]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vnode_pager.c
Upgrade to OpenSSH 7.3p1.
[FreeBSD/FreeBSD.git] / sys / vm / vnode_pager.c
1 /*-
2  * Copyright (c) 1990 University of Utah.
3  * Copyright (c) 1991 The Regents of the University of California.
4  * All rights reserved.
5  * Copyright (c) 1993, 1994 John S. Dyson
6  * Copyright (c) 1995, David Greenman
7  *
8  * This code is derived from software contributed to Berkeley by
9  * the Systems Programming Group of the University of Utah Computer
10  * Science Department.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *      This product includes software developed by the University of
23  *      California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *      from: @(#)vnode_pager.c 7.5 (Berkeley) 4/20/91
41  */
42
43 /*
44  * Page to/from files (vnodes).
45  */
46
47 /*
48  * TODO:
49  *      Implement VOP_GETPAGES/PUTPAGES interface for filesystems. Will
50  *      greatly re-simplify the vnode_pager.
51  */
52
53 #include <sys/cdefs.h>
54 __FBSDID("$FreeBSD$");
55
56 #include "opt_vm.h"
57
58 #include <sys/param.h>
59 #include <sys/systm.h>
60 #include <sys/proc.h>
61 #include <sys/vnode.h>
62 #include <sys/mount.h>
63 #include <sys/bio.h>
64 #include <sys/buf.h>
65 #include <sys/vmmeter.h>
66 #include <sys/limits.h>
67 #include <sys/conf.h>
68 #include <sys/rwlock.h>
69 #include <sys/sf_buf.h>
70
71 #include <machine/atomic.h>
72
73 #include <vm/vm.h>
74 #include <vm/vm_param.h>
75 #include <vm/vm_object.h>
76 #include <vm/vm_page.h>
77 #include <vm/vm_pager.h>
78 #include <vm/vm_map.h>
79 #include <vm/vnode_pager.h>
80 #include <vm/vm_extern.h>
81
82 static int vnode_pager_addr(struct vnode *vp, vm_ooffset_t address,
83     daddr_t *rtaddress, int *run);
84 static int vnode_pager_input_smlfs(vm_object_t object, vm_page_t m);
85 static int vnode_pager_input_old(vm_object_t object, vm_page_t m);
86 static void vnode_pager_dealloc(vm_object_t);
87 static int vnode_pager_getpages(vm_object_t, vm_page_t *, int, int *, int *);
88 static int vnode_pager_getpages_async(vm_object_t, vm_page_t *, int, int *,
89     int *, vop_getpages_iodone_t, void *);
90 static void vnode_pager_putpages(vm_object_t, vm_page_t *, int, int, int *);
91 static boolean_t vnode_pager_haspage(vm_object_t, vm_pindex_t, int *, int *);
92 static vm_object_t vnode_pager_alloc(void *, vm_ooffset_t, vm_prot_t,
93     vm_ooffset_t, struct ucred *cred);
94 static int vnode_pager_generic_getpages_done(struct buf *);
95 static void vnode_pager_generic_getpages_done_async(struct buf *);
96
97 struct pagerops vnodepagerops = {
98         .pgo_alloc =    vnode_pager_alloc,
99         .pgo_dealloc =  vnode_pager_dealloc,
100         .pgo_getpages = vnode_pager_getpages,
101         .pgo_getpages_async = vnode_pager_getpages_async,
102         .pgo_putpages = vnode_pager_putpages,
103         .pgo_haspage =  vnode_pager_haspage,
104 };
105
106 int vnode_pbuf_freecnt;
107 int vnode_async_pbuf_freecnt;
108
109 /* Create the VM system backing object for this vnode */
110 int
111 vnode_create_vobject(struct vnode *vp, off_t isize, struct thread *td)
112 {
113         vm_object_t object;
114         vm_ooffset_t size = isize;
115         struct vattr va;
116
117         if (!vn_isdisk(vp, NULL) && vn_canvmio(vp) == FALSE)
118                 return (0);
119
120         while ((object = vp->v_object) != NULL) {
121                 VM_OBJECT_WLOCK(object);
122                 if (!(object->flags & OBJ_DEAD)) {
123                         VM_OBJECT_WUNLOCK(object);
124                         return (0);
125                 }
126                 VOP_UNLOCK(vp, 0);
127                 vm_object_set_flag(object, OBJ_DISCONNECTWNT);
128                 VM_OBJECT_SLEEP(object, object, PDROP | PVM, "vodead", 0);
129                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
130         }
131
132         if (size == 0) {
133                 if (vn_isdisk(vp, NULL)) {
134                         size = IDX_TO_OFF(INT_MAX);
135                 } else {
136                         if (VOP_GETATTR(vp, &va, td->td_ucred))
137                                 return (0);
138                         size = va.va_size;
139                 }
140         }
141
142         object = vnode_pager_alloc(vp, size, 0, 0, td->td_ucred);
143         /*
144          * Dereference the reference we just created.  This assumes
145          * that the object is associated with the vp.
146          */
147         VM_OBJECT_WLOCK(object);
148         object->ref_count--;
149         VM_OBJECT_WUNLOCK(object);
150         vrele(vp);
151
152         KASSERT(vp->v_object != NULL, ("vnode_create_vobject: NULL object"));
153
154         return (0);
155 }
156
157 void
158 vnode_destroy_vobject(struct vnode *vp)
159 {
160         struct vm_object *obj;
161
162         obj = vp->v_object;
163         if (obj == NULL)
164                 return;
165         ASSERT_VOP_ELOCKED(vp, "vnode_destroy_vobject");
166         VM_OBJECT_WLOCK(obj);
167         umtx_shm_object_terminated(obj);
168         if (obj->ref_count == 0) {
169                 /*
170                  * don't double-terminate the object
171                  */
172                 if ((obj->flags & OBJ_DEAD) == 0) {
173                         vm_object_terminate(obj);
174                 } else {
175                         /*
176                          * Waiters were already handled during object
177                          * termination.  The exclusive vnode lock hopefully
178                          * prevented new waiters from referencing the dying
179                          * object.
180                          */
181                         KASSERT((obj->flags & OBJ_DISCONNECTWNT) == 0,
182                             ("OBJ_DISCONNECTWNT set obj %p flags %x",
183                             obj, obj->flags));
184                         vp->v_object = NULL;
185                         VM_OBJECT_WUNLOCK(obj);
186                 }
187         } else {
188                 /*
189                  * Woe to the process that tries to page now :-).
190                  */
191                 vm_pager_deallocate(obj);
192                 VM_OBJECT_WUNLOCK(obj);
193         }
194         KASSERT(vp->v_object == NULL, ("vp %p obj %p", vp, vp->v_object));
195 }
196
197
198 /*
199  * Allocate (or lookup) pager for a vnode.
200  * Handle is a vnode pointer.
