]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - usr.sbin/bhyve/pci_nvme.c
unbound: Import upstream 0ee44ef3 when ENOBUFS is returned
[FreeBSD/FreeBSD.git] / usr.sbin / bhyve / pci_nvme.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2017 Shunsuke Mie
5  * Copyright (c) 2018 Leon Dang
6  * Copyright (c) 2020 Chuck Tuffli
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29
30 /*
31  * bhyve PCIe-NVMe device emulation.
32  *
33  * options:
34  *  -s <n>,nvme,devpath,maxq=#,qsz=#,ioslots=#,sectsz=#,ser=A-Z,eui64=#,dsm=<opt>
35  *
36  *  accepted devpath:
37  *    /dev/blockdev
38  *    /path/to/image
39  *    ram=size_in_MiB
40  *
41  *  maxq    = max number of queues
42  *  qsz     = max elements in each queue
43  *  ioslots = max number of concurrent io requests
44  *  sectsz  = sector size (defaults to blockif sector size)
45  *  ser     = serial number (20-chars max)
46  *  eui64   = IEEE Extended Unique Identifier (8 byte value)
47  *  dsm     = DataSet Management support. Option is one of auto, enable,disable
48  *
49  */
50
51 /* TODO:
52     - create async event for smart and log
53     - intr coalesce
54  */
55
56 #include <sys/cdefs.h>
57 #include <sys/errno.h>
58 #include <sys/types.h>
59 #include <sys/crc16.h>
60 #include <net/ieee_oui.h>
61
62 #include <assert.h>
63 #include <pthread.h>
64 #include <pthread_np.h>
65 #include <semaphore.h>
66 #include <stdbool.h>
67 #include <stddef.h>
68 #include <stdint.h>
69 #include <stdio.h>
70 #include <stdlib.h>
71 #include <string.h>
72
73 #include <machine/atomic.h>
74 #include <machine/vmm.h>
75 #include <vmmapi.h>
76
77 #include <dev/nvme/nvme.h>
78
79 #include "bhyverun.h"
80 #include "block_if.h"
81 #include "config.h"
82 #include "debug.h"
83 #include "pci_emul.h"
84
85
86 static int nvme_debug = 0;
87 #define DPRINTF(fmt, args...) if (nvme_debug) PRINTLN(fmt, ##args)
88 #define WPRINTF(fmt, args...) PRINTLN(fmt, ##args)
89
90 /* defaults; can be overridden */
91 #define NVME_MSIX_BAR           4
92
93 #define NVME_IOSLOTS            8
94
95 /* The NVMe spec defines bits 13:4 in BAR0 as reserved */
96 #define NVME_MMIO_SPACE_MIN     (1 << 14)
97
98 #define NVME_QUEUES             16
99 #define NVME_MAX_QENTRIES       2048
100 /* Memory Page size Minimum reported in CAP register */
101 #define NVME_MPSMIN             0
102 /* MPSMIN converted to bytes */
103 #define NVME_MPSMIN_BYTES       (1 << (12 + NVME_MPSMIN))
104
105 #define NVME_PRP2_ITEMS         (PAGE_SIZE/sizeof(uint64_t))
106 #define NVME_MDTS               9
107 /* Note the + 1 allows for the initial descriptor to not be page aligned */
108 #define NVME_MAX_IOVEC          ((1 << NVME_MDTS) + 1)
109 #define NVME_MAX_DATA_SIZE      ((1 << NVME_MDTS) * NVME_MPSMIN_BYTES)
110
111 /* This is a synthetic status code to indicate there is no status */
112 #define NVME_NO_STATUS          0xffff
113 #define NVME_COMPLETION_VALID(c)        ((c).status != NVME_NO_STATUS)
114
115 /* Reported temperature in Kelvin (i.e. room temperature) */
116 #define NVME_TEMPERATURE 296
117
118 /* helpers */
119
120 /* Convert a zero-based value into a one-based value */
121 #define ONE_BASED(zero)         ((zero) + 1)
122 /* Convert a one-based value into a zero-based value */
123 #define ZERO_BASED(one)         ((one)  - 1)
124
125 /* Encode number of SQ's and CQ's for Set/Get Features */
126 #define NVME_FEATURE_NUM_QUEUES(sc) \
127         (ZERO_BASED((sc)->num_squeues) & 0xffff) | \
128         (ZERO_BASED((sc)->num_cqueues) & 0xffff) << 16
129
130 #define NVME_DOORBELL_OFFSET    offsetof(struct nvme_registers, doorbell)
131
132 enum nvme_controller_register_offsets {
133         NVME_CR_CAP_LOW = 0x00,
134         NVME_CR_CAP_HI  = 0x04,
135         NVME_CR_VS      = 0x08,
136         NVME_CR_INTMS   = 0x0c,
137         NVME_CR_INTMC   = 0x10,
138         NVME_CR_CC      = 0x14,
139         NVME_CR_CSTS    = 0x1c,
140         NVME_CR_NSSR    = 0x20,
141         NVME_CR_AQA     = 0x24,
142         NVME_CR_ASQ_LOW = 0x28,
143         NVME_CR_ASQ_HI  = 0x2c,
144         NVME_CR_ACQ_LOW = 0x30,
145         NVME_CR_ACQ_HI  = 0x34,
146 };
147
148 enum nvme_cmd_cdw11 {
149         NVME_CMD_CDW11_PC  = 0x0001,
150         NVME_CMD_CDW11_IEN = 0x0002,
151         NVME_CMD_CDW11_IV  = 0xFFFF0000,
152 };
153
154 enum nvme_copy_dir {
155         NVME_COPY_TO_PRP,
156         NVME_COPY_FROM_PRP,
157 };
158
159 #define NVME_CQ_INTEN   0x01
160 #define NVME_CQ_INTCOAL 0x02
161
162 struct nvme_completion_queue {
163         struct nvme_completion *qbase;
164         pthread_mutex_t mtx;
165         uint32_t        size;
166         uint16_t        tail; /* nvme progress */
167         uint16_t        head; /* guest progress */
168         uint16_t        intr_vec;
169         uint32_t        intr_en;
170 };
171
172 struct nvme_submission_queue {
173         struct nvme_command *qbase;
174         pthread_mutex_t mtx;
175         uint32_t        size;
176         uint16_t        head; /* nvme progress */
177         uint16_t        tail; /* guest progress */
178         uint16_t        cqid; /* completion queue id */
179         int             qpriority;
180 };
181
182 enum nvme_storage_type {
183         NVME_STOR_BLOCKIF = 0,
184         NVME_STOR_RAM = 1,
185 };
186
187 struct pci_nvme_blockstore {
188         enum nvme_storage_type type;
189         void            *ctx;
190         uint64_t        size;
191         uint32_t        sectsz;
192         uint32_t        sectsz_bits;
193         uint64_t        eui64;
194         uint32_t        deallocate:1;
195 };
196
197 /*
198  * Calculate the number of additional page descriptors for guest IO requests
199  * based on the advertised Max Data Transfer (MDTS) and given the number of
200  * default iovec's in a struct blockif_req.
201  */
202 #define MDTS_PAD_SIZE \
203         ( NVME_MAX_IOVEC > BLOCKIF_IOV_MAX ? \
204           NVME_MAX_IOVEC - BLOCKIF_IOV_MAX : \
205           0 )
206
207 struct pci_nvme_ioreq {
208         struct pci_nvme_softc *sc;
209         STAILQ_ENTRY(pci_nvme_ioreq) link;
210         struct nvme_submission_queue *nvme_sq;
211         uint16_t        sqid;
212
213         /* command information */
214         uint16_t        opc;
215         uint16_t        cid;
216         uint32_t        nsid;
217
218         uint64_t        prev_gpaddr;
219         size_t          prev_size;
220         size_t          bytes;
221
222         struct blockif_req io_req;
223
224         struct iovec    iovpadding[MDTS_PAD_SIZE];
225 };
226
227 enum nvme_dsm_type {
228         /* Dataset Management bit in ONCS reflects backing storage capability */
229         NVME_DATASET_MANAGEMENT_AUTO,
230         /* Unconditionally set Dataset Management bit in ONCS */
231         NVME_DATASET_MANAGEMENT_ENABLE,
232         /* Unconditionally clear Dataset Management bit in ONCS */
233         NVME_DATASET_MANAGEMENT_DISABLE,
234 };
235
236 struct pci_nvme_softc;
237 struct nvme_feature_obj;
238
239 typedef void (*nvme_feature_cb)(struct pci_nvme_softc *,
240     struct nvme_feature_obj *,
241     struct nvme_command *,
242     struct nvme_completion *);
243
244 struct nvme_feature_obj {
245         uint32_t        cdw11;
246         nvme_feature_cb set;
247         nvme_feature_cb get;
248         bool namespace_specific;
249 };
250
251 #define NVME_FID_MAX            (NVME_FEAT_ENDURANCE_GROUP_EVENT_CONFIGURATION + 1)
252
253 typedef enum {
254         PCI_NVME_AE_TYPE_ERROR = 0,
255         PCI_NVME_AE_TYPE_SMART,
256         PCI_NVME_AE_TYPE_NOTICE,
