vm_reserv_remove(rv);
1033         rv->pages->psind = 0;
1034         i = hi = 0;
1035         do {
1036                 /* Find the next 0 bit.  Any previous 0 bits are < "hi". */
1037                 lo = ffsl(~(((1UL << hi) - 1) | rv->popmap[i]));
1038                 if (lo == 0) {
1039                         /* Redundantly clears bits < "hi". */
1040                         rv->popmap[i] = 0;
1041                         rv->popcnt -= NBPOPMAP - hi;
1042                         while (++i < NPOPMAP) {
1043                                 lo = ffsl(~rv->popmap[i]);
1044                                 if (lo == 0) {
1045                                         rv->popmap[i] = 0;
1046                                         rv->popcnt -= NBPOPMAP;
1047                                 } else
1048                                         break;
1049                         }
1050                         if (i == NPOPMAP)
1051                                 break;
1052                         hi = 0;
1053                 }
1054                 KASSERT(lo > 0, ("vm_reserv_break: lo is %d", lo));
1055                 /* Convert from ffsl() to ordinary bit numbering. */
1056                 lo--;
1057                 if (lo > 0) {
1058                         /* Redundantly clears bits < "hi". */
1059                         rv->popmap[i] &= ~((1UL << lo) - 1);
1060                         rv->popcnt -= lo - hi;
1061                 }
1062                 begin_zeroes = NBPOPMAP * i + lo;
1063                 /* Find the next 1 bit. */
1064                 do
1065                         hi = ffsl(rv->popmap[i]);
1066                 while (hi == 0 && ++i < NPOPMAP);
1067                 if (i != NPOPMAP)
1068                         /* Convert from ffsl() to ordinary bit numbering. */
1069                         hi--;
1070                 vm_domain_free_lock(VM_DOMAIN(rv->domain));
1071                 vm_phys_free_contig(&rv->pages[begin_zeroes], NBPOPMAP * i +
1072                     hi - begin_zeroes);
1073                 vm_domain_free_unlock(VM_DOMAIN(rv->domain));
1074         } while (i < NPOPMAP);
1075         KASSERT(rv->popcnt == 0,
1076             ("vm_reserv_break: reserv %p's popcnt is corrupted", rv));
1077         counter_u64_add(vm_reserv_broken, 1);
1078 }
1079
1080 /*
1081  * Breaks all reservations belonging to the given object.
1082  */
1083 void
1084 vm_reserv_break_all(vm_object_t object)
1085 {
1086         vm_reserv_t rv;
1087
1088         /*
1089          * This access of object->rvq is unsynchronized so that the
1090          * object rvq lock can nest after the domain_free lock.  We
1091          * must check for races in the results.  However, the object
1092          * lock prevents new additions, so we are guaranteed that when
1093          * it returns NULL the object is properly empty.
1094          */
1095         while ((rv = LIST_FIRST(&object->rvq)) != NULL) {
1096                 vm_reserv_lock(rv);
1097                 /* Reclaim race. */
1098                 if (rv->object != object) {
1099                         vm_reserv_unlock(rv);
1100                         continue;
1101                 }
1102                 vm_reserv_domain_lock(rv->domain);
1103                 if (rv->inpartpopq) {
1104                         TAILQ_REMOVE(&vm_rvq_partpop[rv->domain], rv, partpopq);
1105                         rv->inpartpopq = FALSE;
1106                 }
1107                 vm_reserv_domain_unlock(rv->domain);
1108                 vm_reserv_break(rv);
1109                 vm_reserv_unlock(rv);
1110         }
1111 }
1112
1113 /*
1114  * Frees the given page if it belongs to a reservation.  Returns TRUE if the
1115  * page is freed and FALSE otherwise.
1116  *
1117  * The free page queue lock must be held.
1118  */
1119 boolean_t
1120 vm_reserv_free_page(vm_page_t m)
1121 {
1122         vm_reserv_t rv;
1123         boolean_t ret;
1124
1125         rv = vm_reserv_from_page(m);
1126         if (rv->object == NULL)
1127                 return (FALSE);
1128         vm_reserv_lock(rv);
1129         /* Re-validate after lock. */
1130         if (rv->object != NULL) {
1131                 vm_reserv_depopulate(rv, m - rv->pages);
1132                 ret = TRUE;
1133         } else
1134                 ret = FALSE;
1135         vm_reserv_unlock(rv);
1136
1137         return (ret);
1138 }
1139
1140 /*
1141  * Initializes the reservation management system.  Specifically, initializes
1142  * the reservation array.
1143  *
1144  * Requires that vm_page_array and first_page are initialized!