201  *
202  * MPSAFE
203  */
204 vm_object_t
205 vnode_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
206     vm_ooffset_t offset, struct ucred *cred)
207 {
208         vm_object_t object;
209         struct vnode *vp;
210
211         /*
212          * Pageout to vnode, no can do yet.
213          */
214         if (handle == NULL)
215                 return (NULL);
216
217         vp = (struct vnode *) handle;
218
219         /*
220          * If the object is being terminated, wait for it to
221          * go away.
222          */
223 retry:
224         while ((object = vp->v_object) != NULL) {
225                 VM_OBJECT_WLOCK(object);
226                 if ((object->flags & OBJ_DEAD) == 0)
227                         break;
228                 vm_object_set_flag(object, OBJ_DISCONNECTWNT);
229                 VM_OBJECT_SLEEP(object, object, PDROP | PVM, "vadead", 0);
230         }
231
232         KASSERT(vp->v_usecount != 0, ("vnode_pager_alloc: no vnode reference"));
233
234         if (object == NULL) {
235                 /*
236                  * Add an object of the appropriate size
237                  */
238                 object = vm_object_allocate(OBJT_VNODE, OFF_TO_IDX(round_page(size)));
239
240                 object->un_pager.vnp.vnp_size = size;
241                 object->un_pager.vnp.writemappings = 0;
242
243                 object->handle = handle;
244                 VI_LOCK(vp);
245                 if (vp->v_object != NULL) {
246                         /*
247                          * Object has been created while we were sleeping
248                          */
249                         VI_UNLOCK(vp);
250                         VM_OBJECT_WLOCK(object);
251                         KASSERT(object->ref_count == 1,
252                             ("leaked ref %p %d", object, object->ref_count));
253                         object->type = OBJT_DEAD;
254                         object->ref_count = 0;
255                         VM_OBJECT_WUNLOCK(object);
256                         vm_object_destroy(object);
257                         goto retry;
258                 }
259                 vp->v_object = object;
260                 VI_UNLOCK(vp);
261         } else {
262                 object->ref_count++;
263 #if VM_NRESERVLEVEL > 0
264                 vm_object_color(object, 0);
265 #endif
266                 VM_OBJECT_WUNLOCK(object);
267         }
268         vrefact(vp);
269         return (object);
270 }
271
272 /*
273  *      The object must be locked.
274  */
275 static void
276 vnode_pager_dealloc(vm_object_t object)
277 {
278         struct vnode *vp;
279         int refs;
280
281         vp = object->handle;
282         if (vp == NULL)
283                 panic("vnode_pager_dealloc: pager already dealloced");
284
285         VM_OBJECT_ASSERT_WLOCKED(object);
286         vm_object_pip_wait(object, "vnpdea");
287         refs = object->ref_count;
288
289         object->handle = NULL;
290         object->type = OBJT_DEAD;
291         if (object->flags & OBJ_DISCONNECTWNT) {
292                 vm_object_clear_flag(object, OBJ_DISCONNECTWNT);
293                 wakeup(object);
294         }
295         ASSERT_VOP_ELOCKED(vp, "vnode_pager_dealloc");
296         if (object->un_pager.vnp.writemappings > 0) {
297                 object->un_pager.vnp.writemappings = 0;
298                 VOP_ADD_WRITECOUNT(vp, -1);
299                 CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
300                     __func__, vp, vp->v_writecount);
301         }
302         vp->v_object = NULL;
303         VOP_UNSET_TEXT(vp);
304         VM_OBJECT_WUNLOCK(object);
305         while (refs-- > 0)
306                 vunref(vp);
307         VM_OBJECT_WLOCK(object);
308 }
309
310 static boolean_t
311 vnode_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before,
312     int *after)
313 {
314         struct vnode *vp = object->handle;
315         daddr_t bn;
316         int err;
317         daddr_t reqblock;
318         int poff;
319         int bsize;
320         int pagesperblock, blocksperpage;
321
322         VM_OBJECT_ASSERT_WLOCKED(object);
323         /*
324          * If no vp or vp is doomed or marked transparent to VM, we do not
325          * have the page.
326          */
327         if (vp == NULL || vp->v_iflag & VI_DOOMED)
328                 return FALSE;
329         /*
330          * If the offset is beyond end of file we do
331          * not have the page.
332          */
333         if (IDX_TO_OFF(pindex) >= object->un_pager.vnp.vnp_size)
334                 return FALSE;
335
336         bsize = vp->v_mount->mnt_stat.f_iosize;
337         pagesperblock = bsize / PAGE_SIZE;
338         blocksperpage = 0;
339         if (pagesperblock > 0) {
340                 reqblock = pindex / pagesperblock;
341         } else {
342                 blocksperpage = (PAGE_SIZE / bsize);
343                 reqblock = pindex * blocksperpage;
344         }
345         VM_OBJECT_WUNLOCK(object);
346         err = VOP_BMAP(vp, reqblock, NULL, &bn, after, before);
347         VM_OBJECT_WLOCK(object);
348         if (err)
349                 return TRUE;
350         if (bn == -1)
351                 return FALSE;
352         if (pagesperblock > 0) {
353                 poff = pindex - (reqblock * pagesperblock);
354                 if (before) {
355                         *before *= pagesperblock;
356                         *before += poff;
357                 }
358                 if (after) {
359                         /*
360                          * The BMAP vop can report a partial block in the
361                          * 'after', but must not report blocks after EOF.
362                          * Assert the latter, and truncate 'after' in case
363                          * of the former.
364                          */
365                         KASSERT((reqblock + *after) * pagesperblock <
366                             roundup2(object->size, pagesperblock),
367                             ("%s: reqblock %jd after %d size %ju", __func__,
368                             (intmax_t )reqblock, *after,
369                             (uintmax_t )object->size));
370                         *after *= pagesperblock;
371                         *after += pagesperblock - (poff + 1);
372                         if (pindex + *after >= object->size)
373                                 *after = object->size - 1 - pindex;
374                 }
375         } else {
376                 if (before) {
377                         *before /= blocksperpage;
378                 }
379
380                 if (after) {
381                         *after /= blocksperpage;
382                 }
383         }
384         return TRUE;
385 }
386
387 /*
388  * Lets the VM system know about a change in size for a file.
389  * We adjust our own internal size and flush any cached pages in
390  * the associated object that are affected by the size change.
391  *
392  * Note: this routine may be invoked as a result of a pager put
393  * operation (possibly at object termination time), so we must be careful.