257         PCI_NVME_AE_TYPE_IO_CMD = 6,
258         PCI_NVME_AE_TYPE_VENDOR = 7,
259         PCI_NVME_AE_TYPE_MAX            /* Must be last */
260 } pci_nvme_async_type;
261
262 /* Asynchronous Event Requests */
263 struct pci_nvme_aer {
264         STAILQ_ENTRY(pci_nvme_aer) link;
265         uint16_t        cid;    /* Command ID of the submitted AER */
266 };
267
268 /** Asynchronous Event Information - Notice */
269 typedef enum {
270         PCI_NVME_AEI_NOTICE_NS_ATTR_CHANGED = 0,
271         PCI_NVME_AEI_NOTICE_FW_ACTIVATION,
272         PCI_NVME_AEI_NOTICE_TELEMETRY_CHANGE,
273         PCI_NVME_AEI_NOTICE_ANA_CHANGE,
274         PCI_NVME_AEI_NOTICE_PREDICT_LATENCY_CHANGE,
275         PCI_NVME_AEI_NOTICE_LBA_STATUS_ALERT,
276         PCI_NVME_AEI_NOTICE_ENDURANCE_GROUP_CHANGE,
277         PCI_NVME_AEI_NOTICE_MAX,
278 } pci_nvme_async_event_info_notice;
279
280 #define PCI_NVME_AEI_NOTICE_SHIFT               8
281 #define PCI_NVME_AEI_NOTICE_MASK(event) (1 << (event + PCI_NVME_AEI_NOTICE_SHIFT))
282
283 /* Asynchronous Event Notifications */
284 struct pci_nvme_aen {
285         pci_nvme_async_type atype;
286         uint32_t        event_data;
287         bool            posted;
288 };
289
290 /*
291  * By default, enable all Asynchrnous Event Notifications:
292  *     SMART / Health Critical Warnings
293  *     Namespace Attribute Notices
294  */
295 #define PCI_NVME_AEN_DEFAULT_MASK       0x11f
296
297 typedef enum {
298         NVME_CNTRLTYPE_IO = 1,
299         NVME_CNTRLTYPE_DISCOVERY = 2,
300         NVME_CNTRLTYPE_ADMIN = 3,
301 } pci_nvme_cntrl_type;
302
303 struct pci_nvme_softc {
304         struct pci_devinst *nsc_pi;
305
306         pthread_mutex_t mtx;
307
308         struct nvme_registers regs;
309
310         struct nvme_namespace_data  nsdata;
311         struct nvme_controller_data ctrldata;
312         struct nvme_error_information_entry err_log;
313         struct nvme_health_information_page health_log;
314         struct nvme_firmware_page fw_log;
315         struct nvme_ns_list ns_log;
316
317         struct pci_nvme_blockstore nvstore;
318
319         uint16_t        max_qentries;   /* max entries per queue */
320         uint32_t        max_queues;     /* max number of IO SQ's or CQ's */
321         uint32_t        num_cqueues;
322         uint32_t        num_squeues;
323         bool            num_q_is_set; /* Has host set Number of Queues */
324
325         struct pci_nvme_ioreq *ioreqs;
326         STAILQ_HEAD(, pci_nvme_ioreq) ioreqs_free; /* free list of ioreqs */
327         uint32_t        pending_ios;
328         uint32_t        ioslots;
329         sem_t           iosemlock;
330
331         /*
332          * Memory mapped Submission and Completion queues
333          * Each array includes both Admin and IO queues
334          */
335         struct nvme_completion_queue *compl_queues;
336         struct nvme_submission_queue *submit_queues;
337
338         struct nvme_feature_obj feat[NVME_FID_MAX];
339
340         enum nvme_dsm_type dataset_management;
341
342         /* Accounting for SMART data */
343         __uint128_t     read_data_units;
344         __uint128_t     write_data_units;
345         __uint128_t     read_commands;
346         __uint128_t     write_commands;
347         uint32_t        read_dunits_remainder;
348         uint32_t        write_dunits_remainder;
349
350         STAILQ_HEAD(, pci_nvme_aer) aer_list;
351         pthread_mutex_t aer_mtx;
352         uint32_t        aer_count;
353         struct pci_nvme_aen aen[PCI_NVME_AE_TYPE_MAX];
354         pthread_t       aen_tid;
355         pthread_mutex_t aen_mtx;
356         pthread_cond_t  aen_cond;
357 };
358
359
360 static void pci_nvme_cq_update(struct pci_nvme_softc *sc,
361     struct nvme_completion_queue *cq,
362     uint32_t cdw0,
363     uint16_t cid,
364     uint16_t sqid,
365     uint16_t status);
366 static struct pci_nvme_ioreq *pci_nvme_get_ioreq(struct pci_nvme_softc *);
367 static void pci_nvme_release_ioreq(struct pci_nvme_softc *, struct pci_nvme_ioreq *);
368 static void pci_nvme_io_done(struct blockif_req *, int);
369
370 /* Controller Configuration utils */
371 #define NVME_CC_GET_EN(cc) \
372         ((cc) >> NVME_CC_REG_EN_SHIFT & NVME_CC_REG_EN_MASK)
373 #define NVME_CC_GET_CSS(cc) \
374         ((cc) >> NVME_CC_REG_CSS_SHIFT & NVME_CC_REG_CSS_MASK)
375 #define NVME_CC_GET_SHN(cc) \
376         ((cc) >> NVME_CC_REG_SHN_SHIFT & NVME_CC_REG_SHN_MASK)
377 #define NVME_CC_GET_IOSQES(cc) \
378         ((cc) >> NVME_CC_REG_IOSQES_SHIFT & NVME_CC_REG_IOSQES_MASK)
379 #define NVME_CC_GET_IOCQES(cc) \
380         ((cc) >> NVME_CC_REG_IOCQES_SHIFT & NVME_CC_REG_IOCQES_MASK)
381
382 #define NVME_CC_WRITE_MASK \
383         ((NVME_CC_REG_EN_MASK << NVME_CC_REG_EN_SHIFT) | \
384          (NVME_CC_REG_IOSQES_MASK << NVME_CC_REG_IOSQES_SHIFT) | \
385          (NVME_CC_REG_IOCQES_MASK << NVME_CC_REG_IOCQES_SHIFT))
386
387 #define NVME_CC_NEN_WRITE_MASK \
388         ((NVME_CC_REG_CSS_MASK << NVME_CC_REG_CSS_SHIFT) | \
389          (NVME_CC_REG_MPS_MASK << NVME_CC_REG_MPS_SHIFT) | \
390          (NVME_CC_REG_AMS_MASK << NVME_CC_REG_AMS_SHIFT))
391
392 /* Controller Status utils */
393 #define NVME_CSTS_GET_RDY(sts) \
394         ((sts) >> NVME_CSTS_REG_RDY_SHIFT & NVME_CSTS_REG_RDY_MASK)
395
396 #define NVME_CSTS_RDY   (1 << NVME_CSTS_REG_RDY_SHIFT)
397 #define NVME_CSTS_CFS   (1 << NVME_CSTS_REG_CFS_SHIFT)
398
399 /* Completion Queue status word utils */
400 #define NVME_STATUS_P   (1 << NVME_STATUS_P_SHIFT)
401 #define NVME_STATUS_MASK \
402         ((NVME_STATUS_SCT_MASK << NVME_STATUS_SCT_SHIFT) |\
403          (NVME_STATUS_SC_MASK << NVME_STATUS_SC_SHIFT))
404
405 #define NVME_ONCS_DSM   (NVME_CTRLR_DATA_ONCS_DSM_MASK << \
406         NVME_CTRLR_DATA_ONCS_DSM_SHIFT)
407
408 static void nvme_feature_invalid_cb(struct pci_nvme_softc *,
409     struct nvme_feature_obj *,
410     struct nvme_command *,
411     struct nvme_completion *);
412 static void nvme_feature_temperature(struct pci_nvme_softc *,
413     struct nvme_feature_obj *,
414     struct nvme_command *,
415     struct nvme_completion *);
416 static void nvme_feature_num_queues(struct pci_nvme_softc *,
417     struct nvme_feature_obj *,
418     struct nvme_command *,
419     struct nvme_completion *);
420 static void nvme_feature_iv_config(struct pci_nvme_softc *,
421     struct nvme_feature_obj *,
422     struct nvme_command *,
423     struct nvme_completion *);
424 static void nvme_feature_async_event(struct pci_nvme_softc *,
425     struct nvme_feature_obj *,
426     struct nvme_command *,
427     struct nvme_completion *);
428
429 static void *aen_thr(void *arg);
430
431 static __inline void
432 cpywithpad(char *dst, size_t dst_size, const char *src, char pad)
433 {
434         size_t len;
435
436         len = strnlen(src, dst_size);
437         memset(dst, pad, dst_size);
438         memcpy(dst, src, len);
439 }
440
441 static __inline void
442 pci_nvme_status_tc(uint16_t *status, uint16_t type, uint16_t code)
443 {
444
445         *status &= ~NVME_STATUS_MASK;
446         *status |= (type & NVME_STATUS_SCT_MASK) << NVME_STATUS_SCT_SHIFT |
447                 (code & NVME_STATUS_SC_MASK) << NVME_STATUS_SC_SHIFT;
448 }
449
450 static __inline void
451 pci_nvme_status_genc(uint16_t *status, uint16_t code)
452 {
453
454         pci_nvme_status_tc(status, NVME_SCT_GENERIC, code);
455 }
456
457 /*
458  * Initialize the requested number or IO Submission and Completion Queues.
459  * Admin queues are allocated implicitly.