1145  */
1146 void
1147 vm_reserv_init(void)
1148 {
1149         vm_paddr_t paddr;
1150         struct vm_phys_seg *seg;
1151         struct vm_reserv *rv;
1152         int i, segind;
1153
1154         /*
1155          * Initialize the reservation array.  Specifically, initialize the
1156          * "pages" field for every element that has an underlying superpage.
1157          */
1158         for (segind = 0; segind < vm_phys_nsegs; segind++) {
1159                 seg = &vm_phys_segs[segind];
1160                 paddr = roundup2(seg->start, VM_LEVEL_0_SIZE);
1161                 while (paddr + VM_LEVEL_0_SIZE <= seg->end) {
1162                         rv = &vm_reserv_array[paddr >> VM_LEVEL_0_SHIFT];
1163                         rv->pages = PHYS_TO_VM_PAGE(paddr);
1164                         rv->domain = seg->domain;
1165                         mtx_init(&rv->lock, "vm reserv", NULL, MTX_DEF);
1166                         paddr += VM_LEVEL_0_SIZE;
1167                 }
1168         }
1169         for (i = 0; i < MAXMEMDOM; i++) {
1170                 mtx_init(&vm_reserv_domain_locks[i], "VM reserv domain", NULL,
1171                     MTX_DEF);
1172                 TAILQ_INIT(&vm_rvq_partpop[i]);
1173         }
1174
1175         for (i = 0; i < VM_RESERV_OBJ_LOCK_COUNT; i++)
1176                 mtx_init(&vm_reserv_object_mtx[i], "resv obj lock", NULL,
1177                     MTX_DEF);
1178 }
1179
1180 /*
1181  * Returns true if the given page belongs to a reservation and that page is
1182  * free.  Otherwise, returns false.
1183  */
1184 bool
1185 vm_reserv_is_page_free(vm_page_t m)
1186 {
1187         vm_reserv_t rv;
1188
1189         rv = vm_reserv_from_page(m);
1190         if (rv->object == NULL)
1191                 return (false);
1192         return (popmap_is_clear(rv->popmap, m - rv->pages));
1193 }
1194
1195 /*
1196  * If the given page belongs to a reservation, returns the level of that
1197  * reservation.  Otherwise, returns -1.
1198  */
1199 int
1200 vm_reserv_level(vm_page_t m)
1201 {
1202         vm_reserv_t rv;
1203
1204         rv = vm_reserv_from_page(m);
1205         return (rv->object != NULL ? 0 : -1);
1206 }
1207
1208 /*
1209  * Returns a reservation level if the given page belongs to a fully populated
1210  * reservation and -1 otherwise.
1211  */
1212 int
1213 vm_reserv_level_iffullpop(vm_page_t m)
1214 {
1215         vm_reserv_t rv;
1216
1217         rv = vm_reserv_from_page(m);
1218         return (rv->popcnt == VM_LEVEL_0_NPAGES ? 0 : -1);
1219 }
1220
1221 /*
1222  * Breaks the given partially populated reservation, releasing its free pages
1223  * to the physical memory allocator.
1224  *
1225  * The free page queue lock must be held.
1226  */
1227 static void
1228 vm_reserv_reclaim(vm_reserv_t rv)
1229 {
1230
1231         vm_reserv_assert_locked(rv);
1232         CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d",
1233             __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq);
1234         vm_reserv_domain_lock(rv->domain);
1235         KASSERT(rv->inpartpopq,
1236             ("vm_reserv_reclaim: reserv %p's inpartpopq is FALSE", rv));
1237         KASSERT(rv->domain < vm_ndomains,
1238             ("vm_reserv_reclaim: reserv %p's domain is corrupted %d",
1239             rv, rv->domain));
1240         TAILQ_REMOVE(&vm_rvq_partpop[rv->domain], rv, partpopq);
1241         rv->inpartpopq = FALSE;
1242         vm_reserv_domain_unlock(rv->domain);
1243         vm_reserv_break(rv);
1244         counter_u64_add(vm_reserv_reclaimed, 1);
1245 }
1246
1247 /*
1248  * Breaks the reservation at the head of the partially populated reservation
1249  * queue, releasing its free pages to the physical memory allocator.  Returns
1250  * TRUE if a reservation is broken and FALSE otherwise.
1251  *
1252  * The free page queue lock must be held.
1253  */
1254 boolean_t
1255 vm_reserv_reclaim_inactive(int domain)
1256 {
1257         vm_reserv_t rv;
1258
1259         while ((rv = TAILQ_FIRST(&vm_rvq_partpop[domain])) != NULL) {
1260                 vm_reserv_lock(rv);
1261                 if (rv != TAILQ_FIRST(&vm_rvq_partpop[domain])) {
1262                         vm_reserv_unlock(rv);
1263                         continue;
1264                 }
1265                 vm_reserv_reclaim(rv);
1266                 vm_reserv_unlock(rv);
1267                 return (TRUE);
1268         }
1269         return (FALSE);
1270 }
1271
1272 /*
1273  * Searches the partially populated reservation queue for the least recently
1274  * changed reservation with free pages that satisfy the given request for
1275  * contiguous physical memory.  If a satisfactory reservation is found, it is
1276  * broken.  Returns TRUE if a reservation is broken and FALSE otherwise.