394  */
395 void
396 vnode_pager_setsize(struct vnode *vp, vm_ooffset_t nsize)
397 {
398         vm_object_t object;
399         vm_page_t m;
400         vm_pindex_t nobjsize;
401
402         if ((object = vp->v_object) == NULL)
403                 return;
404 /*      ASSERT_VOP_ELOCKED(vp, "vnode_pager_setsize and not locked vnode"); */
405         VM_OBJECT_WLOCK(object);
406         if (object->type == OBJT_DEAD) {
407                 VM_OBJECT_WUNLOCK(object);
408                 return;
409         }
410         KASSERT(object->type == OBJT_VNODE,
411             ("not vnode-backed object %p", object));
412         if (nsize == object->un_pager.vnp.vnp_size) {
413                 /*
414                  * Hasn't changed size
415                  */
416                 VM_OBJECT_WUNLOCK(object);
417                 return;
418         }
419         nobjsize = OFF_TO_IDX(nsize + PAGE_MASK);
420         if (nsize < object->un_pager.vnp.vnp_size) {
421                 /*
422                  * File has shrunk. Toss any cached pages beyond the new EOF.
423                  */
424                 if (nobjsize < object->size)
425                         vm_object_page_remove(object, nobjsize, object->size,
426                             0);
427                 /*
428                  * this gets rid of garbage at the end of a page that is now
429                  * only partially backed by the vnode.
430                  *
431                  * XXX for some reason (I don't know yet), if we take a
432                  * completely invalid page and mark it partially valid
433                  * it can screw up NFS reads, so we don't allow the case.
434                  */
435                 if ((nsize & PAGE_MASK) &&
436                     (m = vm_page_lookup(object, OFF_TO_IDX(nsize))) != NULL &&
437                     m->valid != 0) {
438                         int base = (int)nsize & PAGE_MASK;
439                         int size = PAGE_SIZE - base;
440
441                         /*
442                          * Clear out partial-page garbage in case
443                          * the page has been mapped.
444                          */
445                         pmap_zero_page_area(m, base, size);
446
447                         /*
448                          * Update the valid bits to reflect the blocks that
449                          * have been zeroed.  Some of these valid bits may
450                          * have already been set.
451                          */
452                         vm_page_set_valid_range(m, base, size);
453
454                         /*
455                          * Round "base" to the next block boundary so that the
456                          * dirty bit for a partially zeroed block is not
457                          * cleared.
458                          */
459                         base = roundup2(base, DEV_BSIZE);
460
461                         /*
462                          * Clear out partial-page dirty bits.
463                          *
464                          * note that we do not clear out the valid
465                          * bits.  This would prevent bogus_page
466                          * replacement from working properly.
467                          */
468                         vm_page_clear_dirty(m, base, PAGE_SIZE - base);
469                 }
470         }
471         object->un_pager.vnp.vnp_size = nsize;
472         object->size = nobjsize;
473         VM_OBJECT_WUNLOCK(object);
474 }
475
476 /*
477  * calculate the linear (byte) disk address of specified virtual
478  * file address
479  */
480 static int
481 vnode_pager_addr(struct vnode *vp, vm_ooffset_t address, daddr_t *rtaddress,
482     int *run)
483 {
484         int bsize;
485         int err;
486         daddr_t vblock;
487         daddr_t voffset;
488
489         if (address < 0)
490                 return -1;
491
492         if (vp->v_iflag & VI_DOOMED)
493                 return -1;
494
495         bsize = vp->v_mount->mnt_stat.f_iosize;
496         vblock = address / bsize;
497         voffset = address % bsize;
498
499         err = VOP_BMAP(vp, vblock, NULL, rtaddress, run, NULL);
500         if (err == 0) {
501                 if (*rtaddress != -1)
502                         *rtaddress += voffset / DEV_BSIZE;
503                 if (run) {
504                         *run += 1;
505                         *run *= bsize/PAGE_SIZE;
506                         *run -= voffset/PAGE_SIZE;
507                 }
508         }
509
510         return (err);
511 }
512
513 /*
514  * small block filesystem vnode pager input
515  */
516 static int
517 vnode_pager_input_smlfs(vm_object_t object, vm_page_t m)
518 {
519         struct vnode *vp;
520         struct bufobj *bo;
521         struct buf *bp;
522         struct sf_buf *sf;
523         daddr_t fileaddr;
524         vm_offset_t bsize;
525         vm_page_bits_t bits;
526         int error, i;
527
528         error = 0;
529         vp = object->handle;
530         if (vp->v_iflag & VI_DOOMED)
531                 return VM_PAGER_BAD;
532
533         bsize = vp->v_mount->mnt_stat.f_iosize;
534
535         VOP_BMAP(vp, 0, &bo, 0, NULL, NULL);
536
537         sf = sf_buf_alloc(m, 0);
538
539         for (i = 0; i < PAGE_SIZE / bsize; i++) {
540                 vm_ooffset_t address;
541
542                 bits = vm_page_bits(i * bsize, bsize);
543                 if (m->valid & bits)
544                         continue;
545
546                 address = IDX_TO_OFF(m->pindex) + i * bsize;
547                 if (address >= object->un_pager.vnp.vnp_size) {
548                         fileaddr = -1;
549                 } else {
550                         error = vnode_pager_addr(vp, address, &fileaddr, NULL);
551                         if (error)
552                                 break;
553                 }
554                 if (fileaddr != -1) {
555                         bp = getpbuf(&vnode_pbuf_freecnt);
556
557                         /* build a minimal buffer header */
558                         bp->b_iocmd = BIO_READ;
559                         bp->b_iodone = bdone;
560                         KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred"));
561                         KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred"));
562                         bp->b_rcred = crhold(curthread->td_ucred);
563                         bp->b_wcred = crhold(curthread->td_ucred);
564                         bp->b_data = (caddr_t)sf_buf_kva(sf) + i * bsize;
565                         bp->b_blkno = fileaddr;
566                         pbgetbo(bo, bp);
567                         bp->b_vp = vp;
568                         bp->b_bcount = bsize;
569                         bp->b_bufsize = bsize;
570                         bp->b_runningbufspace = bp->b_bufsize;
571                         atomic_add_long(&runningbufspace, bp->b_runningbufspace);
572
573                         /* do the input */
574                         bp->b_iooffset = dbtob(bp->b_blkno);
575                         bstrategy(bp);
576
577                         bwait(bp, PVM, "vnsrd");
578
579                         if ((bp->b_ioflags & BIO_ERROR) != 0)
580                                 error = EIO;
581
582                         /*
583                          * free the buffer header back to the swap buffer pool
584                          */
585                         bp->b_vp = NULL;
586                         pbrelbo(bp);
587                         relpbuf(bp, &vnode_pbuf_freecnt);
588                         if (error)
589                                 break;
590                 } else
591                         bzero((caddr_t)sf_buf_kva(sf) + i * bsize, bsize);
592                 KASSERT((m->dirty & bits) == 0,
593                     ("vnode_pager_input_smlfs: page %p is dirty", m));
594                 VM_OBJECT_WLOCK(object);
595                 m->valid |= bits;
596                 VM_OBJECT_WUNLOCK(object);
597         }
598         sf_buf_free(sf);
599         if (error) {
600                 return VM_PAGER_ERROR;
601         }
602         return VM_PAGER_OK;
603 }
604
605 /*
606  * old style vnode pager input routine
607  */
608 static int
609 vnode_pager_input_old(vm_object_t object, vm_page_t m)
610 {
611         struct uio auio;
612         struct iovec aiov;
613         int error;
614         int size;
615         struct sf_buf *sf;
616         struct vnode *vp;
617
618         VM_OBJECT_ASSERT_WLOCKED(object);
619         error = 0;
620
621         /*
622          * Return failure if beyond current EOF
623          */
624         if (IDX_TO_OFF(m->pindex) >= object->un_pager.vnp.vnp_size) {
625                 return VM_PAGER_BAD;
626         } else {
627                 size = PAGE_SIZE;
628                 if (IDX_TO_OFF(m->pindex) + size > object->un_pager.vnp.vnp_size)
629                         size = object->un_pager.vnp.vnp_size - IDX_TO_OFF(m->pindex);
630                 vp = object->handle;
631                 VM_OBJECT_WUNLOCK(object);
632
633                 /*
634                  * Allocate a kernel virtual address and initialize so that
635                  * we can use VOP_READ/WRITE routines.
