]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/x86/x86/tsc.c
zfs: merge openzfs/zfs@af88d47f1 (zfs-2.1-release) into stable/13
[FreeBSD/FreeBSD.git] / sys / x86 / x86 / tsc.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 1998-2003 Poul-Henning Kamp
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 #include "opt_clock.h"
33
34 #include <sys/param.h>
35 #include <sys/bus.h>
36 #include <sys/cpu.h>
37 #include <sys/eventhandler.h>
38 #include <sys/limits.h>
39 #include <sys/malloc.h>
40 #include <sys/systm.h>
41 #include <sys/sysctl.h>
42 #include <sys/time.h>
43 #include <sys/timetc.h>
44 #include <sys/kernel.h>
45 #include <sys/smp.h>
46 #include <sys/vdso.h>
47 #include <machine/clock.h>
48 #include <machine/cputypes.h>
49 #include <machine/md_var.h>
50 #include <machine/specialreg.h>
51 #include <x86/vmware.h>
52 #include <dev/acpica/acpi_hpet.h>
53 #include <contrib/dev/acpica/include/acpi.h>
54
55 #include "cpufreq_if.h"
56
57 uint64_t        tsc_freq;
58 int             tsc_is_invariant;
59 int             tsc_perf_stat;
60
61 static eventhandler_tag tsc_levels_tag, tsc_pre_tag, tsc_post_tag;
62
63 SYSCTL_INT(_kern_timecounter, OID_AUTO, invariant_tsc, CTLFLAG_RDTUN,
64     &tsc_is_invariant, 0, "Indicates whether the TSC is P-state invariant");
65
66 #ifdef SMP
67 int     smp_tsc;
68 SYSCTL_INT(_kern_timecounter, OID_AUTO, smp_tsc, CTLFLAG_RDTUN, &smp_tsc, 0,
69     "Indicates whether the TSC is safe to use in SMP mode");
70
71 int     smp_tsc_adjust = 0;
72 SYSCTL_INT(_kern_timecounter, OID_AUTO, smp_tsc_adjust, CTLFLAG_RDTUN,
73     &smp_tsc_adjust, 0, "Try to adjust TSC on APs to match BSP");
74 #endif
75
76 static int      tsc_shift = 1;
77 SYSCTL_INT(_kern_timecounter, OID_AUTO, tsc_shift, CTLFLAG_RDTUN,
78     &tsc_shift, 0, "Shift to pre-apply for the maximum TSC frequency");
79
80 static int      tsc_disabled;
81 SYSCTL_INT(_machdep, OID_AUTO, disable_tsc, CTLFLAG_RDTUN, &tsc_disabled, 0,
82     "Disable x86 Time Stamp Counter");
83
84 static int      tsc_skip_calibration;
85 SYSCTL_INT(_machdep, OID_AUTO, disable_tsc_calibration, CTLFLAG_RDTUN,
86     &tsc_skip_calibration, 0,
87     "Disable TSC frequency calibration");
88
89 static void tsc_freq_changed(void *arg, const struct cf_level *level,
90     int status);
91 static void tsc_freq_changing(void *arg, const struct cf_level *level,
92     int *status);
93 static u_int tsc_get_timecount(struct timecounter *tc);
94 static inline u_int tsc_get_timecount_low(struct timecounter *tc);
95 static u_int tsc_get_timecount_lfence(struct timecounter *tc);
96 static u_int tsc_get_timecount_low_lfence(struct timecounter *tc);
97 static u_int tsc_get_timecount_mfence(struct timecounter *tc);
98 static u_int tsc_get_timecount_low_mfence(struct timecounter *tc);
99 static u_int tscp_get_timecount(struct timecounter *tc);
100 static u_int tscp_get_timecount_low(struct timecounter *tc);
101 static void tsc_levels_changed(void *arg, int unit);
102 static uint32_t x86_tsc_vdso_timehands(struct vdso_timehands *vdso_th,
103     struct timecounter *tc);
104 #ifdef COMPAT_FREEBSD32
105 static uint32_t x86_tsc_vdso_timehands32(struct vdso_timehands32 *vdso_th32,
106     struct timecounter *tc);
107 #endif
108
109 static struct timecounter tsc_timecounter = {
110         .tc_get_timecount =             tsc_get_timecount,
111         .tc_counter_mask =              ~0u,
112         .tc_name =                      "TSC",
113         .tc_quality =                   800,    /* adjusted in code */
114         .tc_fill_vdso_timehands =       x86_tsc_vdso_timehands,
115 #ifdef COMPAT_FREEBSD32
116         .tc_fill_vdso_timehands32 =     x86_tsc_vdso_timehands32,
117 #endif
118 };
119
120 static void
121 tsc_freq_vmware(void)
122 {
123         u_int regs[4];
124
125         if (hv_high >= 0x40000010) {
126                 do_cpuid(0x40000010, regs);
127                 tsc_freq = regs[0] * 1000;
128         } else {
129                 vmware_hvcall(VMW_HVCMD_GETHZ, regs);
130                 if (regs[1] != UINT_MAX)
