]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/x86/x86/tsc.c
Merge ACPICA 20200326.
[FreeBSD/FreeBSD.git] / sys / x86 / x86 / tsc.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 1998-2003 Poul-Henning Kamp
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 #include "opt_clock.h"
33
34 #include <sys/param.h>
35 #include <sys/bus.h>
36 #include <sys/cpu.h>
37 #include <sys/eventhandler.h>
38 #include <sys/limits.h>
39 #include <sys/malloc.h>
40 #include <sys/systm.h>
41 #include <sys/sysctl.h>
42 #include <sys/time.h>
43 #include <sys/timetc.h>
44 #include <sys/kernel.h>
45 #include <sys/power.h>
46 #include <sys/smp.h>
47 #include <sys/vdso.h>
48 #include <machine/clock.h>
49 #include <machine/cputypes.h>
50 #include <machine/md_var.h>
51 #include <machine/specialreg.h>
52 #include <x86/vmware.h>
53 #include <dev/acpica/acpi_hpet.h>
54 #include <contrib/dev/acpica/include/acpi.h>
55
56 #include "cpufreq_if.h"
57
58 uint64_t        tsc_freq;
59 int             tsc_is_invariant;
60 int             tsc_perf_stat;
61
62 static eventhandler_tag tsc_levels_tag, tsc_pre_tag, tsc_post_tag;
63
64 SYSCTL_INT(_kern_timecounter, OID_AUTO, invariant_tsc, CTLFLAG_RDTUN,
65     &tsc_is_invariant, 0, "Indicates whether the TSC is P-state invariant");
66
67 #ifdef SMP
68 int     smp_tsc;
69 SYSCTL_INT(_kern_timecounter, OID_AUTO, smp_tsc, CTLFLAG_RDTUN, &smp_tsc, 0,
70     "Indicates whether the TSC is safe to use in SMP mode");
71
72 int     smp_tsc_adjust = 0;
73 SYSCTL_INT(_kern_timecounter, OID_AUTO, smp_tsc_adjust, CTLFLAG_RDTUN,
74     &smp_tsc_adjust, 0, "Try to adjust TSC on APs to match BSP");
75 #endif
76
77 static int      tsc_shift = 1;
78 SYSCTL_INT(_kern_timecounter, OID_AUTO, tsc_shift, CTLFLAG_RDTUN,
79     &tsc_shift, 0, "Shift to pre-apply for the maximum TSC frequency");
80
81 static int      tsc_disabled;
82 SYSCTL_INT(_machdep, OID_AUTO, disable_tsc, CTLFLAG_RDTUN, &tsc_disabled, 0,
83     "Disable x86 Time Stamp Counter");
84
85 static int      tsc_skip_calibration;
86 SYSCTL_INT(_machdep, OID_AUTO, disable_tsc_calibration, CTLFLAG_RDTUN |
87     CTLFLAG_NOFETCH, &tsc_skip_calibration, 0,
88     "Disable TSC frequency calibration");
89
90 static void tsc_freq_changed(void *arg, const struct cf_level *level,
91     int status);
92 static void tsc_freq_changing(void *arg, const struct cf_level *level,
93     int *status);
94 static unsigned tsc_get_timecount(struct timecounter *tc);
95 static inline unsigned tsc_get_timecount_low(struct timecounter *tc);
96 static unsigned tsc_get_timecount_lfence(struct timecounter *tc);
97 static unsigned tsc_get_timecount_low_lfence(struct timecounter *tc);
98 static unsigned tsc_get_timecount_mfence(struct timecounter *tc);
99 static unsigned tsc_get_timecount_low_mfence(struct timecounter *tc);
100 static void tsc_levels_changed(void *arg, int unit);
101 static uint32_t x86_tsc_vdso_timehands(struct vdso_timehands *vdso_th,
102     struct timecounter *tc);
103 #ifdef COMPAT_FREEBSD32
104 static uint32_t x86_tsc_vdso_timehands32(struct vdso_timehands32 *vdso_th32,
105     struct timecounter *tc);
106 #endif
107
108 static struct timecounter tsc_timecounter = {
109         .tc_get_timecount =             tsc_get_timecount,
110         .tc_counter_mask =              ~0u,
111         .tc_name =                      "TSC",
112         .tc_quality =                   800,    /* adjusted in code */
113         .tc_fill_vdso_timehands =       x86_tsc_vdso_timehands,
114 #ifdef COMPAT_FREEBSD32
115         .tc_fill_vdso_timehands32 =     x86_tsc_vdso_timehands32,
116 #endif
117 };
118
119 static void
120 tsc_freq_vmware(void)
121 {
122         u_int regs[4];
123
124         if (hv_high >= 0x40000010) {
125                 do_cpuid(0x40000010, regs);
126                 tsc_freq = regs[0] * 1000;
127         } else {
128                 vmware_hvcall(VMW_HVCMD_GETHZ, regs);
129                 if (regs[1] != UINT_MAX)
