]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/x86/acpica/srat.c
Update clang to trunk r290819 and resolve conflicts.
[FreeBSD/FreeBSD.git] / sys / x86 / acpica / srat.c
1 /*-
2  * Copyright (c) 2010 Hudson River Trading LLC
3  * Written by: John H. Baldwin <jhb@FreeBSD.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30
31 #include "opt_vm.h"
32
33 #include <sys/param.h>
34 #include <sys/bus.h>
35 #include <sys/kernel.h>
36 #include <sys/lock.h>
37 #include <sys/mutex.h>
38 #include <sys/smp.h>
39 #include <sys/vmmeter.h>
40 #include <vm/vm.h>
41 #include <vm/pmap.h>
42 #include <vm/vm_param.h>
43 #include <vm/vm_page.h>
44 #include <vm/vm_phys.h>
45
46 #include <contrib/dev/acpica/include/acpi.h>
47 #include <contrib/dev/acpica/include/aclocal.h>
48 #include <contrib/dev/acpica/include/actables.h>
49
50 #include <machine/intr_machdep.h>
51 #include <x86/apicvar.h>
52
53 #include <dev/acpica/acpivar.h>
54
55 #if MAXMEMDOM > 1
56 struct cpu_info {
57         int enabled:1;
58         int has_memory:1;
59         int domain;
60 } cpus[MAX_APIC_ID + 1];
61
62 struct mem_affinity mem_info[VM_PHYSSEG_MAX + 1];
63 int num_mem;
64
65 static ACPI_TABLE_SRAT *srat;
66 static vm_paddr_t srat_physaddr;
67
68 static int domain_pxm[MAXMEMDOM];
69 static int ndomain;
70
71 static ACPI_TABLE_SLIT *slit;
72 static vm_paddr_t slit_physaddr;
73 static int vm_locality_table[MAXMEMDOM * MAXMEMDOM];
74
75 static void     srat_walk_table(acpi_subtable_handler *handler, void *arg);
76
77 /*
78  * SLIT parsing.
79  */
80
81 static void
82 slit_parse_table(ACPI_TABLE_SLIT *s)
83 {
84         int i, j;
85         int i_domain, j_domain;
86         int offset = 0;
87         uint8_t e;
88
89         /*
90          * This maps the SLIT data into the VM-domain centric view.
91          * There may be sparse entries in the PXM namespace, so
92          * remap them to a VM-domain ID and if it doesn't exist,
93          * skip it.
94          *
95          * It should result in a packed 2d array of VM-domain
96          * locality information entries.
97          */
98
99         if (bootverbose)
100                 printf("SLIT.Localities: %d\n", (int) s->LocalityCount);
101         for (i = 0; i < s->LocalityCount; i++) {
102                 i_domain = acpi_map_pxm_to_vm_domainid(i);
103                 if (i_domain < 0)
104                         continue;
105
106                 if (bootverbose)
107                         printf("%d: ", i);
108                 for (j = 0; j < s->LocalityCount; j++) {
109                         j_domain = acpi_map_pxm_to_vm_domainid(j);
110                         if (j_domain < 0)
111                                 continue;
112                         e = s->Entry[i * s->LocalityCount + j];
113                         if (bootverbose)
114                                 printf("%d ", (int) e);
115                         /* 255 == "no locality information" */
116                         if (e == 255)
117                                 vm_locality_table[offset] = -1;
118                         else
119                                 vm_locality_table[offset] = e;
120                         offset++;
121                 }
122                 if (bootverbose)
123                         printf("\n");
124         }
125 }
126
127 /*
128  * Look for an ACPI System Locality Distance Information Table ("SLIT")
129  */
130 static int
131 parse_slit(void)
132 {
133
134         if (resource_disabled("slit", 0)) {
135                 return (-1);
136         }
137
138         slit_physaddr = acpi_find_table(ACPI_SIG_SLIT);
139         if (slit_physaddr == 0) {
140                 return (-1);
141         }
142
143         /*
144          * Make a pass over the table to populate the cpus[] and
145          * mem_info[] tables.
146          */
147         slit = acpi_map_table(slit_physaddr, ACPI_SIG_SLIT);
148         slit_parse_table(slit);
149         acpi_unmap_table(slit);
150         slit = NULL;
151
152 #ifdef VM_NUMA_ALLOC
153         /* Tell the VM about it! */
154         mem_locality = vm_locality_table;
155 #endif
156         return (0);
157 }
158
159 /*
160  * SRAT parsing.
