]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/x86/x86/tsc.c
MFV r356415
[FreeBSD/FreeBSD.git] / sys / x86 / x86 / tsc.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 1998-2003 Poul-Henning Kamp
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 #include "opt_clock.h"
33
34 #include <sys/param.h>
35 #include <sys/bus.h>
36 #include <sys/cpu.h>
37 #include <sys/eventhandler.h>
38 #include <sys/limits.h>
39 #include <sys/malloc.h>
40 #include <sys/systm.h>
41 #include <sys/sysctl.h>
42 #include <sys/time.h>
43 #include <sys/timetc.h>
44 #include <sys/kernel.h>
45 #include <sys/power.h>
46 #include <sys/smp.h>
47 #include <sys/vdso.h>
48 #include <machine/clock.h>
49 #include <machine/cputypes.h>
50 #include <machine/md_var.h>
51 #include <machine/specialreg.h>
52 #include <x86/vmware.h>
53 #include <dev/acpica/acpi_hpet.h>
54 #include <contrib/dev/acpica/include/acpi.h>
55
56 #include "cpufreq_if.h"
57
58 uint64_t        tsc_freq;
59 int             tsc_is_invariant;
60 int             tsc_perf_stat;
61
62 static eventhandler_tag tsc_levels_tag, tsc_pre_tag, tsc_post_tag;
63
64 SYSCTL_INT(_kern_timecounter, OID_AUTO, invariant_tsc, CTLFLAG_RDTUN,
65     &tsc_is_invariant, 0, "Indicates whether the TSC is P-state invariant");
66
67 #ifdef SMP
68 int     smp_tsc;
69 SYSCTL_INT(_kern_timecounter, OID_AUTO, smp_tsc, CTLFLAG_RDTUN, &smp_tsc, 0,
70     "Indicates whether the TSC is safe to use in SMP mode");
71
72 int     smp_tsc_adjust = 0;
73 SYSCTL_INT(_kern_timecounter, OID_AUTO, smp_tsc_adjust, CTLFLAG_RDTUN,
74     &smp_tsc_adjust, 0, "Try to adjust TSC on APs to match BSP");
75 #endif
76
77 static int      tsc_shift = 1;
78 SYSCTL_INT(_kern_timecounter, OID_AUTO, tsc_shift, CTLFLAG_RDTUN,
79     &tsc_shift, 0, "Shift to pre-apply for the maximum TSC frequency");
80
81 static int      tsc_disabled;
82 SYSCTL_INT(_machdep, OID_AUTO, disable_tsc, CTLFLAG_RDTUN, &tsc_disabled, 0,
83     "Disable x86 Time Stamp Counter");
84
85 static int      tsc_skip_calibration;
86 SYSCTL_INT(_machdep, OID_AUTO, disable_tsc_calibration, CTLFLAG_RDTUN |
87     CTLFLAG_NOFETCH, &tsc_skip_calibration, 0,
88     "Disable TSC frequency calibration");
89
90 static void tsc_freq_changed(void *arg, const struct cf_level *level,
91     int status);
92 static void tsc_freq_changing(void *arg, const struct cf_level *level,
93     int *status);
94 static unsigned tsc_get_timecount(struct timecounter *tc);
95 static inline unsigned tsc_get_timecount_low(struct timecounter *tc);
96 static unsigned tsc_get_timecount_lfence(struct timecounter *tc);
97 static unsigned tsc_get_timecount_low_lfence(struct timecounter *tc);
98 static unsigned tsc_get_timecount_mfence(struct timecounter *tc);
99 static unsigned tsc_get_timecount_low_mfence(struct timecounter *tc);
100 static void tsc_levels_changed(void *arg, int unit);
101 static uint32_t x86_tsc_vdso_timehands(struct vdso_timehands *vdso_th,
102     struct timecounter *tc);
103 #ifdef COMPAT_FREEBSD32
104 static uint32_t x86_tsc_vdso_timehands32(struct vdso_timehands32 *vdso_th32,
105     struct timecounter *tc);
106 #endif
107
108 static struct timecounter tsc_timecounter = {
109         .tc_get_timecount =             tsc_get_timecount,
110         .tc_counter_mask =              ~0u,
111         .tc_name =                      "TSC",
112         .tc_quality =                   800,    /* adjusted in code */
113         .tc_fill_vdso_timehands =       x86_tsc_vdso_timehands,
114 #ifdef COMPAT_FREEBSD32
115         .tc_fill_vdso_timehands32 =     x86_tsc_vdso_timehands32,
116 #endif
117 };
118
119 static void
120 tsc_freq_vmware(void)
121 {
122         u_int regs[4];
123
124         if (hv_high >= 0x40000010) {
125                 do_cpuid(0x40000010, regs);
126                 tsc_freq = regs[0] * 1000;
127         } else {
128                 vmware_hvcall(VMW_HVCMD_GETHZ, regs);
129                 if (regs[1] != UINT_MAX)
