]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/x86/x86/tsc.c
x86: tsc: deprioritize TSC on VirtualBox
[FreeBSD/FreeBSD.git] / sys / x86 / x86 / tsc.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 1998-2003 Poul-Henning Kamp
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 #include "opt_clock.h"
33
34 #include <sys/param.h>
35 #include <sys/bus.h>
36 #include <sys/cpu.h>
37 #include <sys/eventhandler.h>
38 #include <sys/limits.h>
39 #include <sys/malloc.h>
40 #include <sys/systm.h>
41 #include <sys/sysctl.h>
42 #include <sys/time.h>
43 #include <sys/timetc.h>
44 #include <sys/kernel.h>
45 #include <sys/power.h>
46 #include <sys/smp.h>
47 #include <sys/vdso.h>
48 #include <machine/clock.h>
49 #include <machine/cputypes.h>
50 #include <machine/md_var.h>
51 #include <machine/specialreg.h>
52 #include <x86/vmware.h>
53 #include <dev/acpica/acpi_hpet.h>
54 #include <contrib/dev/acpica/include/acpi.h>
55
56 #include "cpufreq_if.h"
57
58 uint64_t        tsc_freq;
59 int             tsc_is_invariant;
60 int             tsc_perf_stat;
61
62 static eventhandler_tag tsc_levels_tag, tsc_pre_tag, tsc_post_tag;
63
64 SYSCTL_INT(_kern_timecounter, OID_AUTO, invariant_tsc, CTLFLAG_RDTUN,
65     &tsc_is_invariant, 0, "Indicates whether the TSC is P-state invariant");
66
67 #ifdef SMP
68 int     smp_tsc;
69 SYSCTL_INT(_kern_timecounter, OID_AUTO, smp_tsc, CTLFLAG_RDTUN, &smp_tsc, 0,
70     "Indicates whether the TSC is safe to use in SMP mode");
71
72 int     smp_tsc_adjust = 0;
73 SYSCTL_INT(_kern_timecounter, OID_AUTO, smp_tsc_adjust, CTLFLAG_RDTUN,
74     &smp_tsc_adjust, 0, "Try to adjust TSC on APs to match BSP");
75 #endif
76
77 static int      tsc_shift = 1;
78 SYSCTL_INT(_kern_timecounter, OID_AUTO, tsc_shift, CTLFLAG_RDTUN,
79     &tsc_shift, 0, "Shift to pre-apply for the maximum TSC frequency");
80
81 static int      tsc_disabled;
82 SYSCTL_INT(_machdep, OID_AUTO, disable_tsc, CTLFLAG_RDTUN, &tsc_disabled, 0,
83     "Disable x86 Time Stamp Counter");
84
85 static int      tsc_skip_calibration;
86 SYSCTL_INT(_machdep, OID_AUTO, disable_tsc_calibration, CTLFLAG_RDTUN,
87     &tsc_skip_calibration, 0,
88     "Disable TSC frequency calibration");
89
90 static void tsc_freq_changed(void *arg, const struct cf_level *level,
91     int status);
92 static void tsc_freq_changing(void *arg, const struct cf_level *level,
93     int *status);
94 static u_int tsc_get_timecount(struct timecounter *tc);
95 static inline u_int tsc_get_timecount_low(struct timecounter *tc);
96 static u_int tsc_get_timecount_lfence(struct timecounter *tc);
97 static u_int tsc_get_timecount_low_lfence(struct timecounter *tc);
98 static u_int tsc_get_timecount_mfence(struct timecounter *tc);
99 static u_int tsc_get_timecount_low_mfence(struct timecounter *tc);
100 static u_int tscp_get_timecount(struct timecounter *tc);
101 static u_int tscp_get_timecount_low(struct timecounter *tc);
102 static void tsc_levels_changed(void *arg, int unit);
103 static uint32_t x86_tsc_vdso_timehands(struct vdso_timehands *vdso_th,
104     struct timecounter *tc);
105 #ifdef COMPAT_FREEBSD32
106 static uint32_t x86_tsc_vdso_timehands32(struct vdso_timehands32 *vdso_th32,
107     struct timecounter *tc);
108 #endif
109
110 static struct timecounter tsc_timecounter = {
111         .tc_get_timecount =             tsc_get_timecount,
112         .tc_counter_mask =              ~0u,
113         .tc_name =                      "TSC",
114         .tc_quality =                   800,    /* adjusted in code */
115         .tc_fill_vdso_timehands =       x86_tsc_vdso_timehands,
116 #ifdef COMPAT_FREEBSD32
117         .tc_fill_vdso_timehands32 =     x86_tsc_vdso_timehands32,
118 #endif
119 };
120
121 static void
122 tsc_freq_vmware(void)
123 {
124         u_int regs[4];
125
126         if (hv_high >= 0x40000010) {
127                 do_cpuid(0x40000010, regs);
128                 tsc_freq = regs[0] * 1000;
129         } else {
130                 vmware_hvcall(VMW_HVCMD_GETHZ, regs);
131                 if (regs[1] != UINT_MAX)
