]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - usr.bin/sort/radixsort.c
Add UPDATING entries and bump version.
[FreeBSD/FreeBSD.git] / usr.bin / sort / radixsort.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (C) 2012 Oleg Moskalenko <mom040267@gmail.com>
5  * Copyright (C) 2012 Gabor Kovesdan <gabor@FreeBSD.org>
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32
33 #include <errno.h>
34 #include <err.h>
35 #include <langinfo.h>
36 #include <math.h>
37 #if defined(SORT_THREADS)
38 #include <pthread.h>
39 #include <semaphore.h>
40 #endif
41 #include <stdlib.h>
42 #include <string.h>
43 #include <wchar.h>
44 #include <wctype.h>
45 #include <unistd.h>
46
47 #include "coll.h"
48 #include "radixsort.h"
49
50 #define DEFAULT_SORT_FUNC_RADIXSORT mergesort
51
52 #define TINY_NODE(sl) ((sl)->tosort_num < 65)
53 #define SMALL_NODE(sl) ((sl)->tosort_num < 5)
54
55 /* are we sorting in reverse order ? */
56 static bool reverse_sort;
57
58 /* sort sub-levels array size */
59 static const size_t slsz = 256 * sizeof(struct sort_level*);
60
61 /* one sort level structure */
62 struct sort_level
63 {
64         struct sort_level       **sublevels;
65         struct sort_list_item   **leaves;
66         struct sort_list_item   **sorted;
67         struct sort_list_item   **tosort;
68         size_t                    leaves_num;
69         size_t                    leaves_sz;
70         size_t                    level;
71         size_t                    real_sln;
72         size_t                    start_position;
73         size_t                    sln;
74         size_t                    tosort_num;
75         size_t                    tosort_sz;
76 };
77
78 /* stack of sort levels ready to be sorted */
79 struct level_stack {
80         struct level_stack       *next;
81         struct sort_level        *sl;
82 };
83
84 static struct level_stack *g_ls;
85
86 #if defined(SORT_THREADS)
87 /* stack guarding mutex */
88 static pthread_cond_t g_ls_cond;
89 static pthread_mutex_t g_ls_mutex;
90
91 /* counter: how many items are left */
92 static size_t sort_left;
93 /* guarding mutex */
94
95 /* semaphore to count threads */
96 static sem_t mtsem;
97
98 /*
99  * Decrement items counter
100  */
101 static inline void
102 sort_left_dec(size_t n)
103 {
104         pthread_mutex_lock(&g_ls_mutex);
105         sort_left -= n;
106         if (sort_left == 0 && nthreads > 1)
107                 pthread_cond_broadcast(&g_ls_cond);
108         pthread_mutex_unlock(&g_ls_mutex);
109 }
110
111 /*
112  * Do we have something to sort ?
113  *
114  * This routine does not need to be locked.
115  */
116 static inline bool
117 have_sort_left(void)
118 {
119         bool ret;
120
121         ret = (sort_left > 0);
122
123         return (ret);
124 }
125
126 #else
127
128 #define sort_left_dec(n)
129
130 #endif /* SORT_THREADS */
131
132 static void
133 _push_ls(struct level_stack *ls)
134 {
135
136         ls->next = g_ls;
137         g_ls = ls;
138 }
139
140 /*
141  * Push sort level to the stack
142  */
143 static inline void
144 push_ls(struct sort_level *sl)
145 {
146         struct level_stack *new_ls;
147
148         new_ls = sort_malloc(sizeof(struct level_stack));
149         new_ls->sl = sl;
150
151 #if defined(SORT_THREADS)
152         if (nthreads > 1) {
153                 pthread_mutex_lock(&g_ls_mutex);
154                 _push_ls(new_ls);
155                 pthread_cond_signal(&g_ls_cond);
156                 pthread_mutex_unlock(&g_ls_mutex);
157         } else
158 #endif
159                 _push_ls(new_ls);
160 }
161
162 /*
163  * Pop sort level from the stack (single-threaded style)
164  */
165 static inline struct sort_level*
166 pop_ls_st(void)
167 {
168         struct sort_level *sl;
169
170         if (g_ls) {
171                 struct level_stack *saved_ls;
172
173                 sl = g_ls->sl;
174                 saved_ls = g_ls;
175                 g_ls = g_ls->next;
176                 sort_free(saved_ls);
177         } else
178                 sl = NULL;
179
180         return (sl);
181 }
182
183 #if defined(SORT_THREADS)
184
185 /*
186  * Pop sort level from the stack (multi-threaded style)
187  */
188 static inline struct sort_level*
189 pop_ls_mt(void)
190 {
191         struct level_stack *saved_ls;
192         struct sort_level *sl;
193
194         pthread_mutex_lock(&g_ls_mutex);
195
196         for (;;) {