130                         tsc_freq = regs[0] | ((uint64_t)regs[1] << 32);
131         }
132         tsc_is_invariant = 1;
133 }
134
135 /*
136  * Calculate TSC frequency using information from the CPUID leaf 0x15
137  * 'Time Stamp Counter and Nominal Core Crystal Clock'.  If leaf 0x15
138  * is not functional, as it is on Skylake/Kabylake, try 0x16 'Processor
139  * Frequency Information'.  Leaf 0x16 is described in the SDM as
140  * informational only, but if 0x15 did not work, and TSC calibration
141  * is disabled, it is the best we can get at all.  It should still be
142  * an improvement over the parsing of the CPU model name in
143  * tsc_freq_intel(), when available.
144  */
145 static bool
146 tsc_freq_cpuid(void)
147 {
148         u_int regs[4];
149
150         if (cpu_high < 0x15)
151                 return (false);
152         do_cpuid(0x15, regs);
153         if (regs[0] != 0 && regs[1] != 0 && regs[2] != 0) {
154                 tsc_freq = (uint64_t)regs[2] * regs[1] / regs[0];
155                 return (true);
156         }
157
158         if (cpu_high < 0x16)
159                 return (false);
160         do_cpuid(0x16, regs);
161         if (regs[0] != 0) {
162                 tsc_freq = (uint64_t)regs[0] * 1000000;
163                 return (true);
164         }
165
166         return (false);
167 }
168
169 static void
170 tsc_freq_intel(void)
171 {
172         char brand[48];
173         u_int regs[4];
174         uint64_t freq;
175         char *p;
176         u_int i;
177
178         /*
179          * Intel Processor Identification and the CPUID Instruction
180          * Application Note 485.
181          * http://www.intel.com/assets/pdf/appnote/241618.pdf
182          */
183         if (cpu_exthigh >= 0x80000004) {
184                 p = brand;
185                 for (i = 0x80000002; i < 0x80000005; i++) {
186                         do_cpuid(i, regs);
187                         memcpy(p, regs, sizeof(regs));
188                         p += sizeof(regs);
189                 }
190                 p = NULL;
191                 for (i = 0; i < sizeof(brand) - 1; i++)
192                         if (brand[i] == 'H' && brand[i + 1] == 'z')
193                                 p = brand + i;
194                 if (p != NULL) {
195                         p -= 5;
196                         switch (p[4]) {
197                         case 'M':
198                                 i = 1;
199                                 break;
200                         case 'G':
201                                 i = 1000;
202                                 break;
203                         case 'T':
204                                 i = 1000000;
205                                 break;
206                         default:
207                                 return;
208                         }
209 #define C2D(c)  ((c) - '0')
210                         if (p[1] == '.') {
211                                 freq = C2D(p[0]) * 1000;
212                                 freq += C2D(p[2]) * 100;
213                                 freq += C2D(p[3]) * 10;
214                                 freq *= i * 1000;
215                         } else {
216                                 freq = C2D(p[0]) * 1000;
217                                 freq += C2D(p[1]) * 100;
218                                 freq += C2D(p[2]) * 10;
219                                 freq += C2D(p[3]);
220                                 freq *= i * 1000000;
221                         }
222 #undef C2D
223                         tsc_freq = freq;
224                 }
225         }
226 }
227
228 static void
229 probe_tsc_freq(void)
230 {
231         uint64_t tsc1, tsc2;
232         uint16_t bootflags;
233
234         if (cpu_power_ecx & CPUID_PERF_STAT) {
235                 /*
236                  * XXX Some emulators expose host CPUID without actual support
237                  * for these MSRs.  We must test whether they really work.