131                         tsc_freq = regs[0] | ((uint64_t)regs[1] << 32);
132         }
133         tsc_is_invariant = 1;
134 }
135
136 /*
137  * Calculate TSC frequency using information from the CPUID leaf 0x15
138  * 'Time Stamp Counter and Nominal Core Crystal Clock'.  If leaf 0x15
139  * is not functional, as it is on Skylake/Kabylake, try 0x16 'Processor
140  * Frequency Information'.  Leaf 0x16 is described in the SDM as
141  * informational only, but if 0x15 did not work, and TSC calibration
142  * is disabled, it is the best we can get at all.  It should still be
143  * an improvement over the parsing of the CPU model name in
144  * tsc_freq_intel(), when available.
145  */
146 static bool
147 tsc_freq_cpuid(uint64_t *res)
148 {
149         u_int regs[4];
150
151         if (cpu_high < 0x15)
152                 return (false);
153         do_cpuid(0x15, regs);
154         if (regs[0] != 0 && regs[1] != 0 && regs[2] != 0) {
155                 *res = (uint64_t)regs[2] * regs[1] / regs[0];
156                 return (true);
157         }
158
159         if (cpu_high < 0x16)
160                 return (false);
161         do_cpuid(0x16, regs);
162         if (regs[0] != 0) {
163                 *res = (uint64_t)regs[0] * 1000000;
164                 return (true);
165         }
166
167         return (false);
168 }
169
170 static void
171 tsc_freq_intel(void)
172 {
173         char brand[48];
174         u_int regs[4];
175         uint64_t freq;
176         char *p;
177         u_int i;
178
179         /*
180          * Intel Processor Identification and the CPUID Instruction
181          * Application Note 485.
182          * http://www.intel.com/assets/pdf/appnote/241618.pdf
183          */
184         if (cpu_exthigh >= 0x80000004) {
185                 p = brand;
186                 for (i = 0x80000002; i < 0x80000005; i++) {
187                         do_cpuid(i, regs);
188                         memcpy(p, regs, sizeof(regs));
189                         p += sizeof(regs);
190                 }
191                 p = NULL;
192                 for (i = 0; i < sizeof(brand) - 1; i++)
193                         if (brand[i] == 'H' && brand[i + 1] == 'z')
194                                 p = brand + i;
195                 if (p != NULL) {
196                         p -= 5;
197                         switch (p[4]) {
198                         case 'M':
199                                 i = 1;
200                                 break;
201                         case 'G':
202                                 i = 1000;
203                                 break;
204                         case 'T':
205                                 i = 1000000;
206                                 break;
207                         default:
208                                 return;
209                         }
210 #define C2D(c)  ((c) - '0')
211                         if (p[1] == '.') {
212                                 freq = C2D(p[0]) * 1000;
213                                 freq += C2D(p[2]) * 100;
214                                 freq += C2D(p[3]) * 10;
215                                 freq *= i * 1000;
216                         } else {
217                                 freq = C2D(p[0]) * 1000;
218                                 freq += C2D(p[1]) * 100;
219                                 freq += C2D(p[2]) * 10;
220                                 freq += C2D(p[3]);
221                                 freq *= i * 1000000;
222                         }
223 #undef C2D
224                         tsc_freq = freq;
225                 }
226         }
227 }
228
229 static void
230 probe_tsc_freq(void)
231 {
232         uint64_t tmp_freq, tsc1, tsc2;
233         int no_cpuid_override;
234
235         if (cpu_power_ecx & CPUID_PERF_STAT) {
236                 /*
237                  * XXX Some emulators expose host CPUID without actual support
238                  * for these MSRs.  We must test whether they really work.