197                 if (g_ls) {
198                         sl = g_ls->sl;
199                         saved_ls = g_ls;
200                         g_ls = g_ls->next;
201                         break;
202                 }
203                 sl = NULL;
204                 saved_ls = NULL;
205
206                 if (have_sort_left() == 0)
207                         break;
208                 pthread_cond_wait(&g_ls_cond, &g_ls_mutex);
209         }
210
211         pthread_mutex_unlock(&g_ls_mutex);
212
213         sort_free(saved_ls);
214
215         return (sl);
216 }
217
218 #endif /* defined(SORT_THREADS) */
219
220 static void
221 add_to_sublevel(struct sort_level *sl, struct sort_list_item *item, size_t indx)
222 {
223         struct sort_level *ssl;
224
225         ssl = sl->sublevels[indx];
226
227         if (ssl == NULL) {
228                 ssl = sort_malloc(sizeof(struct sort_level));
229                 memset(ssl, 0, sizeof(struct sort_level));
230
231                 ssl->level = sl->level + 1;
232                 sl->sublevels[indx] = ssl;
233
234                 ++(sl->real_sln);
235         }
236
237         if (++(ssl->tosort_num) > ssl->tosort_sz) {
238                 ssl->tosort_sz = ssl->tosort_num + 128;
239                 ssl->tosort = sort_realloc(ssl->tosort,
240                     sizeof(struct sort_list_item*) * (ssl->tosort_sz));
241         }
242
243         ssl->tosort[ssl->tosort_num - 1] = item;
244 }
245
246 static inline void
247 add_leaf(struct sort_level *sl, struct sort_list_item *item)
248 {
249
250         if (++(sl->leaves_num) > sl->leaves_sz) {
251                 sl->leaves_sz = sl->leaves_num + 128;
252                 sl->leaves = sort_realloc(sl->leaves,
253                     (sizeof(struct sort_list_item*) * (sl->leaves_sz)));
254         }
255         sl->leaves[sl->leaves_num - 1] = item;
256 }
257
258 static inline int
259 get_wc_index(struct sort_list_item *sli, size_t level)
260 {
261         const struct key_value *kv;
262         const struct bwstring *bws;
263
264         kv = get_key_from_keys_array(&sli->ka, 0);
265         bws = kv->k;
266
267         if ((BWSLEN(bws) > level))
268                 return (unsigned char) BWS_GET(bws,level);
269         return (-1);
270 }
271
272 static void
273 place_item(struct sort_level *sl, size_t item)
274 {
275         struct sort_list_item *sli;
276         int c;
277
278         sli = sl->tosort[item];
279         c = get_wc_index(sli, sl->level);
280
281         if (c == -1)
282                 add_leaf(sl, sli);
283         else
284                 add_to_sublevel(sl, sli, c);
285 }
286
287 static void
288 free_sort_level(struct sort_level *sl)
289 {
290
291         if (sl) {
292                 if (sl->leaves)
293                         sort_free(sl->leaves);
294
295                 if (sl->level > 0)
296                         sort_free(sl->tosort);
297
298                 if (sl->sublevels) {
299                         struct sort_level *slc;
300                         size_t sln;
301
302                         sln = sl->sln;
303
304                         for (size_t i = 0; i < sln; ++i) {
305                                 slc = sl->sublevels[i];
306                                 if (slc)
307                                         free_sort_level(slc);
308                         }
309
310                         sort_free(sl->sublevels);
311                 }
312
313                 sort_free(sl);
314         }
315 }
316
317 static void
318 run_sort_level_next(struct sort_level *sl)
319 {
320         struct sort_level *slc;
321         size_t i, sln, tosort_num;
322
323         if (sl->sublevels) {
324                 sort_free(sl->sublevels);
325                 sl->sublevels = NULL;
326         }
327
328         switch (sl->tosort_num) {
329         case 0:
330                 goto end;
331         case (1):
332                 sl->sorted[sl->start_position] = sl->tosort[0];
333                 sort_left_dec(1);
334                 goto end;
335         case (2):
336                 if (list_coll_offset(&(sl->tosort[0]), &(sl->tosort[1]),
337                     sl->level) > 0) {
338                         sl->sorted[sl->start_position++] = sl->tosort[1];
339                         sl->sorted[sl->start_position] = sl->tosort[0];
340                 } else {
341                         sl->sorted[sl->start_position++] = sl->tosort[0];