238                  */
239                 wrmsr(MSR_MPERF, 0);
240                 wrmsr(MSR_APERF, 0);
241                 DELAY(10);
242                 if (rdmsr(MSR_MPERF) > 0 && rdmsr(MSR_APERF) > 0)
243                         tsc_perf_stat = 1;
244         }
245
246         if (vm_guest == VM_GUEST_VMWARE) {
247                 tsc_freq_vmware();
248                 return;
249         }
250
251         switch (cpu_vendor_id) {
252         case CPU_VENDOR_AMD:
253                 if ((amd_pminfo & AMDPM_TSC_INVARIANT) != 0 ||
254                     (vm_guest == VM_GUEST_NO &&
255                     CPUID_TO_FAMILY(cpu_id) >= 0x10))
256                         tsc_is_invariant = 1;
257                 if (cpu_feature & CPUID_SSE2) {
258                         tsc_timecounter.tc_get_timecount =
259                             tsc_get_timecount_mfence;
260                 }
261                 break;
262         case CPU_VENDOR_INTEL:
263                 if ((amd_pminfo & AMDPM_TSC_INVARIANT) != 0 ||
264                     (vm_guest == VM_GUEST_NO &&
265                     ((CPUID_TO_FAMILY(cpu_id) == 0x6 &&
266                     CPUID_TO_MODEL(cpu_id) >= 0xe) ||
267                     (CPUID_TO_FAMILY(cpu_id) == 0xf &&
268                     CPUID_TO_MODEL(cpu_id) >= 0x3))))
269                         tsc_is_invariant = 1;
270                 if (cpu_feature & CPUID_SSE2) {
271                         tsc_timecounter.tc_get_timecount =
272                             tsc_get_timecount_lfence;
273                 }
274                 break;
275         case CPU_VENDOR_CENTAUR:
276                 if (vm_guest == VM_GUEST_NO &&
277                     CPUID_TO_FAMILY(cpu_id) == 0x6 &&
278                     CPUID_TO_MODEL(cpu_id) >= 0xf &&
279                     (rdmsr(0x1203) & 0x100000000ULL) == 0)
280                         tsc_is_invariant = 1;
281                 if (cpu_feature & CPUID_SSE2) {
282                         tsc_timecounter.tc_get_timecount =
283                             tsc_get_timecount_lfence;
284                 }
285                 break;
286         }
287
288         if (!TUNABLE_INT_FETCH("machdep.disable_tsc_calibration",
289             &tsc_skip_calibration)) {
290                 /*
291                  * User did not give the order about calibration.
292                  * If he did, we do not try to guess.
293                  *
294                  * Otherwise, if ACPI FADT reports that the platform
295                  * is legacy-free and CPUID provides TSC frequency,
296                  * use it.  The calibration could fail anyway since
297                  * ISA timer can be absent or power gated.