132                         tsc_freq = regs[0] | ((uint64_t)regs[1] << 32);
133         }
134         tsc_is_invariant = 1;
135 }
136
137 /*
138  * Calculate TSC frequency using information from the CPUID leaf 0x15
139  * 'Time Stamp Counter and Nominal Core Crystal Clock'.  If leaf 0x15
140  * is not functional, as it is on Skylake/Kabylake, try 0x16 'Processor
141  * Frequency Information'.  Leaf 0x16 is described in the SDM as
142  * informational only, but if 0x15 did not work, and TSC calibration
143  * is disabled, it is the best we can get at all.  It should still be
144  * an improvement over the parsing of the CPU model name in
145  * tsc_freq_intel(), when available.
146  */
147 static bool
148 tsc_freq_cpuid(uint64_t *res)
149 {
150         u_int regs[4];
151
152         if (cpu_high < 0x15)
153                 return (false);
154         do_cpuid(0x15, regs);
155         if (regs[0] != 0 && regs[1] != 0 && regs[2] != 0) {
156                 *res = (uint64_t)regs[2] * regs[1] / regs[0];
157                 return (true);
158         }
159
160         if (cpu_high < 0x16)
161                 return (false);
162         do_cpuid(0x16, regs);
163         if (regs[0] != 0) {
164                 *res = (uint64_t)regs[0] * 1000000;
165                 return (true);
166         }
167
168         return (false);
169 }
170
171 static void
172 tsc_freq_intel(void)
173 {
174         char brand[48];
175         u_int regs[4];
176         uint64_t freq;
177         char *p;
178         u_int i;
179
180         /*
181          * Intel Processor Identification and the CPUID Instruction
182          * Application Note 485.
183          * http://www.intel.com/assets/pdf/appnote/241618.pdf
184          */
185         if (cpu_exthigh >= 0x80000004) {
186                 p = brand;
187                 for (i = 0x80000002; i < 0x80000005; i++) {
188                         do_cpuid(i, regs);
189                         memcpy(p, regs, sizeof(regs));
190                         p += sizeof(regs);
191                 }
192                 p = NULL;
193                 for (i = 0; i < sizeof(brand) - 1; i++)
194                         if (brand[i] == 'H' && brand[i + 1] == 'z')
195                                 p = brand + i;
196                 if (p != NULL) {
197                         p -= 5;
198                         switch (p[4]) {
199                         case 'M':
200                                 i = 1;
201                                 break;
202                         case 'G':
203                                 i = 1000;
204                                 break;
205                         case 'T':
206                                 i = 1000000;
207                                 break;
208                         default:
209                                 return;
210                         }
211 #define C2D(c)  ((c) - '0')
212                         if (p[1] == '.') {
213                                 freq = C2D(p[0]) * 1000;
214                                 freq += C2D(p[2]) * 100;
215                                 freq += C2D(p[3]) * 10;
216                                 freq *= i * 1000;
217                         } else {
218                                 freq = C2D(p[0]) * 1000;
219                                 freq += C2D(p[1]) * 100;
220                                 freq += C2D(p[2]) * 10;
221                                 freq += C2D(p[3]);
222                                 freq *= i * 1000000;
223                         }
224 #undef C2D
225                         tsc_freq = freq;
226                 }
227         }
228 }
229
230 static void
231 probe_tsc_freq(void)
232 {
233         uint64_t tmp_freq, tsc1, tsc2;
234         int no_cpuid_override;
235
236         if (cpu_power_ecx & CPUID_PERF_STAT) {
237                 /*
238                  * XXX Some emulators expose host CPUID without actual support
239                  * for these MSRs.  We must test whether they really work.
