]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/x86/x86/tsc.c
Enumerate and print Intel CPU features for Speculative Execution Side
[FreeBSD/FreeBSD.git] / sys / x86 / x86 / tsc.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 1998-2003 Poul-Henning Kamp
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 #include "opt_compat.h"
33 #include "opt_clock.h"
34
35 #include <sys/param.h>
36 #include <sys/bus.h>
37 #include <sys/cpu.h>
38 #include <sys/limits.h>
39 #include <sys/malloc.h>
40 #include <sys/systm.h>
41 #include <sys/sysctl.h>
42 #include <sys/time.h>
43 #include <sys/timetc.h>
44 #include <sys/kernel.h>
45 #include <sys/power.h>
46 #include <sys/smp.h>
47 #include <sys/vdso.h>
48 #include <machine/clock.h>
49 #include <machine/cputypes.h>
50 #include <machine/md_var.h>
51 #include <machine/specialreg.h>
52 #include <x86/vmware.h>
53 #include <dev/acpica/acpi_hpet.h>
54
55 #include "cpufreq_if.h"
56
57 uint64_t        tsc_freq;
58 int             tsc_is_invariant;
59 int             tsc_perf_stat;
60
61 static eventhandler_tag tsc_levels_tag, tsc_pre_tag, tsc_post_tag;
62
63 SYSCTL_INT(_kern_timecounter, OID_AUTO, invariant_tsc, CTLFLAG_RDTUN,
64     &tsc_is_invariant, 0, "Indicates whether the TSC is P-state invariant");
65
66 #ifdef SMP
67 int     smp_tsc;
68 SYSCTL_INT(_kern_timecounter, OID_AUTO, smp_tsc, CTLFLAG_RDTUN, &smp_tsc, 0,
69     "Indicates whether the TSC is safe to use in SMP mode");
70
71 int     smp_tsc_adjust = 0;
72 SYSCTL_INT(_kern_timecounter, OID_AUTO, smp_tsc_adjust, CTLFLAG_RDTUN,
73     &smp_tsc_adjust, 0, "Try to adjust TSC on APs to match BSP");
74 #endif
75
76 static int      tsc_shift = 1;
77 SYSCTL_INT(_kern_timecounter, OID_AUTO, tsc_shift, CTLFLAG_RDTUN,
78     &tsc_shift, 0, "Shift to pre-apply for the maximum TSC frequency");
79
80 static int      tsc_disabled;
81 SYSCTL_INT(_machdep, OID_AUTO, disable_tsc, CTLFLAG_RDTUN, &tsc_disabled, 0,
82     "Disable x86 Time Stamp Counter");
83
84 static int      tsc_skip_calibration;
85 SYSCTL_INT(_machdep, OID_AUTO, disable_tsc_calibration, CTLFLAG_RDTUN,
86     &tsc_skip_calibration, 0, "Disable TSC frequency calibration");
87
88 static void tsc_freq_changed(void *arg, const struct cf_level *level,
89     int status);
90 static void tsc_freq_changing(void *arg, const struct cf_level *level,
91     int *status);
92 static unsigned tsc_get_timecount(struct timecounter *tc);
93 static inline unsigned tsc_get_timecount_low(struct timecounter *tc);
94 static unsigned tsc_get_timecount_lfence(struct timecounter *tc);
95 static unsigned tsc_get_timecount_low_lfence(struct timecounter *tc);
96 static unsigned tsc_get_timecount_mfence(struct timecounter *tc);
97 static unsigned tsc_get_timecount_low_mfence(struct timecounter *tc);
98 static void tsc_levels_changed(void *arg, int unit);
99 static uint32_t x86_tsc_vdso_timehands(struct vdso_timehands *vdso_th,
100     struct timecounter *tc);
101 #ifdef COMPAT_FREEBSD32
102 static uint32_t x86_tsc_vdso_timehands32(struct vdso_timehands32 *vdso_th32,
103     struct timecounter *tc);
104 #endif
105
106 static struct timecounter tsc_timecounter = {
107         .tc_get_timecount =             tsc_get_timecount,
108         .tc_counter_mask =              ~0u,
109         .tc_name =                      "TSC",
110         .tc_quality =                   800,    /* adjusted in code */
111         .tc_fill_vdso_timehands =       x86_tsc_vdso_timehands,
112 #ifdef COMPAT_FREEBSD32
113         .tc_fill_vdso_timehands32 =     x86_tsc_vdso_timehands32,
114 #endif
115 };
116
117 static void
118 tsc_freq_vmware(void)
119 {
120         u_int regs[4];
121
122         if (hv_high >= 0x40000010) {
123                 do_cpuid(0x40000010, regs);
124                 tsc_freq = regs[0] * 1000;
125         } else {
126                 vmware_hvcall(VMW_HVCMD_GETHZ, regs);
127                 if (regs[1] != UINT_MAX)
128                         tsc_freq = regs[0] | ((uint64_t)regs[1] << 32);
129         }
130         tsc_is_invariant = 1;
131 }
132
133 static void
134 tsc_freq_intel(void)
135 {
136         char brand[48];
137         u_int regs[4];
138         uint64_t freq;
139         char *p;
140         u_int i;
141
142         /*
143          * Intel Processor Identification and the CPUID Instruction
144          * Application Note 485.
