]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/x86/x86/cpu_machdep.c
MFC r347566:
[FreeBSD/FreeBSD.git] / sys / x86 / x86 / cpu_machdep.c
1 /*-
2  * Copyright (c) 2003 Peter Wemm.
3  * Copyright (c) 1992 Terrence R. Lambert.
4  * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * William Jolitz.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *      This product includes software developed by the University of
21  *      California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *      from: @(#)machdep.c     7.4 (Berkeley) 6/3/91
39  */
40
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43
44 #include "opt_acpi.h"
45 #include "opt_atpic.h"
46 #include "opt_cpu.h"
47 #include "opt_ddb.h"
48 #include "opt_inet.h"
49 #include "opt_isa.h"
50 #include "opt_kdb.h"
51 #include "opt_kstack_pages.h"
52 #include "opt_maxmem.h"
53 #include "opt_mp_watchdog.h"
54 #include "opt_platform.h"
55 #ifdef __i386__
56 #include "opt_apic.h"
57 #endif
58
59 #include <sys/param.h>
60 #include <sys/proc.h>
61 #include <sys/systm.h>
62 #include <sys/bus.h>
63 #include <sys/cpu.h>
64 #include <sys/domainset.h>
65 #include <sys/kdb.h>
66 #include <sys/kernel.h>
67 #include <sys/ktr.h>
68 #include <sys/lock.h>
69 #include <sys/malloc.h>
70 #include <sys/mutex.h>
71 #include <sys/pcpu.h>
72 #include <sys/rwlock.h>
73 #include <sys/sched.h>
74 #include <sys/smp.h>
75 #include <sys/sysctl.h>
76
77 #include <machine/clock.h>
78 #include <machine/cpu.h>
79 #include <machine/cputypes.h>
80 #include <machine/specialreg.h>
81 #include <machine/md_var.h>
82 #include <machine/mp_watchdog.h>
83 #include <machine/tss.h>
84 #ifdef SMP
85 #include <machine/smp.h>
86 #endif
87 #ifdef CPU_ELAN
88 #include <machine/elan_mmcr.h>
89 #endif
90 #include <x86/acpica_machdep.h>
91
92 #include <vm/vm.h>
93 #include <vm/vm_extern.h>
94 #include <vm/vm_kern.h>
95 #include <vm/vm_page.h>
96 #include <vm/vm_map.h>
97 #include <vm/vm_object.h>
98 #include <vm/vm_pager.h>
99 #include <vm/vm_param.h>
100
101 #include <isa/isareg.h>
102
103 #include <contrib/dev/acpica/include/acpi.h>
104
105 #define STATE_RUNNING   0x0
106 #define STATE_MWAIT     0x1
107 #define STATE_SLEEPING  0x2
108
109 #ifdef SMP
110 static u_int    cpu_reset_proxyid;
111 static volatile u_int   cpu_reset_proxy_active;
112 #endif
113
114
115 /*
116  * Machine dependent boot() routine
117  *
118  * I haven't seen anything to put here yet
119  * Possibly some stuff might be grafted back here from boot()
120  */
121 void
122 cpu_boot(int howto)
123 {
124 }
125
126 /*
127  * Flush the D-cache for non-DMA I/O so that the I-cache can
128  * be made coherent later.
129  */
130 void
131 cpu_flush_dcache(void *ptr, size_t len)
132 {
133         /* Not applicable */
134 }
135
136 void
137 acpi_cpu_c1(void)
138 {
139
140         __asm __volatile("sti; hlt");
141 }
142
143 /*
144  * Use mwait to pause execution while waiting for an interrupt or
145  * another thread to signal that there is more work.
146  *
147  * NOTE: Interrupts will cause a wakeup; however, this function does
148  * not enable interrupt handling. The caller is responsible to enable
149  * interrupts.
150  */
151 void
152 acpi_cpu_idle_mwait(uint32_t mwait_hint)
153 {
154         int *state;
155         uint64_t v;
156
157         /*
158          * A comment in Linux patch claims that 'CPUs run faster with
159          * speculation protection disabled. All CPU threads in a core
160          * must disable speculation protection for it to be
161          * disabled. Disable it while we are idle so the other
162          * hyperthread can run fast.'
163          *
164          * XXXKIB.  Software coordination mode should be supported,
165          * but all Intel CPUs provide hardware coordination.
166          */
167
168         state = (int *)PCPU_PTR(monitorbuf);
169         KASSERT(atomic_load_int(state) == STATE_SLEEPING,
170             ("cpu_mwait_cx: wrong monitorbuf state"));
171         atomic_store_int(state, STATE_MWAIT);
172         if (PCPU_GET(ibpb_set) || hw_ssb_active) {
173                 v = rdmsr(MSR_IA32_SPEC_CTRL);
174                 wrmsr(MSR_IA32_SPEC_CTRL, v & ~(IA32_SPEC_CTRL_IBRS |
175                     IA32_SPEC_CTRL_STIBP | IA32_SPEC_CTRL_SSBD));
176         } else {
177                 v = 0;
178         }
179         cpu_monitor(state, 0, 0);
180         if (atomic_load_int(state) == STATE_MWAIT)
181                 cpu_mwait(MWAIT_INTRBREAK, mwait_hint);
182
183         /*
184          * SSB cannot be disabled while we sleep, or rather, if it was
185          * disabled, the sysctl thread will bind to our cpu to tweak
186          * MSR.
187          */
188         if (v != 0)
189                 wrmsr(MSR_IA32_SPEC_CTRL, v);
190
191         /*
192          * We should exit on any event that interrupts mwait, because
193          * that event might be a wanted interrupt.