460  */
461 static void
462 pci_nvme_init_queues(struct pci_nvme_softc *sc, uint32_t nsq, uint32_t ncq)
463 {
464         uint32_t i;
465
466         /*
467          * Allocate and initialize the Submission Queues
468          */
469         if (nsq > NVME_QUEUES) {
470                 WPRINTF("%s: clamping number of SQ from %u to %u",
471                                         __func__, nsq, NVME_QUEUES);
472                 nsq = NVME_QUEUES;
473         }
474
475         sc->num_squeues = nsq;
476
477         sc->submit_queues = calloc(sc->num_squeues + 1,
478                                 sizeof(struct nvme_submission_queue));
479         if (sc->submit_queues == NULL) {
480                 WPRINTF("%s: SQ allocation failed", __func__);
481                 sc->num_squeues = 0;
482         } else {
483                 struct nvme_submission_queue *sq = sc->submit_queues;
484
485                 for (i = 0; i < sc->num_squeues + 1; i++)
486                         pthread_mutex_init(&sq[i].mtx, NULL);
487         }
488
489         /*
490          * Allocate and initialize the Completion Queues
491          */
492         if (ncq > NVME_QUEUES) {
493                 WPRINTF("%s: clamping number of CQ from %u to %u",
494                                         __func__, ncq, NVME_QUEUES);
495                 ncq = NVME_QUEUES;
496         }
497
498         sc->num_cqueues = ncq;
499
500         sc->compl_queues = calloc(sc->num_cqueues + 1,
501                                 sizeof(struct nvme_completion_queue));
502         if (sc->compl_queues == NULL) {
503                 WPRINTF("%s: CQ allocation failed", __func__);
504                 sc->num_cqueues = 0;
505         } else {
506                 struct nvme_completion_queue *cq = sc->compl_queues;
507
508                 for (i = 0; i < sc->num_cqueues + 1; i++)
509                         pthread_mutex_init(&cq[i].mtx, NULL);
510         }
511 }
512
513 static void
514 pci_nvme_init_ctrldata(struct pci_nvme_softc *sc)
515 {
516         struct nvme_controller_data *cd = &sc->ctrldata;
517         int ret;
518
519         cd->vid = 0xFB5D;
520         cd->ssvid = 0x0000;
521
522         cpywithpad((char *)cd->mn, sizeof(cd->mn), "bhyve-NVMe", ' ');
523         cpywithpad((char *)cd->fr, sizeof(cd->fr), "1.0", ' ');
524
525         /* Num of submission commands that we can handle at a time (2^rab) */
526         cd->rab   = 4;
527
528         /* FreeBSD OUI */
529         cd->ieee[0] = 0xfc;
530         cd->ieee[1] = 0x9c;
531         cd->ieee[2] = 0x58;
532
533         cd->mic = 0;
534
535         cd->mdts = NVME_MDTS;   /* max data transfer size (2^mdts * CAP.MPSMIN) */
536
537         cd->ver = NVME_REV(1,4);
538
539         cd->cntrltype = NVME_CNTRLTYPE_IO;
540         cd->oacs = 1 << NVME_CTRLR_DATA_OACS_FORMAT_SHIFT;
541         cd->oaes = NVMEB(NVME_CTRLR_DATA_OAES_NS_ATTR);
542         cd->acl = 2;
543         cd->aerl = 4;
544
545         /* Advertise 1, Read-only firmware slot */
546         cd->frmw = NVMEB(NVME_CTRLR_DATA_FRMW_SLOT1_RO) |
547             (1 << NVME_CTRLR_DATA_FRMW_NUM_SLOTS_SHIFT);
548         cd->lpa = 0;    /* TODO: support some simple things like SMART */
549         cd->elpe = 0;   /* max error log page entries */
550         /*
551          * Report a single power state (zero-based value)
552          * power_state[] values are left as zero to indicate "Not reported"
553          */
554         cd->npss = 0;
555
556         /* Warning Composite Temperature Threshold */
557         cd->wctemp = 0x0157;
558         cd->cctemp = 0x0157;
559
560         /* SANICAP must not be 0 for Revision 1.4 and later NVMe Controllers */
561         cd->sanicap = (NVME_CTRLR_DATA_SANICAP_NODMMAS_NO <<
562                         NVME_CTRLR_DATA_SANICAP_NODMMAS_SHIFT);
563
564         cd->sqes = (6 << NVME_CTRLR_DATA_SQES_MAX_SHIFT) |
565             (6 << NVME_CTRLR_DATA_SQES_MIN_SHIFT);
566         cd->cqes = (4 << NVME_CTRLR_DATA_CQES_MAX_SHIFT) |
567             (4 << NVME_CTRLR_DATA_CQES_MIN_SHIFT);
568         cd->nn = 1;     /* number of namespaces */
569
570         cd->oncs = 0;
571         switch (sc->dataset_management) {
572         case NVME_DATASET_MANAGEMENT_AUTO:
573                 if (sc->nvstore.deallocate)
574                         cd->oncs |= NVME_ONCS_DSM;
575                 break;
576         case NVME_DATASET_MANAGEMENT_ENABLE:
577                 cd->oncs |= NVME_ONCS_DSM;
578                 break;
579         default:
580                 break;
581         }
582
583         cd->fna = NVME_CTRLR_DATA_FNA_FORMAT_ALL_MASK <<
584             NVME_CTRLR_DATA_FNA_FORMAT_ALL_SHIFT;
585
586         cd->vwc = NVME_CTRLR_DATA_VWC_ALL_NO << NVME_CTRLR_DATA_VWC_ALL_SHIFT;
587
588         ret = snprintf(cd->subnqn, sizeof(cd->subnqn),
589             "nqn.2013-12.org.freebsd:bhyve-%s-%u-%u-%u",
590             get_config_value("name"), sc->nsc_pi->pi_bus,
591             sc->nsc_pi->pi_slot, sc->nsc_pi->pi_func);
592         if ((ret < 0) || ((unsigned)ret > sizeof(cd->subnqn)))
593                 EPRINTLN("%s: error setting subnqn (%d)", __func__, ret);
594 }
595
596 static void
597 pci_nvme_init_nsdata_size(struct pci_nvme_blockstore *nvstore,
598     struct nvme_namespace_data *nd)
599 {
600
601         /* Get capacity and block size information from backing store */
602         nd->nsze = nvstore->size / nvstore->sectsz;
603         nd->ncap = nd->nsze;
604         nd->nuse = nd->nsze;
605 }
606
607 static void
608 pci_nvme_init_nsdata(struct pci_nvme_softc *sc,
609     struct nvme_namespace_data *nd, uint32_t nsid,
610     struct pci_nvme_blockstore *nvstore)
611 {
612
613         pci_nvme_init_nsdata_size(nvstore, nd);
614
615         if (nvstore->type == NVME_STOR_BLOCKIF)
616                 nvstore->deallocate = blockif_candelete(nvstore->ctx);
617
618         nd->nlbaf = 0; /* NLBAF is a 0's based value (i.e. 1 LBA Format) */
619         nd->flbas = 0;
620
621         /* Create an EUI-64 if user did not provide one */
622         if (nvstore->eui64 == 0) {
623                 char *data = NULL;
624                 uint64_t eui64 = nvstore->eui64;
625
626                 asprintf(&data, "%s%u%u%u", get_config_value("name"),
627                     sc->nsc_pi->pi_bus, sc->nsc_pi->pi_slot,
628                     sc->nsc_pi->pi_func);
629
630                 if (data != NULL) {
631                         eui64 = OUI_FREEBSD_NVME_LOW | crc16(0, data, strlen(data));
632                         free(data);
633                 }
634                 nvstore->eui64 = (eui64 << 16) | (nsid & 0xffff);
635         }
636         be64enc(nd->eui64, nvstore->eui64);
637
638         /* LBA data-sz = 2^lbads */
639         nd->lbaf[0] = nvstore->sectsz_bits << NVME_NS_DATA_LBAF_LBADS_SHIFT;
640 }
641
642 static void
643 pci_nvme_init_logpages(struct pci_nvme_softc *sc)
644 {
645         __uint128_t power_cycles = 1;
646
647         memset(&sc->err_log, 0, sizeof(sc->err_log));
648         memset(&sc->health_log, 0, sizeof(sc->health_log));
649         memset(&sc->fw_log, 0, sizeof(sc->fw_log));
650         memset(&sc->ns_log, 0, sizeof(sc->ns_log));
651
652         /* Set read/write remainder to round up according to spec */
653         sc->read_dunits_remainder = 999;
654         sc->write_dunits_remainder = 999;
655
656         /* Set nominal Health values checked by implementations */
657         sc->health_log.temperature = NVME_TEMPERATURE;
658         sc->health_log.available_spare = 100;
659         sc->health_log.available_spare_threshold = 10;
660
661         /* Set Active Firmware Info to slot 1 */
662         sc->fw_log.afi = (1 << NVME_FIRMWARE_PAGE_AFI_SLOT_SHIFT);
663         memcpy(&sc->fw_log.revision[0], sc->ctrldata.fr,
664             sizeof(sc->fw_log.revision[0]));
665
666         memcpy(&sc->health_log.power_cycles, &power_cycles,
667             sizeof(sc->health_log.power_cycles));
668 }
669
670 static void
671 pci_nvme_init_features(struct pci_nvme_softc *sc)
672 {
673         enum nvme_feature       fid;
674
675         for (fid = 0; fid < NVME_FID_MAX; fid++) {
676                 switch (fid) {
677                 case NVME_FEAT_ARBITRATION:
678                 case NVME_FEAT_POWER_MANAGEMENT:
679                 case NVME_FEAT_INTERRUPT_COALESCING: //XXX
680                 case NVME_FEAT_WRITE_ATOMICITY:
681                         /* Mandatory but no special handling required */
682                 //XXX hang - case NVME_FEAT_PREDICTABLE_LATENCY_MODE_CONFIG:
683                 //XXX hang - case NVME_FEAT_HOST_BEHAVIOR_SUPPORT:
684                 //                this returns a data buffer
685                         break;
686                 case NVME_FEAT_TEMPERATURE_THRESHOLD:
687                         sc->feat[fid].set = nvme_feature_temperature;
688                         break;
689                 case NVME_FEAT_ERROR_RECOVERY:
690                         sc->feat[fid].namespace_specific = true;
691                         break;
692                 case NVME_FEAT_NUMBER_OF_QUEUES:
693                         sc->feat[fid].set = nvme_feature_num_queues;
694                         break;
695                 case NVME_FEAT_INTERRUPT_VECTOR_CONFIGURATION:
696                         sc->feat[fid].set = nvme_feature_iv_config;
697                         break;
698                 case NVME_FEAT_ASYNC_EVENT_CONFIGURATION:
699                         sc->feat[fid].set = nvme_feature_async_event;
700                         /* Enable all AENs by default */
701                         sc->feat[fid].cdw11 = PCI_NVME_AEN_DEFAULT_MASK;
702                         break;
703                 default:
704                         sc->feat[fid].set = nvme_feature_invalid_cb;
705                         sc->feat[fid].get = nvme_feature_invalid_cb;
706                 }
707         }
708 }
709
710 static void
711 pci_nvme_aer_reset(struct pci_nvme_softc *sc)
712 {
713
714         STAILQ_INIT(&sc->aer_list);
715         sc->aer_count = 0;
716 }
717
718 static void
719 pci_nvme_aer_init(struct pci_nvme_softc *sc)
720 {
721
722         pthread_mutex_init(&sc->aer_mtx, NULL);
723         pci_nvme_aer_reset(sc);
724 }
725
726 static void
727 pci_nvme_aer_destroy(struct pci_nvme_softc *sc)
728 {
729         struct pci_nvme_aer *aer = NULL;
730
731         pthread_mutex_lock(&sc->aer_mtx);
732         while (!STAILQ_EMPTY(&sc->aer_list)) {
733                 aer = STAILQ_FIRST(&sc->aer_list);
734                 STAILQ_REMOVE_HEAD(&sc->aer_list, link);
735                 free(aer);
736         }
737         pthread_mutex_unlock(&sc->aer_mtx);
738
739         pci_nvme_aer_reset(sc);
740 }
741
742 static bool
743 pci_nvme_aer_available(struct pci_nvme_softc *sc)
744 {
745
746         return (sc->aer_count != 0);
747 }
748
749 static bool
750 pci_nvme_aer_limit_reached(struct pci_nvme_softc *sc)
751 {
752         struct nvme_controller_data *cd = &sc->ctrldata;
753
754         /* AERL is a zero based value while aer_count is one's based */
755         return (sc->aer_count == (cd->aerl + 1U));
756 }
757
758 /*
759  * Add an Async Event Request
760  *
761  * Stores an AER to be returned later if the Controller needs to notify the
762  * host of an event.
763  * Note that while the NVMe spec doesn't require Controllers to return AER's
764  * in order, this implementation does preserve the order.
765  */
766 static int
767 pci_nvme_aer_add(struct pci_nvme_softc *sc, uint16_t cid)
768 {
769         struct pci_nvme_aer *aer = NULL;
770
771         aer = calloc(1, sizeof(struct pci_nvme_aer));
772         if (aer == NULL)
773                 return (-1);
774
775         /* Save the Command ID for use in the completion message */
776         aer->cid = cid;
777
778         pthread_mutex_lock(&sc->aer_mtx);
779         sc->aer_count++;
780         STAILQ_INSERT_TAIL(&sc->aer_list, aer, link);
781         pthread_mutex_unlock(&sc->aer_mtx);
782
783         return (0);
784 }
785
786 /*
787  * Get an Async Event Request structure
788  *
789  * Returns a pointer to an AER previously submitted by the host or NULL if
790  * no AER's exist. Caller is responsible for freeing the returned struct.