130                         tsc_freq = regs[0] | ((uint64_t)regs[1] << 32);
131         }
132         tsc_is_invariant = 1;
133 }
134
135 /*
136  * Calculate TSC frequency using information from the CPUID leaf 0x15
137  * 'Time Stamp Counter and Nominal Core Crystal Clock'.  If leaf 0x15
138  * is not functional, as it is on Skylake/Kabylake, try 0x16 'Processor
139  * Frequency Information'.  Leaf 0x16 is described in the SDM as
140  * informational only, but if 0x15 did not work, and TSC calibration
141  * is disabled, it is the best we can get at all.  It should still be
142  * an improvement over the parsing of the CPU model name in
143  * tsc_freq_intel(), when available.
144  */
145 static bool
146 tsc_freq_cpuid(void)
147 {
148         u_int regs[4];
149
150         if (cpu_high < 0x15)
151                 return (false);
152         do_cpuid(0x15, regs);
153         if (regs[0] != 0 && regs[1] != 0 && regs[2] != 0) {
154                 tsc_freq = (uint64_t)regs[2] * regs[1] / regs[0];
155                 return (true);
156         }
157
158         if (cpu_high < 0x16)
159                 return (false);
160         do_cpuid(0x16, regs);
161         if (regs[0] != 0) {
162                 tsc_freq = (uint64_t)regs[0] * 1000000;
163                 return (true);
164         }
165
166         return (false);
167 }
168
169 static void
170 tsc_freq_intel(void)
171 {
172         char brand[48];
173         u_int regs[4];
174         uint64_t freq;
175         char *p;
176         u_int i;
177
178         /*
179          * Intel Processor Identification and the CPUID Instruction
180          * Application Note 485.
181          * http://www.intel.com/assets/pdf/appnote/241618.pdf
182          */
183         if (cpu_exthigh >= 0x80000004) {
184                 p = brand;
185                 for (i = 0x80000002; i < 0x80000005; i++) {
186                         do_cpuid(i, regs);
187                         memcpy(p, regs, sizeof(regs));
188                         p += sizeof(regs);
189                 }
190                 p = NULL;
191                 for (i = 0; i < sizeof(brand) - 1; i++)
192                         if (brand[i] == 'H' && brand[i + 1] == 'z')
193                                 p = brand + i;
194                 if (p != NULL) {
195                         p -= 5;
196                         switch (p[4]) {
197                         case 'M':
198                                 i = 1;
199                                 break;
200                         case 'G':
201                                 i = 1000;
202                                 break;
203                         case 'T':
204                                 i = 1000000;
205                                 break;
206                         default:
207                                 return;
208                         }
209 #define C2D(c)  ((c) - '0')
210                         if (p[1] == '.') {
211                                 freq = C2D(p[0]) * 1000;
212                                 freq += C2D(p[2]) * 100;
213                                 freq += C2D(p[3]) * 10;
214                                 freq *= i * 1000;
215                         } else {
216                                 freq = C2D(p[0]) * 1000;
217                                 freq += C2D(p[1]) * 100;
218                                 freq += C2D(p[2]) * 10;
219                                 freq += C2D(p[3]);
220                                 freq *= i * 1000000;
221                         }
222 #undef C2D
223                         tsc_freq = freq;
224                 }
225         }
226 }
227
228 static void
229 probe_tsc_freq(void)
230 {
231         uint64_t tsc1, tsc2;
232         uint16_t bootflags;
233
234         if (cpu_power_ecx & CPUID_PERF_STAT) {
235                 /*
236                  * XXX Some emulators expose host CPUID without actual support
237                  * for these MSRs.  We must test whether they really work.