161  */
162
163 /*
164  * Returns true if a memory range overlaps with at least one range in
165  * phys_avail[].
166  */
167 static int
168 overlaps_phys_avail(vm_paddr_t start, vm_paddr_t end)
169 {
170         int i;
171
172         for (i = 0; phys_avail[i] != 0 && phys_avail[i + 1] != 0; i += 2) {
173                 if (phys_avail[i + 1] < start)
174                         continue;
175                 if (phys_avail[i] < end)
176                         return (1);
177                 break;
178         }
179         return (0);
180         
181 }
182
183 static void
184 srat_parse_entry(ACPI_SUBTABLE_HEADER *entry, void *arg)
185 {
186         ACPI_SRAT_CPU_AFFINITY *cpu;
187         ACPI_SRAT_X2APIC_CPU_AFFINITY *x2apic;
188         ACPI_SRAT_MEM_AFFINITY *mem;
189         int domain, i, slot;
190
191         switch (entry->Type) {
192         case ACPI_SRAT_TYPE_CPU_AFFINITY:
193                 cpu = (ACPI_SRAT_CPU_AFFINITY *)entry;
194                 domain = cpu->ProximityDomainLo |
195                     cpu->ProximityDomainHi[0] << 8 |
196                     cpu->ProximityDomainHi[1] << 16 |
197                     cpu->ProximityDomainHi[2] << 24;
198                 if (bootverbose)
199                         printf("SRAT: Found CPU APIC ID %u domain %d: %s\n",
200                             cpu->ApicId, domain,
201                             (cpu->Flags & ACPI_SRAT_CPU_ENABLED) ?
202                             "enabled" : "disabled");
203                 if (!(cpu->Flags & ACPI_SRAT_CPU_ENABLED))
204                         break;
205                 if (cpus[cpu->ApicId].enabled) {
206                         printf("SRAT: Duplicate local APIC ID %u\n",
207                             cpu->ApicId);
208                         *(int *)arg = ENXIO;
209                         break;
210                 }
211                 cpus[cpu->ApicId].domain = domain;
212                 cpus[cpu->ApicId].enabled = 1;
213                 break;
214         case ACPI_SRAT_TYPE_X2APIC_CPU_AFFINITY:
215                 x2apic = (ACPI_SRAT_X2APIC_CPU_AFFINITY *)entry;
216                 if (bootverbose)
217                         printf("SRAT: Found CPU APIC ID %u domain %d: %s\n",
218                             x2apic->ApicId, x2apic->ProximityDomain,
219                             (x2apic->Flags & ACPI_SRAT_CPU_ENABLED) ?
220                             "enabled" : "disabled");
221                 if (!(x2apic->Flags & ACPI_SRAT_CPU_ENABLED))
222                         break;
223                 KASSERT(!cpus[x2apic->ApicId].enabled,
224                     ("Duplicate local APIC ID %u", x2apic->ApicId));
225                 cpus[x2apic->ApicId].domain = x2apic->ProximityDomain;
226                 cpus[x2apic->ApicId].enabled = 1;
227                 break;
228         case ACPI_SRAT_TYPE_MEMORY_AFFINITY:
229                 mem = (ACPI_SRAT_MEM_AFFINITY *)entry;
230                 if (bootverbose)
231                         printf(
232                     "SRAT: Found memory domain %d addr 0x%jx len 0x%jx: %s\n",
233                             mem->ProximityDomain, (uintmax_t)mem->BaseAddress,
234                             (uintmax_t)mem->Length,
235                             (mem->Flags & ACPI_SRAT_MEM_ENABLED) ?