636                  */
637                 sf = sf_buf_alloc(m, 0);
638
639                 aiov.iov_base = (caddr_t)sf_buf_kva(sf);
640                 aiov.iov_len = size;
641                 auio.uio_iov = &aiov;
642                 auio.uio_iovcnt = 1;
643                 auio.uio_offset = IDX_TO_OFF(m->pindex);
644                 auio.uio_segflg = UIO_SYSSPACE;
645                 auio.uio_rw = UIO_READ;
646                 auio.uio_resid = size;
647                 auio.uio_td = curthread;
648
649                 error = VOP_READ(vp, &auio, 0, curthread->td_ucred);
650                 if (!error) {
651                         int count = size - auio.uio_resid;
652
653                         if (count == 0)
654                                 error = EINVAL;
655                         else if (count != PAGE_SIZE)
656                                 bzero((caddr_t)sf_buf_kva(sf) + count,
657                                     PAGE_SIZE - count);
658                 }
659                 sf_buf_free(sf);
660
661                 VM_OBJECT_WLOCK(object);
662         }
663         KASSERT(m->dirty == 0, ("vnode_pager_input_old: page %p is dirty", m));
664         if (!error)
665                 m->valid = VM_PAGE_BITS_ALL;
666         return error ? VM_PAGER_ERROR : VM_PAGER_OK;
667 }
668
669 /*
670  * generic vnode pager input routine
671  */
672
673 /*
674  * Local media VFS's that do not implement their own VOP_GETPAGES
675  * should have their VOP_GETPAGES call to vnode_pager_generic_getpages()
676  * to implement the previous behaviour.
677  *
678  * All other FS's should use the bypass to get to the local media
679  * backing vp's VOP_GETPAGES.
680  */
681 static int
682 vnode_pager_getpages(vm_object_t object, vm_page_t *m, int count, int *rbehind,
683     int *rahead)
684 {
685         struct vnode *vp;
686         int rtval;
687
688         vp = object->handle;
689         VM_OBJECT_WUNLOCK(object);
690         rtval = VOP_GETPAGES(vp, m, count, rbehind, rahead);
691         KASSERT(rtval != EOPNOTSUPP,
692             ("vnode_pager: FS getpages not implemented\n"));
693         VM_OBJECT_WLOCK(object);
694         return rtval;
695 }
696
697 static int
698 vnode_pager_getpages_async(vm_object_t object, vm_page_t *m, int count,
699     int *rbehind, int *rahead, vop_getpages_iodone_t iodone, void *arg)
700 {
701         struct vnode *vp;
702         int rtval;
703
704         vp = object->handle;
705         VM_OBJECT_WUNLOCK(object);
706         rtval = VOP_GETPAGES_ASYNC(vp, m, count, rbehind, rahead, iodone, arg);
707         KASSERT(rtval != EOPNOTSUPP,
708             ("vnode_pager: FS getpages_async not implemented\n"));
709         VM_OBJECT_WLOCK(object);
710         return (rtval);
711 }
712
713 /*
714  * The implementation of VOP_GETPAGES() and VOP_GETPAGES_ASYNC() for
715  * local filesystems, where partially valid pages can only occur at
716  * the end of file.
717  */
718 int
719 vnode_pager_local_getpages(struct vop_getpages_args *ap)
720 {
721
722         return (vnode_pager_generic_getpages(ap->a_vp, ap->a_m, ap->a_count,
723             ap->a_rbehind, ap->a_rahead, NULL, NULL));
724 }
725
726 int
727 vnode_pager_local_getpages_async(struct vop_getpages_async_args *ap)
728 {
729
730         return (vnode_pager_generic_getpages(ap->a_vp, ap->a_m, ap->a_count,
731             ap->a_rbehind, ap->a_rahead, ap->a_iodone, ap->a_arg));
732 }
733
734 /*
735  * This is now called from local media FS's to operate against their
736  * own vnodes if they fail to implement VOP_GETPAGES.
737  */
738 int
739 vnode_pager_generic_getpages(struct vnode *vp, vm_page_t *m, int count,
740     int *a_rbehind, int *a_rahead, vop_getpages_iodone_t iodone, void *arg)
741 {
742         vm_object_t object;
743         struct bufobj *bo;
744         struct buf *bp;
745         off_t foff;
746 #ifdef INVARIANTS
747         off_t blkno0;
748 #endif
749         int bsize, pagesperblock, *freecnt;
750         int error, before, after, rbehind, rahead, poff, i;
751         int bytecount, secmask;
752
753         KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
754             ("%s does not support devices", __func__));
755
756         if (vp->v_iflag & VI_DOOMED)
757                 return (VM_PAGER_BAD);
758
759         object = vp->v_object;
760         foff = IDX_TO_OFF(m[0]->pindex);
761         bsize = vp->v_mount->mnt_stat.f_iosize;
762         pagesperblock = bsize / PAGE_SIZE;
763
764         KASSERT(foff < object->un_pager.vnp.vnp_size,
765             ("%s: page %p offset beyond vp %p size", __func__, m[0], vp));
766         KASSERT(count <= sizeof(bp->b_pages),
767             ("%s: requested %d pages", __func__, count));
768
769         /*
770          * The last page has valid blocks.  Invalid part can only
771          * exist at the end of file, and the page is made fully valid
772          * by zeroing in vm_pager_get_pages().