342                         sl->sorted[sl->start_position] = sl->tosort[1];
343                 }
344                 sort_left_dec(2);
345
346                 goto end;
347         default:
348                 if (TINY_NODE(sl) || (sl->level > 15)) {
349                         listcoll_t func;
350
351                         func = get_list_call_func(sl->level);
352
353                         sl->leaves = sl->tosort;
354                         sl->leaves_num = sl->tosort_num;
355                         sl->leaves_sz = sl->leaves_num;
356                         sl->leaves = sort_realloc(sl->leaves,
357                             (sizeof(struct sort_list_item *) *
358                             (sl->leaves_sz)));
359                         sl->tosort = NULL;
360                         sl->tosort_num = 0;
361                         sl->tosort_sz = 0;
362                         sl->sln = 0;
363                         sl->real_sln = 0;
364                         if (sort_opts_vals.sflag) {
365                                 if (mergesort(sl->leaves, sl->leaves_num,
366                                     sizeof(struct sort_list_item *),
367                                     (int(*)(const void *, const void *)) func) == -1)
368                                         /* NOTREACHED */
369                                         err(2, "Radix sort error 3");
370                         } else
371                                 DEFAULT_SORT_FUNC_RADIXSORT(sl->leaves, sl->leaves_num,
372                                     sizeof(struct sort_list_item *),
373                                     (int(*)(const void *, const void *)) func);
374
375                         memcpy(sl->sorted + sl->start_position,
376                             sl->leaves, sl->leaves_num *
377                             sizeof(struct sort_list_item*));
378
379                         sort_left_dec(sl->leaves_num);
380
381                         goto end;
382                 } else {
383                         sl->tosort_sz = sl->tosort_num;
384                         sl->tosort = sort_realloc(sl->tosort,
385                             sizeof(struct sort_list_item*) * (sl->tosort_sz));
386                 }
387         }
388
389         sl->sln = 256;
390         sl->sublevels = sort_malloc(slsz);
391         memset(sl->sublevels, 0, slsz);
392
393         sl->real_sln = 0;
394
395         tosort_num = sl->tosort_num;
396         for (i = 0; i < tosort_num; ++i)
397                 place_item(sl, i);
398
399         sort_free(sl->tosort);
400         sl->tosort = NULL;
401         sl->tosort_num = 0;
402         sl->tosort_sz = 0;
403
404         if (sl->leaves_num > 1) {
405                 if (keys_num > 1) {
406                         if (sort_opts_vals.sflag) {
407                                 mergesort(sl->leaves, sl->leaves_num,
408                                     sizeof(struct sort_list_item *),
409                                     (int(*)(const void *, const void *)) list_coll);
410                         } else {
411                                 DEFAULT_SORT_FUNC_RADIXSORT(sl->leaves, sl->leaves_num,
412                                     sizeof(struct sort_list_item *),
413                                     (int(*)(const void *, const void *)) list_coll);
414                         }
415                 } else if (!sort_opts_vals.sflag && sort_opts_vals.complex_sort) {
416                         DEFAULT_SORT_FUNC_RADIXSORT(sl->leaves, sl->leaves_num,
417                             sizeof(struct sort_list_item *),
418                             (int(*)(const void *, const void *)) list_coll_by_str_only);
419                 }
420         }
421
422         sl->leaves_sz = sl->leaves_num;
423         sl->leaves = sort_realloc(sl->leaves, (sizeof(struct sort_list_item *) *
424             (sl->leaves_sz)));
425
426         if (!reverse_sort) {
427                 memcpy(sl->sorted + sl->start_position, sl->leaves,
428                     sl->leaves_num * sizeof(struct sort_list_item*));
429                 sl->start_position += sl->leaves_num;
430                 sort_left_dec(sl->leaves_num);
431
432                 sort_free(sl->leaves);
433                 sl->leaves = NULL;
434                 sl->leaves_num = 0;
435                 sl->leaves_sz = 0;
436
437                 sln = sl->sln;