239                  */
240                 wrmsr(MSR_MPERF, 0);
241                 wrmsr(MSR_APERF, 0);
242                 DELAY(10);
243                 if (rdmsr(MSR_MPERF) > 0 && rdmsr(MSR_APERF) > 0)
244                         tsc_perf_stat = 1;
245         }
246
247         if (vm_guest == VM_GUEST_VMWARE) {
248                 tsc_freq_vmware();
249                 return;
250         }
251
252         switch (cpu_vendor_id) {
253         case CPU_VENDOR_AMD:
254         case CPU_VENDOR_HYGON:
255                 if ((amd_pminfo & AMDPM_TSC_INVARIANT) != 0 ||
256                     (vm_guest == VM_GUEST_NO &&
257                     CPUID_TO_FAMILY(cpu_id) >= 0x10))
258                         tsc_is_invariant = 1;
259                 if (cpu_feature & CPUID_SSE2) {
260                         tsc_timecounter.tc_get_timecount =
261                             tsc_get_timecount_mfence;
262                 }
263                 break;
264         case CPU_VENDOR_INTEL:
265                 if ((amd_pminfo & AMDPM_TSC_INVARIANT) != 0 ||
266                     (vm_guest == VM_GUEST_NO &&
267                     ((CPUID_TO_FAMILY(cpu_id) == 0x6 &&
268                     CPUID_TO_MODEL(cpu_id) >= 0xe) ||
269                     (CPUID_TO_FAMILY(cpu_id) == 0xf &&
270                     CPUID_TO_MODEL(cpu_id) >= 0x3))))
271                         tsc_is_invariant = 1;
272                 if (cpu_feature & CPUID_SSE2) {
273                         tsc_timecounter.tc_get_timecount =
274                             tsc_get_timecount_lfence;
275                 }
276                 break;
277         case CPU_VENDOR_CENTAUR:
278                 if (vm_guest == VM_GUEST_NO &&
279                     CPUID_TO_FAMILY(cpu_id) == 0x6 &&
280                     CPUID_TO_MODEL(cpu_id) >= 0xf &&
281                     (rdmsr(0x1203) & 0x100000000ULL) == 0)
282                         tsc_is_invariant = 1;
283                 if (cpu_feature & CPUID_SSE2) {
284                         tsc_timecounter.tc_get_timecount =
285                             tsc_get_timecount_lfence;
286                 }
287                 break;
288         }
289
290         if (tsc_skip_calibration) {
291                 if (tsc_freq_cpuid(&tmp_freq))
292                         tsc_freq = tmp_freq;
293                 else if (cpu_vendor_id == CPU_VENDOR_INTEL)
294                         tsc_freq_intel();
295                 if (tsc_freq == 0)
296                         tsc_disabled = 1;
297         } else {
298                 if (bootverbose)
299                         printf("Calibrating TSC clock ... ");
300                 tsc1 = rdtsc();
301                 DELAY(1000000);
302                 tsc2 = rdtsc();
303                 tsc_freq = tsc2 - tsc1;
304
305                 /*
306                  * If the difference between calibrated frequency and
307                  * the frequency reported by CPUID 0x15/0x16 leafs
308                  * differ significantly, this probably means that
309                  * calibration is bogus.  It happens on machines
310                  * without 8254 timer.  The BIOS rarely properly
311                  * reports it in FADT boot flags, so just compare the
312                  * frequencies directly.