773          */
774         if (m[count - 1]->valid != 0 && --count == 0) {
775                 if (iodone != NULL)
776                         iodone(arg, m, 1, 0);
777                 return (VM_PAGER_OK);
778         }
779
780         /*
781          * Synchronous and asynchronous paging operations use different
782          * free pbuf counters.  This is done to avoid asynchronous requests
783          * to consume all pbufs.
784          * Allocate the pbuf at the very beginning of the function, so that
785          * if we are low on certain kind of pbufs don't even proceed to BMAP,
786          * but sleep.
787          */
788         freecnt = iodone != NULL ?
789             &vnode_async_pbuf_freecnt : &vnode_pbuf_freecnt;
790         bp = getpbuf(freecnt);
791
792         /*
793          * Get the underlying device blocks for the file with VOP_BMAP().
794          * If the file system doesn't support VOP_BMAP, use old way of
795          * getting pages via VOP_READ.
796          */
797         error = VOP_BMAP(vp, foff / bsize, &bo, &bp->b_blkno, &after, &before);
798         if (error == EOPNOTSUPP) {
799                 relpbuf(bp, freecnt);
800                 VM_OBJECT_WLOCK(object);
801                 for (i = 0; i < count; i++) {
802                         PCPU_INC(cnt.v_vnodein);
803                         PCPU_INC(cnt.v_vnodepgsin);
804                         error = vnode_pager_input_old(object, m[i]);
805                         if (error)
806                                 break;
807                 }
808                 VM_OBJECT_WUNLOCK(object);
809                 return (error);
810         } else if (error != 0) {
811                 relpbuf(bp, freecnt);
812                 return (VM_PAGER_ERROR);
813         }
814
815         /*
816          * If the file system supports BMAP, but blocksize is smaller
817          * than a page size, then use special small filesystem code.
818          */
819         if (pagesperblock == 0) {
820                 relpbuf(bp, freecnt);
821                 for (i = 0; i < count; i++) {
822                         PCPU_INC(cnt.v_vnodein);
823                         PCPU_INC(cnt.v_vnodepgsin);
824                         error = vnode_pager_input_smlfs(object, m[i]);
825                         if (error)
826                                 break;
827                 }
828                 return (error);
829         }
830
831         /*
832          * A sparse file can be encountered only for a single page request,
833          * which may not be preceded by call to vm_pager_haspage().
834          */
835         if (bp->b_blkno == -1) {
836                 KASSERT(count == 1,
837                     ("%s: array[%d] request to a sparse file %p", __func__,
838                     count, vp));
839                 relpbuf(bp, freecnt);
840                 pmap_zero_page(m[0]);
841                 KASSERT(m[0]->dirty == 0, ("%s: page %p is dirty",
842                     __func__, m[0]));
843                 VM_OBJECT_WLOCK(object);
844                 m[0]->valid = VM_PAGE_BITS_ALL;
845                 VM_OBJECT_WUNLOCK(object);
846                 return (VM_PAGER_OK);
847         }
848
849 #ifdef INVARIANTS
850         blkno0 = bp->b_blkno;
851 #endif
852         bp->b_blkno += (foff % bsize) / DEV_BSIZE;
853
854         /* Recalculate blocks available after/before to pages. */
855         poff = (foff % bsize) / PAGE_SIZE;
856         before *= pagesperblock;
857         before += poff;
858         after *= pagesperblock;
859         after += pagesperblock - (poff + 1);
860         if (m[0]->pindex + after >= object->size)
861                 after = object->size - 1 - m[0]->pindex;
862         KASSERT(count <= after + 1, ("%s: %d pages asked, can do only %d",
863             __func__, count, after + 1));
864         after -= count - 1;
865
866         /* Trim requested rbehind/rahead to possible values. */   
867         rbehind = a_rbehind ? *a_rbehind : 0;
868         rahead = a_rahead ? *a_rahead : 0;
869         rbehind = min(rbehind, before);
870         rbehind = min(rbehind, m[0]->pindex);
871         rahead = min(rahead, after);
872         rahead = min(rahead, object->size - m[count - 1]->pindex);
873         /*
874          * Check that total amount of pages fit into buf.  Trim rbehind and
875          * rahead evenly if not.
876          */
877         if (rbehind + rahead + count > nitems(bp->b_pages)) {
878                 int trim, sum;
879
880                 trim = rbehind + rahead + count - nitems(bp->b_pages) + 1;
881                 sum = rbehind + rahead;
882                 if (rbehind == before) {
883                         /* Roundup rbehind trim to block size. */
884                         rbehind -= roundup(trim * rbehind / sum, pagesperblock);
885                         if (rbehind < 0)
886                                 rbehind = 0;
887                 } else
888                         rbehind -= trim * rbehind / sum;
889                 rahead -= trim * rahead / sum;
890         }
891         KASSERT(rbehind + rahead + count <= nitems(bp->b_pages),
892             ("%s: behind %d ahead %d count %d", __func__,
893             rbehind, rahead, count));
894
895         /*
896          * Fill in the bp->b_pages[] array with requested and optional   
897          * read behind or read ahead pages.  Read behind pages are looked
898          * up in a backward direction, down to a first cached page.  Same
899          * for read ahead pages, but there is no need to shift the array
900          * in case of encountering a cached page.
901          */
902         i = bp->b_npages = 0;
903         if (rbehind) {
904                 vm_pindex_t startpindex, tpindex;
905                 vm_page_t p;
906
907                 VM_OBJECT_WLOCK(object);
908                 startpindex = m[0]->pindex - rbehind;
909                 if ((p = TAILQ_PREV(m[0], pglist, listq)) != NULL &&
910                     p->pindex >= startpindex)
911                         startpindex = p->pindex + 1;
912
913                 /* tpindex is unsigned; beware of numeric underflow. */
914                 for (tpindex = m[0]->pindex - 1;
915                     tpindex >= startpindex && tpindex < m[0]->pindex;
916                     tpindex--, i++) {
917                         p = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
918                         if (p == NULL) {
919                                 /* Shift the array. */
920                                 for (int j = 0; j < i; j++)
921                                         bp->b_pages[j] = bp->b_pages[j + 
922                                             tpindex + 1 - startpindex]; 
923                                 break;
924                         }
925                         bp->b_pages[tpindex - startpindex] = p;
926                 }
927
928                 bp->b_pgbefore = i;
929                 bp->b_npages += i;
930                 bp->b_blkno -= IDX_TO_OFF(i) / DEV_BSIZE;
931         } else
932                 bp->b_pgbefore = 0;
933
934         /* Requested pages. */
935         for (int j = 0; j < count; j++, i++)
936                 bp->b_pages[i] = m[j];
937         bp->b_npages += count;
938
939         if (rahead) {
940                 vm_pindex_t endpindex, tpindex;
941                 vm_page_t p;
942
943                 if (!VM_OBJECT_WOWNED(object))
944                         VM_OBJECT_WLOCK(object);
945                 endpindex = m[count - 1]->pindex + rahead + 1;
946                 if ((p = TAILQ_NEXT(m[count - 1], listq)) != NULL &&
947                     p->pindex < endpindex)
948                         endpindex = p->pindex;
949                 if (endpindex > object->size)
950                         endpindex = object->size;
951
952                 for (tpindex = m[count - 1]->pindex + 1;
953                     tpindex < endpindex; i++, tpindex++) {
954                         p = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
955                         if (p == NULL)
956                                 break;
957                         bp->b_pages[i] = p;
958                 }
959
960                 bp->b_pgafter = i - bp->b_npages;
961                 bp->b_npages = i;
962         } else
963                 bp->b_pgafter = 0;
964
965         if (VM_OBJECT_WOWNED(object))
966                 VM_OBJECT_WUNLOCK(object);
967
968         /* Report back actual behind/ahead read. */
969         if (a_rbehind)
970                 *a_rbehind = bp->b_pgbefore;
971         if (a_rahead)
972                 *a_rahead = bp->b_pgafter;
973
974 #ifdef INVARIANTS
975         KASSERT(bp->b_npages <= nitems(bp->b_pages),
976             ("%s: buf %p overflowed", __func__, bp));
977         for (int j = 1, prev = 0; j < bp->b_npages; j++) {
978                 if (bp->b_pages[j] == bogus_page)
979                         continue;
980                 KASSERT(bp->b_pages[j]->pindex - bp->b_pages[prev]->pindex ==
981                     j - prev, ("%s: pages array not consecutive, bp %p",
982                      __func__, bp));
983                 prev = j;
984         }
985 #endif
986
987         /*
988          * Recalculate first offset and bytecount with regards to read behind.
