]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/x86/acpica/srat.c
MFV r339226 (peter): Record merge of serf-1.3.9.
[FreeBSD/FreeBSD.git] / sys / x86 / acpica / srat.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2010 Hudson River Trading LLC
5  * Written by: John H. Baldwin <jhb@FreeBSD.org>
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32
33 #include "opt_vm.h"
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/bus.h>
38 #include <sys/kernel.h>
39 #include <sys/lock.h>
40 #include <sys/mutex.h>
41 #include <sys/smp.h>
42 #include <sys/vmmeter.h>
43 #include <vm/vm.h>
44 #include <vm/pmap.h>
45 #include <vm/vm_param.h>
46 #include <vm/vm_page.h>
47 #include <vm/vm_phys.h>
48
49 #include <contrib/dev/acpica/include/acpi.h>
50 #include <contrib/dev/acpica/include/aclocal.h>
51 #include <contrib/dev/acpica/include/actables.h>
52
53 #include <machine/intr_machdep.h>
54 #include <machine/md_var.h>
55 #include <x86/apicvar.h>
56
57 #include <dev/acpica/acpivar.h>
58
59 #if MAXMEMDOM > 1
60 static struct cpu_info {
61         int enabled:1;
62         int has_memory:1;
63         int domain;
64 } *cpus;
65
66 struct mem_affinity mem_info[VM_PHYSSEG_MAX + 1];
67 int num_mem;
68
69 static ACPI_TABLE_SRAT *srat;
70 static vm_paddr_t srat_physaddr;
71
72 static int domain_pxm[MAXMEMDOM];
73 static int ndomain;
74
75 static ACPI_TABLE_SLIT *slit;
76 static vm_paddr_t slit_physaddr;
77 static int vm_locality_table[MAXMEMDOM * MAXMEMDOM];
78
79 static void     srat_walk_table(acpi_subtable_handler *handler, void *arg);
80
81 /*
82  * SLIT parsing.
83  */
84
85 static void
86 slit_parse_table(ACPI_TABLE_SLIT *s)
87 {
88         int i, j;
89         int i_domain, j_domain;
90         int offset = 0;
91         uint8_t e;
92
93         /*
94          * This maps the SLIT data into the VM-domain centric view.
95          * There may be sparse entries in the PXM namespace, so
96          * remap them to a VM-domain ID and if it doesn't exist,
97          * skip it.
98          *
99          * It should result in a packed 2d array of VM-domain
100          * locality information entries.
101          */
102
103         if (bootverbose)
104                 printf("SLIT.Localities: %d\n", (int) s->LocalityCount);
105         for (i = 0; i < s->LocalityCount; i++) {
106                 i_domain = acpi_map_pxm_to_vm_domainid(i);
107                 if (i_domain < 0)
108                         continue;
109
110                 if (bootverbose)
111                         printf("%d: ", i);
112                 for (j = 0; j < s->LocalityCount; j++) {
113                         j_domain = acpi_map_pxm_to_vm_domainid(j);
114                         if (j_domain < 0)
115                                 continue;
116                         e = s->Entry[i * s->LocalityCount + j];
117                         if (bootverbose)
118                                 printf("%d ", (int) e);
119                         /* 255 == "no locality information" */
120                         if (e == 255)
121                                 vm_locality_table[offset] = -1;
122                         else
123                                 vm_locality_table[offset] = e;
124                         offset++;
125                 }
126                 if (bootverbose)
127                         printf("\n");
128         }
129 }
130
131 /*
132  * Look for an ACPI System Locality Distance Information Table ("SLIT")
133  */
134 static int
135 parse_slit(void)
136 {
137
138         if (resource_disabled("slit", 0)) {
139                 return (-1);
140         }
141
142         slit_physaddr = acpi_find_table(ACPI_SIG_SLIT);
143         if (slit_physaddr == 0) {
144                 return (-1);
145         }
146
147         /*
148          * Make a pass over the table to populate the cpus[] and
149          * mem_info[] tables.