238                  */
239                 wrmsr(MSR_MPERF, 0);
240                 wrmsr(MSR_APERF, 0);
241                 DELAY(10);
242                 if (rdmsr(MSR_MPERF) > 0 && rdmsr(MSR_APERF) > 0)
243                         tsc_perf_stat = 1;
244         }
245
246         if (vm_guest == VM_GUEST_VMWARE) {
247                 tsc_freq_vmware();
248                 return;
249         }
250
251         switch (cpu_vendor_id) {
252         case CPU_VENDOR_AMD:
253         case CPU_VENDOR_HYGON:
254                 if ((amd_pminfo & AMDPM_TSC_INVARIANT) != 0 ||
255                     (vm_guest == VM_GUEST_NO &&
256                     CPUID_TO_FAMILY(cpu_id) >= 0x10))
257                         tsc_is_invariant = 1;
258                 if (cpu_feature & CPUID_SSE2) {
259                         tsc_timecounter.tc_get_timecount =
260                             tsc_get_timecount_mfence;
261                 }
262                 break;
263         case CPU_VENDOR_INTEL:
264                 if ((amd_pminfo & AMDPM_TSC_INVARIANT) != 0 ||
265                     (vm_guest == VM_GUEST_NO &&
266                     ((CPUID_TO_FAMILY(cpu_id) == 0x6 &&
267                     CPUID_TO_MODEL(cpu_id) >= 0xe) ||
268                     (CPUID_TO_FAMILY(cpu_id) == 0xf &&
269                     CPUID_TO_MODEL(cpu_id) >= 0x3))))
270                         tsc_is_invariant = 1;
271                 if (cpu_feature & CPUID_SSE2) {
272                         tsc_timecounter.tc_get_timecount =
273                             tsc_get_timecount_lfence;
274                 }
275                 break;
276         case CPU_VENDOR_CENTAUR:
277                 if (vm_guest == VM_GUEST_NO &&
278                     CPUID_TO_FAMILY(cpu_id) == 0x6 &&
279                     CPUID_TO_MODEL(cpu_id) >= 0xf &&
280                     (rdmsr(0x1203) & 0x100000000ULL) == 0)
281                         tsc_is_invariant = 1;
282                 if (cpu_feature & CPUID_SSE2) {
283                         tsc_timecounter.tc_get_timecount =
284                             tsc_get_timecount_lfence;
285                 }
286                 break;
287         }
288
289         if (!TUNABLE_INT_FETCH("machdep.disable_tsc_calibration",
290             &tsc_skip_calibration)) {
291                 /*
292                  * User did not give the order about calibration.
293                  * If he did, we do not try to guess.
294                  *
295                  * Otherwise, if ACPI FADT reports that the platform
296                  * is legacy-free and CPUID provides TSC frequency,
297                  * use it.  The calibration could fail anyway since
298                  * ISA timer can be absent or power gated.