240                  */
241                 wrmsr(MSR_MPERF, 0);
242                 wrmsr(MSR_APERF, 0);
243                 DELAY(10);
244                 if (rdmsr(MSR_MPERF) > 0 && rdmsr(MSR_APERF) > 0)
245                         tsc_perf_stat = 1;
246         }
247
248         if (vm_guest == VM_GUEST_VMWARE) {
249                 tsc_freq_vmware();
250                 return;
251         }
252
253         switch (cpu_vendor_id) {
254         case CPU_VENDOR_AMD:
255         case CPU_VENDOR_HYGON:
256                 if ((amd_pminfo & AMDPM_TSC_INVARIANT) != 0 ||
257                     (vm_guest == VM_GUEST_NO &&
258                     CPUID_TO_FAMILY(cpu_id) >= 0x10))
259                         tsc_is_invariant = 1;
260                 if (cpu_feature & CPUID_SSE2) {
261                         tsc_timecounter.tc_get_timecount =
262                             tsc_get_timecount_mfence;
263                 }
264                 break;
265         case CPU_VENDOR_INTEL:
266                 if ((amd_pminfo & AMDPM_TSC_INVARIANT) != 0 ||
267                     (vm_guest == VM_GUEST_NO &&
268                     ((CPUID_TO_FAMILY(cpu_id) == 0x6 &&
269                     CPUID_TO_MODEL(cpu_id) >= 0xe) ||
270                     (CPUID_TO_FAMILY(cpu_id) == 0xf &&
271                     CPUID_TO_MODEL(cpu_id) >= 0x3))))
272                         tsc_is_invariant = 1;
273                 if (cpu_feature & CPUID_SSE2) {
274                         tsc_timecounter.tc_get_timecount =
275                             tsc_get_timecount_lfence;
276                 }
277                 break;
278         case CPU_VENDOR_CENTAUR:
279                 if (vm_guest == VM_GUEST_NO &&
280                     CPUID_TO_FAMILY(cpu_id) == 0x6 &&
281                     CPUID_TO_MODEL(cpu_id) >= 0xf &&
282                     (rdmsr(0x1203) & 0x100000000ULL) == 0)
283                         tsc_is_invariant = 1;
284                 if (cpu_feature & CPUID_SSE2) {
285                         tsc_timecounter.tc_get_timecount =
286                             tsc_get_timecount_lfence;
287                 }
288                 break;
289         }
290
291         if (tsc_skip_calibration) {
292                 if (tsc_freq_cpuid(&tmp_freq))
293                         tsc_freq = tmp_freq;
294                 else if (cpu_vendor_id == CPU_VENDOR_INTEL)
295                         tsc_freq_intel();
296                 if (tsc_freq == 0)
297                         tsc_disabled = 1;
298         } else {
299                 if (bootverbose)
300                         printf("Calibrating TSC clock ... ");
301                 tsc1 = rdtsc();
302                 DELAY(1000000);
303                 tsc2 = rdtsc();
304                 tsc_freq = tsc2 - tsc1;
305
306                 /*
307                  * If the difference between calibrated frequency and
308                  * the frequency reported by CPUID 0x15/0x16 leafs
309                  * differ significantly, this probably means that
310                  * calibration is bogus.  It happens on machines
311                  * without 8254 timer.  The BIOS rarely properly
312                  * reports it in FADT boot flags, so just compare the
313                  * frequencies directly.