150          */
151         slit = acpi_map_table(slit_physaddr, ACPI_SIG_SLIT);
152         slit_parse_table(slit);
153         acpi_unmap_table(slit);
154         slit = NULL;
155
156 #ifdef NUMA
157         /* Tell the VM about it! */
158         mem_locality = vm_locality_table;
159 #endif
160         return (0);
161 }
162
163 /*
164  * SRAT parsing.
165  */
166
167 /*
168  * Returns true if a memory range overlaps with at least one range in
169  * phys_avail[].
170  */
171 static int
172 overlaps_phys_avail(vm_paddr_t start, vm_paddr_t end)
173 {
174         int i;
175
176         for (i = 0; phys_avail[i] != 0 && phys_avail[i + 1] != 0; i += 2) {
177                 if (phys_avail[i + 1] <= start)
178                         continue;
179                 if (phys_avail[i] < end)
180                         return (1);
181                 break;
182         }
183         return (0);
184         
185 }
186
187 static void
188 srat_parse_entry(ACPI_SUBTABLE_HEADER *entry, void *arg)
189 {
190         ACPI_SRAT_CPU_AFFINITY *cpu;
191         ACPI_SRAT_X2APIC_CPU_AFFINITY *x2apic;
192         ACPI_SRAT_MEM_AFFINITY *mem;
193         int domain, i, slot;
194
195         switch (entry->Type) {
196         case ACPI_SRAT_TYPE_CPU_AFFINITY:
197                 cpu = (ACPI_SRAT_CPU_AFFINITY *)entry;
198                 domain = cpu->ProximityDomainLo |
199                     cpu->ProximityDomainHi[0] << 8 |
200                     cpu->ProximityDomainHi[1] << 16 |
201                     cpu->ProximityDomainHi[2] << 24;
202                 if (bootverbose)
203                         printf("SRAT: Found CPU APIC ID %u domain %d: %s\n",
204                             cpu->ApicId, domain,
205                             (cpu->Flags & ACPI_SRAT_CPU_ENABLED) ?
206                             "enabled" : "disabled");
207                 if (!(cpu->Flags & ACPI_SRAT_CPU_ENABLED))
208                         break;
209                 if (cpu->ApicId > max_apic_id) {
210                         printf("SRAT: Ignoring local APIC ID %u (too high)\n",
211                             cpu->ApicId);
212                         break;
213                 }
214
215                 if (cpus[cpu->ApicId].enabled) {
216                         printf("SRAT: Duplicate local APIC ID %u\n",
217                             cpu->ApicId);
218                         *(int *)arg = ENXIO;
219                         break;
220                 }
221                 cpus[cpu->ApicId].domain = domain;
222                 cpus[cpu->ApicId].enabled = 1;
223                 break;
224         case ACPI_SRAT_TYPE_X2APIC_CPU_AFFINITY:
225                 x2apic = (ACPI_SRAT_X2APIC_CPU_AFFINITY *)entry;
226                 if (bootverbose)
227                         printf("SRAT: Found CPU APIC ID %u domain %d: %s\n",
228                             x2apic->ApicId, x2apic->ProximityDomain,
229                             (x2apic->Flags & ACPI_SRAT_CPU_ENABLED) ?
230                             "enabled" : "disabled");
231                 if (!(x2apic->Flags & ACPI_SRAT_CPU_ENABLED))
232                         break;
233                 if (x2apic->ApicId > max_apic_id) {
234                         printf("SRAT: Ignoring local APIC ID %u (too high)\n",
235                             x2apic->ApicId);
236                         break;
237                 }
238
239                 KASSERT(!cpus[x2apic->ApicId].enabled,
240                     ("Duplicate local APIC ID %u", x2apic->ApicId));
241                 cpus[x2apic->ApicId].domain = x2apic->ProximityDomain;
242                 cpus[x2apic->ApicId].enabled = 1;
243                 break;
244         case ACPI_SRAT_TYPE_MEMORY_AFFINITY:
245                 mem = (ACPI_SRAT_MEM_AFFINITY *)entry;
246                 if (bootverbose)
247                         printf(
248                     "SRAT: Found memory domain %d addr 0x%jx len 0x%jx: %s\n",
249                             mem->ProximityDomain, (uintmax_t)mem->BaseAddress,
250                             (uintmax_t)mem->Length,
251                             (mem->Flags & ACPI_SRAT_MEM_ENABLED) ?