299                  */
300                 if (acpi_get_fadt_bootflags(&bootflags) &&
301                     (bootflags & ACPI_FADT_LEGACY_DEVICES) == 0 &&
302                     tsc_freq_cpuid()) {
303                         printf("Skipping TSC calibration since no legacy "
304                             "devices reported by FADT and CPUID works\n");
305                         tsc_skip_calibration = 1;
306                 }
307         }
308         if (tsc_skip_calibration) {
309                 if (tsc_freq_cpuid())
310                         ;
311                 else if (cpu_vendor_id == CPU_VENDOR_INTEL)
312                         tsc_freq_intel();
313         } else {
314                 if (bootverbose)
315                         printf("Calibrating TSC clock ... ");
316                 tsc1 = rdtsc();
317                 DELAY(1000000);
318                 tsc2 = rdtsc();
319                 tsc_freq = tsc2 - tsc1;
320         }
321         if (bootverbose)
322                 printf("TSC clock: %ju Hz\n", (intmax_t)tsc_freq);
323 }
324
325 void
326 init_TSC(void)
327 {
328
329         if ((cpu_feature & CPUID_TSC) == 0 || tsc_disabled)
330                 return;
331
332 #ifdef __i386__
333         /* The TSC is known to be broken on certain CPUs. */
334         switch (cpu_vendor_id) {
335         case CPU_VENDOR_AMD:
336                 switch (cpu_id & 0xFF0) {
337                 case 0x500:
338                         /* K5 Model 0 */
339                         return;
340                 }
341                 break;
342         case CPU_VENDOR_CENTAUR:
343                 switch (cpu_id & 0xff0) {
344                 case 0x540:
345                         /*
346                          * http://www.centtech.com/c6_data_sheet.pdf
347                          *
348                          * I-12 RDTSC may return incoherent values in EDX:EAX
349                          * I-13 RDTSC hangs when certain event counters are used
350                          */
351                         return;
352                 }
353                 break;
354         case CPU_VENDOR_NSC:
355                 switch (cpu_id & 0xff0) {
356                 case 0x540:
357                         if ((cpu_id & CPUID_STEPPING) == 0)
358                                 return;
359                         break;
360                 }
361                 break;
362         }
363 #endif
364                 
365         probe_tsc_freq();
366
367         /*
368          * Inform CPU accounting about our boot-time clock rate.  This will
369          * be updated if someone loads a cpufreq driver after boot that
370          * discovers a new max frequency.
371          */
372         if (tsc_freq != 0)
373                 set_cputicker(rdtsc, tsc_freq, !tsc_is_invariant);
374
375         if (tsc_is_invariant)
376                 return;
377
378         /* Register to find out about changes in CPU frequency. */
379         tsc_pre_tag = EVENTHANDLER_REGISTER(cpufreq_pre_change,
380             tsc_freq_changing, NULL, EVENTHANDLER_PRI_FIRST);
381         tsc_post_tag = EVENTHANDLER_REGISTER(cpufreq_post_change,
382             tsc_freq_changed, NULL, EVENTHANDLER_PRI_FIRST);
383         tsc_levels_tag = EVENTHANDLER_REGISTER(cpufreq_levels_changed,
384             tsc_levels_changed, NULL, EVENTHANDLER_PRI_ANY);
385 }
386
387 #ifdef SMP
388
389 /*
390  * RDTSC is not a serializing instruction, and does not drain
391  * instruction stream, so we need to drain the stream before executing
392  * it.  It could be fixed by use of RDTSCP, except the instruction is
393  * not available everywhere.
394  *
395  * Use CPUID for draining in the boot-time SMP constistency test.  The
396  * timecounters use MFENCE for AMD CPUs, and LFENCE for others (Intel
397  * and VIA) when SSE2 is present, and nothing on older machines which
398  * also do not issue RDTSC prematurely.  There, testing for SSE2 and
399  * vendor is too cumbersome, and we learn about TSC presence from CPUID.
400  *
401  * Do not use do_cpuid(), since we do not need CPUID results, which
402  * have to be written into memory with do_cpuid().