1277  *
1278  * The free page queue lock must be held.
1279  */
1280 boolean_t
1281 vm_reserv_reclaim_contig(int domain, u_long npages, vm_paddr_t low,
1282     vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
1283 {
1284         vm_paddr_t pa, size;
1285         vm_reserv_t rv, rvn;
1286         int hi, i, lo, low_index, next_free;
1287
1288         if (npages > VM_LEVEL_0_NPAGES - 1)
1289                 return (FALSE);
1290         size = npages << PAGE_SHIFT;
1291         vm_reserv_domain_lock(domain);
1292 again:
1293         for (rv = TAILQ_FIRST(&vm_rvq_partpop[domain]); rv != NULL; rv = rvn) {
1294                 rvn = TAILQ_NEXT(rv, partpopq);
1295                 pa = VM_PAGE_TO_PHYS(&rv->pages[VM_LEVEL_0_NPAGES - 1]);
1296                 if (pa + PAGE_SIZE - size < low) {
1297                         /* This entire reservation is too low; go to next. */
1298                         continue;
1299                 }
1300                 pa = VM_PAGE_TO_PHYS(&rv->pages[0]);
1301                 if (pa + size > high) {
1302                         /* This entire reservation is too high; go to next. */
1303                         continue;
1304                 }
1305                 if (vm_reserv_trylock(rv) == 0) {
1306                         vm_reserv_domain_unlock(domain);
1307                         vm_reserv_lock(rv);
1308                         if (!rv->inpartpopq) {
1309                                 vm_reserv_domain_lock(domain);
1310                                 if (!rvn->inpartpopq)
1311                                         goto again;
1312                                 continue;
1313                         }
1314                 } else
1315                         vm_reserv_domain_unlock(domain);
1316                 if (pa < low) {
1317                         /* Start the search for free pages at "low". */
1318                         low_index = (low + PAGE_MASK - pa) >> PAGE_SHIFT;
1319                         i = low_index / NBPOPMAP;
1320                         hi = low_index % NBPOPMAP;
1321                 } else
1322                         i = hi = 0;
1323                 do {
1324                         /* Find the next free page. */
1325                         lo = ffsl(~(((1UL << hi) - 1) | rv->popmap[i]));
1326                         while (lo == 0 && ++i < NPOPMAP)
1327                                 lo = ffsl(~rv->popmap[i]);
1328                         if (i == NPOPMAP)
1329                                 break;
1330                         /* Convert from ffsl() to ordinary bit numbering. */
1331                         lo--;
1332                         next_free = NBPOPMAP * i + lo;
1333                         pa = VM_PAGE_TO_PHYS(&rv->pages[next_free]);
1334                         KASSERT(pa >= low,
1335                             ("vm_reserv_reclaim_contig: pa is too low"));
1336                         if (pa + size > high) {
1337                                 /* The rest of this reservation is too high. */
1338                                 break;
1339                         } else if ((pa & (alignment - 1)) != 0 ||
1340                             ((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0) {
1341                                 /*
1342                                  * The current page doesn't meet the alignment
1343                                  * and/or boundary requirements.  Continue
1344                                  * searching this reservation until the rest
1345                                  * of its free pages are either excluded or
1346                                  * exhausted.
1347                                  */
1348                                 hi = lo + 1;
1349                                 if (hi >= NBPOPMAP) {
1350                                         hi = 0;
1351                                         i++;
1352                                 }
1353                                 continue;
1354                         }
1355                         /* Find the next used page. */
1356                         hi = ffsl(rv->popmap[i] & ~((1UL << lo) - 1));
1357                         while (hi == 0 && ++i < NPOPMAP) {
1358                                 if ((NBPOPMAP * i - next_free) * PAGE_SIZE >=
1359                                     size) {
1360                                         vm_reserv_reclaim(rv);
1361                                         vm_reserv_unlock(rv);
1362                                         return (TRUE);
1363                                 }
1364                                 hi = ffsl(rv->popmap[i]);
1365                         }
1366                         /* Convert from ffsl() to ordinary bit numbering. */
1367                         if (i != NPOPMAP)
1368                                 hi--;
1369                         if ((NBPOPMAP * i + hi - next_free) * PAGE_SIZE >=
1370                             size) {
1371                                 vm_reserv_reclaim(rv);
1372                                 vm_reserv_unlock(rv);
1373                                 return (TRUE);
1374                         }
1375                 } while (i < NPOPMAP);
1376                 vm_reserv_unlock(rv);
1377                 vm_reserv_domain_lock(domain);
1378                 if (rvn != NULL && !rvn->inpartpopq)
1379                         goto again;
1380         }
1381         vm_reserv_domain_unlock(domain);
1382         return (FALSE);
1383 }
1384
1385 /*
1386  * Transfers the reservation underlying the given page to a new object.