314                  */
315                 if (tsc_freq_cpuid(&tmp_freq) && qabs(tsc_freq - tmp_freq) >
316                     uqmin(tsc_freq, tmp_freq)) {
317                         no_cpuid_override = 0;
318                         TUNABLE_INT_FETCH("machdep.disable_tsc_cpuid_override",
319                             &no_cpuid_override);
320                         if (!no_cpuid_override) {
321                                 if (bootverbose) {
322                                         printf(
323         "TSC clock: calibration freq %ju Hz, CPUID freq %ju Hz%s\n",
324                                             (uintmax_t)tsc_freq,
325                                             (uintmax_t)tmp_freq,
326                                             no_cpuid_override ? "" :
327                                             ", doing CPUID override");
328                                 }
329                                 tsc_freq = tmp_freq;
330                         }
331                 }
332         }
333         if (bootverbose)
334                 printf("TSC clock: %ju Hz\n", (intmax_t)tsc_freq);
335 }
336
337 void
338 init_TSC(void)
339 {
340
341         if ((cpu_feature & CPUID_TSC) == 0 || tsc_disabled)
342                 return;
343
344 #ifdef __i386__
345         /* The TSC is known to be broken on certain CPUs. */
346         switch (cpu_vendor_id) {
347         case CPU_VENDOR_AMD:
348                 switch (cpu_id & 0xFF0) {
349                 case 0x500:
350                         /* K5 Model 0 */
351                         return;
352                 }
353                 break;
354         case CPU_VENDOR_CENTAUR:
355                 switch (cpu_id & 0xff0) {
356                 case 0x540:
357                         /*
358                          * http://www.centtech.com/c6_data_sheet.pdf
359                          *
360                          * I-12 RDTSC may return incoherent values in EDX:EAX
361                          * I-13 RDTSC hangs when certain event counters are used
362                          */
363                         return;
364                 }
365                 break;
366         case CPU_VENDOR_NSC:
367                 switch (cpu_id & 0xff0) {
368                 case 0x540:
369                         if ((cpu_id & CPUID_STEPPING) == 0)
370                                 return;
371                         break;
372                 }
373                 break;
374         }
375 #endif
376                 
377         probe_tsc_freq();
378
379         /*
380          * Inform CPU accounting about our boot-time clock rate.  This will
381          * be updated if someone loads a cpufreq driver after boot that
382          * discovers a new max frequency.
383          */
384         if (tsc_freq != 0)
385                 set_cputicker(rdtsc, tsc_freq, !tsc_is_invariant);
386
387         if (tsc_is_invariant)
388                 return;
389
390         /* Register to find out about changes in CPU frequency. */
391         tsc_pre_tag = EVENTHANDLER_REGISTER(cpufreq_pre_change,
392             tsc_freq_changing, NULL, EVENTHANDLER_PRI_FIRST);
393         tsc_post_tag = EVENTHANDLER_REGISTER(cpufreq_post_change,
394             tsc_freq_changed, NULL, EVENTHANDLER_PRI_FIRST);
395         tsc_levels_tag = EVENTHANDLER_REGISTER(cpufreq_levels_changed,
396             tsc_levels_changed, NULL, EVENTHANDLER_PRI_ANY);
397 }
398
399 #ifdef SMP
400
401 /*
402  * RDTSC is not a serializing instruction, and does not drain
403  * instruction stream, so we need to drain the stream before executing
404  * it.  It could be fixed by use of RDTSCP, except the instruction is
405  * not available everywhere.
406  *
407  * Use CPUID for draining in the boot-time SMP constistency test.  The
408  * timecounters use MFENCE for AMD CPUs, and LFENCE for others (Intel
409  * and VIA) when SSE2 is present, and nothing on older machines which
410  * also do not issue RDTSC prematurely.  There, testing for SSE2 and
411  * vendor is too cumbersome, and we learn about TSC presence from CPUID.
412  *
413  * Do not use do_cpuid(), since we do not need CPUID results, which
414  * have to be written into memory with do_cpuid().