791  */
792 static struct pci_nvme_aer *
793 pci_nvme_aer_get(struct pci_nvme_softc *sc)
794 {
795         struct pci_nvme_aer *aer = NULL;
796
797         pthread_mutex_lock(&sc->aer_mtx);
798         aer = STAILQ_FIRST(&sc->aer_list);
799         if (aer != NULL) {
800                 STAILQ_REMOVE_HEAD(&sc->aer_list, link);
801                 sc->aer_count--;
802         }
803         pthread_mutex_unlock(&sc->aer_mtx);
804
805         return (aer);
806 }
807
808 static void
809 pci_nvme_aen_reset(struct pci_nvme_softc *sc)
810 {
811         uint32_t        atype;
812
813         memset(sc->aen, 0, PCI_NVME_AE_TYPE_MAX * sizeof(struct pci_nvme_aen));
814
815         for (atype = 0; atype < PCI_NVME_AE_TYPE_MAX; atype++) {
816                 sc->aen[atype].atype = atype;
817         }
818 }
819
820 static void
821 pci_nvme_aen_init(struct pci_nvme_softc *sc)
822 {
823         char nstr[80];
824
825         pci_nvme_aen_reset(sc);
826
827         pthread_mutex_init(&sc->aen_mtx, NULL);
828         pthread_create(&sc->aen_tid, NULL, aen_thr, sc);
829         snprintf(nstr, sizeof(nstr), "nvme-aen-%d:%d", sc->nsc_pi->pi_slot,
830             sc->nsc_pi->pi_func);
831         pthread_set_name_np(sc->aen_tid, nstr);
832 }
833
834 static void
835 pci_nvme_aen_destroy(struct pci_nvme_softc *sc)
836 {
837
838         pci_nvme_aen_reset(sc);
839 }
840
841 /* Notify the AEN thread of pending work */
842 static void
843 pci_nvme_aen_notify(struct pci_nvme_softc *sc)
844 {
845
846         pthread_cond_signal(&sc->aen_cond);
847 }
848
849 /*
850  * Post an Asynchronous Event Notification
851  */
852 static int32_t
853 pci_nvme_aen_post(struct pci_nvme_softc *sc, pci_nvme_async_type atype,
854                 uint32_t event_data)
855 {
856         struct pci_nvme_aen *aen;
857
858         if (atype >= PCI_NVME_AE_TYPE_MAX) {
859                 return(EINVAL);
860         }
861
862         pthread_mutex_lock(&sc->aen_mtx);
863         aen = &sc->aen[atype];
864
865         /* Has the controller already posted an event of this type? */
866         if (aen->posted) {
867                 pthread_mutex_unlock(&sc->aen_mtx);
868                 return(EALREADY);
869         }
870
871         aen->event_data = event_data;
872         aen->posted = true;
873         pthread_mutex_unlock(&sc->aen_mtx);
874
875         pci_nvme_aen_notify(sc);
876
877         return(0);
878 }
879
880 static void
881 pci_nvme_aen_process(struct pci_nvme_softc *sc)
882 {
883         struct pci_nvme_aer *aer;
884         struct pci_nvme_aen *aen;
885         pci_nvme_async_type atype;
886         uint32_t mask;
887         uint16_t status;
888         uint8_t lid;
889
890         assert(pthread_mutex_isowned_np(&sc->aen_mtx));
891         for (atype = 0; atype < PCI_NVME_AE_TYPE_MAX; atype++) {
892                 aen = &sc->aen[atype];
893                 /* Previous iterations may have depleted the available AER's */
894                 if (!pci_nvme_aer_available(sc)) {
895                         DPRINTF("%s: no AER", __func__);
896                         break;
897                 }
898
899                 if (!aen->posted) {
900                         DPRINTF("%s: no AEN posted for atype=%#x", __func__, atype);
901                         continue;
902                 }
903
904                 status = NVME_SC_SUCCESS;
905
906                 /* Is the event masked? */
907                 mask =
908                     sc->feat[NVME_FEAT_ASYNC_EVENT_CONFIGURATION].cdw11;
909
910                 DPRINTF("%s: atype=%#x mask=%#x event_data=%#x", __func__, atype, mask, aen->event_data);
911                 switch (atype) {
912                 case PCI_NVME_AE_TYPE_ERROR:
913                         lid = NVME_LOG_ERROR;
914                         break;
915                 case PCI_NVME_AE_TYPE_SMART:
916                         mask &= 0xff;
917                         if ((mask & aen->event_data) == 0)
918                                 continue;
919                         lid = NVME_LOG_HEALTH_INFORMATION;
920                         break;
921                 case PCI_NVME_AE_TYPE_NOTICE:
922                         if (aen->event_data >= PCI_NVME_AEI_NOTICE_MAX) {
923                                 EPRINTLN("%s unknown AEN notice type %u",
924                                     __func__, aen->event_data);
925                                 status = NVME_SC_INTERNAL_DEVICE_ERROR;
926                                 lid = 0;
927                                 break;
928                         }
929                         if ((PCI_NVME_AEI_NOTICE_MASK(aen->event_data) & mask) == 0)
930                                 continue;
931                         switch (aen->event_data) {
932                         case PCI_NVME_AEI_NOTICE_NS_ATTR_CHANGED:
933                                 lid = NVME_LOG_CHANGED_NAMESPACE;
934                                 break;
935                         case PCI_NVME_AEI_NOTICE_FW_ACTIVATION:
936                                 lid = NVME_LOG_FIRMWARE_SLOT;
937                                 break;
938                         case PCI_NVME_AEI_NOTICE_TELEMETRY_CHANGE:
939                                 lid = NVME_LOG_TELEMETRY_CONTROLLER_INITIATED;
940                                 break;
941                         case PCI_NVME_AEI_NOTICE_ANA_CHANGE:
942                                 lid = NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS;
943                                 break;
944                         case PCI_NVME_AEI_NOTICE_PREDICT_LATENCY_CHANGE:
945                                 lid = NVME_LOG_PREDICTABLE_LATENCY_EVENT_AGGREGATE;
946                                 break;
947                         case PCI_NVME_AEI_NOTICE_LBA_STATUS_ALERT:
948                                 lid = NVME_LOG_LBA_STATUS_INFORMATION;
949                                 break;
950                         case PCI_NVME_AEI_NOTICE_ENDURANCE_GROUP_CHANGE:
951                                 lid = NVME_LOG_ENDURANCE_GROUP_EVENT_AGGREGATE;
952                                 break;
953                         default:
954                                 lid = 0;
955                         }
956                         break;
957                 default:
958                         /* bad type?!? */
959                         EPRINTLN("%s unknown AEN type %u", __func__, atype);
960                         status = NVME_SC_INTERNAL_DEVICE_ERROR;
961                         lid = 0;
962                         break;
963                 }
964
965                 aer = pci_nvme_aer_get(sc);
966                 assert(aer != NULL);
967
968                 DPRINTF("%s: CID=%#x CDW0=%#x", __func__, aer->cid, (lid << 16) | (aen->event_data << 8) | atype);
969                 pci_nvme_cq_update(sc, &sc->compl_queues[0],
970                     (lid << 16) | (aen->event_data << 8) | atype, /* cdw0 */
971                     aer->cid,
972                     0,          /* SQID */
973                     status);
974
975                 aen->event_data = 0;
976                 aen->posted = false;
977
978                 pci_generate_msix(sc->nsc_pi, 0);
979         }
980 }
981
982 static void *
983 aen_thr(void *arg)
984 {
985         struct pci_nvme_softc *sc;
986
987         sc = arg;
988
989         pthread_mutex_lock(&sc->aen_mtx);
990         for (;;) {
991                 pci_nvme_aen_process(sc);
992                 pthread_cond_wait(&sc->aen_cond, &sc->aen_mtx);
993         }
994         pthread_mutex_unlock(&sc->aen_mtx);
995
996         pthread_exit(NULL);
997         return (NULL);
998 }
999
1000 static void
1001 pci_nvme_reset_locked(struct pci_nvme_softc *sc)
1002 {
1003         uint32_t i;
1004
1005         DPRINTF("%s", __func__);
1006
1007         sc->regs.cap_lo = (ZERO_BASED(sc->max_qentries) & NVME_CAP_LO_REG_MQES_MASK) |
1008             (1 << NVME_CAP_LO_REG_CQR_SHIFT) |
1009             (60 << NVME_CAP_LO_REG_TO_SHIFT);
1010
1011         sc->regs.cap_hi = 1 << NVME_CAP_HI_REG_CSS_NVM_SHIFT;
1012
1013         sc->regs.vs = NVME_REV(1,4);    /* NVMe v1.4 */
1014
1015         sc->regs.cc = 0;
1016
1017         assert(sc->submit_queues != NULL);
1018
1019         for (i = 0; i < sc->num_squeues + 1; i++) {
1020                 sc->submit_queues[i].qbase = NULL;
1021                 sc->submit_queues[i].size = 0;
1022                 sc->submit_queues[i].cqid = 0;
1023                 sc->submit_queues[i].tail = 0;
1024                 sc->submit_queues[i].head = 0;
1025         }
1026
1027         assert(sc->compl_queues != NULL);
1028
1029         for (i = 0; i < sc->num_cqueues + 1; i++) {
1030                 sc->compl_queues[i].qbase = NULL;
1031                 sc->compl_queues[i].size = 0;
1032                 sc->compl_queues[i].tail = 0;
1033                 sc->compl_queues[i].head = 0;
1034         }
1035
1036         sc->num_q_is_set = false;
1037
1038         pci_nvme_aer_destroy(sc);
1039         pci_nvme_aen_destroy(sc);
1040
1041         /*
1042          * Clear CSTS.RDY last to prevent the host from enabling Controller
1043          * before cleanup completes
1044          */
1045         sc->regs.csts = 0;
1046 }
1047
1048 static void
1049 pci_nvme_reset(struct pci_nvme_softc *sc)
1050 {
1051         pthread_mutex_lock(&sc->mtx);
1052         pci_nvme_reset_locked(sc);
1053         pthread_mutex_unlock(&sc->mtx);
1054 }
1055
1056 static int
1057 pci_nvme_init_controller(struct pci_nvme_softc *sc)
1058 {
1059         uint16_t acqs, asqs;
1060
1061         DPRINTF("%s", __func__);
1062
1063         /*
1064          * NVMe 2.0 states that "enabling a controller while this field is
1065          * cleared to 0h produces undefined results" for both ACQS and
1066          * ASQS. If zero, set CFS and do not become ready.