252                             "enabled" : "disabled");
253                 if (!(mem->Flags & ACPI_SRAT_MEM_ENABLED))
254                         break;
255                 if (mem->BaseAddress >= cpu_getmaxphyaddr() || 
256                     !overlaps_phys_avail(mem->BaseAddress,
257                     mem->BaseAddress + mem->Length)) {
258                         printf("SRAT: Ignoring memory at addr 0x%jx\n",
259                             (uintmax_t)mem->BaseAddress);
260                         break;
261                 }
262                 if (num_mem == VM_PHYSSEG_MAX) {
263                         printf("SRAT: Too many memory regions\n");
264                         *(int *)arg = ENXIO;
265                         break;
266                 }
267                 slot = num_mem;
268                 for (i = 0; i < num_mem; i++) {
269                         if (mem_info[i].end <= mem->BaseAddress)
270                                 continue;
271                         if (mem_info[i].start <
272                             (mem->BaseAddress + mem->Length)) {
273                                 printf("SRAT: Overlapping memory entries\n");
274                                 *(int *)arg = ENXIO;
275                                 return;
276                         }
277                         slot = i;
278                 }
279                 for (i = num_mem; i > slot; i--)
280                         mem_info[i] = mem_info[i - 1];
281                 mem_info[slot].start = mem->BaseAddress;
282                 mem_info[slot].end = mem->BaseAddress + mem->Length;
283                 mem_info[slot].domain = mem->ProximityDomain;
284                 num_mem++;
285                 break;
286         }
287 }
288
289 /*
290  * Ensure each memory domain has at least one CPU and that each CPU
291  * has at least one memory domain.
292  */
293 static int
294 check_domains(void)
295 {
296         int found, i, j;
297
298         for (i = 0; i < num_mem; i++) {
299                 found = 0;
300                 for (j = 0; j <= max_apic_id; j++)
301                         if (cpus[j].enabled &&
302                             cpus[j].domain == mem_info[i].domain) {
303                                 cpus[j].has_memory = 1;
304                                 found++;
305                         }
306                 if (!found) {
307                         printf("SRAT: No CPU found for memory domain %d\n",
308                             mem_info[i].domain);
309                         return (ENXIO);
310                 }
311         }
312         for (i = 0; i <= max_apic_id; i++)
313                 if (cpus[i].enabled && !cpus[i].has_memory) {
314                         found = 0;
315                         for (j = 0; j < num_mem && !found; j++) {
316                                 if (mem_info[j].domain == cpus[i].domain)
317                                         found = 1;
318                         }
319                         if (!found) {
320                                 if (bootverbose)
321                                         printf("SRAT: mem dom %d is empty\n",
322                                             cpus[i].domain);
323                                 mem_info[num_mem].start = 0;
324                                 mem_info[num_mem].end = 0;
325                                 mem_info[num_mem].domain = cpus[i].domain;
326                                 num_mem++;
327                         }
328                 }
329         return (0);
330 }
331
332 /*
333  * Check that the SRAT memory regions cover all of the regions in
334  * phys_avail[].
335  */
336 static int
337 check_phys_avail(void)
338 {
339         vm_paddr_t address;
340         int i, j;
341
342         /* j is the current offset into phys_avail[]. */
343         address = phys_avail[0];
344         j = 0;
345         for (i = 0; i < num_mem; i++) {
346                 /*
347                  * Consume as many phys_avail[] entries as fit in this
348                  * region.
349                  */
350                 while (address >= mem_info[i].start &&
351                     address <= mem_info[i].end) {
352                         /*
353                          * If we cover the rest of this phys_avail[] entry,
354                          * advance to the next entry.