145          * http://www.intel.com/assets/pdf/appnote/241618.pdf
146          */
147         if (cpu_exthigh >= 0x80000004) {
148                 p = brand;
149                 for (i = 0x80000002; i < 0x80000005; i++) {
150                         do_cpuid(i, regs);
151                         memcpy(p, regs, sizeof(regs));
152                         p += sizeof(regs);
153                 }
154                 p = NULL;
155                 for (i = 0; i < sizeof(brand) - 1; i++)
156                         if (brand[i] == 'H' && brand[i + 1] == 'z')
157                                 p = brand + i;
158                 if (p != NULL) {
159                         p -= 5;
160                         switch (p[4]) {
161                         case 'M':
162                                 i = 1;
163                                 break;
164                         case 'G':
165                                 i = 1000;
166                                 break;
167                         case 'T':
168                                 i = 1000000;
169                                 break;
170                         default:
171                                 return;
172                         }
173 #define C2D(c)  ((c) - '0')
174                         if (p[1] == '.') {
175                                 freq = C2D(p[0]) * 1000;
176                                 freq += C2D(p[2]) * 100;
177                                 freq += C2D(p[3]) * 10;
178                                 freq *= i * 1000;
179                         } else {
180                                 freq = C2D(p[0]) * 1000;
181                                 freq += C2D(p[1]) * 100;
182                                 freq += C2D(p[2]) * 10;
183                                 freq += C2D(p[3]);
184                                 freq *= i * 1000000;
185                         }
186 #undef C2D
187                         tsc_freq = freq;
188                 }
189         }
190 }
191
192 static void
193 probe_tsc_freq(void)
194 {
195         u_int regs[4];
196         uint64_t tsc1, tsc2;
197
198         if (cpu_high >= 6) {
199                 do_cpuid(6, regs);
200                 if ((regs[2] & CPUID_PERF_STAT) != 0) {
201                         /*
202                          * XXX Some emulators expose host CPUID without actual
203                          * support for these MSRs.  We must test whether they
204                          * really work.