1067          */
1068         asqs = ONE_BASED(sc->regs.aqa & NVME_AQA_REG_ASQS_MASK);
1069         if (asqs < 2) {
1070                 EPRINTLN("%s: illegal ASQS value %#x (aqa=%#x)", __func__,
1071                     asqs - 1, sc->regs.aqa);
1072                 sc->regs.csts |= NVME_CSTS_CFS;
1073                 return (-1);
1074         }
1075         sc->submit_queues[0].size = asqs;
1076         sc->submit_queues[0].qbase = vm_map_gpa(sc->nsc_pi->pi_vmctx,
1077             sc->regs.asq, sizeof(struct nvme_command) * asqs);
1078         if (sc->submit_queues[0].qbase == NULL) {
1079                 EPRINTLN("%s: ASQ vm_map_gpa(%lx) failed", __func__,
1080                     sc->regs.asq);
1081                 sc->regs.csts |= NVME_CSTS_CFS;
1082                 return (-1);
1083         }
1084
1085         DPRINTF("%s mapping Admin-SQ guest 0x%lx, host: %p",
1086                 __func__, sc->regs.asq, sc->submit_queues[0].qbase);
1087
1088         acqs = ONE_BASED((sc->regs.aqa >> NVME_AQA_REG_ACQS_SHIFT) &
1089             NVME_AQA_REG_ACQS_MASK);
1090         if (acqs < 2) {
1091                 EPRINTLN("%s: illegal ACQS value %#x (aqa=%#x)", __func__,
1092                     acqs - 1, sc->regs.aqa);
1093                 sc->regs.csts |= NVME_CSTS_CFS;
1094                 return (-1);
1095         }
1096         sc->compl_queues[0].size = acqs;
1097         sc->compl_queues[0].qbase = vm_map_gpa(sc->nsc_pi->pi_vmctx,
1098             sc->regs.acq, sizeof(struct nvme_completion) * acqs);
1099         if (sc->compl_queues[0].qbase == NULL) {
1100                 EPRINTLN("%s: ACQ vm_map_gpa(%lx) failed", __func__,
1101                     sc->regs.acq);
1102                 sc->regs.csts |= NVME_CSTS_CFS;
1103                 return (-1);
1104         }
1105         sc->compl_queues[0].intr_en = NVME_CQ_INTEN;
1106
1107         DPRINTF("%s mapping Admin-CQ guest 0x%lx, host: %p",
1108                 __func__, sc->regs.acq, sc->compl_queues[0].qbase);
1109
1110         return (0);
1111 }
1112
1113 static int
1114 nvme_prp_memcpy(struct vmctx *ctx, uint64_t prp1, uint64_t prp2, uint8_t *b,
1115         size_t len, enum nvme_copy_dir dir)
1116 {
1117         uint8_t *p;
1118         size_t bytes;
1119
1120         if (len > (8 * 1024)) {
1121                 return (-1);
1122         }
1123
1124         /* Copy from the start of prp1 to the end of the physical page */
1125         bytes = PAGE_SIZE - (prp1 & PAGE_MASK);
1126         bytes = MIN(bytes, len);
1127
1128         p = vm_map_gpa(ctx, prp1, bytes);
1129         if (p == NULL) {
1130                 return (-1);
1131         }
1132
1133         if (dir == NVME_COPY_TO_PRP)
1134                 memcpy(p, b, bytes);
1135         else
1136                 memcpy(b, p, bytes);
1137
1138         b += bytes;
1139
1140         len -= bytes;
1141         if (len == 0) {
1142                 return (0);
1143         }
1144
1145         len = MIN(len, PAGE_SIZE);
1146
1147         p = vm_map_gpa(ctx, prp2, len);
1148         if (p == NULL) {
1149                 return (-1);
1150         }
1151
1152         if (dir == NVME_COPY_TO_PRP)
1153                 memcpy(p, b, len);
1154         else
1155                 memcpy(b, p, len);
1156
1157         return (0);
1158 }
1159
1160 /*
1161  * Write a Completion Queue Entry update
1162  *
1163  * Write the completion and update the doorbell value
1164  */
1165 static void
1166 pci_nvme_cq_update(struct pci_nvme_softc *sc,
1167                 struct nvme_completion_queue *cq,
1168                 uint32_t cdw0,
1169                 uint16_t cid,
1170                 uint16_t sqid,
1171                 uint16_t status)
1172 {
1173         struct nvme_submission_queue *sq = &sc->submit_queues[sqid];
1174         struct nvme_completion *cqe;
1175
1176         assert(cq->qbase != NULL);
1177
1178         pthread_mutex_lock(&cq->mtx);
1179
1180         cqe = &cq->qbase[cq->tail];
1181
1182         /* Flip the phase bit */
1183         status |= (cqe->status ^ NVME_STATUS_P) & NVME_STATUS_P_MASK;
1184
1185         cqe->cdw0 = cdw0;
1186         cqe->sqhd = sq->head;
1187         cqe->sqid = sqid;
1188         cqe->cid = cid;
1189         cqe->status = status;
1190
1191         cq->tail++;
1192         if (cq->tail >= cq->size) {
1193                 cq->tail = 0;
1194         }
1195
1196         pthread_mutex_unlock(&cq->mtx);
1197 }
1198
1199 static int
1200 nvme_opc_delete_io_sq(struct pci_nvme_softc* sc, struct nvme_command* command,
1201         struct nvme_completion* compl)
1202 {
1203         uint16_t qid = command->cdw10 & 0xffff;
1204
1205         DPRINTF("%s DELETE_IO_SQ %u", __func__, qid);
1206         if (qid == 0 || qid > sc->num_squeues ||
1207             (sc->submit_queues[qid].qbase == NULL)) {
1208                 WPRINTF("%s NOT PERMITTED queue id %u / num_squeues %u",
1209                         __func__, qid, sc->num_squeues);
1210                 pci_nvme_status_tc(&compl->status, NVME_SCT_COMMAND_SPECIFIC,
1211                     NVME_SC_INVALID_QUEUE_IDENTIFIER);
1212                 return (1);
1213         }
1214
1215         sc->submit_queues[qid].qbase = NULL;
1216         sc->submit_queues[qid].cqid = 0;
1217         pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS);
1218         return (1);
1219 }
1220
1221 static int
1222 nvme_opc_create_io_sq(struct pci_nvme_softc* sc, struct nvme_command* command,
1223         struct nvme_completion* compl)
1224 {
1225         if (command->cdw11 & NVME_CMD_CDW11_PC) {
1226                 uint16_t qid = command->cdw10 & 0xffff;
1227                 struct nvme_submission_queue *nsq;
1228
1229                 if ((qid == 0) || (qid > sc->num_squeues) ||
1230                     (sc->submit_queues[qid].qbase != NULL)) {
1231                         WPRINTF("%s queue index %u > num_squeues %u",
1232                                 __func__, qid, sc->num_squeues);
1233                         pci_nvme_status_tc(&compl->status,
1234                             NVME_SCT_COMMAND_SPECIFIC,
1235                             NVME_SC_INVALID_QUEUE_IDENTIFIER);
1236                         return (1);
1237                 }
1238
1239                 nsq = &sc->submit_queues[qid];
1240                 nsq->size = ONE_BASED((command->cdw10 >> 16) & 0xffff);
1241                 DPRINTF("%s size=%u (max=%u)", __func__, nsq->size, sc->max_qentries);
1242                 if ((nsq->size < 2) || (nsq->size > sc->max_qentries)) {
1243                         /*
1244                          * Queues must specify at least two entries
1245                          * NOTE: "MAXIMUM QUEUE SIZE EXCEEDED" was renamed to
1246                          * "INVALID QUEUE SIZE" in the NVM Express 1.3 Spec
1247                          */
1248                         pci_nvme_status_tc(&compl->status,
1249                             NVME_SCT_COMMAND_SPECIFIC,
1250                             NVME_SC_MAXIMUM_QUEUE_SIZE_EXCEEDED);
1251                         return (1);
1252                 }
1253                 nsq->head = nsq->tail = 0;
1254
1255                 nsq->cqid = (command->cdw11 >> 16) & 0xffff;
1256                 if ((nsq->cqid == 0) || (nsq->cqid > sc->num_cqueues)) {
1257                         pci_nvme_status_tc(&compl->status,
1258                             NVME_SCT_COMMAND_SPECIFIC,
1259                             NVME_SC_INVALID_QUEUE_IDENTIFIER);
1260                         return (1);
1261                 }
1262
1263                 if (sc->compl_queues[nsq->cqid].qbase == NULL) {
1264                         pci_nvme_status_tc(&compl->status,
1265                             NVME_SCT_COMMAND_SPECIFIC,
1266                             NVME_SC_COMPLETION_QUEUE_INVALID);
1267                         return (1);
1268                 }
1269
1270                 nsq->qpriority = (command->cdw11 >> 1) & 0x03;
1271
1272                 nsq->qbase = vm_map_gpa(sc->nsc_pi->pi_vmctx, command->prp1,
1273                               sizeof(struct nvme_command) * (size_t)nsq->size);
1274
1275                 DPRINTF("%s sq %u size %u gaddr %p cqid %u", __func__,
1276                         qid, nsq->size, nsq->qbase, nsq->cqid);
1277
1278                 pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS);
1279
1280                 DPRINTF("%s completed creating IOSQ qid %u",
1281                          __func__, qid);
1282         } else {
1283                 /*
1284                  * Guest sent non-cont submission queue request.
1285                  * This setting is unsupported by this emulation.