298                  */
299                 if (acpi_get_fadt_bootflags(&bootflags) &&
300                     (bootflags & ACPI_FADT_LEGACY_DEVICES) == 0 &&
301                     tsc_freq_cpuid()) {
302                         printf("Skipping TSC calibration since no legacy "
303                             "devices reported by FADT and CPUID works\n");
304                         tsc_skip_calibration = 1;
305                 }
306         }
307         if (tsc_skip_calibration) {
308                 if (tsc_freq_cpuid())
309                         ;
310                 else if (cpu_vendor_id == CPU_VENDOR_INTEL)
311                         tsc_freq_intel();
312         } else {
313                 if (bootverbose)
314                         printf("Calibrating TSC clock ... ");
315                 tsc1 = rdtsc();
316                 DELAY(1000000);
317                 tsc2 = rdtsc();
318                 tsc_freq = tsc2 - tsc1;
319         }
320         if (bootverbose)
321                 printf("TSC clock: %ju Hz\n", (intmax_t)tsc_freq);
322 }
323
324 void
325 init_TSC(void)
326 {
327
328         if ((cpu_feature & CPUID_TSC) == 0 || tsc_disabled)
329                 return;
330
331 #ifdef __i386__
332         /* The TSC is known to be broken on certain CPUs. */
333         switch (cpu_vendor_id) {
334         case CPU_VENDOR_AMD:
335                 switch (cpu_id & 0xFF0) {
336                 case 0x500:
337                         /* K5 Model 0 */
338                         return;
339                 }
340                 break;
341         case CPU_VENDOR_CENTAUR:
342                 switch (cpu_id & 0xff0) {
343                 case 0x540:
344                         /*
345                          * http://www.centtech.com/c6_data_sheet.pdf
346                          *
347                          * I-12 RDTSC may return incoherent values in EDX:EAX
348                          * I-13 RDTSC hangs when certain event counters are used
349                          */
350                         return;
351                 }
352                 break;
353         case CPU_VENDOR_NSC:
354                 switch (cpu_id & 0xff0) {
355                 case 0x540:
356                         if ((cpu_id & CPUID_STEPPING) == 0)
357                                 return;
358                         break;
359                 }
360                 break;
361         }
362 #endif
363                 
364         probe_tsc_freq();
365
366         /*
367          * Inform CPU accounting about our boot-time clock rate.  This will
368          * be updated if someone loads a cpufreq driver after boot that
369          * discovers a new max frequency.
370          */
371         if (tsc_freq != 0)
372                 set_cputicker(rdtsc, tsc_freq, !tsc_is_invariant);
373
374         if (tsc_is_invariant)
375                 return;
376
377         /* Register to find out about changes in CPU frequency. */
378         tsc_pre_tag = EVENTHANDLER_REGISTER(cpufreq_pre_change,
379             tsc_freq_changing, NULL, EVENTHANDLER_PRI_FIRST);
380         tsc_post_tag = EVENTHANDLER_REGISTER(cpufreq_post_change,
381             tsc_freq_changed, NULL, EVENTHANDLER_PRI_FIRST);
382         tsc_levels_tag = EVENTHANDLER_REGISTER(cpufreq_levels_changed,
383             tsc_levels_changed, NULL, EVENTHANDLER_PRI_ANY);
384 }
385
386 #ifdef SMP
387
388 /*
389  * RDTSC is not a serializing instruction, and does not drain
390  * instruction stream, so we need to drain the stream before executing
391  * it.  It could be fixed by use of RDTSCP, except the instruction is
392  * not available everywhere.
393  *
394  * Use CPUID for draining in the boot-time SMP constistency test.  The
395  * timecounters use MFENCE for AMD CPUs, and LFENCE for others (Intel
396  * and VIA) when SSE2 is present, and nothing on older machines which
397  * also do not issue RDTSC prematurely.  There, testing for SSE2 and
398  * vendor is too cumbersome, and we learn about TSC presence from CPUID.
399  *
400  * Do not use do_cpuid(), since we do not need CPUID results, which
401  * have to be written into memory with do_cpuid().
