]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/x86/acpica/srat.c
MFV r305420:
[FreeBSD/FreeBSD.git] / sys / x86 / acpica / srat.c
1 /*-
2  * Copyright (c) 2010 Hudson River Trading LLC
3  * Written by: John H. Baldwin <jhb@FreeBSD.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30
31 #include "opt_vm.h"
32
33 #include <sys/param.h>
34 #include <sys/bus.h>
35 #include <sys/kernel.h>
36 #include <sys/lock.h>
37 #include <sys/mutex.h>
38 #include <sys/smp.h>
39 #include <sys/vmmeter.h>
40 #include <vm/vm.h>
41 #include <vm/pmap.h>
42 #include <vm/vm_param.h>
43 #include <vm/vm_page.h>
44 #include <vm/vm_phys.h>
45
46 #include <contrib/dev/acpica/include/acpi.h>
47 #include <contrib/dev/acpica/include/actables.h>
48
49 #include <machine/intr_machdep.h>
50 #include <x86/apicvar.h>
51
52 #include <dev/acpica/acpivar.h>
53
54 #if MAXMEMDOM > 1
55 struct cpu_info {
56         int enabled:1;
57         int has_memory:1;
58         int domain;
59 } cpus[MAX_APIC_ID + 1];
60
61 struct mem_affinity mem_info[VM_PHYSSEG_MAX + 1];
62 int num_mem;
63
64 static ACPI_TABLE_SRAT *srat;
65 static vm_paddr_t srat_physaddr;
66
67 static int domain_pxm[MAXMEMDOM];
68 static int ndomain;
69
70 static ACPI_TABLE_SLIT *slit;
71 static vm_paddr_t slit_physaddr;
72 static int vm_locality_table[MAXMEMDOM * MAXMEMDOM];
73
74 static void     srat_walk_table(acpi_subtable_handler *handler, void *arg);
75
76 /*
77  * SLIT parsing.
78  */
79
80 static void
81 slit_parse_table(ACPI_TABLE_SLIT *s)
82 {
83         int i, j;
84         int i_domain, j_domain;
85         int offset = 0;
86         uint8_t e;
87
88         /*
89          * This maps the SLIT data into the VM-domain centric view.
90          * There may be sparse entries in the PXM namespace, so
91          * remap them to a VM-domain ID and if it doesn't exist,
92          * skip it.
93          *
94          * It should result in a packed 2d array of VM-domain
95          * locality information entries.
96          */
97
98         if (bootverbose)
99                 printf("SLIT.Localities: %d\n", (int) s->LocalityCount);
100         for (i = 0; i < s->LocalityCount; i++) {
101                 i_domain = acpi_map_pxm_to_vm_domainid(i);
102                 if (i_domain < 0)
103                         continue;
104
105                 if (bootverbose)
106                         printf("%d: ", i);
107                 for (j = 0; j < s->LocalityCount; j++) {
108                         j_domain = acpi_map_pxm_to_vm_domainid(j);
109                         if (j_domain < 0)
110                                 continue;
111                         e = s->Entry[i * s->LocalityCount + j];
112                         if (bootverbose)
113                                 printf("%d ", (int) e);
114                         /* 255 == "no locality information" */
115                         if (e == 255)
116                                 vm_locality_table[offset] = -1;
117                         else
118                                 vm_locality_table[offset] = e;
119                         offset++;
120                 }
121                 if (bootverbose)
122                         printf("\n");
123         }
124 }
125
126 /*
127  * Look for an ACPI System Locality Distance Information Table ("SLIT")
128  */
129 static int
130 parse_slit(void)
131 {
132
133         if (resource_disabled("slit", 0)) {
134                 return (-1);
135         }
136
137         slit_physaddr = acpi_find_table(ACPI_SIG_SLIT);
138         if (slit_physaddr == 0) {
139                 return (-1);
140         }
141
142         /*
143          * Make a pass over the table to populate the cpus[] and
144          * mem_info[] tables.
145          */
146         slit = acpi_map_table(slit_physaddr, ACPI_SIG_SLIT);
147         slit_parse_table(slit);
148         acpi_unmap_table(slit);
149         slit = NULL;
150
151 #ifdef VM_NUMA_ALLOC
152         /* Tell the VM about it! */
153         mem_locality = vm_locality_table;
154 #endif
155         return (0);
156 }
157
158 /*
159  * SRAT parsing.