194          */
195         atomic_store_int(state, STATE_RUNNING);
196 }
197
198 /* Get current clock frequency for the given cpu id. */
199 int
200 cpu_est_clockrate(int cpu_id, uint64_t *rate)
201 {
202         uint64_t tsc1, tsc2;
203         uint64_t acnt, mcnt, perf;
204         register_t reg;
205
206         if (pcpu_find(cpu_id) == NULL || rate == NULL)
207                 return (EINVAL);
208 #ifdef __i386__
209         if ((cpu_feature & CPUID_TSC) == 0)
210                 return (EOPNOTSUPP);
211 #endif
212
213         /*
214          * If TSC is P-state invariant and APERF/MPERF MSRs do not exist,
215          * DELAY(9) based logic fails.
216          */
217         if (tsc_is_invariant && !tsc_perf_stat)
218                 return (EOPNOTSUPP);
219
220 #ifdef SMP
221         if (smp_cpus > 1) {
222                 /* Schedule ourselves on the indicated cpu. */
223                 thread_lock(curthread);
224                 sched_bind(curthread, cpu_id);
225                 thread_unlock(curthread);
226         }
227 #endif
228
229         /* Calibrate by measuring a short delay. */
230         reg = intr_disable();
231         if (tsc_is_invariant) {
232                 wrmsr(MSR_MPERF, 0);
233                 wrmsr(MSR_APERF, 0);
234                 tsc1 = rdtsc();
235                 DELAY(1000);
236                 mcnt = rdmsr(MSR_MPERF);
237                 acnt = rdmsr(MSR_APERF);
238                 tsc2 = rdtsc();
239                 intr_restore(reg);
240                 perf = 1000 * acnt / mcnt;
241                 *rate = (tsc2 - tsc1) * perf;
242         } else {
243                 tsc1 = rdtsc();
244                 DELAY(1000);
245                 tsc2 = rdtsc();
246                 intr_restore(reg);
247                 *rate = (tsc2 - tsc1) * 1000;
248         }
249
250 #ifdef SMP
251         if (smp_cpus > 1) {
252                 thread_lock(curthread);
253                 sched_unbind(curthread);
254                 thread_unlock(curthread);
255         }
256 #endif
257
258         return (0);
259 }
260
261 /*
262  * Shutdown the CPU as much as possible
263  */
264 void
265 cpu_halt(void)
266 {
267         for (;;)
268                 halt();
269 }
270
271 static void
272 cpu_reset_real(void)
273 {
274         struct region_descriptor null_idt;
275         int b;
276
277         disable_intr();
278 #ifdef CPU_ELAN
279         if (elan_mmcr != NULL)
280                 elan_mmcr->RESCFG = 1;
281 #endif
282 #ifdef __i386__
283         if (cpu == CPU_GEODE1100) {
284                 /* Attempt Geode's own reset */
285                 outl(0xcf8, 0x80009044ul);
286                 outl(0xcfc, 0xf);
287         }
288 #endif
289 #if !defined(BROKEN_KEYBOARD_RESET)
290         /*
291          * Attempt to do a CPU reset via the keyboard controller,
292          * do not turn off GateA20, as any machine that fails
293          * to do the reset here would then end up in no man's land.
294          */
295         outb(IO_KBD + 4, 0xFE);
296         DELAY(500000);  /* wait 0.5 sec to see if that did it */
297 #endif
298
299         /*
300          * Attempt to force a reset via the Reset Control register at
301          * I/O port 0xcf9.  Bit 2 forces a system reset when it
302          * transitions from 0 to 1.  Bit 1 selects the type of reset
303          * to attempt: 0 selects a "soft" reset, and 1 selects a
304          * "hard" reset.  We try a "hard" reset.  The first write sets
305          * bit 1 to select a "hard" reset and clears bit 2.  The
306          * second write forces a 0 -> 1 transition in bit 2 to trigger
307          * a reset.
308          */
309         outb(0xcf9, 0x2);
310         outb(0xcf9, 0x6);
311         DELAY(500000);  /* wait 0.5 sec to see if that did it */
312
313         /*
314          * Attempt to force a reset via the Fast A20 and Init register
315          * at I/O port 0x92.  Bit 1 serves as an alternate A20 gate.
316          * Bit 0 asserts INIT# when set to 1.  We are careful to only
317          * preserve bit 1 while setting bit 0.  We also must clear bit
318          * 0 before setting it if it isn't already clear.