355                          */
356                         if (phys_avail[j + 1] <= mem_info[i].end) {
357                                 j += 2;
358                                 if (phys_avail[j] == 0 &&
359                                     phys_avail[j + 1] == 0) {
360                                         return (0);
361                                 }
362                                 address = phys_avail[j];
363                         } else
364                                 address = mem_info[i].end + 1;
365                 }
366         }
367         printf("SRAT: No memory region found for 0x%jx - 0x%jx\n",
368             (uintmax_t)phys_avail[j], (uintmax_t)phys_avail[j + 1]);
369         return (ENXIO);
370 }
371
372 /*
373  * Renumber the memory domains to be compact and zero-based if not
374  * already.  Returns an error if there are too many domains.
375  */
376 static int
377 renumber_domains(void)
378 {
379         int i, j, slot;
380
381         /* Enumerate all the domains. */
382         ndomain = 0;
383         for (i = 0; i < num_mem; i++) {
384                 /* See if this domain is already known. */
385                 for (j = 0; j < ndomain; j++) {
386                         if (domain_pxm[j] >= mem_info[i].domain)
387                                 break;
388                 }
389                 if (j < ndomain && domain_pxm[j] == mem_info[i].domain)
390                         continue;
391
392                 if (ndomain >= MAXMEMDOM) {
393                         ndomain = 1;
394                         printf("SRAT: Too many memory domains\n");
395                         return (EFBIG);
396                 }
397
398                 /* Insert the new domain at slot 'j'. */
399                 slot = j;
400                 for (j = ndomain; j > slot; j--)
401                         domain_pxm[j] = domain_pxm[j - 1];
402                 domain_pxm[slot] = mem_info[i].domain;
403                 ndomain++;
404         }
405
406         /* Renumber each domain to its index in the sorted 'domain_pxm' list. */
407         for (i = 0; i < ndomain; i++) {
408                 /*
409                  * If the domain is already the right value, no need
410                  * to renumber.
411                  */
412                 if (domain_pxm[i] == i)
413                         continue;
414
415                 /* Walk the cpu[] and mem_info[] arrays to renumber. */
416                 for (j = 0; j < num_mem; j++)
417                         if (mem_info[j].domain == domain_pxm[i])
418                                 mem_info[j].domain = i;
419                 for (j = 0; j <= max_apic_id; j++)
420                         if (cpus[j].enabled && cpus[j].domain == domain_pxm[i])
421                                 cpus[j].domain = i;
422         }
423
424         return (0);
425 }
426
427 /*
428  * Look for an ACPI System Resource Affinity Table ("SRAT")
429  */
430 static int
431 parse_srat(void)
432 {
433         unsigned int idx, size;
434         vm_paddr_t addr;
435         int error;
436
437         if (resource_disabled("srat", 0))
438                 return (-1);
439
440         srat_physaddr = acpi_find_table(ACPI_SIG_SRAT);
441         if (srat_physaddr == 0)
442                 return (-1);
443
444         /*
445          * Allocate data structure:
446          *
447          * Find the last physical memory region and steal some memory from
448          * it. This is done because at this point in the boot process
449          * malloc is still not usable.
450          */
451         for (idx = 0; phys_avail[idx + 1] != 0; idx += 2);
452         KASSERT(idx != 0, ("phys_avail is empty!"));
453         idx -= 2;
454
455         size =  sizeof(*cpus) * (max_apic_id + 1);
456         addr = trunc_page(phys_avail[idx + 1] - size);
457         KASSERT(addr >= phys_avail[idx],
458             ("Not enough memory for SRAT table items"));
459         phys_avail[idx + 1] = addr - 1;
460
461         /*
462          * We cannot rely on PHYS_TO_DMAP because this code is also used in
463          * i386, so use pmap_mapbios to map the memory, this will end up using
464          * the default memory attribute (WB), and the DMAP when available.