403  */
404 #define TSC_READ(x)                                                     \
405 static void                                                             \
406 tsc_read_##x(void *arg)                                                 \
407 {                                                                       \
408         uint64_t *tsc = arg;                                            \
409         u_int cpu = PCPU_GET(cpuid);                                    \
410                                                                         \
411         __asm __volatile("cpuid" : : : "eax", "ebx", "ecx", "edx");     \
412         tsc[cpu * 3 + x] = rdtsc();                                     \
413 }
414 TSC_READ(0)
415 TSC_READ(1)
416 TSC_READ(2)
417 #undef TSC_READ
418
419 #define N       1000
420
421 static void
422 comp_smp_tsc(void *arg)
423 {
424         uint64_t *tsc;
425         int64_t d1, d2;
426         u_int cpu = PCPU_GET(cpuid);
427         u_int i, j, size;
428
429         size = (mp_maxid + 1) * 3;
430         for (i = 0, tsc = arg; i < N; i++, tsc += size)
431                 CPU_FOREACH(j) {
432                         if (j == cpu)
433                                 continue;
434                         d1 = tsc[cpu * 3 + 1] - tsc[j * 3];
435                         d2 = tsc[cpu * 3 + 2] - tsc[j * 3 + 1];
436                         if (d1 <= 0 || d2 <= 0) {
437                                 smp_tsc = 0;
438                                 return;
439                         }
440                 }
441 }
442
443 static void
444 adj_smp_tsc(void *arg)
445 {
446         uint64_t *tsc;
447         int64_t d, min, max;
448         u_int cpu = PCPU_GET(cpuid);
449         u_int first, i, size;
450
451         first = CPU_FIRST();
452         if (cpu == first)
453                 return;
454         min = INT64_MIN;
455         max = INT64_MAX;
456         size = (mp_maxid + 1) * 3;
457         for (i = 0, tsc = arg; i < N; i++, tsc += size) {
458                 d = tsc[first * 3] - tsc[cpu * 3 + 1];
459                 if (d > min)
460                         min = d;
461                 d = tsc[first * 3 + 1] - tsc[cpu * 3 + 2];
462                 if (d > min)
463                         min = d;
464                 d = tsc[first * 3 + 1] - tsc[cpu * 3];
465                 if (d < max)
466                         max = d;
467                 d = tsc[first * 3 + 2] - tsc[cpu * 3 + 1];
468                 if (d < max)
469                         max = d;
470         }
471         if (min > max)
472                 return;
473         d = min / 2 + max / 2;
474         __asm __volatile (
475                 "movl $0x10, %%ecx\n\t"
476                 "rdmsr\n\t"
477                 "addl %%edi, %%eax\n\t"
478                 "adcl %%esi, %%edx\n\t"
479                 "wrmsr\n"
480                 : /* No output */
481                 : "D" ((uint32_t)d), "S" ((uint32_t)(d >> 32))
482                 : "ax", "cx", "dx", "cc"
483         );
484 }
485
486 static int
487 test_tsc(int adj_max_count)
488 {
489         uint64_t *data, *tsc;
490         u_int i, size, adj;
491
492         if ((!smp_tsc && !tsc_is_invariant) || vm_guest)
493                 return (-100);
494         size = (mp_maxid + 1) * 3;
495         data = malloc(sizeof(*data) * size * N, M_TEMP, M_WAITOK);
496         adj = 0;
497 retry:
498         for (i = 0, tsc = data; i < N; i++, tsc += size)
499                 smp_rendezvous(tsc_read_0, tsc_read_1, tsc_read_2, tsc);
500         smp_tsc = 1;    /* XXX */
501         smp_rendezvous(smp_no_rendezvous_barrier, comp_smp_tsc,
502             smp_no_rendezvous_barrier, data);
503         if (!smp_tsc && adj < adj_max_count) {
504                 adj++;
505                 smp_rendezvous(smp_no_rendezvous_barrier, adj_smp_tsc,
506                     smp_no_rendezvous_barrier, data);
507                 goto retry;
508         }
509         free(data, M_TEMP);
510         if (bootverbose)
511                 printf("SMP: %sed TSC synchronization test%s\n",
512                     smp_tsc ? "pass" : "fail", 
513                     adj > 0 ? " after adjustment" : "");
514         if (smp_tsc && tsc_is_invariant) {
515                 switch (cpu_vendor_id) {
516                 case CPU_VENDOR_AMD:
517                 case CPU_VENDOR_HYGON:
518                         /*
519                          * Starting with Family 15h processors, TSC clock
520                          * source is in the north bridge.  Check whether
521                          * we have a single-socket/multi-core platform.