313                  */
314                 if (tsc_freq_cpuid(&tmp_freq) && qabs(tsc_freq - tmp_freq) >
315                     uqmin(tsc_freq, tmp_freq)) {
316                         no_cpuid_override = 0;
317                         TUNABLE_INT_FETCH("machdep.disable_tsc_cpuid_override",
318                             &no_cpuid_override);
319                         if (!no_cpuid_override) {
320                                 if (bootverbose) {
321                                         printf(
322         "TSC clock: calibration freq %ju Hz, CPUID freq %ju Hz%s\n",
323                                             (uintmax_t)tsc_freq,
324                                             (uintmax_t)tmp_freq,
325                                             no_cpuid_override ? "" :
326                                             ", doing CPUID override");
327                                 }
328                                 tsc_freq = tmp_freq;
329                         }
330                 }
331         }
332         if (bootverbose)
333                 printf("TSC clock: %ju Hz\n", (intmax_t)tsc_freq);
334 }
335
336 void
337 init_TSC(void)
338 {
339
340         if ((cpu_feature & CPUID_TSC) == 0 || tsc_disabled)
341                 return;
342
343 #ifdef __i386__
344         /* The TSC is known to be broken on certain CPUs. */
345         switch (cpu_vendor_id) {
346         case CPU_VENDOR_AMD:
347                 switch (cpu_id & 0xFF0) {
348                 case 0x500:
349                         /* K5 Model 0 */
350                         return;
351                 }
352                 break;
353         case CPU_VENDOR_CENTAUR:
354                 switch (cpu_id & 0xff0) {
355                 case 0x540:
356                         /*
357                          * http://www.centtech.com/c6_data_sheet.pdf
358                          *
359                          * I-12 RDTSC may return incoherent values in EDX:EAX
360                          * I-13 RDTSC hangs when certain event counters are used
361                          */
362                         return;
363                 }
364                 break;
365         case CPU_VENDOR_NSC:
366                 switch (cpu_id & 0xff0) {
367                 case 0x540:
368                         if ((cpu_id & CPUID_STEPPING) == 0)
369                                 return;
370                         break;
371                 }
372                 break;
373         }
374 #endif
375                 
376         probe_tsc_freq();
377
378         /*
379          * Inform CPU accounting about our boot-time clock rate.  This will
380          * be updated if someone loads a cpufreq driver after boot that
381          * discovers a new max frequency.
382          */
383         if (tsc_freq != 0)
384                 set_cputicker(rdtsc, tsc_freq, !tsc_is_invariant);
385
386         if (tsc_is_invariant)
387                 return;
388
389         /* Register to find out about changes in CPU frequency. */
390         tsc_pre_tag = EVENTHANDLER_REGISTER(cpufreq_pre_change,
391             tsc_freq_changing, NULL, EVENTHANDLER_PRI_FIRST);
392         tsc_post_tag = EVENTHANDLER_REGISTER(cpufreq_post_change,
393             tsc_freq_changed, NULL, EVENTHANDLER_PRI_FIRST);
394         tsc_levels_tag = EVENTHANDLER_REGISTER(cpufreq_levels_changed,
395             tsc_levels_changed, NULL, EVENTHANDLER_PRI_ANY);
396 }
397
398 #ifdef SMP
399
400 /*
401  * RDTSC is not a serializing instruction, and does not drain
402  * instruction stream, so we need to drain the stream before executing
403  * it.  It could be fixed by use of RDTSCP, except the instruction is
404  * not available everywhere.
405  *
406  * Use CPUID for draining in the boot-time SMP constistency test.  The
407  * timecounters use MFENCE for AMD CPUs, and LFENCE for others (Intel
408  * and VIA) when SSE2 is present, and nothing on older machines which
409  * also do not issue RDTSC prematurely.  There, testing for SSE2 and
410  * vendor is too cumbersome, and we learn about TSC presence from CPUID.
411  *
412  * Do not use do_cpuid(), since we do not need CPUID results, which
413  * have to be written into memory with do_cpuid().