438
439                 for (i = 0; i < sln; ++i) {
440                         slc = sl->sublevels[i];
441
442                         if (slc) {
443                                 slc->sorted = sl->sorted;
444                                 slc->start_position = sl->start_position;
445                                 sl->start_position += slc->tosort_num;
446                                 if (SMALL_NODE(slc))
447                                         run_sort_level_next(slc);
448                                 else
449                                         push_ls(slc);
450                                 sl->sublevels[i] = NULL;
451                         }
452                 }
453
454         } else {
455                 size_t n;
456
457                 sln = sl->sln;
458
459                 for (i = 0; i < sln; ++i) {
460                         n = sln - i - 1;
461                         slc = sl->sublevels[n];
462
463                         if (slc) {
464                                 slc->sorted = sl->sorted;
465                                 slc->start_position = sl->start_position;
466                                 sl->start_position += slc->tosort_num;
467                                 if (SMALL_NODE(slc))
468                                         run_sort_level_next(slc);
469                                 else
470                                         push_ls(slc);
471                                 sl->sublevels[n] = NULL;
472                         }
473                 }
474
475                 memcpy(sl->sorted + sl->start_position, sl->leaves,
476                     sl->leaves_num * sizeof(struct sort_list_item*));
477                 sort_left_dec(sl->leaves_num);
478         }
479
480 end:
481         free_sort_level(sl);
482 }
483
484 /*
485  * Single-threaded sort cycle
486  */
487 static void
488 run_sort_cycle_st(void)
489 {
490         struct sort_level *slc;
491
492         for (;;) {
493                 slc = pop_ls_st();
494                 if (slc == NULL) {
495                         break;
496                 }
497                 run_sort_level_next(slc);
498         }
499 }
500
501 #if defined(SORT_THREADS)
502
503 /*
504  * Multi-threaded sort cycle
505  */
506 static void
507 run_sort_cycle_mt(void)
508 {
509         struct sort_level *slc;
510
511         for (;;) {
512                 slc = pop_ls_mt();
513                 if (slc == NULL)
514                         break;
515                 run_sort_level_next(slc);
516         }
517 }
518
519 /*
520  * Sort cycle thread (in multi-threaded mode)
521  */
522 static void*
523 sort_thread(void* arg)
524 {
525         run_sort_cycle_mt();
526         sem_post(&mtsem);
527
528         return (arg);
529 }
530
531 #endif /* defined(SORT_THREADS) */
532
533 static void
534 run_top_sort_level(struct sort_level *sl)
535 {
536         struct sort_level *slc;
537
538         reverse_sort = sort_opts_vals.kflag ? keys[0].sm.rflag :
539             default_sort_mods->rflag;
540
541         sl->start_position = 0;
542         sl->sln = 256;
543         sl->sublevels = sort_malloc(slsz);
544         memset(sl->sublevels, 0, slsz);
545
546         for (size_t i = 0; i < sl->tosort_num; ++i)
547                 place_item(sl, i);
548
549         if (sl->leaves_num > 1) {
550                 if (keys_num > 1) {
551                         if (sort_opts_vals.sflag) {
552                                 mergesort(sl->leaves, sl->leaves_num,
553                                     sizeof(struct sort_list_item *),
554                                     (int(*)(const void *, const void *)) list_coll);
555                         } else {
556                                 DEFAULT_SORT_FUNC_RADIXSORT(sl->leaves, sl->leaves_num,
557                                     sizeof(struct sort_list_item *),
558                                     (int(*)(const void *, const void *)) list_coll);
559                         }
560                 } else if (!sort_opts_vals.sflag && sort_opts_vals.complex_sort) {
561                         DEFAULT_SORT_FUNC_RADIXSORT(sl->leaves, sl->leaves_num,
562                             sizeof(struct sort_list_item *),
563                             (int(*)(const void *, const void *)) list_coll_by_str_only);
564                 }
565         }
566
567         if (!reverse_sort) {