160  */
161
162 /*
163  * Returns true if a memory range overlaps with at least one range in
164  * phys_avail[].
165  */
166 static int
167 overlaps_phys_avail(vm_paddr_t start, vm_paddr_t end)
168 {
169         int i;
170
171         for (i = 0; phys_avail[i] != 0 && phys_avail[i + 1] != 0; i += 2) {
172                 if (phys_avail[i + 1] < start)
173                         continue;
174                 if (phys_avail[i] < end)
175                         return (1);
176                 break;
177         }
178         return (0);
179         
180 }
181
182 static void
183 srat_parse_entry(ACPI_SUBTABLE_HEADER *entry, void *arg)
184 {
185         ACPI_SRAT_CPU_AFFINITY *cpu;
186         ACPI_SRAT_X2APIC_CPU_AFFINITY *x2apic;
187         ACPI_SRAT_MEM_AFFINITY *mem;
188         int domain, i, slot;
189
190         switch (entry->Type) {
191         case ACPI_SRAT_TYPE_CPU_AFFINITY:
192                 cpu = (ACPI_SRAT_CPU_AFFINITY *)entry;
193                 domain = cpu->ProximityDomainLo |
194                     cpu->ProximityDomainHi[0] << 8 |
195                     cpu->ProximityDomainHi[1] << 16 |
196                     cpu->ProximityDomainHi[2] << 24;
197                 if (bootverbose)
198                         printf("SRAT: Found CPU APIC ID %u domain %d: %s\n",
199                             cpu->ApicId, domain,
200                             (cpu->Flags & ACPI_SRAT_CPU_ENABLED) ?
201                             "enabled" : "disabled");
202                 if (!(cpu->Flags & ACPI_SRAT_CPU_ENABLED))
203                         break;
204                 if (cpus[cpu->ApicId].enabled) {
205                         printf("SRAT: Duplicate local APIC ID %u\n",
206                             cpu->ApicId);
207                         *(int *)arg = ENXIO;
208                         break;
209                 }
210                 cpus[cpu->ApicId].domain = domain;
211                 cpus[cpu->ApicId].enabled = 1;
212                 break;
213         case ACPI_SRAT_TYPE_X2APIC_CPU_AFFINITY:
214                 x2apic = (ACPI_SRAT_X2APIC_CPU_AFFINITY *)entry;
215                 if (bootverbose)
216                         printf("SRAT: Found CPU APIC ID %u domain %d: %s\n",
217                             x2apic->ApicId, x2apic->ProximityDomain,
218                             (x2apic->Flags & ACPI_SRAT_CPU_ENABLED) ?
219                             "enabled" : "disabled");
220                 if (!(x2apic->Flags & ACPI_SRAT_CPU_ENABLED))
221                         break;
222                 KASSERT(!cpus[x2apic->ApicId].enabled,
223                     ("Duplicate local APIC ID %u", x2apic->ApicId));
224                 cpus[x2apic->ApicId].domain = x2apic->ProximityDomain;
225                 cpus[x2apic->ApicId].enabled = 1;
226                 break;
227         case ACPI_SRAT_TYPE_MEMORY_AFFINITY:
228                 mem = (ACPI_SRAT_MEM_AFFINITY *)entry;
229                 if (bootverbose)
230                         printf(
231                     "SRAT: Found memory domain %d addr %jx len %jx: %s\n",
232                             mem->ProximityDomain, (uintmax_t)mem->BaseAddress,
233                             (uintmax_t)mem->Length,
234                             (mem->Flags & ACPI_SRAT_MEM_ENABLED) ?
235                             "enabled" : "disabled");
236                 if (!(mem->Flags & ACPI_SRAT_MEM_ENABLED))
237                         break;
238                 if (!overlaps_phys_avail(mem->BaseAddress,
239                     mem->BaseAddress + mem->Length)) {
240                         printf("SRAT: Ignoring memory at addr %jx\n",
241                             (uintmax_t)mem->BaseAddress);
242                         break;
243                 }
244                 if (num_mem == VM_PHYSSEG_MAX) {
245                         printf("SRAT: Too many memory regions\n");
246                         *(int *)arg = ENXIO;
247                         break;
248                 }
249                 slot = num_mem;
250                 for (i = 0; i < num_mem; i++) {
251                         if (mem_info[i].end <= mem->BaseAddress)
252                                 continue;
253                         if (mem_info[i].start <
254                             (mem->BaseAddress + mem->Length)) {
255                                 printf("SRAT: Overlapping memory entries\n");
256                                 *(int *)arg = ENXIO;
257                                 return;
258                         }
259                         slot = i;
260                 }
261                 for (i = num_mem; i > slot; i--)
262                         mem_info[i] = mem_info[i - 1];
263                 mem_info[slot].start = mem->BaseAddress;
264                 mem_info[slot].end = mem->BaseAddress + mem->Length;
265                 mem_info[slot].domain = mem->ProximityDomain;
266                 num_mem++;
267                 break;
268         }
269 }
270
271 /*
272  * Ensure each memory domain has at least one CPU and that each CPU
273  * has at least one memory domain.