414  */
415 #define TSC_READ(x)                                                     \
416 static void                                                             \
417 tsc_read_##x(void *arg)                                                 \
418 {                                                                       \
419         uint64_t *tsc = arg;                                            \
420         u_int cpu = PCPU_GET(cpuid);                                    \
421                                                                         \
422         __asm __volatile("cpuid" : : : "eax", "ebx", "ecx", "edx");     \
423         tsc[cpu * 3 + x] = rdtsc();                                     \
424 }
425 TSC_READ(0)
426 TSC_READ(1)
427 TSC_READ(2)
428 #undef TSC_READ
429
430 #define N       1000
431
432 static void
433 comp_smp_tsc(void *arg)
434 {
435         uint64_t *tsc;
436         int64_t d1, d2;
437         u_int cpu = PCPU_GET(cpuid);
438         u_int i, j, size;
439
440         size = (mp_maxid + 1) * 3;
441         for (i = 0, tsc = arg; i < N; i++, tsc += size)
442                 CPU_FOREACH(j) {
443                         if (j == cpu)
444                                 continue;
445                         d1 = tsc[cpu * 3 + 1] - tsc[j * 3];
446                         d2 = tsc[cpu * 3 + 2] - tsc[j * 3 + 1];
447                         if (d1 <= 0 || d2 <= 0) {
448                                 smp_tsc = 0;
449                                 return;
450                         }
451                 }
452 }
453
454 static void
455 adj_smp_tsc(void *arg)
456 {
457         uint64_t *tsc;
458         int64_t d, min, max;
459         u_int cpu = PCPU_GET(cpuid);
460         u_int first, i, size;
461
462         first = CPU_FIRST();
463         if (cpu == first)
464                 return;
465         min = INT64_MIN;
466         max = INT64_MAX;
467         size = (mp_maxid + 1) * 3;
468         for (i = 0, tsc = arg; i < N; i++, tsc += size) {
469                 d = tsc[first * 3] - tsc[cpu * 3 + 1];
470                 if (d > min)
471                         min = d;
472                 d = tsc[first * 3 + 1] - tsc[cpu * 3 + 2];
473                 if (d > min)
474                         min = d;
475                 d = tsc[first * 3 + 1] - tsc[cpu * 3];
476                 if (d < max)
477                         max = d;
478                 d = tsc[first * 3 + 2] - tsc[cpu * 3 + 1];
479                 if (d < max)
480                         max = d;
481         }
482         if (min > max)
483                 return;
484         d = min / 2 + max / 2;
485         __asm __volatile (
486                 "movl $0x10, %%ecx\n\t"
487                 "rdmsr\n\t"
488                 "addl %%edi, %%eax\n\t"
489                 "adcl %%esi, %%edx\n\t"
490                 "wrmsr\n"
491                 : /* No output */
492                 : "D" ((uint32_t)d), "S" ((uint32_t)(d >> 32))
493                 : "ax", "cx", "dx", "cc"
494         );
495 }
496
497 static int
498 test_tsc(int adj_max_count)
499 {
500         uint64_t *data, *tsc;
501         u_int i, size, adj;
502
503         if ((!smp_tsc && !tsc_is_invariant))
504                 return (-100);
505         /*
506          * Misbehavior of TSC under VirtualBox has been observed.  In
507          * particular, threads doing small (~1 second) sleeps may miss their
508          * wakeup and hang around in sleep state, causing hangs on shutdown.
509          */
510         if (vm_guest == VM_GUEST_VBOX)
511                 return (0);
512
513         size = (mp_maxid + 1) * 3;
514         data = malloc(sizeof(*data) * size * N, M_TEMP, M_WAITOK);
515         adj = 0;
516 retry:
517         for (i = 0, tsc = data; i < N; i++, tsc += size)
518                 smp_rendezvous(tsc_read_0, tsc_read_1, tsc_read_2, tsc);
519         smp_tsc = 1;    /* XXX */
520         smp_rendezvous(smp_no_rendezvous_barrier, comp_smp_tsc,
521             smp_no_rendezvous_barrier, data);
522         if (!smp_tsc && adj < adj_max_count) {
523                 adj++;
524                 smp_rendezvous(smp_no_rendezvous_barrier, adj_smp_tsc,
525                     smp_no_rendezvous_barrier, data);
526                 goto retry;
527         }
528         free(data, M_TEMP);
529         if (bootverbose)
530                 printf("SMP: %sed TSC synchronization test%s\n",
531                     smp_tsc ? "pass" : "fail", 
532                     adj > 0 ? " after adjustment" : "");
533         if (smp_tsc && tsc_is_invariant) {
534                 switch (cpu_vendor_id) {
535                 case CPU_VENDOR_AMD:
536                 case CPU_VENDOR_HYGON:
537                         /*
538                          * Processor Programming Reference (PPR) for AMD
539                          * Family 17h states that the TSC uses a common
540                          * reference for all sockets, cores and threads.