402  */
403 #define TSC_READ(x)                                                     \
404 static void                                                             \
405 tsc_read_##x(void *arg)                                                 \
406 {                                                                       \
407         uint64_t *tsc = arg;                                            \
408         u_int cpu = PCPU_GET(cpuid);                                    \
409                                                                         \
410         __asm __volatile("cpuid" : : : "eax", "ebx", "ecx", "edx");     \
411         tsc[cpu * 3 + x] = rdtsc();                                     \
412 }
413 TSC_READ(0)
414 TSC_READ(1)
415 TSC_READ(2)
416 #undef TSC_READ
417
418 #define N       1000
419
420 static void
421 comp_smp_tsc(void *arg)
422 {
423         uint64_t *tsc;
424         int64_t d1, d2;
425         u_int cpu = PCPU_GET(cpuid);
426         u_int i, j, size;
427
428         size = (mp_maxid + 1) * 3;
429         for (i = 0, tsc = arg; i < N; i++, tsc += size)
430                 CPU_FOREACH(j) {
431                         if (j == cpu)
432                                 continue;
433                         d1 = tsc[cpu * 3 + 1] - tsc[j * 3];
434                         d2 = tsc[cpu * 3 + 2] - tsc[j * 3 + 1];
435                         if (d1 <= 0 || d2 <= 0) {
436                                 smp_tsc = 0;
437                                 return;
438                         }
439                 }
440 }
441
442 static void
443 adj_smp_tsc(void *arg)
444 {
445         uint64_t *tsc;
446         int64_t d, min, max;
447         u_int cpu = PCPU_GET(cpuid);
448         u_int first, i, size;
449
450         first = CPU_FIRST();
451         if (cpu == first)
452                 return;
453         min = INT64_MIN;
454         max = INT64_MAX;
455         size = (mp_maxid + 1) * 3;
456         for (i = 0, tsc = arg; i < N; i++, tsc += size) {
457                 d = tsc[first * 3] - tsc[cpu * 3 + 1];
458                 if (d > min)
459                         min = d;
460                 d = tsc[first * 3 + 1] - tsc[cpu * 3 + 2];
461                 if (d > min)
462                         min = d;
463                 d = tsc[first * 3 + 1] - tsc[cpu * 3];
464                 if (d < max)
465                         max = d;
466                 d = tsc[first * 3 + 2] - tsc[cpu * 3 + 1];
467                 if (d < max)
468                         max = d;
469         }
470         if (min > max)
471                 return;
472         d = min / 2 + max / 2;
473         __asm __volatile (
474                 "movl $0x10, %%ecx\n\t"
475                 "rdmsr\n\t"
476                 "addl %%edi, %%eax\n\t"
477                 "adcl %%esi, %%edx\n\t"
478                 "wrmsr\n"
479                 : /* No output */
480                 : "D" ((uint32_t)d), "S" ((uint32_t)(d >> 32))
481                 : "ax", "cx", "dx", "cc"
482         );
483 }
484
485 static int
486 test_tsc(int adj_max_count)
487 {
488         uint64_t *data, *tsc;
489         u_int i, size, adj;
490
491         if ((!smp_tsc && !tsc_is_invariant) || vm_guest)
492                 return (-100);
493         size = (mp_maxid + 1) * 3;
494         data = malloc(sizeof(*data) * size * N, M_TEMP, M_WAITOK);
495         adj = 0;
496 retry:
497         for (i = 0, tsc = data; i < N; i++, tsc += size)
498                 smp_rendezvous(tsc_read_0, tsc_read_1, tsc_read_2, tsc);
499         smp_tsc = 1;    /* XXX */
500         smp_rendezvous(smp_no_rendezvous_barrier, comp_smp_tsc,
501             smp_no_rendezvous_barrier, data);
502         if (!smp_tsc && adj < adj_max_count) {
503                 adj++;
504                 smp_rendezvous(smp_no_rendezvous_barrier, adj_smp_tsc,
505                     smp_no_rendezvous_barrier, data);
506                 goto retry;
507         }
508         free(data, M_TEMP);
509         if (bootverbose)
510                 printf("SMP: %sed TSC synchronization test%s\n",
511                     smp_tsc ? "pass" : "fail", 
512                     adj > 0 ? " after adjustment" : "");
513         if (smp_tsc && tsc_is_invariant) {
514                 switch (cpu_vendor_id) {
515                 case CPU_VENDOR_AMD:
516                         /*
517                          * Starting with Family 15h processors, TSC clock
518                          * source is in the north bridge.  Check whether
519                          * we have a single-socket/multi-core platform.