319          */
320         b = inb(0x92);
321         if (b != 0xff) {
322                 if ((b & 0x1) != 0)
323                         outb(0x92, b & 0xfe);
324                 outb(0x92, b | 0x1);
325                 DELAY(500000);  /* wait 0.5 sec to see if that did it */
326         }
327
328         printf("No known reset method worked, attempting CPU shutdown\n");
329         DELAY(1000000); /* wait 1 sec for printf to complete */
330
331         /* Wipe the IDT. */
332         null_idt.rd_limit = 0;
333         null_idt.rd_base = 0;
334         lidt(&null_idt);
335
336         /* "good night, sweet prince .... <THUNK!>" */
337         breakpoint();
338
339         /* NOTREACHED */
340         while(1);
341 }
342
343 #ifdef SMP
344 static void
345 cpu_reset_proxy(void)
346 {
347
348         cpu_reset_proxy_active = 1;
349         while (cpu_reset_proxy_active == 1)
350                 ia32_pause(); /* Wait for other cpu to see that we've started */
351
352         printf("cpu_reset_proxy: Stopped CPU %d\n", cpu_reset_proxyid);
353         DELAY(1000000);
354         cpu_reset_real();
355 }
356 #endif
357
358 void
359 cpu_reset(void)
360 {
361 #ifdef SMP
362         cpuset_t map;
363         u_int cnt;
364
365         if (smp_started) {
366                 map = all_cpus;
367                 CPU_CLR(PCPU_GET(cpuid), &map);
368                 CPU_NAND(&map, &stopped_cpus);
369                 if (!CPU_EMPTY(&map)) {
370                         printf("cpu_reset: Stopping other CPUs\n");
371                         stop_cpus(map);
372                 }
373
374                 if (PCPU_GET(cpuid) != 0) {
375                         cpu_reset_proxyid = PCPU_GET(cpuid);
376                         cpustop_restartfunc = cpu_reset_proxy;
377                         cpu_reset_proxy_active = 0;
378                         printf("cpu_reset: Restarting BSP\n");
379
380                         /* Restart CPU #0. */
381                         CPU_SETOF(0, &started_cpus);
382                         wmb();
383
384                         cnt = 0;
385                         while (cpu_reset_proxy_active == 0 && cnt < 10000000) {
386                                 ia32_pause();
387                                 cnt++;  /* Wait for BSP to announce restart */
388                         }
389                         if (cpu_reset_proxy_active == 0) {
390                                 printf("cpu_reset: Failed to restart BSP\n");
391                         } else {
392                                 cpu_reset_proxy_active = 2;
393                                 while (1)
394                                         ia32_pause();
395                                 /* NOTREACHED */
396                         }
397                 }
398
399                 DELAY(1000000);
400         }
401 #endif
402         cpu_reset_real();
403         /* NOTREACHED */
404 }
405
406 bool
407 cpu_mwait_usable(void)
408 {
409
410         return ((cpu_feature2 & CPUID2_MON) != 0 && ((cpu_mon_mwait_flags &
411             (CPUID5_MON_MWAIT_EXT | CPUID5_MWAIT_INTRBREAK)) ==
412             (CPUID5_MON_MWAIT_EXT | CPUID5_MWAIT_INTRBREAK)));
413 }
414
415 void (*cpu_idle_hook)(sbintime_t) = NULL;       /* ACPI idle hook. */
416 static int      cpu_ident_amdc1e = 0;   /* AMD C1E supported. */
417 static int      idle_mwait = 1;         /* Use MONITOR/MWAIT for short idle. */
418 SYSCTL_INT(_machdep, OID_AUTO, idle_mwait, CTLFLAG_RWTUN, &idle_mwait,
419     0, "Use MONITOR/MWAIT for short idle");
420
421 static void
422 cpu_idle_acpi(sbintime_t sbt)
423 {
424         int *state;
425
426         state = (int *)PCPU_PTR(monitorbuf);
427         atomic_store_int(state, STATE_SLEEPING);
428
429         /* See comments in cpu_idle_hlt(). */
430         disable_intr();
431         if (sched_runnable())
432                 enable_intr();
433         else if (cpu_idle_hook)
434                 cpu_idle_hook(sbt);
435         else
436                 acpi_cpu_c1();
437         atomic_store_int(state, STATE_RUNNING);
438 }
439
440 static void
441 cpu_idle_hlt(sbintime_t sbt)
442 {
443         int *state;
444
445         state = (int *)PCPU_PTR(monitorbuf);
446         atomic_store_int(state, STATE_SLEEPING);
447
448         /*
449          * Since we may be in a critical section from cpu_idle(), if
450          * an interrupt fires during that critical section we may have
451          * a pending preemption.  If the CPU halts, then that thread
452          * may not execute until a later interrupt awakens the CPU.
453          * To handle this race, check for a runnable thread after
454          * disabling interrupts and immediately return if one is
455          * found.  Also, we must absolutely guarentee that hlt is
456          * the next instruction after sti.  This ensures that any
457          * interrupt that fires after the call to disable_intr() will
458          * immediately awaken the CPU from hlt.  Finally, please note
459          * that on x86 this works fine because of interrupts enabled only
460          * after the instruction following sti takes place, while IF is set
461          * to 1 immediately, allowing hlt instruction to acknowledge the
462          * interrupt.
463          */
464         disable_intr();
465         if (sched_runnable())
466                 enable_intr();
467         else
468                 acpi_cpu_c1();
469         atomic_store_int(state, STATE_RUNNING);
470 }
471
472 static void
473 cpu_idle_mwait(sbintime_t sbt)
474 {
475         int *state;
476
477         state = (int *)PCPU_PTR(monitorbuf);
478         atomic_store_int(state, STATE_MWAIT);
479
480         /* See comments in cpu_idle_hlt(). */
481         disable_intr();
482         if (sched_runnable()) {
483                 atomic_store_int(state, STATE_RUNNING);
484                 enable_intr();
485                 return;
486         }
487
488         cpu_monitor(state, 0, 0);
489         if (atomic_load_int(state) == STATE_MWAIT)
490                 __asm __volatile("sti; mwait" : : "a" (MWAIT_C1), "c" (0));
491         else
492                 enable_intr();
493         atomic_store_int(state, STATE_RUNNING);
494 }
495
496 static void
497 cpu_idle_spin(sbintime_t sbt)
498 {
499         int *state;
500         int i;
501
502         state = (int *)PCPU_PTR(monitorbuf);
503         atomic_store_int(state, STATE_RUNNING);
504
505         /*
506          * The sched_runnable() call is racy but as long as there is
507          * a loop missing it one time will have just a little impact if any 
508          * (and it is much better than missing the check at all).