274  */
275 static int
276 check_domains(void)
277 {
278         int found, i, j;
279
280         for (i = 0; i < num_mem; i++) {
281                 found = 0;
282                 for (j = 0; j <= MAX_APIC_ID; j++)
283                         if (cpus[j].enabled &&
284                             cpus[j].domain == mem_info[i].domain) {
285                                 cpus[j].has_memory = 1;
286                                 found++;
287                         }
288                 if (!found) {
289                         printf("SRAT: No CPU found for memory domain %d\n",
290                             mem_info[i].domain);
291                         return (ENXIO);
292                 }
293         }
294         for (i = 0; i <= MAX_APIC_ID; i++)
295                 if (cpus[i].enabled && !cpus[i].has_memory) {
296                         printf("SRAT: No memory found for CPU %d\n", i);
297                         return (ENXIO);
298                 }
299         return (0);
300 }
301
302 /*
303  * Check that the SRAT memory regions cover all of the regions in
304  * phys_avail[].
305  */
306 static int
307 check_phys_avail(void)
308 {
309         vm_paddr_t address;
310         int i, j;
311
312         /* j is the current offset into phys_avail[]. */
313         address = phys_avail[0];
314         j = 0;
315         for (i = 0; i < num_mem; i++) {
316                 /*
317                  * Consume as many phys_avail[] entries as fit in this
318                  * region.
319                  */
320                 while (address >= mem_info[i].start &&
321                     address <= mem_info[i].end) {
322                         /*
323                          * If we cover the rest of this phys_avail[] entry,
324                          * advance to the next entry.
325                          */
326                         if (phys_avail[j + 1] <= mem_info[i].end) {
327                                 j += 2;
328                                 if (phys_avail[j] == 0 &&
329                                     phys_avail[j + 1] == 0) {
330                                         return (0);
331                                 }
332                                 address = phys_avail[j];
333                         } else
334                                 address = mem_info[i].end + 1;
335                 }
336         }
337         printf("SRAT: No memory region found for %jx - %jx\n",
338             (uintmax_t)phys_avail[j], (uintmax_t)phys_avail[j + 1]);
339         return (ENXIO);
340 }
341
342 /*
343  * Renumber the memory domains to be compact and zero-based if not
344  * already.  Returns an error if there are too many domains.
345  */
346 static int
347 renumber_domains(void)
348 {
349         int i, j, slot;
350
351         /* Enumerate all the domains. */
352         ndomain = 0;
353         for (i = 0; i < num_mem; i++) {
354                 /* See if this domain is already known. */
355                 for (j = 0; j < ndomain; j++) {
356                         if (domain_pxm[j] >= mem_info[i].domain)
357                                 break;
358                 }
359                 if (j < ndomain && domain_pxm[j] == mem_info[i].domain)
360                         continue;
361
362                 if (ndomain >= MAXMEMDOM) {
363                         ndomain = 1;
364                         printf("SRAT: Too many memory domains\n");
365                         return (EFBIG);
366                 }
367
368                 /* Insert the new domain at slot 'j'. */
369                 slot = j;
370                 for (j = ndomain; j > slot; j--)
371                         domain_pxm[j] = domain_pxm[j - 1];
372                 domain_pxm[slot] = mem_info[i].domain;
373                 ndomain++;
374         }
375
376         /* Renumber each domain to its index in the sorted 'domain_pxm' list. */
377         for (i = 0; i < ndomain; i++) {
378                 /*
379                  * If the domain is already the right value, no need
380                  * to renumber.