520                          * XXX Need more work for complex cases.
521                          */
522                         if (CPUID_TO_FAMILY(cpu_id) < 0x15 ||
523                             (amd_feature2 & AMDID2_CMP) == 0 ||
524                             smp_cpus > (cpu_procinfo2 & AMDID_CMP_CORES) + 1)
525                                 break;
526                         return (1000);
527                 case CPU_VENDOR_INTEL:
528                         /*
529                          * XXX Assume Intel platforms have synchronized TSCs.
530                          */
531                         return (1000);
532                 }
533                 return (800);
534         }
535         return (-100);
536 }
537
538 #undef N
539
540 #endif /* SMP */
541
542 static void
543 init_TSC_tc(void)
544 {
545         uint64_t max_freq;
546         int shift;
547
548         if ((cpu_feature & CPUID_TSC) == 0 || tsc_disabled)
549                 return;
550
551         /*
552          * Limit timecounter frequency to fit in an int and prevent it from
553          * overflowing too fast.
554          */
555         max_freq = UINT_MAX;
556
557         /*
558          * We can not use the TSC if we support APM.  Precise timekeeping
559          * on an APM'ed machine is at best a fools pursuit, since 
560          * any and all of the time spent in various SMM code can't 
561          * be reliably accounted for.  Reading the RTC is your only
562          * source of reliable time info.  The i8254 loses too, of course,
563          * but we need to have some kind of time...
564          * We don't know at this point whether APM is going to be used
565          * or not, nor when it might be activated.  Play it safe.
566          */
567         if (power_pm_get_type() == POWER_PM_TYPE_APM) {
568                 tsc_timecounter.tc_quality = -1000;
569                 if (bootverbose)
570                         printf("TSC timecounter disabled: APM enabled.\n");
571                 goto init;
572         }
573
574         /*
575          * Intel CPUs without a C-state invariant TSC can stop the TSC
576          * in either C2 or C3.  Disable use of C2 and C3 while using
577          * the TSC as the timecounter.  The timecounter can be changed
578          * to enable C2 and C3.
579          *
580          * Note that the TSC is used as the cputicker for computing
581          * thread runtime regardless of the timecounter setting, so
582          * using an alternate timecounter and enabling C2 or C3 can
583          * result incorrect runtimes for kernel idle threads (but not
584          * for any non-idle threads).
585          */
586         if (cpu_vendor_id == CPU_VENDOR_INTEL &&
587             (amd_pminfo & AMDPM_TSC_INVARIANT) == 0) {
588                 tsc_timecounter.tc_flags |= TC_FLAGS_C2STOP;
589                 if (bootverbose)
590                         printf("TSC timecounter disables C2 and C3.\n");
591         }
592
593         /*
594          * We can not use the TSC in SMP mode unless the TSCs on all CPUs
595          * are synchronized.  If the user is sure that the system has
596          * synchronized TSCs, set kern.timecounter.smp_tsc tunable to a
597          * non-zero value.  The TSC seems unreliable in virtualized SMP
598          * environments, so it is set to a negative quality in those cases.
599          */
600 #ifdef SMP
601         if (mp_ncpus > 1)
602                 tsc_timecounter.tc_quality = test_tsc(smp_tsc_adjust);
603         else
604 #endif /* SMP */
605         if (tsc_is_invariant)
606                 tsc_timecounter.tc_quality = 1000;
607         max_freq >>= tsc_shift;
608
609 init:
610         for (shift = 0; shift <= 31 && (tsc_freq >> shift) > max_freq; shift++)
611                 ;
612         if ((cpu_feature & CPUID_SSE2) != 0 && mp_ncpus > 1) {
613                 if (cpu_vendor_id == CPU_VENDOR_AMD) {
614                         tsc_timecounter.tc_get_timecount = shift > 0 ?