522                          * XXX Need more work for complex cases.
523                          */
524                         if (CPUID_TO_FAMILY(cpu_id) < 0x15 ||
525                             (amd_feature2 & AMDID2_CMP) == 0 ||
526                             smp_cpus > (cpu_procinfo2 & AMDID_CMP_CORES) + 1)
527                                 break;
528                         return (1000);
529                 case CPU_VENDOR_INTEL:
530                         /*
531                          * XXX Assume Intel platforms have synchronized TSCs.
532                          */
533                         return (1000);
534                 }
535                 return (800);
536         }
537         return (-100);
538 }
539
540 #undef N
541
542 #endif /* SMP */
543
544 static void
545 init_TSC_tc(void)
546 {
547         uint64_t max_freq;
548         int shift;
549
550         if ((cpu_feature & CPUID_TSC) == 0 || tsc_disabled)
551                 return;
552
553         /*
554          * Limit timecounter frequency to fit in an int and prevent it from
555          * overflowing too fast.
556          */
557         max_freq = UINT_MAX;
558
559         /*
560          * We can not use the TSC if we support APM.  Precise timekeeping
561          * on an APM'ed machine is at best a fools pursuit, since 
562          * any and all of the time spent in various SMM code can't 
563          * be reliably accounted for.  Reading the RTC is your only
564          * source of reliable time info.  The i8254 loses too, of course,
565          * but we need to have some kind of time...
566          * We don't know at this point whether APM is going to be used
567          * or not, nor when it might be activated.  Play it safe.
568          */
569         if (power_pm_get_type() == POWER_PM_TYPE_APM) {
570                 tsc_timecounter.tc_quality = -1000;
571                 if (bootverbose)
572                         printf("TSC timecounter disabled: APM enabled.\n");
573                 goto init;
574         }
575
576         /*
577          * Intel CPUs without a C-state invariant TSC can stop the TSC
578          * in either C2 or C3.  Disable use of C2 and C3 while using
579          * the TSC as the timecounter.  The timecounter can be changed
580          * to enable C2 and C3.
581          *
582          * Note that the TSC is used as the cputicker for computing
583          * thread runtime regardless of the timecounter setting, so
584          * using an alternate timecounter and enabling C2 or C3 can
585          * result incorrect runtimes for kernel idle threads (but not
586          * for any non-idle threads).
587          */
588         if (cpu_vendor_id == CPU_VENDOR_INTEL &&
589             (amd_pminfo & AMDPM_TSC_INVARIANT) == 0) {
590                 tsc_timecounter.tc_flags |= TC_FLAGS_C2STOP;
591                 if (bootverbose)
592                         printf("TSC timecounter disables C2 and C3.\n");
593         }
594
595         /*
596          * We can not use the TSC in SMP mode unless the TSCs on all CPUs
597          * are synchronized.  If the user is sure that the system has
598          * synchronized TSCs, set kern.timecounter.smp_tsc tunable to a
599          * non-zero value.  The TSC seems unreliable in virtualized SMP
600          * environments, so it is set to a negative quality in those cases.
601          */
602 #ifdef SMP
603         if (mp_ncpus > 1)
604                 tsc_timecounter.tc_quality = test_tsc(smp_tsc_adjust);
605         else
606 #endif /* SMP */
607         if (tsc_is_invariant)
608                 tsc_timecounter.tc_quality = 1000;
609         max_freq >>= tsc_shift;
610
611 init:
612         for (shift = 0; shift <= 31 && (tsc_freq >> shift) > max_freq; shift++)
613                 ;
614         if ((cpu_feature & CPUID_SSE2) != 0 && mp_ncpus > 1) {
615                 if (cpu_vendor_id == CPU_VENDOR_AMD ||
616                     cpu_vendor_id == CPU_VENDOR_HYGON) {
617                         tsc_timecounter.tc_get_timecount = shift > 0 ?