509          */
510         for (i = 0; i < 1000; i++) {
511                 if (sched_runnable())
512                         return;
513                 cpu_spinwait();
514         }
515 }
516
517 /*
518  * C1E renders the local APIC timer dead, so we disable it by
519  * reading the Interrupt Pending Message register and clearing
520  * both C1eOnCmpHalt (bit 28) and SmiOnCmpHalt (bit 27).
521  * 
522  * Reference:
523  *   "BIOS and Kernel Developer's Guide for AMD NPT Family 0Fh Processors"
524  *   #32559 revision 3.00+
525  */
526 #define MSR_AMDK8_IPM           0xc0010055
527 #define AMDK8_SMIONCMPHALT      (1ULL << 27)
528 #define AMDK8_C1EONCMPHALT      (1ULL << 28)
529 #define AMDK8_CMPHALT           (AMDK8_SMIONCMPHALT | AMDK8_C1EONCMPHALT)
530
531 void
532 cpu_probe_amdc1e(void)
533 {
534
535         /*
536          * Detect the presence of C1E capability mostly on latest
537          * dual-cores (or future) k8 family.
538          */
539         if (cpu_vendor_id == CPU_VENDOR_AMD &&
540             (cpu_id & 0x00000f00) == 0x00000f00 &&
541             (cpu_id & 0x0fff0000) >=  0x00040000) {
542                 cpu_ident_amdc1e = 1;
543         }
544 }
545
546 void (*cpu_idle_fn)(sbintime_t) = cpu_idle_acpi;
547
548 void
549 cpu_idle(int busy)
550 {
551         uint64_t msr;
552         sbintime_t sbt = -1;
553
554         CTR2(KTR_SPARE2, "cpu_idle(%d) at %d",
555             busy, curcpu);
556 #ifdef MP_WATCHDOG
557         ap_watchdog(PCPU_GET(cpuid));
558 #endif
559
560         /* If we are busy - try to use fast methods. */
561         if (busy) {
562                 if ((cpu_feature2 & CPUID2_MON) && idle_mwait) {
563                         cpu_idle_mwait(busy);
564                         goto out;
565                 }
566         }
567
568         /* If we have time - switch timers into idle mode. */
569         if (!busy) {
570                 critical_enter();
571                 sbt = cpu_idleclock();
572         }
573
574         /* Apply AMD APIC timer C1E workaround. */
575         if (cpu_ident_amdc1e && cpu_disable_c3_sleep) {
576                 msr = rdmsr(MSR_AMDK8_IPM);
577                 if (msr & AMDK8_CMPHALT)
578                         wrmsr(MSR_AMDK8_IPM, msr & ~AMDK8_CMPHALT);
579         }
580
581         /* Call main idle method. */
582         cpu_idle_fn(sbt);
583
584         /* Switch timers back into active mode. */
585         if (!busy) {
586                 cpu_activeclock();
587                 critical_exit();
588         }
589 out:
590         CTR2(KTR_SPARE2, "cpu_idle(%d) at %d done",
591             busy, curcpu);
592 }
593
594 static int cpu_idle_apl31_workaround;
595 SYSCTL_INT(_machdep, OID_AUTO, idle_apl31, CTLFLAG_RW,
596     &cpu_idle_apl31_workaround, 0,
597     "Apollo Lake APL31 MWAIT bug workaround");
598
599 int
600 cpu_idle_wakeup(int cpu)
601 {
602         int *state;
603
604         state = (int *)pcpu_find(cpu)->pc_monitorbuf;
605         switch (atomic_load_int(state)) {
606         case STATE_SLEEPING:
607                 return (0);
608         case STATE_MWAIT:
609                 atomic_store_int(state, STATE_RUNNING);
610                 return (cpu_idle_apl31_workaround ? 0 : 1);
611         case STATE_RUNNING:
612                 return (1);
613         default:
614                 panic("bad monitor state");
615                 return (1);
616         }
617 }
618
619 /*
620  * Ordered by speed/power consumption.
621  */
622 static struct {
623         void    *id_fn;
624         char    *id_name;
625         int     id_cpuid2_flag;
626 } idle_tbl[] = {
627         { .id_fn = cpu_idle_spin, .id_name = "spin" },
628         { .id_fn = cpu_idle_mwait, .id_name = "mwait",
629             .id_cpuid2_flag = CPUID2_MON },
630         { .id_fn = cpu_idle_hlt, .id_name = "hlt" },
631         { .id_fn = cpu_idle_acpi, .id_name = "acpi" },
632 };
633
634 static int
635 idle_sysctl_available(SYSCTL_HANDLER_ARGS)
636 {
637         char *avail, *p;
638         int error;
639         int i;
640
641         avail = malloc(256, M_TEMP, M_WAITOK);
642         p = avail;
643         for (i = 0; i < nitems(idle_tbl); i++) {
644                 if (idle_tbl[i].id_cpuid2_flag != 0 &&
645                     (cpu_feature2 & idle_tbl[i].id_cpuid2_flag) == 0)
646                         continue;
647                 if (strcmp(idle_tbl[i].id_name, "acpi") == 0 &&