541                          */
542                         if (CPUID_TO_FAMILY(cpu_id) >= 0x17)
543                                 return (1000);
544                         /*
545                          * Starting with Family 15h processors, TSC clock
546                          * source is in the north bridge.  Check whether
547                          * we have a single-socket/multi-core platform.
548                          * XXX Need more work for complex cases.
549                          */
550                         if (CPUID_TO_FAMILY(cpu_id) < 0x15 ||
551                             (amd_feature2 & AMDID2_CMP) == 0 ||
552                             smp_cpus > (cpu_procinfo2 & AMDID_CMP_CORES) + 1)
553                                 break;
554                         return (1000);
555                 case CPU_VENDOR_INTEL:
556                         /*
557                          * XXX Assume Intel platforms have synchronized TSCs.
558                          */
559                         return (1000);
560                 }
561                 return (800);
562         }
563         return (-100);
564 }
565
566 #undef N
567
568 #endif /* SMP */
569
570 static void
571 init_TSC_tc(void)
572 {
573         uint64_t max_freq;
574         int shift;
575
576         if ((cpu_feature & CPUID_TSC) == 0 || tsc_disabled)
577                 return;
578
579         /*
580          * Limit timecounter frequency to fit in an int and prevent it from
581          * overflowing too fast.
582          */
583         max_freq = UINT_MAX;
584
585         /*
586          * Intel CPUs without a C-state invariant TSC can stop the TSC
587          * in either C2 or C3.  Disable use of C2 and C3 while using
588          * the TSC as the timecounter.  The timecounter can be changed
589          * to enable C2 and C3.
590          *
591          * Note that the TSC is used as the cputicker for computing
592          * thread runtime regardless of the timecounter setting, so
593          * using an alternate timecounter and enabling C2 or C3 can
594          * result incorrect runtimes for kernel idle threads (but not
595          * for any non-idle threads).
596          */
597         if (cpu_vendor_id == CPU_VENDOR_INTEL &&
598             (amd_pminfo & AMDPM_TSC_INVARIANT) == 0) {
599                 tsc_timecounter.tc_flags |= TC_FLAGS_C2STOP;
600                 if (bootverbose)
601                         printf("TSC timecounter disables C2 and C3.\n");
602         }
603
604         /*
605          * We can not use the TSC in SMP mode unless the TSCs on all CPUs
606          * are synchronized.  If the user is sure that the system has
607          * synchronized TSCs, set kern.timecounter.smp_tsc tunable to a
608          * non-zero value.  The TSC seems unreliable in virtualized SMP
609          * environments, so it is set to a negative quality in those cases.
610          */
611 #ifdef SMP
612         if (mp_ncpus > 1)
613                 tsc_timecounter.tc_quality = test_tsc(smp_tsc_adjust);
614         else
615 #endif /* SMP */
616         if (tsc_is_invariant)
617                 tsc_timecounter.tc_quality = 1000;
618         max_freq >>= tsc_shift;
619
620         for (shift = 0; shift <= 31 && (tsc_freq >> shift) > max_freq; shift++)
621                 ;
622
623         /*
624          * Timecounter implementation selection, top to bottom:
625          * - If RDTSCP is available, use RDTSCP.
626          * - If fence instructions are provided (SSE2), use LFENCE;RDTSC
627          *   on Intel, and MFENCE;RDTSC on AMD.
628          * - For really old CPUs, just use RDTSC.
629          */
630         if ((amd_feature & AMDID_RDTSCP) != 0) {
631                 tsc_timecounter.tc_get_timecount = shift > 0 ?
632                     tscp_get_timecount_low : tscp_get_timecount;
633         } else if ((cpu_feature & CPUID_SSE2) != 0 && mp_ncpus > 1) {
634                 if (cpu_vendor_id == CPU_VENDOR_AMD ||
635                     cpu_vendor_id == CPU_VENDOR_HYGON) {
636                         tsc_timecounter.tc_get_timecount = shift > 0 ?
637                             tsc_get_timecount_low_mfence :
638                             tsc_get_timecount_mfence;
639                 } else {
640                         tsc_timecounter.tc_get_timecount = shift > 0 ?