236                             "enabled" : "disabled");
237                 if (!(mem->Flags & ACPI_SRAT_MEM_ENABLED))
238                         break;
239                 if (!overlaps_phys_avail(mem->BaseAddress,
240                     mem->BaseAddress + mem->Length)) {
241                         printf("SRAT: Ignoring memory at addr 0x%jx\n",
242                             (uintmax_t)mem->BaseAddress);
243                         break;
244                 }
245                 if (num_mem == VM_PHYSSEG_MAX) {
246                         printf("SRAT: Too many memory regions\n");
247                         *(int *)arg = ENXIO;
248                         break;
249                 }
250                 slot = num_mem;
251                 for (i = 0; i < num_mem; i++) {
252                         if (mem_info[i].end <= mem->BaseAddress)
253                                 continue;
254                         if (mem_info[i].start <
255                             (mem->BaseAddress + mem->Length)) {
256                                 printf("SRAT: Overlapping memory entries\n");
257                                 *(int *)arg = ENXIO;
258                                 return;
259                         }
260                         slot = i;
261                 }
262                 for (i = num_mem; i > slot; i--)
263                         mem_info[i] = mem_info[i - 1];
264                 mem_info[slot].start = mem->BaseAddress;
265                 mem_info[slot].end = mem->BaseAddress + mem->Length;
266                 mem_info[slot].domain = mem->ProximityDomain;
267                 num_mem++;
268                 break;
269         }
270 }
271
272 /*
273  * Ensure each memory domain has at least one CPU and that each CPU
274  * has at least one memory domain.
275  */
276 static int
277 check_domains(void)
278 {
279         int found, i, j;
280
281         for (i = 0; i < num_mem; i++) {
282                 found = 0;
283                 for (j = 0; j <= MAX_APIC_ID; j++)
284                         if (cpus[j].enabled &&
285                             cpus[j].domain == mem_info[i].domain) {
286                                 cpus[j].has_memory = 1;
287                                 found++;
288                         }
289                 if (!found) {
290                         printf("SRAT: No CPU found for memory domain %d\n",
291                             mem_info[i].domain);
292                         return (ENXIO);
293                 }
294         }
295         for (i = 0; i <= MAX_APIC_ID; i++)
296                 if (cpus[i].enabled && !cpus[i].has_memory) {
297                         printf("SRAT: No memory found for CPU %d\n", i);
298                         return (ENXIO);
299                 }
300         return (0);
301 }
302
303 /*
304  * Check that the SRAT memory regions cover all of the regions in
305  * phys_avail[].
306  */
307 static int
308 check_phys_avail(void)
309 {
310         vm_paddr_t address;
311         int i, j;
312
313         /* j is the current offset into phys_avail[]. */
314         address = phys_avail[0];
315         j = 0;
316         for (i = 0; i < num_mem; i++) {
317                 /*
318                  * Consume as many phys_avail[] entries as fit in this
319                  * region.
320                  */
321                 while (address >= mem_info[i].start &&
322                     address <= mem_info[i].end) {
323                         /*
324                          * If we cover the rest of this phys_avail[] entry,
325                          * advance to the next entry.
326                          */
327                         if (phys_avail[j + 1] <= mem_info[i].end) {
328                                 j += 2;
329                                 if (phys_avail[j] == 0 &&
330                                     phys_avail[j + 1] == 0) {
331                                         return (0);
332                                 }
333                                 address = phys_avail[j];
334                         } else
335                                 address = mem_info[i].end + 1;
336                 }
337         }
338         printf("SRAT: No memory region found for 0x%jx - 0x%jx\n",
339             (uintmax_t)phys_avail[j], (uintmax_t)phys_avail[j + 1]);
340         return (ENXIO);
341 }
342
343 /*
344  * Renumber the memory domains to be compact and zero-based if not
345  * already.  Returns an error if there are too many domains.
346  */
347 static int
348 renumber_domains(void)
349 {
350         int i, j, slot;
351
352         /* Enumerate all the domains. */
353         ndomain = 0;
354         for (i = 0; i < num_mem; i++) {
355                 /* See if this domain is already known. */
356                 for (j = 0; j < ndomain; j++) {
357                         if (domain_pxm[j] >= mem_info[i].domain)
358                                 break;
359                 }
360                 if (j < ndomain && domain_pxm[j] == mem_info[i].domain)
361                         continue;
362
363                 if (ndomain >= MAXMEMDOM) {
364                         ndomain = 1;
365                         printf("SRAT: Too many memory domains\n");
366                         return (EFBIG);
367                 }
368
369                 /* Insert the new domain at slot 'j'. */
370                 slot = j;
371                 for (j = ndomain; j > slot; j--)
372                         domain_pxm[j] = domain_pxm[j - 1];
373                 domain_pxm[slot] = mem_info[i].domain;
374                 ndomain++;
375         }
376
377         /* Renumber each domain to its index in the sorted 'domain_pxm' list. */
378         for (i = 0; i < ndomain; i++) {
379                 /*
380                  * If the domain is already the right value, no need
381                  * to renumber.