648                     cpu_idle_hook == NULL)
649                         continue;
650                 p += sprintf(p, "%s%s", p != avail ? ", " : "",
651                     idle_tbl[i].id_name);
652         }
653         error = sysctl_handle_string(oidp, avail, 0, req);
654         free(avail, M_TEMP);
655         return (error);
656 }
657
658 SYSCTL_PROC(_machdep, OID_AUTO, idle_available, CTLTYPE_STRING | CTLFLAG_RD,
659     0, 0, idle_sysctl_available, "A", "list of available idle functions");
660
661 static bool
662 cpu_idle_selector(const char *new_idle_name)
663 {
664         int i;
665
666         for (i = 0; i < nitems(idle_tbl); i++) {
667                 if (idle_tbl[i].id_cpuid2_flag != 0 &&
668                     (cpu_feature2 & idle_tbl[i].id_cpuid2_flag) == 0)
669                         continue;
670                 if (strcmp(idle_tbl[i].id_name, "acpi") == 0 &&
671                     cpu_idle_hook == NULL)
672                         continue;
673                 if (strcmp(idle_tbl[i].id_name, new_idle_name))
674                         continue;
675                 cpu_idle_fn = idle_tbl[i].id_fn;
676                 if (bootverbose)
677                         printf("CPU idle set to %s\n", idle_tbl[i].id_name);
678                 return (true);
679         }
680         return (false);
681 }
682
683 static int
684 cpu_idle_sysctl(SYSCTL_HANDLER_ARGS)
685 {
686         char buf[16], *p;
687         int error, i;
688
689         p = "unknown";
690         for (i = 0; i < nitems(idle_tbl); i++) {
691                 if (idle_tbl[i].id_fn == cpu_idle_fn) {
692                         p = idle_tbl[i].id_name;
693                         break;
694                 }
695         }
696         strncpy(buf, p, sizeof(buf));
697         error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
698         if (error != 0 || req->newptr == NULL)
699                 return (error);
700         return (cpu_idle_selector(buf) ? 0 : EINVAL);
701 }
702
703 SYSCTL_PROC(_machdep, OID_AUTO, idle, CTLTYPE_STRING | CTLFLAG_RW, 0, 0,
704     cpu_idle_sysctl, "A", "currently selected idle function");
705
706 static void
707 cpu_idle_tun(void *unused __unused)
708 {
709         char tunvar[16];
710
711         if (TUNABLE_STR_FETCH("machdep.idle", tunvar, sizeof(tunvar)))
712                 cpu_idle_selector(tunvar);
713         else if (cpu_vendor_id == CPU_VENDOR_AMD &&
714             CPUID_TO_FAMILY(cpu_id) == 0x17 && CPUID_TO_MODEL(cpu_id) == 0x1) {
715                 /* Ryzen erratas 1057, 1109. */
716                 cpu_idle_selector("hlt");
717                 idle_mwait = 0;
718         }
719
720         if (cpu_vendor_id == CPU_VENDOR_INTEL && cpu_id == 0x506c9) {
721                 /*
722                  * Apollo Lake errata APL31 (public errata APL30).
723                  * Stores to the armed address range may not trigger
724                  * MWAIT to resume execution.  OS needs to use
725                  * interrupts to wake processors from MWAIT-induced
726                  * sleep states.
727                  */
728                 cpu_idle_apl31_workaround = 1;
729         }
730         TUNABLE_INT_FETCH("machdep.idle_apl31", &cpu_idle_apl31_workaround);
731 }
732 SYSINIT(cpu_idle_tun, SI_SUB_CPU, SI_ORDER_MIDDLE, cpu_idle_tun, NULL);
733
734 static int panic_on_nmi = 1;
735 SYSCTL_INT(_machdep, OID_AUTO, panic_on_nmi, CTLFLAG_RWTUN,
736     &panic_on_nmi, 0,
737     "Panic on NMI raised by hardware failure");
738 int nmi_is_broadcast = 1;
739 SYSCTL_INT(_machdep, OID_AUTO, nmi_is_broadcast, CTLFLAG_RWTUN,
740     &nmi_is_broadcast, 0,
741     "Chipset NMI is broadcast");
742 #ifdef KDB
743 int kdb_on_nmi = 1;
744 SYSCTL_INT(_machdep, OID_AUTO, kdb_on_nmi, CTLFLAG_RWTUN,
745     &kdb_on_nmi, 0,
746     "Go to KDB on NMI with unknown source");
747 #endif
748
749 void
750 nmi_call_kdb(u_int cpu, u_int type, struct trapframe *frame)
751 {
752         bool claimed = false;
753
754 #ifdef DEV_ISA
755         /* machine/parity/power fail/"kitchen sink" faults */
756         if (isa_nmi(frame->tf_err)) {
757                 claimed = true;
758                 if (panic_on_nmi)
759                         panic("NMI indicates hardware failure");
760         }
761 #endif /* DEV_ISA */
762 #ifdef KDB
763         if (!claimed && kdb_on_nmi) {
764                 /*
765                  * NMI can be hooked up to a pushbutton for debugging.