641                             tsc_get_timecount_low_lfence :
642                             tsc_get_timecount_lfence;
643                 }
644         } else {
645                 tsc_timecounter.tc_get_timecount = shift > 0 ?
646                     tsc_get_timecount_low : tsc_get_timecount;
647         }
648         if (shift > 0) {
649                 tsc_timecounter.tc_name = "TSC-low";
650                 if (bootverbose)
651                         printf("TSC timecounter discards lower %d bit(s)\n",
652                             shift);
653         }
654         if (tsc_freq != 0) {
655                 tsc_timecounter.tc_frequency = tsc_freq >> shift;
656                 tsc_timecounter.tc_priv = (void *)(intptr_t)shift;
657                 tc_init(&tsc_timecounter);
658         }
659 }
660 SYSINIT(tsc_tc, SI_SUB_SMP, SI_ORDER_ANY, init_TSC_tc, NULL);
661
662 void
663 resume_TSC(void)
664 {
665 #ifdef SMP
666         int quality;
667
668         /* If TSC was not good on boot, it is unlikely to become good now. */
669         if (tsc_timecounter.tc_quality < 0)
670                 return;
671         /* Nothing to do with UP. */
672         if (mp_ncpus < 2)
673                 return;
674
675         /*
676          * If TSC was good, a single synchronization should be enough,
677          * but honour smp_tsc_adjust if it's set.
678          */
679         quality = test_tsc(MAX(smp_tsc_adjust, 1));
680         if (quality != tsc_timecounter.tc_quality) {
681                 printf("TSC timecounter quality changed: %d -> %d\n",
682                     tsc_timecounter.tc_quality, quality);
683                 tsc_timecounter.tc_quality = quality;
684         }
685 #endif /* SMP */
686 }
687
688 /*
689  * When cpufreq levels change, find out about the (new) max frequency.  We
690  * use this to update CPU accounting in case it got a lower estimate at boot.
691  */
692 static void
693 tsc_levels_changed(void *arg, int unit)
694 {
695         device_t cf_dev;
696         struct cf_level *levels;
697         int count, error;
698         uint64_t max_freq;
699
700         /* Only use values from the first CPU, assuming all are equal. */
701         if (unit != 0)
702                 return;
703
704         /* Find the appropriate cpufreq device instance. */
705         cf_dev = devclass_get_device(devclass_find("cpufreq"), unit);
706         if (cf_dev == NULL) {
707                 printf("tsc_levels_changed() called but no cpufreq device?\n");
708                 return;
709         }
710
711         /* Get settings from the device and find the max frequency. */
712         count = 64;
713         levels = malloc(count * sizeof(*levels), M_TEMP, M_NOWAIT);
714         if (levels == NULL)
715                 return;
716         error = CPUFREQ_LEVELS(cf_dev, levels, &count);
717         if (error == 0 && count != 0) {
718                 max_freq = (uint64_t)levels[0].total_set.freq * 1000000;
719                 set_cputicker(rdtsc, max_freq, 1);
720         } else
721                 printf("tsc_levels_changed: no max freq found\n");
722         free(levels, M_TEMP);
723 }
724
725 /*
726  * If the TSC timecounter is in use, veto the pending change.  It may be
727  * possible in the future to handle a dynamically-changing timecounter rate.