1286                  */
1287                 WPRINTF("%s unsupported non-contig (list-based) "
1288                          "create i/o submission queue", __func__);
1289
1290                 pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
1291         }
1292         return (1);
1293 }
1294
1295 static int
1296 nvme_opc_delete_io_cq(struct pci_nvme_softc* sc, struct nvme_command* command,
1297         struct nvme_completion* compl)
1298 {
1299         uint16_t qid = command->cdw10 & 0xffff;
1300         uint16_t sqid;
1301
1302         DPRINTF("%s DELETE_IO_CQ %u", __func__, qid);
1303         if (qid == 0 || qid > sc->num_cqueues ||
1304             (sc->compl_queues[qid].qbase == NULL)) {
1305                 WPRINTF("%s queue index %u / num_cqueues %u",
1306                         __func__, qid, sc->num_cqueues);
1307                 pci_nvme_status_tc(&compl->status, NVME_SCT_COMMAND_SPECIFIC,
1308                     NVME_SC_INVALID_QUEUE_IDENTIFIER);
1309                 return (1);
1310         }
1311
1312         /* Deleting an Active CQ is an error */
1313         for (sqid = 1; sqid < sc->num_squeues + 1; sqid++)
1314                 if (sc->submit_queues[sqid].cqid == qid) {
1315                         pci_nvme_status_tc(&compl->status,
1316                             NVME_SCT_COMMAND_SPECIFIC,
1317                             NVME_SC_INVALID_QUEUE_DELETION);
1318                         return (1);
1319                 }
1320
1321         sc->compl_queues[qid].qbase = NULL;
1322         pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS);
1323         return (1);
1324 }
1325
1326 static int
1327 nvme_opc_create_io_cq(struct pci_nvme_softc* sc, struct nvme_command* command,
1328         struct nvme_completion* compl)
1329 {
1330         struct nvme_completion_queue *ncq;
1331         uint16_t qid = command->cdw10 & 0xffff;
1332
1333         /* Only support Physically Contiguous queues */
1334         if ((command->cdw11 & NVME_CMD_CDW11_PC) == 0) {
1335                 WPRINTF("%s unsupported non-contig (list-based) "
1336                          "create i/o completion queue",
1337                          __func__);
1338
1339                 pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
1340                 return (1);
1341         }
1342
1343         if ((qid == 0) || (qid > sc->num_cqueues) ||
1344             (sc->compl_queues[qid].qbase != NULL)) {
1345                 WPRINTF("%s queue index %u > num_cqueues %u",
1346                         __func__, qid, sc->num_cqueues);
1347                 pci_nvme_status_tc(&compl->status,
1348                     NVME_SCT_COMMAND_SPECIFIC,
1349                     NVME_SC_INVALID_QUEUE_IDENTIFIER);
1350                 return (1);
1351         }
1352
1353         ncq = &sc->compl_queues[qid];
1354         ncq->intr_en = (command->cdw11 & NVME_CMD_CDW11_IEN) >> 1;
1355         ncq->intr_vec = (command->cdw11 >> 16) & 0xffff;
1356         if (ncq->intr_vec > (sc->max_queues + 1)) {
1357                 pci_nvme_status_tc(&compl->status,
1358                     NVME_SCT_COMMAND_SPECIFIC,
1359                     NVME_SC_INVALID_INTERRUPT_VECTOR);
1360                 return (1);
1361         }
1362
1363         ncq->size = ONE_BASED((command->cdw10 >> 16) & 0xffff);
1364         if ((ncq->size < 2) || (ncq->size > sc->max_qentries))  {
1365                 /*
1366                  * Queues must specify at least two entries
1367                  * NOTE: "MAXIMUM QUEUE SIZE EXCEEDED" was renamed to
1368                  * "INVALID QUEUE SIZE" in the NVM Express 1.3 Spec
1369                  */
1370                 pci_nvme_status_tc(&compl->status,
1371                     NVME_SCT_COMMAND_SPECIFIC,
1372                     NVME_SC_MAXIMUM_QUEUE_SIZE_EXCEEDED);
1373                 return (1);
1374         }
1375         ncq->head = ncq->tail = 0;
1376         ncq->qbase = vm_map_gpa(sc->nsc_pi->pi_vmctx,
1377                      command->prp1,
1378                      sizeof(struct nvme_command) * (size_t)ncq->size);
1379
1380         pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS);
1381
1382
1383         return (1);
1384 }
1385
1386 static int
1387 nvme_opc_get_log_page(struct pci_nvme_softc* sc, struct nvme_command* command,
1388         struct nvme_completion* compl)
1389 {
1390         uint64_t logoff;
1391         uint32_t logsize;
1392         uint8_t logpage;
1393
1394         pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS);
1395
1396         /*
1397          * Command specifies the number of dwords to return in fields NUMDU
1398          * and NUMDL. This is a zero-based value.
1399          */
1400         logpage = command->cdw10 & 0xFF;
1401         logsize = ((command->cdw11 << 16) | (command->cdw10 >> 16)) + 1;
1402         logsize *= sizeof(uint32_t);
1403         logoff  = ((uint64_t)(command->cdw13) << 32) | command->cdw12;
1404
1405         DPRINTF("%s log page %u len %u", __func__, logpage, logsize);
1406
1407         switch (logpage) {
1408         case NVME_LOG_ERROR:
1409                 if (logoff >= sizeof(sc->err_log)) {
1410                         pci_nvme_status_genc(&compl->status,
1411                             NVME_SC_INVALID_FIELD);
1412                         break;
1413                 }
1414
1415                 nvme_prp_memcpy(sc->nsc_pi->pi_vmctx, command->prp1,
1416                     command->prp2, (uint8_t *)&sc->err_log + logoff,
1417                     MIN(logsize - logoff, sizeof(sc->err_log)),
1418                     NVME_COPY_TO_PRP);
1419                 break;
1420         case NVME_LOG_HEALTH_INFORMATION:
1421                 if (logoff >= sizeof(sc->health_log)) {
1422                         pci_nvme_status_genc(&compl->status,
1423                             NVME_SC_INVALID_FIELD);
1424                         break;
1425                 }
1426
1427                 pthread_mutex_lock(&sc->mtx);
1428                 memcpy(&sc->health_log.data_units_read, &sc->read_data_units,
1429                     sizeof(sc->health_log.data_units_read));
1430                 memcpy(&sc->health_log.data_units_written, &sc->write_data_units,
1431                     sizeof(sc->health_log.data_units_written));
1432                 memcpy(&sc->health_log.host_read_commands, &sc->read_commands,
1433                     sizeof(sc->health_log.host_read_commands));
1434                 memcpy(&sc->health_log.host_write_commands, &sc->write_commands,
1435                     sizeof(sc->health_log.host_write_commands));
1436                 pthread_mutex_unlock(&sc->mtx);
1437
1438                 nvme_prp_memcpy(sc->nsc_pi->pi_vmctx, command->prp1,
1439                     command->prp2, (uint8_t *)&sc->health_log + logoff,
1440                     MIN(logsize - logoff, sizeof(sc->health_log)),
1441                     NVME_COPY_TO_PRP);
1442                 break;
1443         case NVME_LOG_FIRMWARE_SLOT:
1444                 if (logoff >= sizeof(sc->fw_log)) {
1445                         pci_nvme_status_genc(&compl->status,
1446                             NVME_SC_INVALID_FIELD);
1447                         break;
1448                 }
1449
1450                 nvme_prp_memcpy(sc->nsc_pi->pi_vmctx, command->prp1,
1451                     command->prp2, (uint8_t *)&sc->fw_log + logoff,
1452                     MIN(logsize - logoff, sizeof(sc->fw_log)),
1453                     NVME_COPY_TO_PRP);
1454                 break;
1455         case NVME_LOG_CHANGED_NAMESPACE:
1456                 if (logoff >= sizeof(sc->ns_log)) {
1457                         pci_nvme_status_genc(&compl->status,
1458                             NVME_SC_INVALID_FIELD);
1459                         break;
1460                 }
1461
1462                 nvme_prp_memcpy(sc->nsc_pi->pi_vmctx, command->prp1,
1463                     command->prp2, (uint8_t *)&sc->ns_log + logoff,
1464                     MIN(logsize - logoff, sizeof(sc->ns_log)),
1465                     NVME_COPY_TO_PRP);
1466                 memset(&sc->ns_log, 0, sizeof(sc->ns_log));
1467                 break;
1468         default:
1469                 DPRINTF("%s get log page %x command not supported",
1470                         __func__, logpage);
1471
1472                 pci_nvme_status_tc(&compl->status, NVME_SCT_COMMAND_SPECIFIC,
1473                     NVME_SC_INVALID_LOG_PAGE);
1474         }
1475
1476         return (1);
1477 }
1478
1479 static int
1480 nvme_opc_identify(struct pci_nvme_softc* sc, struct nvme_command* command,
1481         struct nvme_completion* compl)
1482 {
1483         void *dest;
1484         uint16_t status;
1485
1486         DPRINTF("%s identify 0x%x nsid 0x%x", __func__,
1487                 command->cdw10 & 0xFF, command->nsid);
1488
1489         status = 0;
1490         pci_nvme_status_genc(&status, NVME_SC_SUCCESS);
1491
1492         switch (command->cdw10 & 0xFF) {
1493         case 0x00: /* return Identify Namespace data structure */
1494                 /* Global NS only valid with NS Management */
1495                 if (command->nsid == NVME_GLOBAL_NAMESPACE_TAG) {
1496                         pci_nvme_status_genc(&status,
1497                             NVME_SC_INVALID_NAMESPACE_OR_FORMAT);
1498                         break;
1499                 }
1500                 nvme_prp_memcpy(sc->nsc_pi->pi_vmctx, command->prp1,
1501                     command->prp2, (uint8_t *)&sc->nsdata, sizeof(sc->nsdata),
1502                     NVME_COPY_TO_PRP);
1503                 break;
1504         case 0x01: /* return Identify Controller data structure */
1505                 nvme_prp_memcpy(sc->nsc_pi->pi_vmctx, command->prp1,
1506                     command->prp2, (uint8_t *)&sc->ctrldata,
1507                     sizeof(sc->ctrldata),
1508                     NVME_COPY_TO_PRP);
1509                 break;
1510         case 0x02: /* list of 1024 active NSIDs > CDW1.NSID */
1511                 dest = vm_map_gpa(sc->nsc_pi->pi_vmctx, command->prp1,
1512                                   sizeof(uint32_t) * 1024);
1513                 /* All unused entries shall be zero */
1514                 memset(dest, 0, sizeof(uint32_t) * 1024);
1515                 ((uint32_t *)dest)[0] = 1;
1516                 break;
1517         case 0x03: /* list of NSID structures in CDW1.NSID, 4096 bytes */
1518                 if (command->nsid != 1) {
1519                         pci_nvme_status_genc(&status,
1520                             NVME_SC_INVALID_NAMESPACE_OR_FORMAT);
1521                         break;
1522                 }
1523                 dest = vm_map_gpa(sc->nsc_pi->pi_vmctx, command->prp1,
1524                                   sizeof(uint32_t) * 1024);
1525                 /* All bytes after the descriptor shall be zero */
1526                 memset(dest, 0, sizeof(uint32_t) * 1024);
1527
1528                 /* Return NIDT=1 (i.e. EUI64) descriptor */
1529                 ((uint8_t *)dest)[0] = 1;
1530                 ((uint8_t *)dest)[1] = sizeof(uint64_t);
1531                 memcpy(((uint8_t *)dest) + 4, sc->nsdata.eui64, sizeof(uint64_t));
1532                 break;
1533         case 0x13:
1534                 /*
1535                  * Controller list is optional but used by UNH tests. Return
1536                  * a valid but empty list.