766                  */
767                 printf("NMI/cpu%d ... going to debugger\n", cpu);
768                 kdb_trap(type, 0, frame);
769         }
770 #endif /* KDB */
771 }
772
773 void
774 nmi_handle_intr(u_int type, struct trapframe *frame)
775 {
776
777 #ifdef SMP
778         if (nmi_is_broadcast) {
779                 nmi_call_kdb_smp(type, frame);
780                 return;
781         }
782 #endif
783         nmi_call_kdb(PCPU_GET(cpuid), type, frame);
784 }
785
786 int hw_ibrs_active;
787 int hw_ibrs_disable = 1;
788
789 SYSCTL_INT(_hw, OID_AUTO, ibrs_active, CTLFLAG_RD, &hw_ibrs_active, 0,
790     "Indirect Branch Restricted Speculation active");
791
792 void
793 hw_ibrs_recalculate(void)
794 {
795         uint64_t v;
796
797         if ((cpu_ia32_arch_caps & IA32_ARCH_CAP_IBRS_ALL) != 0) {
798                 if (hw_ibrs_disable) {
799                         v = rdmsr(MSR_IA32_SPEC_CTRL);
800                         v &= ~(uint64_t)IA32_SPEC_CTRL_IBRS;
801                         wrmsr(MSR_IA32_SPEC_CTRL, v);
802                 } else {
803                         v = rdmsr(MSR_IA32_SPEC_CTRL);
804                         v |= IA32_SPEC_CTRL_IBRS;
805                         wrmsr(MSR_IA32_SPEC_CTRL, v);
806                 }
807                 return;
808         }
809         hw_ibrs_active = (cpu_stdext_feature3 & CPUID_STDEXT3_IBPB) != 0 &&
810             !hw_ibrs_disable;
811 }
812
813 static int
814 hw_ibrs_disable_handler(SYSCTL_HANDLER_ARGS)
815 {
816         int error, val;
817
818         val = hw_ibrs_disable;
819         error = sysctl_handle_int(oidp, &val, 0, req);
820         if (error != 0 || req->newptr == NULL)
821                 return (error);
822         hw_ibrs_disable = val != 0;
823         hw_ibrs_recalculate();
824         return (0);
825 }
826 SYSCTL_PROC(_hw, OID_AUTO, ibrs_disable, CTLTYPE_INT | CTLFLAG_RWTUN |
827     CTLFLAG_NOFETCH | CTLFLAG_MPSAFE, NULL, 0, hw_ibrs_disable_handler, "I",
828     "Disable Indirect Branch Restricted Speculation");
829
830 int hw_ssb_active;
831 int hw_ssb_disable;
832
833 SYSCTL_INT(_hw, OID_AUTO, spec_store_bypass_disable_active, CTLFLAG_RD,
834     &hw_ssb_active, 0,
835     "Speculative Store Bypass Disable active");
836
837 static void
838 hw_ssb_set_one(bool enable)
839 {
840         uint64_t v;
841
842         v = rdmsr(MSR_IA32_SPEC_CTRL);
843         if (enable)
844                 v |= (uint64_t)IA32_SPEC_CTRL_SSBD;
845         else
846                 v &= ~(uint64_t)IA32_SPEC_CTRL_SSBD;
847         wrmsr(MSR_IA32_SPEC_CTRL, v);
848 }
849
850 static void
851 hw_ssb_set(bool enable, bool for_all_cpus)
852 {
853         struct thread *td;
854         int bound_cpu, i, is_bound;
855
856         if ((cpu_stdext_feature3 & CPUID_STDEXT3_SSBD) == 0) {
857                 hw_ssb_active = 0;
858                 return;
859         }
860         hw_ssb_active = enable;
861         if (for_all_cpus) {
862                 td = curthread;
863                 thread_lock(td);
864                 is_bound = sched_is_bound(td);
865                 bound_cpu = td->td_oncpu;
866                 CPU_FOREACH(i) {
867                         sched_bind(td, i);
868                         hw_ssb_set_one(enable);
869                 }
870                 if (is_bound)
871                         sched_bind(td, bound_cpu);
872                 else
873                         sched_unbind(td);
874                 thread_unlock(td);
875         } else {
876                 hw_ssb_set_one(enable);
877         }
878 }
879
880 void
881 hw_ssb_recalculate(bool all_cpus)
882 {
883
884         switch (hw_ssb_disable) {
885         default:
886                 hw_ssb_disable = 0;
887                 /* FALLTHROUGH */
888         case 0: /* off */
889                 hw_ssb_set(false, all_cpus);
890                 break;
891         case 1: /* on */
892                 hw_ssb_set(true, all_cpus);
893                 break;
894         case 2: /* auto */
895                 hw_ssb_set((cpu_ia32_arch_caps & IA32_ARCH_CAP_SSB_NO) != 0 ?
896                     false : true, all_cpus);
897                 break;
898         }
899 }
900
901 static int
902 hw_ssb_disable_handler(SYSCTL_HANDLER_ARGS)
903 {
904         int error, val;
905
906         val = hw_ssb_disable;
907         error = sysctl_handle_int(oidp, &val, 0, req);
908         if (error != 0 || req->newptr == NULL)
909                 return (error);
910         hw_ssb_disable = val;
911         hw_ssb_recalculate(true);
912         return (0);
913 }
914 SYSCTL_PROC(_hw, OID_AUTO, spec_store_bypass_disable, CTLTYPE_INT |
915     CTLFLAG_RWTUN | CTLFLAG_NOFETCH | CTLFLAG_MPSAFE, NULL, 0,
916     hw_ssb_disable_handler, "I",
917     "Speculative Store Bypass Disable (0 - off, 1 - on, 2 - auto");
918
919 int hw_mds_disable;
920
921 /*
922  * Handler for Microarchitectural Data Sampling issues.  Really not a
923  * pointer to C function: on amd64 the code must not change any CPU
924  * architectural state except possibly %rflags. Also, it is always
925  * called with interrupts disabled.