728  */
729 static void
730 tsc_freq_changing(void *arg, const struct cf_level *level, int *status)
731 {
732
733         if (*status != 0 || timecounter != &tsc_timecounter)
734                 return;
735
736         printf("timecounter TSC must not be in use when "
737             "changing frequencies; change denied\n");
738         *status = EBUSY;
739 }
740
741 /* Update TSC freq with the value indicated by the caller. */
742 static void
743 tsc_freq_changed(void *arg, const struct cf_level *level, int status)
744 {
745         uint64_t freq;
746
747         /* If there was an error during the transition, don't do anything. */
748         if (tsc_disabled || status != 0)
749                 return;
750
751         /* Total setting for this level gives the new frequency in MHz. */
752         freq = (uint64_t)level->total_set.freq * 1000000;
753         atomic_store_rel_64(&tsc_freq, freq);
754         tsc_timecounter.tc_frequency =
755             freq >> (int)(intptr_t)tsc_timecounter.tc_priv;
756 }
757
758 static int
759 sysctl_machdep_tsc_freq(SYSCTL_HANDLER_ARGS)
760 {
761         int error;
762         uint64_t freq;
763
764         freq = atomic_load_acq_64(&tsc_freq);
765         if (freq == 0)
766                 return (EOPNOTSUPP);
767         error = sysctl_handle_64(oidp, &freq, 0, req);
768         if (error == 0 && req->newptr != NULL) {
769                 atomic_store_rel_64(&tsc_freq, freq);
770                 atomic_store_rel_64(&tsc_timecounter.tc_frequency,
771                     freq >> (int)(intptr_t)tsc_timecounter.tc_priv);
772         }
773         return (error);
774 }
775
776 SYSCTL_PROC(_machdep, OID_AUTO, tsc_freq,
777     CTLTYPE_U64 | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
778     0, 0, sysctl_machdep_tsc_freq, "QU",
779     "Time Stamp Counter frequency");
780
781 static u_int
782 tsc_get_timecount(struct timecounter *tc __unused)
783 {
784
785         return (rdtsc32());
786 }
787
788 static u_int
789 tscp_get_timecount(struct timecounter *tc __unused)
790 {
791
792         return (rdtscp32());
793 }
794
795 static inline u_int
796 tsc_get_timecount_low(struct timecounter *tc)
797 {
798         uint32_t rv;
799
800         __asm __volatile("rdtsc; shrd %%cl, %%edx, %0"
801             : "=a" (rv) : "c" ((int)(intptr_t)tc->tc_priv) : "edx");
802         return (rv);
803 }
804
805 static u_int
806 tscp_get_timecount_low(struct timecounter *tc)
807 {
808         uint32_t rv;
809
810         __asm __volatile("rdtscp; movl %1, %%ecx; shrd %%cl, %%edx, %0"
811             : "=&a" (rv) : "m" (tc->tc_priv) : "ecx", "edx");
812         return (rv);
813 }
814
815 static u_int
816 tsc_get_timecount_lfence(struct timecounter *tc __unused)
817 {
818
819         lfence();
820         return (rdtsc32());
821 }
822
823 static u_int
824 tsc_get_timecount_low_lfence(struct timecounter *tc)
825 {
826
827         lfence();
828         return (tsc_get_timecount_low(tc));
829 }
830
831 static u_int
832 tsc_get_timecount_mfence(struct timecounter *tc __unused)
833 {
834
835         mfence();
836         return (rdtsc32());
837 }
838
839 static u_int
840 tsc_get_timecount_low_mfence(struct timecounter *tc)
841 {
842
843         mfence();
844         return (tsc_get_timecount_low(tc));
845 }
846
847 static uint32_t
848 x86_tsc_vdso_timehands(struct vdso_timehands *vdso_th, struct timecounter *tc)
849 {
850
851         vdso_th->th_algo = VDSO_TH_ALGO_X86_TSC;
852         vdso_th->th_x86_shift = (int)(intptr_t)tc->tc_priv;
853         vdso_th->th_x86_hpet_idx = 0xffffffff;
854         vdso_th->th_x86_pvc_last_systime = 0;
855         vdso_th->th_x86_pvc_stable_mask = 0;
856         bzero(vdso_th->th_res, sizeof(vdso_th->th_res));
857         return (1);
858 }
859
860 #ifdef COMPAT_FREEBSD32
861 static uint32_t
862 x86_tsc_vdso_timehands32(struct vdso_timehands32 *vdso_th32,
863     struct timecounter *tc)
864 {
865
866         vdso_th32->th_algo = VDSO_TH_ALGO_X86_TSC;
867         vdso_th32->th_x86_shift = (int)(intptr_t)tc->tc_priv;
868         vdso_th32->th_x86_hpet_idx = 0xffffffff;
869         vdso_th32->th_x86_pvc_last_systime = 0;
870         vdso_th32->th_x86_pvc_stable_mask = 0;
871         bzero(vdso_th32->th_res, sizeof(vdso_th32->th_res));
872         return (1);
873 }
874 #endif