615                             tsc_get_timecount_low_mfence :
616                             tsc_get_timecount_mfence;
617                 } else {
618                         tsc_timecounter.tc_get_timecount = shift > 0 ?
619                             tsc_get_timecount_low_lfence :
620                             tsc_get_timecount_lfence;
621                 }
622         } else {
623                 tsc_timecounter.tc_get_timecount = shift > 0 ?
624                     tsc_get_timecount_low : tsc_get_timecount;
625         }
626         if (shift > 0) {
627                 tsc_timecounter.tc_name = "TSC-low";
628                 if (bootverbose)
629                         printf("TSC timecounter discards lower %d bit(s)\n",
630                             shift);
631         }
632         if (tsc_freq != 0) {
633                 tsc_timecounter.tc_frequency = tsc_freq >> shift;
634                 tsc_timecounter.tc_priv = (void *)(intptr_t)shift;
635                 tc_init(&tsc_timecounter);
636         }
637 }
638 SYSINIT(tsc_tc, SI_SUB_SMP, SI_ORDER_ANY, init_TSC_tc, NULL);
639
640 void
641 resume_TSC(void)
642 {
643 #ifdef SMP
644         int quality;
645
646         /* If TSC was not good on boot, it is unlikely to become good now. */
647         if (tsc_timecounter.tc_quality < 0)
648                 return;
649         /* Nothing to do with UP. */
650         if (mp_ncpus < 2)
651                 return;
652
653         /*
654          * If TSC was good, a single synchronization should be enough,
655          * but honour smp_tsc_adjust if it's set.
656          */
657         quality = test_tsc(MAX(smp_tsc_adjust, 1));
658         if (quality != tsc_timecounter.tc_quality) {
659                 printf("TSC timecounter quality changed: %d -> %d\n",
660                     tsc_timecounter.tc_quality, quality);
661                 tsc_timecounter.tc_quality = quality;
662         }
663 #endif /* SMP */
664 }
665
666 /*
667  * When cpufreq levels change, find out about the (new) max frequency.  We
668  * use this to update CPU accounting in case it got a lower estimate at boot.
669  */
670 static void
671 tsc_levels_changed(void *arg, int unit)
672 {
673         device_t cf_dev;
674         struct cf_level *levels;
675         int count, error;
676         uint64_t max_freq;
677
678         /* Only use values from the first CPU, assuming all are equal. */
679         if (unit != 0)
680                 return;
681
682         /* Find the appropriate cpufreq device instance. */
683         cf_dev = devclass_get_device(devclass_find("cpufreq"), unit);
684         if (cf_dev == NULL) {
685                 printf("tsc_levels_changed() called but no cpufreq device?\n");
686                 return;
687         }
688
689         /* Get settings from the device and find the max frequency. */
690         count = 64;
691         levels = malloc(count * sizeof(*levels), M_TEMP, M_NOWAIT);
692         if (levels == NULL)
693                 return;
694         error = CPUFREQ_LEVELS(cf_dev, levels, &count);
695         if (error == 0 && count != 0) {
696                 max_freq = (uint64_t)levels[0].total_set.freq * 1000000;
697                 set_cputicker(rdtsc, max_freq, 1);
698         } else
699                 printf("tsc_levels_changed: no max freq found\n");
700         free(levels, M_TEMP);
701 }
702
703 /*
704  * If the TSC timecounter is in use, veto the pending change.  It may be
705  * possible in the future to handle a dynamically-changing timecounter rate.