926  */
927 void (*mds_handler)(void);
928 void mds_handler_void(void);
929 void mds_handler_verw(void);
930 void mds_handler_ivb(void);
931 void mds_handler_bdw(void);
932 void mds_handler_skl_sse(void);
933 void mds_handler_skl_avx(void);
934 void mds_handler_skl_avx512(void);
935 void mds_handler_silvermont(void);
936
937 static int
938 sysctl_hw_mds_disable_state_handler(SYSCTL_HANDLER_ARGS)
939 {
940         const char *state;
941
942         if (mds_handler == mds_handler_void)
943                 state = "inactive";
944         else if (mds_handler == mds_handler_verw)
945                 state = "VERW";
946         else if (mds_handler == mds_handler_ivb)
947                 state = "software IvyBridge";
948         else if (mds_handler == mds_handler_bdw)
949                 state = "software Broadwell";
950         else if (mds_handler == mds_handler_skl_sse)
951                 state = "software Skylake SSE";
952         else if (mds_handler == mds_handler_skl_avx)
953                 state = "software Skylake AVX";
954         else if (mds_handler == mds_handler_skl_avx512)
955                 state = "software Skylake AVX512";
956         else if (mds_handler == mds_handler_silvermont)
957                 state = "software Silvermont";
958         else
959                 state = "unknown";
960         return (SYSCTL_OUT(req, state, strlen(state)));
961 }
962
963 SYSCTL_PROC(_hw, OID_AUTO, mds_disable_state,
964     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
965     sysctl_hw_mds_disable_state_handler, "A",
966     "Microarchitectural Data Sampling Mitigation state");
967
968 _Static_assert(__offsetof(struct pcpu, pc_mds_tmp) % 64 == 0, "MDS AVX512");
969
970 void
971 hw_mds_recalculate(void)
972 {
973         struct pcpu *pc;
974         vm_offset_t b64;
975         u_long xcr0;
976         int i;
977
978         /*
979          * Allow user to force VERW variant even if MD_CLEAR is not
980          * reported.  For instance, hypervisor might unknowingly
981          * filter the cap out.
982          * For the similar reasons, and for testing, allow to enable
983          * mitigation even for RDCL_NO or MDS_NO caps.
984          */
985         if (cpu_vendor_id != CPU_VENDOR_INTEL || hw_mds_disable == 0 ||
986             ((cpu_ia32_arch_caps & (IA32_ARCH_CAP_RDCL_NO |
987             IA32_ARCH_CAP_MDS_NO)) != 0 && hw_mds_disable == 3)) {
988                 mds_handler = mds_handler_void;
989         } else if (((cpu_stdext_feature3 & CPUID_STDEXT3_MD_CLEAR) != 0 &&
990             hw_mds_disable == 3) || hw_mds_disable == 1) {
991                 mds_handler = mds_handler_verw;
992         } else if (CPUID_TO_FAMILY(cpu_id) == 0x6 &&
993             (CPUID_TO_MODEL(cpu_id) == 0x2e || CPUID_TO_MODEL(cpu_id) == 0x1e ||
994             CPUID_TO_MODEL(cpu_id) == 0x1f || CPUID_TO_MODEL(cpu_id) == 0x1a ||
995             CPUID_TO_MODEL(cpu_id) == 0x2f || CPUID_TO_MODEL(cpu_id) == 0x25 ||
996             CPUID_TO_MODEL(cpu_id) == 0x2c || CPUID_TO_MODEL(cpu_id) == 0x2d ||
997             CPUID_TO_MODEL(cpu_id) == 0x2a || CPUID_TO_MODEL(cpu_id) == 0x3e ||
998             CPUID_TO_MODEL(cpu_id) == 0x3a) &&
999             (hw_mds_disable == 2 || hw_mds_disable == 3)) {
1000                 /*
1001                  * Nehalem, SandyBridge, IvyBridge
1002                  */
1003                 CPU_FOREACH(i) {
1004                         pc = pcpu_find(i);
1005                         if (pc->pc_mds_buf == NULL) {
1006                                 pc->pc_mds_buf = malloc_domainset(672, M_TEMP,
1007                                     DOMAINSET_PREF(pc->pc_domain), M_WAITOK);
1008                                 bzero(pc->pc_mds_buf, 16);
1009                         }
1010                 }
1011                 mds_handler = mds_handler_ivb;
1012         } else if (CPUID_TO_FAMILY(cpu_id) == 0x6 &&
1013             (CPUID_TO_MODEL(cpu_id) == 0x3f || CPUID_TO_MODEL(cpu_id) == 0x3c ||
1014             CPUID_TO_MODEL(cpu_id) == 0x45 || CPUID_TO_MODEL(cpu_id) == 0x46 ||
1015             CPUID_TO_MODEL(cpu_id) == 0x56 || CPUID_TO_MODEL(cpu_id) == 0x4f ||
1016             CPUID_TO_MODEL(cpu_id) == 0x47 || CPUID_TO_MODEL(cpu_id) == 0x3d) &&
1017             (hw_mds_disable == 2 || hw_mds_disable == 3)) {
1018                 /*
1019                  * Haswell, Broadwell
1020                  */
1021                 CPU_FOREACH(i) {
1022                         pc = pcpu_find(i);
1023                         if (pc->pc_mds_buf == NULL) {
1024                                 pc->pc_mds_buf = malloc_domainset(1536, M_TEMP,
1025                                     DOMAINSET_PREF(pc->pc_domain), M_WAITOK);
1026                                 bzero(pc->pc_mds_buf, 16);
1027                         }
1028                 }
1029                 mds_handler = mds_handler_bdw;
1030         } else if (CPUID_TO_FAMILY(cpu_id) == 0x6 &&
1031             ((CPUID_TO_MODEL(cpu_id) == 0x55 && (cpu_id &
1032             CPUID_STEPPING) <= 5) ||