568                 memcpy(sl->tosort + sl->start_position, sl->leaves,
569                     sl->leaves_num * sizeof(struct sort_list_item*));
570                 sl->start_position += sl->leaves_num;
571                 sort_left_dec(sl->leaves_num);
572
573                 for (size_t i = 0; i < sl->sln; ++i) {
574                         slc = sl->sublevels[i];
575
576                         if (slc) {
577                                 slc->sorted = sl->tosort;
578                                 slc->start_position = sl->start_position;
579                                 sl->start_position += slc->tosort_num;
580                                 push_ls(slc);
581                                 sl->sublevels[i] = NULL;
582                         }
583                 }
584
585         } else {
586                 size_t n;
587
588                 for (size_t i = 0; i < sl->sln; ++i) {
589
590                         n = sl->sln - i - 1;
591                         slc = sl->sublevels[n];
592
593                         if (slc) {
594                                 slc->sorted = sl->tosort;
595                                 slc->start_position = sl->start_position;
596                                 sl->start_position += slc->tosort_num;
597                                 push_ls(slc);
598                                 sl->sublevels[n] = NULL;
599                         }
600                 }
601
602                 memcpy(sl->tosort + sl->start_position, sl->leaves,
603                     sl->leaves_num * sizeof(struct sort_list_item*));
604
605                 sort_left_dec(sl->leaves_num);
606         }
607
608 #if defined(SORT_THREADS)
609         if (nthreads < 2) {
610 #endif
611                 run_sort_cycle_st();
612 #if defined(SORT_THREADS)
613         } else {
614                 size_t i;
615
616                 for(i = 0; i < nthreads; ++i) {
617                         pthread_attr_t attr;
618                         pthread_t pth;
619
620                         pthread_attr_init(&attr);
621                         pthread_attr_setdetachstate(&attr, PTHREAD_DETACHED);
622
623                         for (;;) {
624                                 int res = pthread_create(&pth, &attr,
625                                     sort_thread, NULL);
626                                 if (res >= 0)
627                                         break;
628                                 if (errno == EAGAIN) {
629                                         pthread_yield();
630                                         continue;
631                                 }
632                                 err(2, NULL);
633                         }
634
635                         pthread_attr_destroy(&attr);
636                 }
637
638                 for (i = 0; i < nthreads; ++i)
639                         sem_wait(&mtsem);
640         }
641 #endif /* defined(SORT_THREADS) */
642 }
643
644 static void
645 run_sort(struct sort_list_item **base, size_t nmemb)
646 {
647         struct sort_level *sl;
648
649 #if defined(SORT_THREADS)
650         size_t nthreads_save = nthreads;
651         if (nmemb < MT_SORT_THRESHOLD)
652                 nthreads = 1;
653
654         if (nthreads > 1) {
655                 pthread_mutexattr_t mattr;
656
657                 pthread_mutexattr_init(&mattr);
658                 pthread_mutexattr_settype(&mattr, PTHREAD_MUTEX_ADAPTIVE_NP);
659
660                 pthread_mutex_init(&g_ls_mutex, &mattr);
661                 pthread_cond_init(&g_ls_cond, NULL);
662
663                 pthread_mutexattr_destroy(&mattr);
664
665                 sem_init(&mtsem, 0, 0);
666
667         }
668 #endif
669
670         sl = sort_malloc(sizeof(struct sort_level));
671         memset(sl, 0, sizeof(struct sort_level));
672
673         sl->tosort = base;
674         sl->tosort_num = nmemb;
675         sl->tosort_sz = nmemb;
676
677 #if defined(SORT_THREADS)
678         sort_left = nmemb;
679 #endif
680
681         run_top_sort_level(sl);
682
683         free_sort_level(sl);
684
685 #if defined(SORT_THREADS)
686         if (nthreads > 1) {
687                 sem_destroy(&mtsem);
688                 pthread_mutex_destroy(&g_ls_mutex);
689         }
690         nthreads = nthreads_save;
691 #endif
692 }
693
694 void
695 rxsort(struct sort_list_item **base, size_t nmemb)
696 {
697
698         run_sort(base, nmemb);
699 }