381                  */
382                 if (domain_pxm[i] == i)
383                         continue;
384
385                 /* Walk the cpu[] and mem_info[] arrays to renumber. */
386                 for (j = 0; j < num_mem; j++)
387                         if (mem_info[j].domain == domain_pxm[i])
388                                 mem_info[j].domain = i;
389                 for (j = 0; j <= MAX_APIC_ID; j++)
390                         if (cpus[j].enabled && cpus[j].domain == domain_pxm[i])
391                                 cpus[j].domain = i;
392         }
393
394         return (0);
395 }
396
397 /*
398  * Look for an ACPI System Resource Affinity Table ("SRAT")
399  */
400 static int
401 parse_srat(void)
402 {
403         int error;
404
405         if (resource_disabled("srat", 0))
406                 return (-1);
407
408         srat_physaddr = acpi_find_table(ACPI_SIG_SRAT);
409         if (srat_physaddr == 0)
410                 return (-1);
411
412         /*
413          * Make a pass over the table to populate the cpus[] and
414          * mem_info[] tables.
415          */
416         srat = acpi_map_table(srat_physaddr, ACPI_SIG_SRAT);
417         error = 0;
418         srat_walk_table(srat_parse_entry, &error);
419         acpi_unmap_table(srat);
420         srat = NULL;
421         if (error || check_domains() != 0 || check_phys_avail() != 0 ||
422             renumber_domains() != 0) {
423                 srat_physaddr = 0;
424                 return (-1);
425         }
426
427 #ifdef VM_NUMA_ALLOC
428         /* Point vm_phys at our memory affinity table. */
429         vm_ndomains = ndomain;
430         mem_affinity = mem_info;
431 #endif
432
433         return (0);
434 }
435
436 static void
437 init_mem_locality(void)
438 {
439         int i;
440
441         /*
442          * For now, assume -1 == "no locality information for
443          * this pairing.
444          */
445         for (i = 0; i < MAXMEMDOM * MAXMEMDOM; i++)
446                 vm_locality_table[i] = -1;
447 }
448
449 static void
450 parse_acpi_tables(void *dummy)
451 {
452
453         if (parse_srat() < 0)
454                 return;
455         init_mem_locality();
456         (void) parse_slit();
457 }
458 SYSINIT(parse_acpi_tables, SI_SUB_VM - 1, SI_ORDER_FIRST, parse_acpi_tables,
459     NULL);
460
461 static void
462 srat_walk_table(acpi_subtable_handler *handler, void *arg)
463 {
464
465         acpi_walk_subtables(srat + 1, (char *)srat + srat->Header.Length,
466             handler, arg);
467 }
468
469 /*
470  * Setup per-CPU domain IDs.
471  */
472 static void
473 srat_set_cpus(void *dummy)
474 {
475         struct cpu_info *cpu;
476         struct pcpu *pc;
477         u_int i;
478
479         if (srat_physaddr == 0)
480                 return;
481         for (i = 0; i < MAXCPU; i++) {
482                 if (CPU_ABSENT(i))
483                         continue;
484                 pc = pcpu_find(i);
485                 KASSERT(pc != NULL, ("no pcpu data for CPU %u", i));
486                 cpu = &cpus[pc->pc_apic_id];
487                 if (!cpu->enabled)
488                         panic("SRAT: CPU with APIC ID %u is not known",
489                             pc->pc_apic_id);
490                 pc->pc_domain = cpu->domain;
491                 CPU_SET(i, &cpuset_domain[cpu->domain]);
492                 if (bootverbose)
493                         printf("SRAT: CPU %u has memory domain %d\n", i,
494                             cpu->domain);
495         }
496 }
497 SYSINIT(srat_set_cpus, SI_SUB_CPU, SI_ORDER_ANY, srat_set_cpus, NULL);
498
499 /*
500  * Map a _PXM value to a VM domain ID.
501  *
502  * Returns the domain ID, or -1 if no domain ID was found.
503  */
504 int
505 acpi_map_pxm_to_vm_domainid(int pxm)
506 {
507         int i;
508
509         for (i = 0; i < ndomain; i++) {
510                 if (domain_pxm[i] == pxm)
511                         return (i);
512         }
513
514         return (-1);
515 }
516
517 #else /* MAXMEMDOM == 1 */
518
519 int
520 acpi_map_pxm_to_vm_domainid(int pxm)
521 {
522
523         return (-1);
524 }
525
526 #endif /* MAXMEMDOM > 1 */