1033             CPUID_TO_MODEL(cpu_id) == 0x4e || CPUID_TO_MODEL(cpu_id) == 0x5e ||
1034             (CPUID_TO_MODEL(cpu_id) == 0x8e && (cpu_id &
1035             CPUID_STEPPING) <= 0xb) ||
1036             (CPUID_TO_MODEL(cpu_id) == 0x9e && (cpu_id &
1037             CPUID_STEPPING) <= 0xc)) &&
1038             (hw_mds_disable == 2 || hw_mds_disable == 3)) {
1039                 /*
1040                  * Skylake, KabyLake, CoffeeLake, WhiskeyLake,
1041                  * CascadeLake
1042                  */
1043                 CPU_FOREACH(i) {
1044                         pc = pcpu_find(i);
1045                         if (pc->pc_mds_buf == NULL) {
1046                                 pc->pc_mds_buf = malloc_domainset(6 * 1024,
1047                                     M_TEMP, DOMAINSET_PREF(pc->pc_domain),
1048                                     M_WAITOK);
1049                                 b64 = (vm_offset_t)malloc_domainset(64 + 63,
1050                                     M_TEMP, DOMAINSET_PREF(pc->pc_domain),
1051                                     M_WAITOK);
1052                                 pc->pc_mds_buf64 = (void *)roundup2(b64, 64);
1053                                 bzero(pc->pc_mds_buf64, 64);
1054                         }
1055                 }
1056                 xcr0 = rxcr(0);
1057                 if ((xcr0 & XFEATURE_ENABLED_ZMM_HI256) != 0 &&
1058                     (cpu_stdext_feature2 & CPUID_STDEXT_AVX512DQ) != 0)
1059                         mds_handler = mds_handler_skl_avx512;
1060                 else if ((xcr0 & XFEATURE_ENABLED_AVX) != 0 &&
1061                     (cpu_feature2 & CPUID2_AVX) != 0)
1062                         mds_handler = mds_handler_skl_avx;
1063                 else
1064                         mds_handler = mds_handler_skl_sse;
1065         } else if (CPUID_TO_FAMILY(cpu_id) == 0x6 &&
1066             ((CPUID_TO_MODEL(cpu_id) == 0x37 ||
1067             CPUID_TO_MODEL(cpu_id) == 0x4a ||
1068             CPUID_TO_MODEL(cpu_id) == 0x4c ||
1069             CPUID_TO_MODEL(cpu_id) == 0x4d ||
1070             CPUID_TO_MODEL(cpu_id) == 0x5a ||
1071             CPUID_TO_MODEL(cpu_id) == 0x5d ||
1072             CPUID_TO_MODEL(cpu_id) == 0x6e ||
1073             CPUID_TO_MODEL(cpu_id) == 0x65 ||
1074             CPUID_TO_MODEL(cpu_id) == 0x75 ||
1075             CPUID_TO_MODEL(cpu_id) == 0x1c ||
1076             CPUID_TO_MODEL(cpu_id) == 0x26 ||
1077             CPUID_TO_MODEL(cpu_id) == 0x27 ||
1078             CPUID_TO_MODEL(cpu_id) == 0x35 ||
1079             CPUID_TO_MODEL(cpu_id) == 0x36 ||
1080             CPUID_TO_MODEL(cpu_id) == 0x7a))) {
1081                 /* Silvermont, Airmont */
1082                 CPU_FOREACH(i) {
1083                         pc = pcpu_find(i);
1084                         if (pc->pc_mds_buf == NULL)
1085                                 pc->pc_mds_buf = malloc(256, M_TEMP, M_WAITOK);
1086                 }
1087                 mds_handler = mds_handler_silvermont;
1088         } else {
1089                 hw_mds_disable = 0;
1090                 mds_handler = mds_handler_void;
1091         }
1092 }
1093
1094 static int
1095 sysctl_mds_disable_handler(SYSCTL_HANDLER_ARGS)
1096 {
1097         int error, val;
1098
1099         val = hw_mds_disable;
1100         error = sysctl_handle_int(oidp, &val, 0, req);
1101         if (error != 0 || req->newptr == NULL)
1102                 return (error);
1103         if (val < 0 || val > 3)
1104                 return (EINVAL);
1105         hw_mds_disable = val;
1106         hw_mds_recalculate();
1107         return (0);
1108 }
1109
1110 SYSCTL_PROC(_hw, OID_AUTO, mds_disable, CTLTYPE_INT |
1111     CTLFLAG_RWTUN | CTLFLAG_NOFETCH | CTLFLAG_MPSAFE, NULL, 0,
1112     sysctl_mds_disable_handler, "I",
1113     "Microarchitectural Data Sampling Mitigation "
1114     "(0 - off, 1 - on VERW, 2 - on SW, 3 - on AUTO");
1115
1116 /*
1117  * Enable and restore kernel text write permissions.
1118  * Callers must ensure that disable_wp()/restore_wp() are executed
1119  * without rescheduling on the same core.
1120  */
1121 bool
1122 disable_wp(void)
1123 {
1124         u_int cr0;
1125
1126         cr0 = rcr0();
1127         if ((cr0 & CR0_WP) == 0)
1128                 return (false);
1129         load_cr0(cr0 & ~CR0_WP);
1130         return (true);
1131 }
1132
1133 void
1134 restore_wp(bool old_wp)
1135 {
1136
1137         if (old_wp)
1138                 load_cr0(rcr0() | CR0_WP);
1139 }
1140
1141 bool
1142 acpi_get_fadt_bootflags(uint16_t *flagsp)
1143 {
1144 #ifdef DEV_ACPI
1145         ACPI_TABLE_FADT *fadt;
1146         vm_paddr_t physaddr;
1147
1148         physaddr = acpi_find_table(ACPI_SIG_FADT);
1149         if (physaddr == 0)
1150                 return (false);
1151         fadt = acpi_map_table(physaddr, ACPI_SIG_FADT);
1152         if (fadt == NULL)
1153                 return (false);
1154         *flagsp = fadt->BootFlags;
1155         acpi_unmap_table(fadt);
1156         return (true);
1157 #else
1158         return (false);
1159 #endif
1160 }