706  */
707 static void
708 tsc_freq_changing(void *arg, const struct cf_level *level, int *status)
709 {
710
711         if (*status != 0 || timecounter != &tsc_timecounter)
712                 return;
713
714         printf("timecounter TSC must not be in use when "
715             "changing frequencies; change denied\n");
716         *status = EBUSY;
717 }
718
719 /* Update TSC freq with the value indicated by the caller. */
720 static void
721 tsc_freq_changed(void *arg, const struct cf_level *level, int status)
722 {
723         uint64_t freq;
724
725         /* If there was an error during the transition, don't do anything. */
726         if (tsc_disabled || status != 0)
727                 return;
728
729         /* Total setting for this level gives the new frequency in MHz. */
730         freq = (uint64_t)level->total_set.freq * 1000000;
731         atomic_store_rel_64(&tsc_freq, freq);
732         tsc_timecounter.tc_frequency =
733             freq >> (int)(intptr_t)tsc_timecounter.tc_priv;
734 }
735
736 static int
737 sysctl_machdep_tsc_freq(SYSCTL_HANDLER_ARGS)
738 {
739         int error;
740         uint64_t freq;
741
742         freq = atomic_load_acq_64(&tsc_freq);
743         if (freq == 0)
744                 return (EOPNOTSUPP);
745         error = sysctl_handle_64(oidp, &freq, 0, req);
746         if (error == 0 && req->newptr != NULL) {
747                 atomic_store_rel_64(&tsc_freq, freq);
748                 atomic_store_rel_64(&tsc_timecounter.tc_frequency,
749                     freq >> (int)(intptr_t)tsc_timecounter.tc_priv);
750         }
751         return (error);
752 }
753
754 SYSCTL_PROC(_machdep, OID_AUTO, tsc_freq, CTLTYPE_U64 | CTLFLAG_RW,
755     0, 0, sysctl_machdep_tsc_freq, "QU", "Time Stamp Counter frequency");
756
757 static u_int
758 tsc_get_timecount(struct timecounter *tc __unused)
759 {
760
761         return (rdtsc32());
762 }
763
764 static inline u_int
765 tsc_get_timecount_low(struct timecounter *tc)
766 {
767         uint32_t rv;
768
769         __asm __volatile("rdtsc; shrd %%cl, %%edx, %0"
770             : "=a" (rv) : "c" ((int)(intptr_t)tc->tc_priv) : "edx");
771         return (rv);
772 }
773
774 static u_int
775 tsc_get_timecount_lfence(struct timecounter *tc __unused)
776 {
777
778         lfence();
779         return (rdtsc32());
780 }
781
782 static u_int
783 tsc_get_timecount_low_lfence(struct timecounter *tc)
784 {
785
786         lfence();
787         return (tsc_get_timecount_low(tc));
788 }
789
790 static u_int
791 tsc_get_timecount_mfence(struct timecounter *tc __unused)
792 {
793
794         mfence();
795         return (rdtsc32());
796 }
797
798 static u_int
799 tsc_get_timecount_low_mfence(struct timecounter *tc)
800 {
801
802         mfence();
803         return (tsc_get_timecount_low(tc));
804 }
805
806 static uint32_t
807 x86_tsc_vdso_timehands(struct vdso_timehands *vdso_th, struct timecounter *tc)
808 {
809
810         vdso_th->th_algo = VDSO_TH_ALGO_X86_TSC;
811         vdso_th->th_x86_shift = (int)(intptr_t)tc->tc_priv;
812         vdso_th->th_x86_hpet_idx = 0xffffffff;
813         bzero(vdso_th->th_res, sizeof(vdso_th->th_res));
814         return (1);
815 }
816
817 #ifdef COMPAT_FREEBSD32
818 static uint32_t
819 x86_tsc_vdso_timehands32(struct vdso_timehands32 *vdso_th32,
820     struct timecounter *tc)
821 {
822
823         vdso_th32->th_algo = VDSO_TH_ALGO_X86_TSC;
824         vdso_th32->th_x86_shift = (int)(intptr_t)tc->tc_priv;
825         vdso_th32->th_x86_hpet_idx = 0xffffffff;
826         bzero(vdso_th32->th_res, sizeof(vdso_th32->th_res));
827         return (1);
828 }
829 #endif