205                          */
206                         wrmsr(MSR_MPERF, 0);
207                         wrmsr(MSR_APERF, 0);
208                         DELAY(10);
209                         if (rdmsr(MSR_MPERF) > 0 && rdmsr(MSR_APERF) > 0)
210                                 tsc_perf_stat = 1;
211                 }
212         }
213
214         if (vm_guest == VM_GUEST_VMWARE) {
215                 tsc_freq_vmware();
216                 return;
217         }
218
219         switch (cpu_vendor_id) {
220         case CPU_VENDOR_AMD:
221                 if ((amd_pminfo & AMDPM_TSC_INVARIANT) != 0 ||
222                     (vm_guest == VM_GUEST_NO &&
223                     CPUID_TO_FAMILY(cpu_id) >= 0x10))
224                         tsc_is_invariant = 1;
225                 if (cpu_feature & CPUID_SSE2) {
226                         tsc_timecounter.tc_get_timecount =
227                             tsc_get_timecount_mfence;
228                 }
229                 break;
230         case CPU_VENDOR_INTEL:
231                 if ((amd_pminfo & AMDPM_TSC_INVARIANT) != 0 ||
232                     (vm_guest == VM_GUEST_NO &&
233                     ((CPUID_TO_FAMILY(cpu_id) == 0x6 &&
234                     CPUID_TO_MODEL(cpu_id) >= 0xe) ||
235                     (CPUID_TO_FAMILY(cpu_id) == 0xf &&
236                     CPUID_TO_MODEL(cpu_id) >= 0x3))))
237                         tsc_is_invariant = 1;
238                 if (cpu_feature & CPUID_SSE2) {
239                         tsc_timecounter.tc_get_timecount =
240                             tsc_get_timecount_lfence;
241                 }
242                 break;
243         case CPU_VENDOR_CENTAUR:
244                 if (vm_guest == VM_GUEST_NO &&
245                     CPUID_TO_FAMILY(cpu_id) == 0x6 &&
246                     CPUID_TO_MODEL(cpu_id) >= 0xf &&
247                     (rdmsr(0x1203) & 0x100000000ULL) == 0)
248                         tsc_is_invariant = 1;
249                 if (cpu_feature & CPUID_SSE2) {
250                         tsc_timecounter.tc_get_timecount =
251                             tsc_get_timecount_lfence;
252                 }
253                 break;
254         }
255
256         if (tsc_skip_calibration) {
257                 if (cpu_vendor_id == CPU_VENDOR_INTEL)
258                         tsc_freq_intel();
259                 return;
260         }
261
262         if (bootverbose)
263                 printf("Calibrating TSC clock ... ");
264         tsc1 = rdtsc();
265         DELAY(1000000);
266         tsc2 = rdtsc();
267         tsc_freq = tsc2 - tsc1;
268         if (bootverbose)
269                 printf("TSC clock: %ju Hz\n", (intmax_t)tsc_freq);
270 }
271
272 void
273 init_TSC(void)
274 {
275
276         if ((cpu_feature & CPUID_TSC) == 0 || tsc_disabled)
277                 return;
278
279 #ifdef __i386__
280         /* The TSC is known to be broken on certain CPUs. */
281         switch (cpu_vendor_id) {
282         case CPU_VENDOR_AMD:
283                 switch (cpu_id & 0xFF0) {
284                 case 0x500:
285                         /* K5 Model 0 */
286                         return;
287                 }
288                 break;
289         case CPU_VENDOR_CENTAUR:
290                 switch (cpu_id & 0xff0) {
291                 case 0x540:
292                         /*
293                          * http://www.centtech.com/c6_data_sheet.pdf
294                          *
295                          * I-12 RDTSC may return incoherent values in EDX:EAX
296                          * I-13 RDTSC hangs when certain event counters are used
297                          */
298                         return;
299                 }
300                 break;
301         case CPU_VENDOR_NSC:
302                 switch (cpu_id & 0xff0) {
303                 case 0x540:
304                         if ((cpu_id & CPUID_STEPPING) == 0)
305                                 return;
306                         break;
307                 }
308                 break;
309         }
310 #endif
311                 
312         probe_tsc_freq();
313
314         /*
315          * Inform CPU accounting about our boot-time clock rate.  This will
316          * be updated if someone loads a cpufreq driver after boot that
317          * discovers a new max frequency.
318          */
319         if (tsc_freq != 0)
320                 set_cputicker(rdtsc, tsc_freq, !tsc_is_invariant);
321
322         if (tsc_is_invariant)
323                 return;
324
325         /* Register to find out about changes in CPU frequency. */
326         tsc_pre_tag = EVENTHANDLER_REGISTER(cpufreq_pre_change,
327             tsc_freq_changing, NULL, EVENTHANDLER_PRI_FIRST);
328         tsc_post_tag = EVENTHANDLER_REGISTER(cpufreq_post_change,
329             tsc_freq_changed, NULL, EVENTHANDLER_PRI_FIRST);
330         tsc_levels_tag = EVENTHANDLER_REGISTER(cpufreq_levels_changed,
331             tsc_levels_changed, NULL, EVENTHANDLER_PRI_ANY);
332 }
333
334 #ifdef SMP
335
336 /*
337  * RDTSC is not a serializing instruction, and does not drain
338  * instruction stream, so we need to drain the stream before executing
339  * it.  It could be fixed by use of RDTSCP, except the instruction is
340  * not available everywhere.