415  */
416 #define TSC_READ(x)                                                     \
417 static void                                                             \
418 tsc_read_##x(void *arg)                                                 \
419 {                                                                       \
420         uint64_t *tsc = arg;                                            \
421         u_int cpu = PCPU_GET(cpuid);                                    \
422                                                                         \
423         __asm __volatile("cpuid" : : : "eax", "ebx", "ecx", "edx");     \
424         tsc[cpu * 3 + x] = rdtsc();                                     \
425 }
426 TSC_READ(0)
427 TSC_READ(1)
428 TSC_READ(2)
429 #undef TSC_READ
430
431 #define N       1000
432
433 static void
434 comp_smp_tsc(void *arg)
435 {
436         uint64_t *tsc;
437         int64_t d1, d2;
438         u_int cpu = PCPU_GET(cpuid);
439         u_int i, j, size;
440
441         size = (mp_maxid + 1) * 3;
442         for (i = 0, tsc = arg; i < N; i++, tsc += size)
443                 CPU_FOREACH(j) {
444                         if (j == cpu)
445                                 continue;
446                         d1 = tsc[cpu * 3 + 1] - tsc[j * 3];
447                         d2 = tsc[cpu * 3 + 2] - tsc[j * 3 + 1];
448                         if (d1 <= 0 || d2 <= 0) {
449                                 smp_tsc = 0;
450                                 return;
451                         }
452                 }
453 }
454
455 static void
456 adj_smp_tsc(void *arg)
457 {
458         uint64_t *tsc;
459         int64_t d, min, max;
460         u_int cpu = PCPU_GET(cpuid);
461         u_int first, i, size;
462
463         first = CPU_FIRST();
464         if (cpu == first)
465                 return;
466         min = INT64_MIN;
467         max = INT64_MAX;
468         size = (mp_maxid + 1) * 3;
469         for (i = 0, tsc = arg; i < N; i++, tsc += size) {
470                 d = tsc[first * 3] - tsc[cpu * 3 + 1];
471                 if (d > min)
472                         min = d;
473                 d = tsc[first * 3 + 1] - tsc[cpu * 3 + 2];
474                 if (d > min)
475                         min = d;
476                 d = tsc[first * 3 + 1] - tsc[cpu * 3];
477                 if (d < max)
478                         max = d;
479                 d = tsc[first * 3 + 2] - tsc[cpu * 3 + 1];
480                 if (d < max)
481                         max = d;
482         }
483         if (min > max)
484                 return;
485         d = min / 2 + max / 2;
486         __asm __volatile (
487                 "movl $0x10, %%ecx\n\t"
488                 "rdmsr\n\t"
489                 "addl %%edi, %%eax\n\t"
490                 "adcl %%esi, %%edx\n\t"
491                 "wrmsr\n"
492                 : /* No output */
493                 : "D" ((uint32_t)d), "S" ((uint32_t)(d >> 32))
494                 : "ax", "cx", "dx", "cc"
495         );
496 }
497
498 static int
499 test_tsc(int adj_max_count)
500 {
501         uint64_t *data, *tsc;
502         u_int i, size, adj;
503
504         if ((!smp_tsc && !tsc_is_invariant))
505                 return (-100);
506         /*
507          * Misbehavior of TSC under VirtualBox has been observed.  In
508          * particular, threads doing small (~1 second) sleeps may miss their
509          * wakeup and hang around in sleep state, causing hangs on shutdown.
510          */
511         if (vm_guest == VM_GUEST_VBOX)
512                 return (0);
513
514         size = (mp_maxid + 1) * 3;
515         data = malloc(sizeof(*data) * size * N, M_TEMP, M_WAITOK);
516         adj = 0;
517 retry:
518         for (i = 0, tsc = data; i < N; i++, tsc += size)
519                 smp_rendezvous(tsc_read_0, tsc_read_1, tsc_read_2, tsc);
520         smp_tsc = 1;    /* XXX */
521         smp_rendezvous(smp_no_rendezvous_barrier, comp_smp_tsc,
522             smp_no_rendezvous_barrier, data);
523         if (!smp_tsc && adj < adj_max_count) {
524                 adj++;
525                 smp_rendezvous(smp_no_rendezvous_barrier, adj_smp_tsc,
526                     smp_no_rendezvous_barrier, data);
527                 goto retry;
528         }
529         free(data, M_TEMP);
530         if (bootverbose)
531                 printf("SMP: %sed TSC synchronization test%s\n",
532                     smp_tsc ? "pass" : "fail", 
533                     adj > 0 ? " after adjustment" : "");
534         if (smp_tsc && tsc_is_invariant) {
535                 switch (cpu_vendor_id) {
536                 case CPU_VENDOR_AMD:
537                 case CPU_VENDOR_HYGON:
538                         /*
539                          * Processor Programming Reference (PPR) for AMD
540                          * Family 17h states that the TSC uses a common
541                          * reference for all sockets, cores and threads.
542                          */
543                         if (CPUID_TO_FAMILY(cpu_id) >= 0x17)
544                                 return (1000);
545                         /*
546                          * Starting with Family 15h processors, TSC clock
547                          * source is in the north bridge.  Check whether
548                          * we have a single-socket/multi-core platform.