465          */
466         cpus = (struct cpu_info *)pmap_mapbios(addr, size);
467         bzero(cpus, size);
468
469         /*
470          * Make a pass over the table to populate the cpus[] and
471          * mem_info[] tables.
472          */
473         srat = acpi_map_table(srat_physaddr, ACPI_SIG_SRAT);
474         error = 0;
475         srat_walk_table(srat_parse_entry, &error);
476         acpi_unmap_table(srat);
477         srat = NULL;
478         if (error || check_domains() != 0 || check_phys_avail() != 0 ||
479             renumber_domains() != 0) {
480                 srat_physaddr = 0;
481                 return (-1);
482         }
483
484 #ifdef NUMA
485         vm_ndomains = ndomain;
486         for (int i = 0; i < vm_ndomains; i++)
487                 DOMAINSET_SET(i, &all_domains);
488         mem_affinity = mem_info;
489 #endif
490
491         return (0);
492 }
493
494 static void
495 init_mem_locality(void)
496 {
497         int i;
498
499         /*
500          * For now, assume -1 == "no locality information for
501          * this pairing.
502          */
503         for (i = 0; i < MAXMEMDOM * MAXMEMDOM; i++)
504                 vm_locality_table[i] = -1;
505 }
506
507 static void
508 parse_acpi_tables(void *dummy)
509 {
510
511         if (parse_srat() < 0)
512                 return;
513         init_mem_locality();
514         (void) parse_slit();
515 }
516 SYSINIT(parse_acpi_tables, SI_SUB_VM - 1, SI_ORDER_FIRST, parse_acpi_tables,
517     NULL);
518
519 static void
520 srat_walk_table(acpi_subtable_handler *handler, void *arg)
521 {
522
523         acpi_walk_subtables(srat + 1, (char *)srat + srat->Header.Length,
524             handler, arg);
525 }
526
527 /*
528  * Setup per-CPU domain IDs.
529  */
530 static void
531 srat_set_cpus(void *dummy)
532 {
533         struct cpu_info *cpu;
534         struct pcpu *pc;
535         u_int i;
536
537         if (srat_physaddr == 0)
538                 return;
539         for (i = 0; i < MAXCPU; i++) {
540                 if (CPU_ABSENT(i))
541                         continue;
542                 pc = pcpu_find(i);
543                 KASSERT(pc != NULL, ("no pcpu data for CPU %u", i));
544                 cpu = &cpus[pc->pc_apic_id];
545                 if (!cpu->enabled)
546                         panic("SRAT: CPU with APIC ID %u is not known",
547                             pc->pc_apic_id);
548 #ifdef NUMA
549                 pc->pc_domain = cpu->domain;
550 #else
551                 pc->pc_domain = 0;
552 #endif
553                 CPU_SET(i, &cpuset_domain[pc->pc_domain]);
554                 if (bootverbose)
555                         printf("SRAT: CPU %u has memory domain %d\n", i,
556                             pc->pc_domain);
557         }
558
559         /* Last usage of the cpus array, unmap it. */
560         pmap_unmapbios((vm_offset_t)cpus, sizeof(*cpus) * (max_apic_id + 1));
561         cpus = NULL;
562 }
563 SYSINIT(srat_set_cpus, SI_SUB_CPU, SI_ORDER_ANY, srat_set_cpus, NULL);
564
565 /*
566  * Map a _PXM value to a VM domain ID.
567  *
568  * Returns the domain ID, or -1 if no domain ID was found.
569  */
570 int
571 acpi_map_pxm_to_vm_domainid(int pxm)
572 {
573         int i;
574
575         for (i = 0; i < ndomain; i++) {
576                 if (domain_pxm[i] == pxm)
577                         return (i);
578         }
579
580         return (-1);
581 }
582
583 #else /* MAXMEMDOM == 1 */
584
585 int
586 acpi_map_pxm_to_vm_domainid(int pxm)
587 {
588
589         return (-1);
590 }
591
592 #endif /* MAXMEMDOM > 1 */