341  *
342  * Use CPUID for draining in the boot-time SMP constistency test.  The
343  * timecounters use MFENCE for AMD CPUs, and LFENCE for others (Intel
344  * and VIA) when SSE2 is present, and nothing on older machines which
345  * also do not issue RDTSC prematurely.  There, testing for SSE2 and
346  * vendor is too cumbersome, and we learn about TSC presence from CPUID.
347  *
348  * Do not use do_cpuid(), since we do not need CPUID results, which
349  * have to be written into memory with do_cpuid().
350  */
351 #define TSC_READ(x)                                                     \
352 static void                                                             \
353 tsc_read_##x(void *arg)                                                 \
354 {                                                                       \
355         uint64_t *tsc = arg;                                            \
356         u_int cpu = PCPU_GET(cpuid);                                    \
357                                                                         \
358         __asm __volatile("cpuid" : : : "eax", "ebx", "ecx", "edx");     \
359         tsc[cpu * 3 + x] = rdtsc();                                     \
360 }
361 TSC_READ(0)
362 TSC_READ(1)
363 TSC_READ(2)
364 #undef TSC_READ
365
366 #define N       1000
367
368 static void
369 comp_smp_tsc(void *arg)
370 {
371         uint64_t *tsc;
372         int64_t d1, d2;
373         u_int cpu = PCPU_GET(cpuid);
374         u_int i, j, size;
375
376         size = (mp_maxid + 1) * 3;
377         for (i = 0, tsc = arg; i < N; i++, tsc += size)
378                 CPU_FOREACH(j) {
379                         if (j == cpu)
380                                 continue;
381                         d1 = tsc[cpu * 3 + 1] - tsc[j * 3];
382                         d2 = tsc[cpu * 3 + 2] - tsc[j * 3 + 1];
383                         if (d1 <= 0 || d2 <= 0) {
384                                 smp_tsc = 0;
385                                 return;
386                         }
387                 }
388 }
389
390 static void
391 adj_smp_tsc(void *arg)
392 {
393         uint64_t *tsc;
394         int64_t d, min, max;
395         u_int cpu = PCPU_GET(cpuid);
396         u_int first, i, size;
397
398         first = CPU_FIRST();
399         if (cpu == first)
400                 return;
401         min = INT64_MIN;
402         max = INT64_MAX;
403         size = (mp_maxid + 1) * 3;
404         for (i = 0, tsc = arg; i < N; i++, tsc += size) {
405                 d = tsc[first * 3] - tsc[cpu * 3 + 1];
406                 if (d > min)
407                         min = d;
408                 d = tsc[first * 3 + 1] - tsc[cpu * 3 + 2];
409                 if (d > min)
410                         min = d;
411                 d = tsc[first * 3 + 1] - tsc[cpu * 3];
412                 if (d < max)
413                         max = d;
414                 d = tsc[first * 3 + 2] - tsc[cpu * 3 + 1];
415                 if (d < max)
416                         max = d;
417         }
418         if (min > max)
419                 return;
420         d = min / 2 + max / 2;
421         __asm __volatile (
422                 "movl $0x10, %%ecx\n\t"
423                 "rdmsr\n\t"
424                 "addl %%edi, %%eax\n\t"
425                 "adcl %%esi, %%edx\n\t"
426                 "wrmsr\n"
427                 : /* No output */
428                 : "D" ((uint32_t)d), "S" ((uint32_t)(d >> 32))
429                 : "ax", "cx", "dx", "cc"
430         );
431 }
432
433 static int
434 test_tsc(void)
435 {
436         uint64_t *data, *tsc;
437         u_int i, size, adj;
438
439         if ((!smp_tsc && !tsc_is_invariant) || vm_guest)
440                 return (-100);
441         size = (mp_maxid + 1) * 3;
442         data = malloc(sizeof(*data) * size * N, M_TEMP, M_WAITOK);
443         adj = 0;
444 retry:
445         for (i = 0, tsc = data; i < N; i++, tsc += size)