1387  *
1388  * The object must be locked.
1389  */
1390 void
1391 vm_reserv_rename(vm_page_t m, vm_object_t new_object, vm_object_t old_object,
1392     vm_pindex_t old_object_offset)
1393 {
1394         vm_reserv_t rv;
1395
1396         VM_OBJECT_ASSERT_WLOCKED(new_object);
1397         rv = vm_reserv_from_page(m);
1398         if (rv->object == old_object) {
1399                 vm_reserv_lock(rv);
1400                 CTR6(KTR_VM,
1401                     "%s: rv %p object %p new %p popcnt %d inpartpop %d",
1402                     __FUNCTION__, rv, rv->object, new_object, rv->popcnt,
1403                     rv->inpartpopq);
1404                 if (rv->object == old_object) {
1405                         vm_reserv_object_lock(old_object);
1406                         rv->object = NULL;
1407                         LIST_REMOVE(rv, objq);
1408                         vm_reserv_object_unlock(old_object);
1409                         vm_reserv_object_lock(new_object);
1410                         rv->object = new_object;
1411                         rv->pindex -= old_object_offset;
1412                         LIST_INSERT_HEAD(&new_object->rvq, rv, objq);
1413                         vm_reserv_object_unlock(new_object);
1414                 }
1415                 vm_reserv_unlock(rv);
1416         }
1417 }
1418
1419 /*
1420  * Returns the size (in bytes) of a reservation of the specified level.
1421  */
1422 int
1423 vm_reserv_size(int level)
1424 {
1425
1426         switch (level) {
1427         case 0:
1428                 return (VM_LEVEL_0_SIZE);
1429         case -1:
1430                 return (PAGE_SIZE);
1431         default:
1432                 return (0);
1433         }
1434 }
1435
1436 /*
1437  * Allocates the virtual and physical memory required by the reservation
1438  * management system's data structures, in particular, the reservation array.
1439  */
1440 vm_paddr_t
1441 vm_reserv_startup(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t high_water)
1442 {
1443         vm_paddr_t new_end;
1444         size_t size;
1445
1446         /*
1447          * Calculate the size (in bytes) of the reservation array.  Round up
1448          * from "high_water" because every small page is mapped to an element
1449          * in the reservation array based on its physical address.  Thus, the
1450          * number of elements in the reservation array can be greater than the
1451          * number of superpages. 
1452          */
1453         size = howmany(high_water, VM_LEVEL_0_SIZE) * sizeof(struct vm_reserv);
1454
1455         /*
1456          * Allocate and map the physical memory for the reservation array.  The
1457          * next available virtual address is returned by reference.
1458          */
1459         new_end = end - round_page(size);
1460         vm_reserv_array = (void *)(uintptr_t)pmap_map(vaddr, new_end, end,
1461             VM_PROT_READ | VM_PROT_WRITE);
1462         bzero(vm_reserv_array, size);
1463
1464         /*
1465          * Return the next available physical address.
1466          */
1467         return (new_end);
1468 }
1469
1470 /*
1471  * Initializes the reservation management system.  Specifically, initializes
1472  * the reservation counters.
1473  */
1474 static void
1475 vm_reserv_counter_init(void *unused)
1476 {
1477
1478         vm_reserv_freed = counter_u64_alloc(M_WAITOK); 
1479         vm_reserv_broken = counter_u64_alloc(M_WAITOK); 
1480         vm_reserv_reclaimed = counter_u64_alloc(M_WAITOK); 
1481 }
1482 SYSINIT(vm_reserv_counter_init, SI_SUB_CPU, SI_ORDER_ANY,
1483     vm_reserv_counter_init, NULL);
1484
1485 /*
1486  * Returns the superpage containing the given page.
1487  */
1488 vm_page_t
1489 vm_reserv_to_superpage(vm_page_t m)
1490 {
1491         vm_reserv_t rv;
1492
1493         VM_OBJECT_ASSERT_LOCKED(m->object);
1494         rv = vm_reserv_from_page(m);
1495         if (rv->object == m->object && rv->popcnt == VM_LEVEL_0_NPAGES)
1496                 m = rv->pages;
1497         else
1498                 m = NULL;
1499
1500         return (m);
1501 }
1502
1503 #endif  /* VM_NRESERVLEVEL > 0 */