549                          * XXX Need more work for complex cases.
550                          */
551                         if (CPUID_TO_FAMILY(cpu_id) < 0x15 ||
552                             (amd_feature2 & AMDID2_CMP) == 0 ||
553                             smp_cpus > (cpu_procinfo2 & AMDID_CMP_CORES) + 1)
554                                 break;
555                         return (1000);
556                 case CPU_VENDOR_INTEL:
557                         /*
558                          * XXX Assume Intel platforms have synchronized TSCs.
559                          */
560                         return (1000);
561                 }
562                 return (800);
563         }
564         return (-100);
565 }
566
567 #undef N
568
569 #endif /* SMP */
570
571 static void
572 init_TSC_tc(void)
573 {
574         uint64_t max_freq;
575         int shift;
576
577         if ((cpu_feature & CPUID_TSC) == 0 || tsc_disabled)
578                 return;
579
580         /*
581          * Limit timecounter frequency to fit in an int and prevent it from
582          * overflowing too fast.
583          */
584         max_freq = UINT_MAX;
585
586         /*
587          * We can not use the TSC if we support APM.  Precise timekeeping
588          * on an APM'ed machine is at best a fools pursuit, since 
589          * any and all of the time spent in various SMM code can't 
590          * be reliably accounted for.  Reading the RTC is your only
591          * source of reliable time info.  The i8254 loses too, of course,
592          * but we need to have some kind of time...
593          * We don't know at this point whether APM is going to be used
594          * or not, nor when it might be activated.  Play it safe.
595          */
596         if (power_pm_get_type() == POWER_PM_TYPE_APM) {
597                 tsc_timecounter.tc_quality = -1000;
598                 if (bootverbose)
599                         printf("TSC timecounter disabled: APM enabled.\n");
600                 goto init;
601         }
602
603         /*
604          * Intel CPUs without a C-state invariant TSC can stop the TSC
605          * in either C2 or C3.  Disable use of C2 and C3 while using
606          * the TSC as the timecounter.  The timecounter can be changed
607          * to enable C2 and C3.
608          *
609          * Note that the TSC is used as the cputicker for computing
610          * thread runtime regardless of the timecounter setting, so
611          * using an alternate timecounter and enabling C2 or C3 can
612          * result incorrect runtimes for kernel idle threads (but not
613          * for any non-idle threads).
614          */
615         if (cpu_vendor_id == CPU_VENDOR_INTEL &&
616             (amd_pminfo & AMDPM_TSC_INVARIANT) == 0) {
617                 tsc_timecounter.tc_flags |= TC_FLAGS_C2STOP;
618                 if (bootverbose)
619                         printf("TSC timecounter disables C2 and C3.\n");
620         }
621
622         /*
623          * We can not use the TSC in SMP mode unless the TSCs on all CPUs
624          * are synchronized.  If the user is sure that the system has
625          * synchronized TSCs, set kern.timecounter.smp_tsc tunable to a
626          * non-zero value.  The TSC seems unreliable in virtualized SMP
627          * environments, so it is set to a negative quality in those cases.
628          */
629 #ifdef SMP
630         if (mp_ncpus > 1)
631                 tsc_timecounter.tc_quality = test_tsc(smp_tsc_adjust);
632         else
633 #endif /* SMP */
634         if (tsc_is_invariant)
635                 tsc_timecounter.tc_quality = 1000;
636         max_freq >>= tsc_shift;
637
638 init:
639         for (shift = 0; shift <= 31 && (tsc_freq >> shift) > max_freq; shift++)
640                 ;
641
642         /*
643          * Timecounter implementation selection, top to bottom:
644          * - If RDTSCP is available, use RDTSCP.
645          * - If fence instructions are provided (SSE2), use LFENCE;RDTSC
646          *   on Intel, and MFENCE;RDTSC on AMD.
647          * - For really old CPUs, just use RDTSC.
648          */
649         if ((amd_feature & AMDID_RDTSCP) != 0) {
650                 tsc_timecounter.tc_get_timecount = shift > 0 ?