618                             tsc_get_timecount_low_mfence :
619                             tsc_get_timecount_mfence;
620                 } else {
621                         tsc_timecounter.tc_get_timecount = shift > 0 ?
622                             tsc_get_timecount_low_lfence :
623                             tsc_get_timecount_lfence;
624                 }
625         } else {
626                 tsc_timecounter.tc_get_timecount = shift > 0 ?
627                     tsc_get_timecount_low : tsc_get_timecount;
628         }
629         if (shift > 0) {
630                 tsc_timecounter.tc_name = "TSC-low";
631                 if (bootverbose)
632                         printf("TSC timecounter discards lower %d bit(s)\n",
633                             shift);
634         }
635         if (tsc_freq != 0) {
636                 tsc_timecounter.tc_frequency = tsc_freq >> shift;
637                 tsc_timecounter.tc_priv = (void *)(intptr_t)shift;
638                 tc_init(&tsc_timecounter);
639         }
640 }
641 SYSINIT(tsc_tc, SI_SUB_SMP, SI_ORDER_ANY, init_TSC_tc, NULL);
642
643 void
644 resume_TSC(void)
645 {
646 #ifdef SMP
647         int quality;
648
649         /* If TSC was not good on boot, it is unlikely to become good now. */
650         if (tsc_timecounter.tc_quality < 0)
651                 return;
652         /* Nothing to do with UP. */
653         if (mp_ncpus < 2)
654                 return;
655
656         /*
657          * If TSC was good, a single synchronization should be enough,
658          * but honour smp_tsc_adjust if it's set.
659          */
660         quality = test_tsc(MAX(smp_tsc_adjust, 1));
661         if (quality != tsc_timecounter.tc_quality) {
662                 printf("TSC timecounter quality changed: %d -> %d\n",
663                     tsc_timecounter.tc_quality, quality);
664                 tsc_timecounter.tc_quality = quality;
665         }
666 #endif /* SMP */
667 }
668
669 /*
670  * When cpufreq levels change, find out about the (new) max frequency.  We
671  * use this to update CPU accounting in case it got a lower estimate at boot.
672  */
673 static void
674 tsc_levels_changed(void *arg, int unit)
675 {
676         device_t cf_dev;
677         struct cf_level *levels;
678         int count, error;
679         uint64_t max_freq;
680
681         /* Only use values from the first CPU, assuming all are equal. */
682         if (unit != 0)
683                 return;
684
685         /* Find the appropriate cpufreq device instance. */
686         cf_dev = devclass_get_device(devclass_find("cpufreq"), unit);
687         if (cf_dev == NULL) {
688                 printf("tsc_levels_changed() called but no cpufreq device?\n");
689                 return;
690         }
691
692         /* Get settings from the device and find the max frequency. */
693         count = 64;
694         levels = malloc(count * sizeof(*levels), M_TEMP, M_NOWAIT);
695         if (levels == NULL)
696                 return;
697         error = CPUFREQ_LEVELS(cf_dev, levels, &count);
698         if (error == 0 && count != 0) {
699                 max_freq = (uint64_t)levels[0].total_set.freq * 1000000;
700                 set_cputicker(rdtsc, max_freq, 1);
701         } else
702                 printf("tsc_levels_changed: no max freq found\n");
703         free(levels, M_TEMP);
704 }
705
706 /*
707  * If the TSC timecounter is in use, veto the pending change.  It may be
708  * possible in the future to handle a dynamically-changing timecounter rate.