989          * Truncate bytecount to vnode real size and round up physical size
990          * for real devices.
991          */
992         foff = IDX_TO_OFF(bp->b_pages[0]->pindex);
993         bytecount = bp->b_npages << PAGE_SHIFT;
994         if ((foff + bytecount) > object->un_pager.vnp.vnp_size)
995                 bytecount = object->un_pager.vnp.vnp_size - foff;
996         secmask = bo->bo_bsize - 1;
997         KASSERT(secmask < PAGE_SIZE && secmask > 0,
998             ("%s: sector size %d too large", __func__, secmask + 1));
999         bytecount = (bytecount + secmask) & ~secmask;
1000
1001         /*
1002          * And map the pages to be read into the kva, if the filesystem
1003          * requires mapped buffers.
1004          */
1005         if ((vp->v_mount->mnt_kern_flag & MNTK_UNMAPPED_BUFS) != 0 &&
1006             unmapped_buf_allowed) {
1007                 bp->b_data = unmapped_buf;
1008                 bp->b_offset = 0;
1009         } else {
1010                 bp->b_data = bp->b_kvabase;
1011                 pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages, bp->b_npages);
1012         }
1013
1014         /* Build a minimal buffer header. */
1015         bp->b_iocmd = BIO_READ;
1016         KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred"));
1017         KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred"));
1018         bp->b_rcred = crhold(curthread->td_ucred);
1019         bp->b_wcred = crhold(curthread->td_ucred);
1020         pbgetbo(bo, bp);
1021         bp->b_vp = vp;
1022         bp->b_bcount = bp->b_bufsize = bp->b_runningbufspace = bytecount;
1023         bp->b_iooffset = dbtob(bp->b_blkno);
1024         KASSERT(IDX_TO_OFF(m[0]->pindex - bp->b_pages[0]->pindex) ==
1025             (blkno0 - bp->b_blkno) * DEV_BSIZE +
1026             IDX_TO_OFF(m[0]->pindex) % bsize,
1027             ("wrong offsets bsize %d m[0] %ju b_pages[0] %ju "
1028             "blkno0 %ju b_blkno %ju", bsize,
1029             (uintmax_t)m[0]->pindex, (uintmax_t)bp->b_pages[0]->pindex,
1030             (uintmax_t)blkno0, (uintmax_t)bp->b_blkno));
1031
1032         atomic_add_long(&runningbufspace, bp->b_runningbufspace);
1033         PCPU_INC(cnt.v_vnodein);
1034         PCPU_ADD(cnt.v_vnodepgsin, bp->b_npages);
1035
1036         if (iodone != NULL) { /* async */
1037                 bp->b_pgiodone = iodone;
1038                 bp->b_caller1 = arg;
1039                 bp->b_iodone = vnode_pager_generic_getpages_done_async;
1040                 bp->b_flags |= B_ASYNC;
1041                 BUF_KERNPROC(bp);
1042                 bstrategy(bp);
1043                 return (VM_PAGER_OK);
1044         } else {
1045                 bp->b_iodone = bdone;
1046                 bstrategy(bp);
1047                 bwait(bp, PVM, "vnread");
1048                 error = vnode_pager_generic_getpages_done(bp);
1049                 for (i = 0; i < bp->b_npages; i++)
1050                         bp->b_pages[i] = NULL;
1051                 bp->b_vp = NULL;
1052                 pbrelbo(bp);
1053                 relpbuf(bp, &vnode_pbuf_freecnt);
1054                 return (error != 0 ? VM_PAGER_ERROR : VM_PAGER_OK);
1055         }
1056 }
1057
1058 static void
1059 vnode_pager_generic_getpages_done_async(struct buf *bp)
1060 {
1061         int error;
1062
1063         error = vnode_pager_generic_getpages_done(bp);
1064         /* Run the iodone upon the requested range. */
1065         bp->b_pgiodone(bp->b_caller1, bp->b_pages + bp->b_pgbefore,
1066             bp->b_npages - bp->b_pgbefore - bp->b_pgafter, error);
1067         for (int i = 0; i < bp->b_npages; i++)
1068                 bp->b_pages[i] = NULL;
1069         bp->b_vp = NULL;
1070         pbrelbo(bp);
1071         relpbuf(bp, &vnode_async_pbuf_freecnt);
1072 }
1073
1074 static int
1075 vnode_pager_generic_getpages_done(struct buf *bp)
1076 {
1077         vm_object_t object;
1078         off_t tfoff, nextoff;
1079         int i, error;
1080
1081         error = (bp->b_ioflags & BIO_ERROR) != 0 ? EIO : 0;
1082         object = bp->b_vp->v_object;
1083
1084         if (error == 0 && bp->b_bcount != bp->b_npages * PAGE_SIZE) {
1085                 if (!buf_mapped(bp)) {
1086                         bp->b_data = bp->b_kvabase;
1087                         pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages,
1088                             bp->b_npages);
1089                 }
1090                 bzero(bp->b_data + bp->b_bcount,
1091                     PAGE_SIZE * bp->b_npages - bp->b_bcount);
1092         }
1093         if (buf_mapped(bp)) {
1094                 pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1095                 bp->b_data = unmapped_buf;
1096         }
1097
1098         VM_OBJECT_WLOCK(object);
1099         for (i = 0, tfoff = IDX_TO_OFF(bp->b_pages[0]->pindex);
1100             i < bp->b_npages; i++, tfoff = nextoff) {
1101                 vm_page_t mt;
1102
1103                 nextoff = tfoff + PAGE_SIZE;
1104                 mt = bp->b_pages[i];
1105
1106                 if (nextoff <= object->un_pager.vnp.vnp_size) {
1107                         /*
1108                          * Read filled up entire page.