651                     tscp_get_timecount_low : tscp_get_timecount;
652         } else if ((cpu_feature & CPUID_SSE2) != 0 && mp_ncpus > 1) {
653                 if (cpu_vendor_id == CPU_VENDOR_AMD ||
654                     cpu_vendor_id == CPU_VENDOR_HYGON) {
655                         tsc_timecounter.tc_get_timecount = shift > 0 ?
656                             tsc_get_timecount_low_mfence :
657                             tsc_get_timecount_mfence;
658                 } else {
659                         tsc_timecounter.tc_get_timecount = shift > 0 ?
660                             tsc_get_timecount_low_lfence :
661                             tsc_get_timecount_lfence;
662                 }
663         } else {
664                 tsc_timecounter.tc_get_timecount = shift > 0 ?
665                     tsc_get_timecount_low : tsc_get_timecount;
666         }
667         if (shift > 0) {
668                 tsc_timecounter.tc_name = "TSC-low";
669                 if (bootverbose)
670                         printf("TSC timecounter discards lower %d bit(s)\n",
671                             shift);
672         }
673         if (tsc_freq != 0) {
674                 tsc_timecounter.tc_frequency = tsc_freq >> shift;
675                 tsc_timecounter.tc_priv = (void *)(intptr_t)shift;
676                 tc_init(&tsc_timecounter);
677         }
678 }
679 SYSINIT(tsc_tc, SI_SUB_SMP, SI_ORDER_ANY, init_TSC_tc, NULL);
680
681 void
682 resume_TSC(void)
683 {
684 #ifdef SMP
685         int quality;
686
687         /* If TSC was not good on boot, it is unlikely to become good now. */
688         if (tsc_timecounter.tc_quality < 0)
689                 return;
690         /* Nothing to do with UP. */
691         if (mp_ncpus < 2)
692                 return;
693
694         /*
695          * If TSC was good, a single synchronization should be enough,
696          * but honour smp_tsc_adjust if it's set.
697          */
698         quality = test_tsc(MAX(smp_tsc_adjust, 1));
699         if (quality != tsc_timecounter.tc_quality) {
700                 printf("TSC timecounter quality changed: %d -> %d\n",
701                     tsc_timecounter.tc_quality, quality);
702                 tsc_timecounter.tc_quality = quality;
703         }
704 #endif /* SMP */
705 }
706
707 /*
708  * When cpufreq levels change, find out about the (new) max frequency.  We
709  * use this to update CPU accounting in case it got a lower estimate at boot.
710  */
711 static void
712 tsc_levels_changed(void *arg, int unit)
713 {
714         device_t cf_dev;
715         struct cf_level *levels;
716         int count, error;
717         uint64_t max_freq;
718
719         /* Only use values from the first CPU, assuming all are equal. */
720         if (unit != 0)
721                 return;
722
723         /* Find the appropriate cpufreq device instance. */
724         cf_dev = devclass_get_device(devclass_find("cpufreq"), unit);
725         if (cf_dev == NULL) {
726                 printf("tsc_levels_changed() called but no cpufreq device?\n");
727                 return;
728         }
729
730         /* Get settings from the device and find the max frequency. */
731         count = 64;
732         levels = malloc(count * sizeof(*levels), M_TEMP, M_NOWAIT);
733         if (levels == NULL)
734                 return;
735         error = CPUFREQ_LEVELS(cf_dev, levels, &count);
736         if (error == 0 && count != 0) {
737                 max_freq = (uint64_t)levels[0].total_set.freq * 1000000;
738                 set_cputicker(rdtsc, max_freq, 1);
739         } else
740                 printf("tsc_levels_changed: no max freq found\n");
741         free(levels, M_TEMP);
742 }
743
744 /*
745  * If the TSC timecounter is in use, veto the pending change.  It may be
746  * possible in the future to handle a dynamically-changing timecounter rate.