446                 smp_rendezvous(tsc_read_0, tsc_read_1, tsc_read_2, tsc);
447         smp_tsc = 1;    /* XXX */
448         smp_rendezvous(smp_no_rendezvous_barrier, comp_smp_tsc,
449             smp_no_rendezvous_barrier, data);
450         if (!smp_tsc && adj < smp_tsc_adjust) {
451                 adj++;
452                 smp_rendezvous(smp_no_rendezvous_barrier, adj_smp_tsc,
453                     smp_no_rendezvous_barrier, data);
454                 goto retry;
455         }
456         free(data, M_TEMP);
457         if (bootverbose)
458                 printf("SMP: %sed TSC synchronization test%s\n",
459                     smp_tsc ? "pass" : "fail", 
460                     adj > 0 ? " after adjustment" : "");
461         if (smp_tsc && tsc_is_invariant) {
462                 switch (cpu_vendor_id) {
463                 case CPU_VENDOR_AMD:
464                         /*
465                          * Starting with Family 15h processors, TSC clock
466                          * source is in the north bridge.  Check whether
467                          * we have a single-socket/multi-core platform.
468                          * XXX Need more work for complex cases.
469                          */
470                         if (CPUID_TO_FAMILY(cpu_id) < 0x15 ||
471                             (amd_feature2 & AMDID2_CMP) == 0 ||
472                             smp_cpus > (cpu_procinfo2 & AMDID_CMP_CORES) + 1)
473                                 break;
474                         return (1000);
475                 case CPU_VENDOR_INTEL:
476                         /*
477                          * XXX Assume Intel platforms have synchronized TSCs.
478                          */
479                         return (1000);
480                 }
481                 return (800);
482         }
483         return (-100);
484 }
485
486 #undef N
487
488 #else
489
490 /*
491  * The function is not called, it is provided to avoid linking failure
492  * on uniprocessor kernel.
493  */
494 static int
495 test_tsc(void)
496 {
497
498         return (0);
499 }
500
501 #endif /* SMP */
502
503 static void
504 init_TSC_tc(void)
505 {
506         uint64_t max_freq;
507         int shift;
508
509         if ((cpu_feature & CPUID_TSC) == 0 || tsc_disabled)
510                 return;
511
512         /*
513          * Limit timecounter frequency to fit in an int and prevent it from
514          * overflowing too fast.
515          */
516         max_freq = UINT_MAX;
517
518         /*
519          * We can not use the TSC if we support APM.  Precise timekeeping
520          * on an APM'ed machine is at best a fools pursuit, since 
521          * any and all of the time spent in various SMM code can't 
522          * be reliably accounted for.  Reading the RTC is your only
523          * source of reliable time info.  The i8254 loses too, of course,
524          * but we need to have some kind of time...
525          * We don't know at this point whether APM is going to be used
526          * or not, nor when it might be activated.  Play it safe.
527          */
528         if (power_pm_get_type() == POWER_PM_TYPE_APM) {
529                 tsc_timecounter.tc_quality = -1000;
530                 if (bootverbose)
531                         printf("TSC timecounter disabled: APM enabled.\n");
532                 goto init;
533         }
534
535         /*
536          * Intel CPUs without a C-state invariant TSC can stop the TSC
537          * in either C2 or C3.  Disable use of C2 and C3 while using
538          * the TSC as the timecounter.  The timecounter can be changed
539          * to enable C2 and C3.
540          *
541          * Note that the TSC is used as the cputicker for computing
542          * thread runtime regardless of the timecounter setting, so
543          * using an alternate timecounter and enabling C2 or C3 can
544          * result incorrect runtimes for kernel idle threads (but not
545          * for any non-idle threads).