1109                          */
1110                         mt->valid = VM_PAGE_BITS_ALL;
1111                         KASSERT(mt->dirty == 0,
1112                             ("%s: page %p is dirty", __func__, mt));
1113                         KASSERT(!pmap_page_is_mapped(mt),
1114                             ("%s: page %p is mapped", __func__, mt));
1115                 } else {
1116                         /*
1117                          * Read did not fill up entire page.
1118                          *
1119                          * Currently we do not set the entire page valid,
1120                          * we just try to clear the piece that we couldn't
1121                          * read.
1122                          */
1123                         vm_page_set_valid_range(mt, 0,
1124                             object->un_pager.vnp.vnp_size - tfoff);
1125                         KASSERT((mt->dirty & vm_page_bits(0,
1126                             object->un_pager.vnp.vnp_size - tfoff)) == 0,
1127                             ("%s: page %p is dirty", __func__, mt));
1128                 }
1129
1130                 if (i < bp->b_pgbefore || i >= bp->b_npages - bp->b_pgafter)
1131                         vm_page_readahead_finish(mt);
1132         }
1133         VM_OBJECT_WUNLOCK(object);
1134         if (error != 0)
1135                 printf("%s: I/O read error %d\n", __func__, error);
1136
1137         return (error);
1138 }
1139
1140 /*
1141  * EOPNOTSUPP is no longer legal.  For local media VFS's that do not
1142  * implement their own VOP_PUTPAGES, their VOP_PUTPAGES should call to
1143  * vnode_pager_generic_putpages() to implement the previous behaviour.
1144  *
1145  * All other FS's should use the bypass to get to the local media
1146  * backing vp's VOP_PUTPAGES.
1147  */
1148 static void
1149 vnode_pager_putpages(vm_object_t object, vm_page_t *m, int count,
1150     int flags, int *rtvals)
1151 {
1152         int rtval;
1153         struct vnode *vp;
1154         int bytes = count * PAGE_SIZE;
1155
1156         /*
1157          * Force synchronous operation if we are extremely low on memory
1158          * to prevent a low-memory deadlock.  VOP operations often need to
1159          * allocate more memory to initiate the I/O ( i.e. do a BMAP
1160          * operation ).  The swapper handles the case by limiting the amount
1161          * of asynchronous I/O, but that sort of solution doesn't scale well
1162          * for the vnode pager without a lot of work.
1163          *
1164          * Also, the backing vnode's iodone routine may not wake the pageout
1165          * daemon up.  This should be probably be addressed XXX.
1166          */
1167
1168         if (vm_cnt.v_free_count < vm_cnt.v_pageout_free_min)
1169                 flags |= VM_PAGER_PUT_SYNC;
1170
1171         /*
1172          * Call device-specific putpages function
1173          */
1174         vp = object->handle;
1175         VM_OBJECT_WUNLOCK(object);
1176         rtval = VOP_PUTPAGES(vp, m, bytes, flags, rtvals);
1177         KASSERT(rtval != EOPNOTSUPP, 
1178             ("vnode_pager: stale FS putpages\n"));
1179         VM_OBJECT_WLOCK(object);
1180 }
1181
1182
1183 /*
1184  * This is now called from local media FS's to operate against their
1185  * own vnodes if they fail to implement VOP_PUTPAGES.
1186  *
1187  * This is typically called indirectly via the pageout daemon and
1188  * clustering has already typically occurred, so in general we ask the
1189  * underlying filesystem to write the data out asynchronously rather
1190  * then delayed.
1191  */
1192 int
1193 vnode_pager_generic_putpages(struct vnode *vp, vm_page_t *ma, int bytecount,
1194     int flags, int *rtvals)
1195 {
1196         int i;
1197         vm_object_t object;
1198         vm_page_t m;
1199         int count;
1200
1201         int maxsize, ncount;
1202         vm_ooffset_t poffset;
1203         struct uio auio;
1204         struct iovec aiov;
1205         int error;
1206         int ioflags;
1207         int ppscheck = 0;
1208         static struct timeval lastfail;
1209         static int curfail;
1210
1211         object = vp->v_object;
1212         count = bytecount / PAGE_SIZE;
1213
1214         for (i = 0; i < count; i++)
1215                 rtvals[i] = VM_PAGER_ERROR;
1216
1217         if ((int64_t)ma[0]->pindex < 0) {
1218                 printf("vnode_pager_putpages: attempt to write meta-data!!! -- 0x%lx(%lx)\n",
1219                     (long)ma[0]->pindex, (u_long)ma[0]->dirty);
1220                 rtvals[0] = VM_PAGER_BAD;
1221                 return VM_PAGER_BAD;
1222         }
1223
1224         maxsize = count * PAGE_SIZE;
1225         ncount = count;
1226
1227         poffset = IDX_TO_OFF(ma[0]->pindex);
1228
1229         /*
1230          * If the page-aligned write is larger then the actual file we
1231          * have to invalidate pages occurring beyond the file EOF.  However,
1232          * there is an edge case where a file may not be page-aligned where
1233          * the last page is partially invalid.  In this case the filesystem
1234          * may not properly clear the dirty bits for the entire page (which
1235          * could be VM_PAGE_BITS_ALL due to the page having been mmap()d).
1236          * With the page locked we are free to fix-up the dirty bits here.
1237          *
1238          * We do not under any circumstances truncate the valid bits, as
1239          * this will screw up bogus page replacement.
1240          */
1241         VM_OBJECT_WLOCK(object);
1242         if (maxsize + poffset > object->un_pager.vnp.vnp_size) {
1243                 if (object->un_pager.vnp.vnp_size > poffset) {
1244                         int pgoff;
1245
1246                         maxsize = object->un_pager.vnp.vnp_size - poffset;
1247                         ncount = btoc(maxsize);
1248                         if ((pgoff = (int)maxsize & PAGE_MASK) != 0) {
1249                                 /*
1250                                  * If the object is locked and the following
1251                                  * conditions hold, then the page's dirty
1252                                  * field cannot be concurrently changed by a
1253                                  * pmap operation.