747  */
748 static void
749 tsc_freq_changing(void *arg, const struct cf_level *level, int *status)
750 {
751
752         if (*status != 0 || timecounter != &tsc_timecounter)
753                 return;
754
755         printf("timecounter TSC must not be in use when "
756             "changing frequencies; change denied\n");
757         *status = EBUSY;
758 }
759
760 /* Update TSC freq with the value indicated by the caller. */
761 static void
762 tsc_freq_changed(void *arg, const struct cf_level *level, int status)
763 {
764         uint64_t freq;
765
766         /* If there was an error during the transition, don't do anything. */
767         if (tsc_disabled || status != 0)
768                 return;
769
770         /* Total setting for this level gives the new frequency in MHz. */
771         freq = (uint64_t)level->total_set.freq * 1000000;
772         atomic_store_rel_64(&tsc_freq, freq);
773         tsc_timecounter.tc_frequency =
774             freq >> (int)(intptr_t)tsc_timecounter.tc_priv;
775 }
776
777 static int
778 sysctl_machdep_tsc_freq(SYSCTL_HANDLER_ARGS)
779 {
780         int error;
781         uint64_t freq;
782
783         freq = atomic_load_acq_64(&tsc_freq);
784         if (freq == 0)
785                 return (EOPNOTSUPP);
786         error = sysctl_handle_64(oidp, &freq, 0, req);
787         if (error == 0 && req->newptr != NULL) {
788                 atomic_store_rel_64(&tsc_freq, freq);
789                 atomic_store_rel_64(&tsc_timecounter.tc_frequency,
790                     freq >> (int)(intptr_t)tsc_timecounter.tc_priv);
791         }
792         return (error);
793 }
794
795 SYSCTL_PROC(_machdep, OID_AUTO, tsc_freq,
796     CTLTYPE_U64 | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
797     0, 0, sysctl_machdep_tsc_freq, "QU",
798     "Time Stamp Counter frequency");
799
800 static u_int
801 tsc_get_timecount(struct timecounter *tc __unused)
802 {
803
804         return (rdtsc32());
805 }
806
807 static u_int
808 tscp_get_timecount(struct timecounter *tc __unused)
809 {
810
811         return (rdtscp32());
812 }
813
814 static inline u_int
815 tsc_get_timecount_low(struct timecounter *tc)
816 {
817         uint32_t rv;
818
819         __asm __volatile("rdtsc; shrd %%cl, %%edx, %0"
820             : "=a" (rv) : "c" ((int)(intptr_t)tc->tc_priv) : "edx");
821         return (rv);
822 }
823
824 static u_int
825 tscp_get_timecount_low(struct timecounter *tc)
826 {
827         uint32_t rv;
828
829         __asm __volatile("rdtscp; movl %1, %%ecx; shrd %%cl, %%edx, %0"
830             : "=&a" (rv) : "m" (tc->tc_priv) : "ecx", "edx");
831         return (rv);
832 }
833
834 static u_int
835 tsc_get_timecount_lfence(struct timecounter *tc __unused)
836 {
837
838         lfence();
839         return (rdtsc32());
840 }
841
842 static u_int
843 tsc_get_timecount_low_lfence(struct timecounter *tc)
844 {
845
846         lfence();
847         return (tsc_get_timecount_low(tc));
848 }
849
850 static u_int
851 tsc_get_timecount_mfence(struct timecounter *tc __unused)
852 {
853
854         mfence();
855         return (rdtsc32());
856 }
857
858 static u_int
859 tsc_get_timecount_low_mfence(struct timecounter *tc)
860 {
861
862         mfence();
863         return (tsc_get_timecount_low(tc));
864 }
865
866 static uint32_t
867 x86_tsc_vdso_timehands(struct vdso_timehands *vdso_th, struct timecounter *tc)
868 {
869
870         vdso_th->th_algo = VDSO_TH_ALGO_X86_TSC;
871         vdso_th->th_x86_shift = (int)(intptr_t)tc->tc_priv;
872         vdso_th->th_x86_hpet_idx = 0xffffffff;
873         bzero(vdso_th->th_res, sizeof(vdso_th->th_res));
874         return (1);
875 }
876
877 #ifdef COMPAT_FREEBSD32
878 static uint32_t
879 x86_tsc_vdso_timehands32(struct vdso_timehands32 *vdso_th32,
880     struct timecounter *tc)
881 {
882
883         vdso_th32->th_algo = VDSO_TH_ALGO_X86_TSC;
884         vdso_th32->th_x86_shift = (int)(intptr_t)tc->tc_priv;
885         vdso_th32->th_x86_hpet_idx = 0xffffffff;
886         bzero(vdso_th32->th_res, sizeof(vdso_th32->th_res));
887         return (1);
888 }
889 #endif