546          */
547         if (cpu_vendor_id == CPU_VENDOR_INTEL &&
548             (amd_pminfo & AMDPM_TSC_INVARIANT) == 0) {
549                 tsc_timecounter.tc_flags |= TC_FLAGS_C2STOP;
550                 if (bootverbose)
551                         printf("TSC timecounter disables C2 and C3.\n");
552         }
553
554         /*
555          * We can not use the TSC in SMP mode unless the TSCs on all CPUs
556          * are synchronized.  If the user is sure that the system has
557          * synchronized TSCs, set kern.timecounter.smp_tsc tunable to a
558          * non-zero value.  The TSC seems unreliable in virtualized SMP
559          * environments, so it is set to a negative quality in those cases.
560          */
561         if (mp_ncpus > 1)
562                 tsc_timecounter.tc_quality = test_tsc();
563         else if (tsc_is_invariant)
564                 tsc_timecounter.tc_quality = 1000;
565         max_freq >>= tsc_shift;
566
567 init:
568         for (shift = 0; shift <= 31 && (tsc_freq >> shift) > max_freq; shift++)
569                 ;
570         if ((cpu_feature & CPUID_SSE2) != 0 && mp_ncpus > 1) {
571                 if (cpu_vendor_id == CPU_VENDOR_AMD) {
572                         tsc_timecounter.tc_get_timecount = shift > 0 ?
573                             tsc_get_timecount_low_mfence :
574                             tsc_get_timecount_mfence;
575                 } else {
576                         tsc_timecounter.tc_get_timecount = shift > 0 ?
577                             tsc_get_timecount_low_lfence :
578                             tsc_get_timecount_lfence;
579                 }
580         } else {
581                 tsc_timecounter.tc_get_timecount = shift > 0 ?
582                     tsc_get_timecount_low : tsc_get_timecount;
583         }
584         if (shift > 0) {
585                 tsc_timecounter.tc_name = "TSC-low";
586                 if (bootverbose)
587                         printf("TSC timecounter discards lower %d bit(s)\n",
588                             shift);
589         }
590         if (tsc_freq != 0) {
591                 tsc_timecounter.tc_frequency = tsc_freq >> shift;
592                 tsc_timecounter.tc_priv = (void *)(intptr_t)shift;
593                 tc_init(&tsc_timecounter);
594         }
595 }
596 SYSINIT(tsc_tc, SI_SUB_SMP, SI_ORDER_ANY, init_TSC_tc, NULL);
597
598 /*
599  * When cpufreq levels change, find out about the (new) max frequency.  We
600  * use this to update CPU accounting in case it got a lower estimate at boot.
601  */
602 static void
603 tsc_levels_changed(void *arg, int unit)
604 {
605         device_t cf_dev;
606         struct cf_level *levels;
607         int count, error;
608         uint64_t max_freq;
609
610         /* Only use values from the first CPU, assuming all are equal. */
611         if (unit != 0)
612                 return;
613
614         /* Find the appropriate cpufreq device instance. */
615         cf_dev = devclass_get_device(devclass_find("cpufreq"), unit);
616         if (cf_dev == NULL) {
617                 printf("tsc_levels_changed() called but no cpufreq device?\n");
618                 return;
619         }
620
621         /* Get settings from the device and find the max frequency. */
622         count = 64;
623         levels = malloc(count * sizeof(*levels), M_TEMP, M_NOWAIT);
624         if (levels == NULL)
625                 return;
626         error = CPUFREQ_LEVELS(cf_dev, levels, &count);
627         if (error == 0 && count != 0) {
628                 max_freq = (uint64_t)levels[0].total_set.freq * 1000000;
629                 set_cputicker(rdtsc, max_freq, 1);
630         } else
631                 printf("tsc_levels_changed: no max freq found\n");
632         free(levels, M_TEMP);
633 }
634
635 /*
636  * If the TSC timecounter is in use, veto the pending change.  It may be
637  * possible in the future to handle a dynamically-changing timecounter rate.