1254                                  */
1255                                 m = ma[ncount - 1];
1256                                 vm_page_assert_sbusied(m);
1257                                 KASSERT(!pmap_page_is_write_mapped(m),
1258                 ("vnode_pager_generic_putpages: page %p is not read-only", m));
1259                                 vm_page_clear_dirty(m, pgoff, PAGE_SIZE -
1260                                     pgoff);
1261                         }
1262                 } else {
1263                         maxsize = 0;
1264                         ncount = 0;
1265                 }
1266                 if (ncount < count) {
1267                         for (i = ncount; i < count; i++) {
1268                                 rtvals[i] = VM_PAGER_BAD;
1269                         }
1270                 }
1271         }
1272         VM_OBJECT_WUNLOCK(object);
1273
1274         /*
1275          * pageouts are already clustered, use IO_ASYNC to force a bawrite()
1276          * rather then a bdwrite() to prevent paging I/O from saturating 
1277          * the buffer cache.  Dummy-up the sequential heuristic to cause
1278          * large ranges to cluster.  If neither IO_SYNC or IO_ASYNC is set,
1279          * the system decides how to cluster.
1280          */
1281         ioflags = IO_VMIO;
1282         if (flags & (VM_PAGER_PUT_SYNC | VM_PAGER_PUT_INVAL))
1283                 ioflags |= IO_SYNC;
1284         else if ((flags & VM_PAGER_CLUSTER_OK) == 0)
1285                 ioflags |= IO_ASYNC;
1286         ioflags |= (flags & VM_PAGER_PUT_INVAL) ? IO_INVAL: 0;
1287         ioflags |= (flags & VM_PAGER_PUT_NOREUSE) ? IO_NOREUSE : 0;
1288         ioflags |= IO_SEQMAX << IO_SEQSHIFT;
1289
1290         aiov.iov_base = (caddr_t) 0;
1291         aiov.iov_len = maxsize;
1292         auio.uio_iov = &aiov;
1293         auio.uio_iovcnt = 1;
1294         auio.uio_offset = poffset;
1295         auio.uio_segflg = UIO_NOCOPY;
1296         auio.uio_rw = UIO_WRITE;
1297         auio.uio_resid = maxsize;
1298         auio.uio_td = (struct thread *) 0;
1299         error = VOP_WRITE(vp, &auio, ioflags, curthread->td_ucred);
1300         PCPU_INC(cnt.v_vnodeout);
1301         PCPU_ADD(cnt.v_vnodepgsout, ncount);
1302
1303         if (error) {
1304                 if ((ppscheck = ppsratecheck(&lastfail, &curfail, 1)))
1305                         printf("vnode_pager_putpages: I/O error %d\n", error);
1306         }
1307         if (auio.uio_resid) {
1308                 if (ppscheck || ppsratecheck(&lastfail, &curfail, 1))
1309                         printf("vnode_pager_putpages: residual I/O %zd at %lu\n",
1310                             auio.uio_resid, (u_long)ma[0]->pindex);
1311         }
1312         for (i = 0; i < ncount; i++) {
1313                 rtvals[i] = VM_PAGER_OK;
1314         }
1315         return rtvals[0];
1316 }
1317
1318 void
1319 vnode_pager_undirty_pages(vm_page_t *ma, int *rtvals, int written)
1320 {
1321         vm_object_t obj;
1322         int i, pos;
1323
1324         if (written == 0)
1325                 return;
1326         obj = ma[0]->object;
1327         VM_OBJECT_WLOCK(obj);
1328         for (i = 0, pos = 0; pos < written; i++, pos += PAGE_SIZE) {
1329                 if (pos < trunc_page(written)) {
1330                         rtvals[i] = VM_PAGER_OK;
1331                         vm_page_undirty(ma[i]);
1332                 } else {
1333                         /* Partially written page. */
1334                         rtvals[i] = VM_PAGER_AGAIN;
1335                         vm_page_clear_dirty(ma[i], 0, written & PAGE_MASK);
1336                 }
1337         }
1338         VM_OBJECT_WUNLOCK(obj);
1339 }
1340
1341 void
1342 vnode_pager_update_writecount(vm_object_t object, vm_offset_t start,
1343     vm_offset_t end)
1344 {
1345         struct vnode *vp;
1346         vm_ooffset_t old_wm;
1347
1348         VM_OBJECT_WLOCK(object);
1349         if (object->type != OBJT_VNODE) {
1350                 VM_OBJECT_WUNLOCK(object);
1351                 return;
1352         }
1353         old_wm = object->un_pager.vnp.writemappings;
1354         object->un_pager.vnp.writemappings += (vm_ooffset_t)end - start;
1355         vp = object->handle;
1356         if (old_wm == 0 && object->un_pager.vnp.writemappings != 0) {
1357                 ASSERT_VOP_ELOCKED(vp, "v_writecount inc");
1358                 VOP_ADD_WRITECOUNT(vp, 1);
1359                 CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d",
1360                     __func__, vp, vp->v_writecount);
1361         } else if (old_wm != 0 && object->un_pager.vnp.writemappings == 0) {
1362                 ASSERT_VOP_ELOCKED(vp, "v_writecount dec");
1363                 VOP_ADD_WRITECOUNT(vp, -1);
1364                 CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
1365                     __func__, vp, vp->v_writecount);
1366         }
1367         VM_OBJECT_WUNLOCK(object);
1368 }
1369
1370 void
1371 vnode_pager_release_writecount(vm_object_t object, vm_offset_t start,
1372     vm_offset_t end)
1373 {
1374         struct vnode *vp;
1375         struct mount *mp;
1376         vm_offset_t inc;
1377
1378         VM_OBJECT_WLOCK(object);
1379
1380         /*
1381          * First, recheck the object type to account for the race when
1382          * the vnode is reclaimed.
1383          */
1384         if (object->type != OBJT_VNODE) {
1385                 VM_OBJECT_WUNLOCK(object);
1386                 return;
1387         }
1388
1389         /*
1390          * Optimize for the case when writemappings is not going to
1391          * zero.
1392          */
1393         inc = end - start;
1394         if (object->un_pager.vnp.writemappings != inc) {
1395                 object->un_pager.vnp.writemappings -= inc;
1396                 VM_OBJECT_WUNLOCK(object);
1397                 return;
1398         }
1399
1400         vp = object->handle;
1401         vhold(vp);
1402         VM_OBJECT_WUNLOCK(object);
1403         mp = NULL;
1404         vn_start_write(vp, &mp, V_WAIT);
1405         vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1406
1407         /*
1408          * Decrement the object's writemappings, by swapping the start
1409          * and end arguments for vnode_pager_update_writecount().  If
1410          * there was not a race with vnode reclaimation, then the
1411          * vnode's v_writecount is decremented.
1412          */
1413         vnode_pager_update_writecount(object, end, start);
1414         VOP_UNLOCK(vp, 0);
1415         vdrop(vp);
1416         if (mp != NULL)
1417                 vn_finished_write(mp);
1418 }