709  */
710 static void
711 tsc_freq_changing(void *arg, const struct cf_level *level, int *status)
712 {
713
714         if (*status != 0 || timecounter != &tsc_timecounter)
715                 return;
716
717         printf("timecounter TSC must not be in use when "
718             "changing frequencies; change denied\n");
719         *status = EBUSY;
720 }
721
722 /* Update TSC freq with the value indicated by the caller. */
723 static void
724 tsc_freq_changed(void *arg, const struct cf_level *level, int status)
725 {
726         uint64_t freq;
727
728         /* If there was an error during the transition, don't do anything. */
729         if (tsc_disabled || status != 0)
730                 return;
731
732         /* Total setting for this level gives the new frequency in MHz. */
733         freq = (uint64_t)level->total_set.freq * 1000000;
734         atomic_store_rel_64(&tsc_freq, freq);
735         tsc_timecounter.tc_frequency =
736             freq >> (int)(intptr_t)tsc_timecounter.tc_priv;
737 }
738
739 static int
740 sysctl_machdep_tsc_freq(SYSCTL_HANDLER_ARGS)
741 {
742         int error;
743         uint64_t freq;
744
745         freq = atomic_load_acq_64(&tsc_freq);
746         if (freq == 0)
747                 return (EOPNOTSUPP);
748         error = sysctl_handle_64(oidp, &freq, 0, req);
749         if (error == 0 && req->newptr != NULL) {
750                 atomic_store_rel_64(&tsc_freq, freq);
751                 atomic_store_rel_64(&tsc_timecounter.tc_frequency,
752                     freq >> (int)(intptr_t)tsc_timecounter.tc_priv);
753         }
754         return (error);
755 }
756
757 SYSCTL_PROC(_machdep, OID_AUTO, tsc_freq,
758     CTLTYPE_U64 | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
759     0, 0, sysctl_machdep_tsc_freq, "QU",
760     "Time Stamp Counter frequency");
761
762 static u_int
763 tsc_get_timecount(struct timecounter *tc __unused)
764 {
765
766         return (rdtsc32());
767 }
768
769 static inline u_int
770 tsc_get_timecount_low(struct timecounter *tc)
771 {
772         uint32_t rv;
773
774         __asm __volatile("rdtsc; shrd %%cl, %%edx, %0"
775             : "=a" (rv) : "c" ((int)(intptr_t)tc->tc_priv) : "edx");
776         return (rv);
777 }
778
779 static u_int
780 tsc_get_timecount_lfence(struct timecounter *tc __unused)
781 {
782
783         lfence();
784         return (rdtsc32());
785 }
786
787 static u_int
788 tsc_get_timecount_low_lfence(struct timecounter *tc)
789 {
790
791         lfence();
792         return (tsc_get_timecount_low(tc));
793 }
794
795 static u_int
796 tsc_get_timecount_mfence(struct timecounter *tc __unused)
797 {
798
799         mfence();
800         return (rdtsc32());
801 }
802
803 static u_int
804 tsc_get_timecount_low_mfence(struct timecounter *tc)
805 {
806
807         mfence();
808         return (tsc_get_timecount_low(tc));
809 }
810
811 static uint32_t
812 x86_tsc_vdso_timehands(struct vdso_timehands *vdso_th, struct timecounter *tc)
813 {
814
815         vdso_th->th_algo = VDSO_TH_ALGO_X86_TSC;
816         vdso_th->th_x86_shift = (int)(intptr_t)tc->tc_priv;
817         vdso_th->th_x86_hpet_idx = 0xffffffff;
818         bzero(vdso_th->th_res, sizeof(vdso_th->th_res));
819         return (1);
820 }
821
822 #ifdef COMPAT_FREEBSD32
823 static uint32_t
824 x86_tsc_vdso_timehands32(struct vdso_timehands32 *vdso_th32,
825     struct timecounter *tc)
826 {
827
828         vdso_th32->th_algo = VDSO_TH_ALGO_X86_TSC;
829         vdso_th32->th_x86_shift = (int)(intptr_t)tc->tc_priv;
830         vdso_th32->th_x86_hpet_idx = 0xffffffff;
831         bzero(vdso_th32->th_res, sizeof(vdso_th32->th_res));
832         return (1);
833 }
834 #endif