638  */
639 static void
640 tsc_freq_changing(void *arg, const struct cf_level *level, int *status)
641 {
642
643         if (*status != 0 || timecounter != &tsc_timecounter)
644                 return;
645
646         printf("timecounter TSC must not be in use when "
647             "changing frequencies; change denied\n");
648         *status = EBUSY;
649 }
650
651 /* Update TSC freq with the value indicated by the caller. */
652 static void
653 tsc_freq_changed(void *arg, const struct cf_level *level, int status)
654 {
655         uint64_t freq;
656
657         /* If there was an error during the transition, don't do anything. */
658         if (tsc_disabled || status != 0)
659                 return;
660
661         /* Total setting for this level gives the new frequency in MHz. */
662         freq = (uint64_t)level->total_set.freq * 1000000;
663         atomic_store_rel_64(&tsc_freq, freq);
664         tsc_timecounter.tc_frequency =
665             freq >> (int)(intptr_t)tsc_timecounter.tc_priv;
666 }
667
668 static int
669 sysctl_machdep_tsc_freq(SYSCTL_HANDLER_ARGS)
670 {
671         int error;
672         uint64_t freq;
673
674         freq = atomic_load_acq_64(&tsc_freq);
675         if (freq == 0)
676                 return (EOPNOTSUPP);
677         error = sysctl_handle_64(oidp, &freq, 0, req);
678         if (error == 0 && req->newptr != NULL) {
679                 atomic_store_rel_64(&tsc_freq, freq);
680                 atomic_store_rel_64(&tsc_timecounter.tc_frequency,
681                     freq >> (int)(intptr_t)tsc_timecounter.tc_priv);
682         }
683         return (error);
684 }
685
686 SYSCTL_PROC(_machdep, OID_AUTO, tsc_freq, CTLTYPE_U64 | CTLFLAG_RW,
687     0, 0, sysctl_machdep_tsc_freq, "QU", "Time Stamp Counter frequency");
688
689 static u_int
690 tsc_get_timecount(struct timecounter *tc __unused)
691 {
692
693         return (rdtsc32());
694 }
695
696 static inline u_int
697 tsc_get_timecount_low(struct timecounter *tc)
698 {
699         uint32_t rv;
700
701         __asm __volatile("rdtsc; shrd %%cl, %%edx, %0"
702             : "=a" (rv) : "c" ((int)(intptr_t)tc->tc_priv) : "edx");
703         return (rv);
704 }
705
706 static u_int
707 tsc_get_timecount_lfence(struct timecounter *tc __unused)
708 {
709
710         lfence();
711         return (rdtsc32());
712 }
713
714 static u_int
715 tsc_get_timecount_low_lfence(struct timecounter *tc)
716 {
717
718         lfence();
719         return (tsc_get_timecount_low(tc));
720 }
721
722 static u_int
723 tsc_get_timecount_mfence(struct timecounter *tc __unused)
724 {
725
726         mfence();
727         return (rdtsc32());
728 }
729
730 static u_int
731 tsc_get_timecount_low_mfence(struct timecounter *tc)
732 {
733
734         mfence();
735         return (tsc_get_timecount_low(tc));
736 }
737
738 static uint32_t
739 x86_tsc_vdso_timehands(struct vdso_timehands *vdso_th, struct timecounter *tc)
740 {
741
742         vdso_th->th_algo = VDSO_TH_ALGO_X86_TSC;
743         vdso_th->th_x86_shift = (int)(intptr_t)tc->tc_priv;
744         vdso_th->th_x86_hpet_idx = 0xffffffff;
745         bzero(vdso_th->th_res, sizeof(vdso_th->th_res));
746         return (1);
747 }
748
749 #ifdef COMPAT_FREEBSD32
750 static uint32_t
751 x86_tsc_vdso_timehands32(struct vdso_timehands32 *vdso_th32,
752     struct timecounter *tc)
753 {
754
755         vdso_th32->th_algo = VDSO_TH_ALGO_X86_TSC;
756         vdso_th32->th_x86_shift = (int)(intptr_t)tc->tc_priv;
757         vdso_th32->th_x86_hpet_idx = 0xffffffff;
758         bzero(vdso_th32->th_res, sizeof(vdso_th32->th_res));
759         return (1);
760 }
761 #endif