1537                  */
1538                 dest = vm_map_gpa(sc->nsc_pi->pi_vmctx, command->prp1,
1539                                   sizeof(uint16_t) * 2048);
1540                 memset(dest, 0, sizeof(uint16_t) * 2048);
1541                 break;
1542         default:
1543                 DPRINTF("%s unsupported identify command requested 0x%x",
1544                          __func__, command->cdw10 & 0xFF);
1545                 pci_nvme_status_genc(&status, NVME_SC_INVALID_FIELD);
1546                 break;
1547         }
1548
1549         compl->status = status;
1550         return (1);
1551 }
1552
1553 static const char *
1554 nvme_fid_to_name(uint8_t fid)
1555 {
1556         const char *name;
1557
1558         switch (fid) {
1559         case NVME_FEAT_ARBITRATION:
1560                 name = "Arbitration";
1561                 break;
1562         case NVME_FEAT_POWER_MANAGEMENT:
1563                 name = "Power Management";
1564                 break;
1565         case NVME_FEAT_LBA_RANGE_TYPE:
1566                 name = "LBA Range Type";
1567                 break;
1568         case NVME_FEAT_TEMPERATURE_THRESHOLD:
1569                 name = "Temperature Threshold";
1570                 break;
1571         case NVME_FEAT_ERROR_RECOVERY:
1572                 name = "Error Recovery";
1573                 break;
1574         case NVME_FEAT_VOLATILE_WRITE_CACHE:
1575                 name = "Volatile Write Cache";
1576                 break;
1577         case NVME_FEAT_NUMBER_OF_QUEUES:
1578                 name = "Number of Queues";
1579                 break;
1580         case NVME_FEAT_INTERRUPT_COALESCING:
1581                 name = "Interrupt Coalescing";
1582                 break;
1583         case NVME_FEAT_INTERRUPT_VECTOR_CONFIGURATION:
1584                 name = "Interrupt Vector Configuration";
1585                 break;
1586         case NVME_FEAT_WRITE_ATOMICITY:
1587                 name = "Write Atomicity Normal";
1588                 break;
1589         case NVME_FEAT_ASYNC_EVENT_CONFIGURATION:
1590                 name = "Asynchronous Event Configuration";
1591                 break;
1592         case NVME_FEAT_AUTONOMOUS_POWER_STATE_TRANSITION:
1593                 name = "Autonomous Power State Transition";
1594                 break;
1595         case NVME_FEAT_HOST_MEMORY_BUFFER:
1596                 name = "Host Memory Buffer";
1597                 break;
1598         case NVME_FEAT_TIMESTAMP:
1599                 name = "Timestamp";
1600                 break;
1601         case NVME_FEAT_KEEP_ALIVE_TIMER:
1602                 name = "Keep Alive Timer";
1603                 break;
1604         case NVME_FEAT_HOST_CONTROLLED_THERMAL_MGMT:
1605                 name = "Host Controlled Thermal Management";
1606                 break;
1607         case NVME_FEAT_NON_OP_POWER_STATE_CONFIG:
1608                 name = "Non-Operation Power State Config";
1609                 break;
1610         case NVME_FEAT_READ_RECOVERY_LEVEL_CONFIG:
1611                 name = "Read Recovery Level Config";
1612                 break;
1613         case NVME_FEAT_PREDICTABLE_LATENCY_MODE_CONFIG:
1614                 name = "Predictable Latency Mode Config";
1615                 break;
1616         case NVME_FEAT_PREDICTABLE_LATENCY_MODE_WINDOW:
1617                 name = "Predictable Latency Mode Window";
1618                 break;
1619         case NVME_FEAT_LBA_STATUS_INFORMATION_ATTRIBUTES:
1620                 name = "LBA Status Information Report Interval";
1621                 break;
1622         case NVME_FEAT_HOST_BEHAVIOR_SUPPORT:
1623                 name = "Host Behavior Support";
1624                 break;
1625         case NVME_FEAT_SANITIZE_CONFIG:
1626                 name = "Sanitize Config";
1627                 break;
1628         case NVME_FEAT_ENDURANCE_GROUP_EVENT_CONFIGURATION:
1629                 name = "Endurance Group Event Configuration";
1630                 break;
1631         case NVME_FEAT_SOFTWARE_PROGRESS_MARKER:
1632                 name = "Software Progress Marker";
1633                 break;
1634         case NVME_FEAT_HOST_IDENTIFIER:
1635                 name = "Host Identifier";
1636                 break;
1637         case NVME_FEAT_RESERVATION_NOTIFICATION_MASK:
1638                 name = "Reservation Notification Mask";
1639                 break;
1640         case NVME_FEAT_RESERVATION_PERSISTENCE:
1641                 name = "Reservation Persistence";
1642                 break;
1643         case NVME_FEAT_NAMESPACE_WRITE_PROTECTION_CONFIG:
1644                 name = "Namespace Write Protection Config";
1645                 break;
1646         default:
1647                 name = "Unknown";
1648                 break;
1649         }
1650
1651         return (name);
1652 }
1653
1654 static void
1655 nvme_feature_invalid_cb(struct pci_nvme_softc *sc __unused,
1656     struct nvme_feature_obj *feat __unused,
1657     struct nvme_command *command __unused,
1658     struct nvme_completion *compl)
1659 {
1660         pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
1661 }
1662
1663 static void
1664 nvme_feature_iv_config(struct pci_nvme_softc *sc,
1665     struct nvme_feature_obj *feat __unused,
1666     struct nvme_command *command,
1667     struct nvme_completion *compl)
1668 {
1669         uint32_t i;
1670         uint32_t cdw11 = command->cdw11;
1671         uint16_t iv;
1672         bool cd;
1673
1674         pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
1675
1676         iv = cdw11 & 0xffff;
1677         cd = cdw11 & (1 << 16);
1678
1679         if (iv > (sc->max_queues + 1)) {
1680                 return;
1681         }
1682
1683         /* No Interrupt Coalescing (i.e. not Coalescing Disable) for Admin Q */
1684         if ((iv == 0) && !cd)
1685                 return;
1686
1687         /* Requested Interrupt Vector must be used by a CQ */
1688         for (i = 0; i < sc->num_cqueues + 1; i++) {
1689                 if (sc->compl_queues[i].intr_vec == iv) {
1690                         pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS);
1691                 }
1692         }
1693 }
1694
1695 #define NVME_ASYNC_EVENT_ENDURANCE_GROUP                (0x4000)
1696 static void
1697 nvme_feature_async_event(struct pci_nvme_softc *sc __unused,
1698     struct nvme_feature_obj *feat __unused,
1699     struct nvme_command *command,
1700     struct nvme_completion *compl)
1701 {
1702         if (command->cdw11 & NVME_ASYNC_EVENT_ENDURANCE_GROUP)
1703                 pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
1704 }
1705
1706 #define NVME_TEMP_THRESH_OVER   0
1707 #define NVME_TEMP_THRESH_UNDER  1
1708 static void
1709 nvme_feature_temperature(struct pci_nvme_softc *sc,
1710     struct nvme_feature_obj *feat __unused,
1711     struct nvme_command *command,
1712     struct nvme_completion *compl)
1713 {
1714         uint16_t        tmpth;  /* Temperature Threshold */
1715         uint8_t         tmpsel; /* Threshold Temperature Select */
1716         uint8_t         thsel;  /* Threshold Type Select */
1717         bool            set_crit = false;
1718         bool            report_crit;
1719
1720         tmpth  = command->cdw11 & 0xffff;
1721         tmpsel = (command->cdw11 >> 16) & 0xf;
1722         thsel  = (command->cdw11 >> 20) & 0x3;
1723
1724         DPRINTF("%s: tmpth=%#x tmpsel=%#x thsel=%#x", __func__, tmpth, tmpsel, thsel);
1725
1726         /* Check for unsupported values */
1727         if (((tmpsel != 0) && (tmpsel != 0xf)) ||
1728             (thsel > NVME_TEMP_THRESH_UNDER)) {
1729                 pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
1730                 return;
1731         }
1732
1733         if (((thsel == NVME_TEMP_THRESH_OVER)  && (NVME_TEMPERATURE >= tmpth)) ||
1734             ((thsel == NVME_TEMP_THRESH_UNDER) && (NVME_TEMPERATURE <= tmpth)))
1735                 set_crit = true;
1736
1737         pthread_mutex_lock(&sc->mtx);
1738         if (set_crit)
1739                 sc->health_log.critical_warning |=
1740                     NVME_CRIT_WARN_ST_TEMPERATURE;
1741         else
1742                 sc->health_log.critical_warning &=
1743                     ~NVME_CRIT_WARN_ST_TEMPERATURE;
1744         pthread_mutex_unlock(&sc->mtx);
1745
1746         report_crit = sc->feat[NVME_FEAT_ASYNC_EVENT_CONFIGURATION].cdw11 &
1747             NVME_CRIT_WARN_ST_TEMPERATURE;
1748
1749         if (set_crit && report_crit)
1750                 pci_nvme_aen_post(sc, PCI_NVME_AE_TYPE_SMART,
1751                     sc->health_log.critical_warning);
1752
1753         DPRINTF("%s: set_crit=%c critical_warning=%#x status=%#x", __func__, set_crit ? 'T':'F', sc->health_log.critical_warning, compl->status);
1754 }
1755
1756 static void
1757 nvme_feature_num_queues(struct pci_nvme_softc *sc,
1758     struct nvme_feature_obj *feat __unused,
1759     struct nvme_command *command,
1760     struct nvme_completion *compl)
1761 {
1762         uint16_t nqr;   /* Number of Queues Requested */
1763
1764         if (sc->num_q_is_set) {
1765                 WPRINTF("%s: Number of Queues already set", __func__);
1766                 pci_nvme_status_genc(&compl->status,
1767                     NVME_SC_COMMAND_SEQUENCE_ERROR);
1768                 return;
1769         }
1770
1771         nqr = command->cdw11 & 0xFFFF;
1772         if (nqr == 0xffff) {
1773                 WPRINTF("%s: Illegal NSQR value %#x", __func__, nqr);
1774                 pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
1775                 return;
1776         }
1777
1778         sc->num_squeues = ONE_BASED(nqr);
1779         if (sc->num_squeues > sc->max_queues) {
1780                 DPRINTF("NSQR=%u is greater than max %u", sc->num_squeues,
1781                                         sc->max_queues);
1782                 sc->num_squeues = sc->max_queues;
1783         }
1784
1785         nqr = (command->cdw11 >> 16) & 0xFFFF;
1786         if (nqr == 0xffff) {
1787                 WPRINTF("%s: Illegal NCQR value %#x", __func__, nqr);
1788                 pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
1789                 return;
1790         }
1791
1792         sc->num_cqueues = ONE_BASED(nqr);
1793         if (sc->num_cqueues > sc->max_queues) {
1794                 DPRINTF("NCQR=%u is greater than max %u", sc->num_cqueues,
1795                                         sc->max_queues);
1796                 sc->num_cqueues = sc->max_queues;
1797         }
1798
1799         /* Patch the command value which will be saved on callback's return */
1800         command->cdw11 = NVME_FEATURE_NUM_QUEUES(sc);
1801         compl->cdw0 = NVME_FEATURE_NUM_QUEUES(sc);
1802
1803         sc->num_q_is_set = true;