382                  */
383                 if (domain_pxm[i] == i)
384                         continue;
385
386                 /* Walk the cpu[] and mem_info[] arrays to renumber. */
387                 for (j = 0; j < num_mem; j++)
388                         if (mem_info[j].domain == domain_pxm[i])
389                                 mem_info[j].domain = i;
390                 for (j = 0; j <= MAX_APIC_ID; j++)
391                         if (cpus[j].enabled && cpus[j].domain == domain_pxm[i])
392                                 cpus[j].domain = i;
393         }
394
395         return (0);
396 }
397
398 /*
399  * Look for an ACPI System Resource Affinity Table ("SRAT")
400  */
401 static int
402 parse_srat(void)
403 {
404         int error;
405
406         if (resource_disabled("srat", 0))
407                 return (-1);
408
409         srat_physaddr = acpi_find_table(ACPI_SIG_SRAT);
410         if (srat_physaddr == 0)
411                 return (-1);
412
413         /*
414          * Make a pass over the table to populate the cpus[] and
415          * mem_info[] tables.
416          */
417         srat = acpi_map_table(srat_physaddr, ACPI_SIG_SRAT);
418         error = 0;
419         srat_walk_table(srat_parse_entry, &error);
420         acpi_unmap_table(srat);
421         srat = NULL;
422         if (error || check_domains() != 0 || check_phys_avail() != 0 ||
423             renumber_domains() != 0) {
424                 srat_physaddr = 0;
425                 return (-1);
426         }
427
428 #ifdef VM_NUMA_ALLOC
429         /* Point vm_phys at our memory affinity table. */
430         vm_ndomains = ndomain;
431         mem_affinity = mem_info;
432 #endif
433
434         return (0);
435 }
436
437 static void
438 init_mem_locality(void)
439 {
440         int i;
441
442         /*
443          * For now, assume -1 == "no locality information for
444          * this pairing.
445          */
446         for (i = 0; i < MAXMEMDOM * MAXMEMDOM; i++)
447                 vm_locality_table[i] = -1;
448 }
449
450 static void
451 parse_acpi_tables(void *dummy)
452 {
453
454         if (parse_srat() < 0)
455                 return;
456         init_mem_locality();
457         (void) parse_slit();
458 }
459 SYSINIT(parse_acpi_tables, SI_SUB_VM - 1, SI_ORDER_FIRST, parse_acpi_tables,
460     NULL);
461
462 static void
463 srat_walk_table(acpi_subtable_handler *handler, void *arg)
464 {
465
466         acpi_walk_subtables(srat + 1, (char *)srat + srat->Header.Length,
467             handler, arg);
468 }
469
470 /*
471  * Setup per-CPU domain IDs.
472  */
473 static void
474 srat_set_cpus(void *dummy)
475 {
476         struct cpu_info *cpu;
477         struct pcpu *pc;
478         u_int i;
479
480         if (srat_physaddr == 0)
481                 return;
482         for (i = 0; i < MAXCPU; i++) {
483                 if (CPU_ABSENT(i))
484                         continue;
485                 pc = pcpu_find(i);
486                 KASSERT(pc != NULL, ("no pcpu data for CPU %u", i));
487                 cpu = &cpus[pc->pc_apic_id];
488                 if (!cpu->enabled)
489                         panic("SRAT: CPU with APIC ID %u is not known",
490                             pc->pc_apic_id);
491                 pc->pc_domain = cpu->domain;
492                 CPU_SET(i, &cpuset_domain[cpu->domain]);
493                 if (bootverbose)
494                         printf("SRAT: CPU %u has memory domain %d\n", i,
495                             cpu->domain);
496         }
497 }
498 SYSINIT(srat_set_cpus, SI_SUB_CPU, SI_ORDER_ANY, srat_set_cpus, NULL);
499
500 /*
501  * Map a _PXM value to a VM domain ID.
502  *
503  * Returns the domain ID, or -1 if no domain ID was found.
504  */
505 int
506 acpi_map_pxm_to_vm_domainid(int pxm)
507 {
508         int i;
509
510         for (i = 0; i < ndomain; i++) {
511                 if (domain_pxm[i] == pxm)
512                         return (i);
513         }
514
515         return (-1);
516 }
517
518 #else /* MAXMEMDOM == 1 */
519
520 int
521 acpi_map_pxm_to_vm_domainid(int pxm)
522 {
523
524         return (-1);
525 }
526
527 #endif /* MAXMEMDOM > 1 */