1804 }
1805
1806 static int
1807 nvme_opc_set_features(struct pci_nvme_softc *sc, struct nvme_command *command,
1808         struct nvme_completion *compl)
1809 {
1810         struct nvme_feature_obj *feat;
1811         uint32_t nsid = command->nsid;
1812         uint8_t fid = NVMEV(NVME_FEAT_SET_FID, command->cdw10);
1813         bool sv = NVMEV(NVME_FEAT_SET_SV, command->cdw10);
1814
1815         DPRINTF("%s: Feature ID 0x%x (%s)", __func__, fid, nvme_fid_to_name(fid));
1816
1817         if (fid >= NVME_FID_MAX) {
1818                 DPRINTF("%s invalid feature 0x%x", __func__, fid);
1819                 pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
1820                 return (1);
1821         }
1822
1823         if (sv) {
1824                 pci_nvme_status_tc(&compl->status, NVME_SCT_COMMAND_SPECIFIC,
1825                     NVME_SC_FEATURE_NOT_SAVEABLE);
1826                 return (1);
1827         }
1828
1829         feat = &sc->feat[fid];
1830
1831         if (feat->namespace_specific && (nsid == NVME_GLOBAL_NAMESPACE_TAG)) {
1832                 pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
1833                 return (1);
1834         }
1835
1836         if (!feat->namespace_specific &&
1837             !((nsid == 0) || (nsid == NVME_GLOBAL_NAMESPACE_TAG))) {
1838                 pci_nvme_status_tc(&compl->status, NVME_SCT_COMMAND_SPECIFIC,
1839                     NVME_SC_FEATURE_NOT_NS_SPECIFIC);
1840                 return (1);
1841         }
1842
1843         compl->cdw0 = 0;
1844         pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS);
1845
1846         if (feat->set)
1847                 feat->set(sc, feat, command, compl);
1848         else {
1849                 pci_nvme_status_tc(&compl->status, NVME_SCT_COMMAND_SPECIFIC,
1850                     NVME_SC_FEATURE_NOT_CHANGEABLE);
1851                 return (1);
1852         }
1853
1854         DPRINTF("%s: status=%#x cdw11=%#x", __func__, compl->status, command->cdw11);
1855         if (compl->status == NVME_SC_SUCCESS) {
1856                 feat->cdw11 = command->cdw11;
1857                 if ((fid == NVME_FEAT_ASYNC_EVENT_CONFIGURATION) &&
1858                     (command->cdw11 != 0))
1859                         pci_nvme_aen_notify(sc);
1860         }
1861
1862         return (0);
1863 }
1864
1865 #define NVME_FEATURES_SEL_SUPPORTED     0x3
1866 #define NVME_FEATURES_NS_SPECIFIC       (1 << 1)
1867
1868 static int
1869 nvme_opc_get_features(struct pci_nvme_softc* sc, struct nvme_command* command,
1870         struct nvme_completion* compl)
1871 {
1872         struct nvme_feature_obj *feat;
1873         uint8_t fid = command->cdw10 & 0xFF;
1874         uint8_t sel = (command->cdw10 >> 8) & 0x7;
1875
1876         DPRINTF("%s: Feature ID 0x%x (%s)", __func__, fid, nvme_fid_to_name(fid));
1877
1878         if (fid >= NVME_FID_MAX) {
1879                 DPRINTF("%s invalid feature 0x%x", __func__, fid);
1880                 pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
1881                 return (1);
1882         }
1883
1884         compl->cdw0 = 0;
1885         pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS);
1886
1887         feat = &sc->feat[fid];
1888         if (feat->get) {
1889                 feat->get(sc, feat, command, compl);
1890         }
1891
1892         if (compl->status == NVME_SC_SUCCESS) {
1893                 if ((sel == NVME_FEATURES_SEL_SUPPORTED) && feat->namespace_specific)
1894                         compl->cdw0 = NVME_FEATURES_NS_SPECIFIC;
1895                 else
1896                         compl->cdw0 = feat->cdw11;
1897         }
1898
1899         return (0);
1900 }
1901
1902 static int
1903 nvme_opc_format_nvm(struct pci_nvme_softc* sc, struct nvme_command* command,
1904         struct nvme_completion* compl)
1905 {
1906         uint8_t ses, lbaf, pi;
1907
1908         /* Only supports Secure Erase Setting - User Data Erase */
1909         ses = (command->cdw10 >> 9) & 0x7;
1910         if (ses > 0x1) {
1911                 pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
1912                 return (1);
1913         }
1914
1915         /* Only supports a single LBA Format */
1916         lbaf = command->cdw10 & 0xf;
1917         if (lbaf != 0) {
1918                 pci_nvme_status_tc(&compl->status, NVME_SCT_COMMAND_SPECIFIC,
1919                     NVME_SC_INVALID_FORMAT);
1920                 return (1);
1921         }
1922
1923         /* Doesn't support Protection Information */
1924         pi = (command->cdw10 >> 5) & 0x7;
1925         if (pi != 0) {
1926                 pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
1927                 return (1);
1928         }
1929
1930         if (sc->nvstore.type == NVME_STOR_RAM) {
1931                 if (sc->nvstore.ctx)
1932                         free(sc->nvstore.ctx);
1933                 sc->nvstore.ctx = calloc(1, sc->nvstore.size);
1934                 pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS);
1935         } else {
1936                 struct pci_nvme_ioreq *req;
1937                 int err;
1938
1939                 req = pci_nvme_get_ioreq(sc);
1940                 if (req == NULL) {
1941                         pci_nvme_status_genc(&compl->status,
1942                             NVME_SC_INTERNAL_DEVICE_ERROR);
1943                         WPRINTF("%s: unable to allocate IO req", __func__);
1944                         return (1);
1945                 }
1946                 req->nvme_sq = &sc->submit_queues[0];
1947                 req->sqid = 0;
1948                 req->opc = command->opc;
1949                 req->cid = command->cid;
1950                 req->nsid = command->nsid;
1951
1952                 req->io_req.br_offset = 0;
1953                 req->io_req.br_resid = sc->nvstore.size;
1954                 req->io_req.br_callback = pci_nvme_io_done;
1955
1956                 err = blockif_delete(sc->nvstore.ctx, &req->io_req);
1957                 if (err) {
1958                         pci_nvme_status_genc(&compl->status,
1959                             NVME_SC_INTERNAL_DEVICE_ERROR);
1960                         pci_nvme_release_ioreq(sc, req);
1961                 } else
1962                         compl->status = NVME_NO_STATUS;
1963         }
1964
1965         return (1);
1966 }
1967
1968 static int
1969 nvme_opc_abort(struct pci_nvme_softc *sc __unused, struct nvme_command *command,
1970     struct nvme_completion *compl)
1971 {
1972         DPRINTF("%s submission queue %u, command ID 0x%x", __func__,
1973                 command->cdw10 & 0xFFFF, (command->cdw10 >> 16) & 0xFFFF);
1974
1975         /* TODO: search for the command ID and abort it */
1976
1977         compl->cdw0 = 1;
1978         pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS);
1979         return (1);
1980 }
1981
1982 static int
1983 nvme_opc_async_event_req(struct pci_nvme_softc* sc,
1984         struct nvme_command* command, struct nvme_completion* compl)
1985 {
1986         DPRINTF("%s async event request count=%u aerl=%u cid=%#x", __func__,
1987             sc->aer_count, sc->ctrldata.aerl, command->cid);
1988
1989         /* Don't exceed the Async Event Request Limit (AERL). */
1990         if (pci_nvme_aer_limit_reached(sc)) {
1991                 pci_nvme_status_tc(&compl->status, NVME_SCT_COMMAND_SPECIFIC,
1992                                 NVME_SC_ASYNC_EVENT_REQUEST_LIMIT_EXCEEDED);
1993                 return (1);
1994         }
1995
1996         if (pci_nvme_aer_add(sc, command->cid)) {
1997                 pci_nvme_status_tc(&compl->status, NVME_SCT_GENERIC,
1998                                 NVME_SC_INTERNAL_DEVICE_ERROR);
1999                 return (1);
2000         }
2001
2002         /*
2003          * Raise events when they happen based on the Set Features cmd.
2004          * These events happen async, so only set completion successful if
2005          * there is an event reflective of the request to get event.
2006          */
2007         compl->status = NVME_NO_STATUS;
2008         pci_nvme_aen_notify(sc);
2009
2010         return (0);
2011 }
2012
2013 static void
2014 pci_nvme_handle_admin_cmd(struct pci_nvme_softc* sc, uint64_t value)
2015 {
2016         struct nvme_completion compl;
2017         struct nvme_command *cmd;
2018         struct nvme_submission_queue *sq;
2019         struct nvme_completion_queue *cq;
2020         uint16_t sqhead;
2021
2022         DPRINTF("%s index %u", __func__, (uint32_t)value);
2023
2024         sq = &sc->submit_queues[0];
2025         cq = &sc->compl_queues[0];
2026
2027         pthread_mutex_lock(&sq->mtx);
2028
2029         sqhead = sq->head;
2030         DPRINTF("sqhead %u, tail %u", sqhead, sq->tail);
2031
2032         while (sqhead != atomic_load_acq_short(&sq->tail)) {
2033                 cmd = &(sq->qbase)[sqhead];
2034                 compl.cdw0 = 0;
2035                 compl.status = 0;
2036
2037                 switch (cmd->opc) {
2038                 case NVME_OPC_DELETE_IO_SQ:
2039                         DPRINTF("%s command DELETE_IO_SQ", __func__);
2040                         nvme_opc_delete_io_sq(sc, cmd, &compl);
2041                         break;
2042                 case NVME_OPC_CREATE_IO_SQ:
2043                         DPRINTF("%s command CREATE_IO_SQ", __func__);
2044                         nvme_opc_create_io_sq(sc, cmd, &compl);
2045                         break;
2046                 case NVME_OPC_DELETE_IO_CQ:
2047                         DPRINTF("%s command DELETE_IO_CQ", __func__);
2048                         nvme_opc_delete_io_cq(sc, cmd, &compl);
2049                         break;
2050                 case NVME_OPC_CREATE_IO_CQ:
2051                         DPRINTF("%s command CREATE_IO_CQ", __func__);
2052                         nvme_opc_create_io_cq(sc, cmd, &compl);
2053                         break;
2054                 case NVME_OPC_GET_LOG_PAGE:
2055                         DPRINTF("%s command GET_LOG_PAGE", __func__);
2056                         nvme_opc_get_log_page(sc, cmd, &compl);
2057                         break;
2058                 case NVME_OPC_IDENTIFY:
2059                         DPRINTF("%s command IDENTIFY", __func__);
2060                         nvme_opc_identify(sc, cmd, &compl);
2061                         break;
2062                 case NVME_OPC_ABORT:
2063                         DPRINTF("%s command ABORT", __func__);
2064                         nvme_opc_abort(sc, cmd, &compl);
2065                         break;
2066                 case NVME_OPC_SET_FEATURES:
2067                         DPRINTF("%s command SET_FEATURES", __func__);
2068                         nvme_opc_set_features(sc, cmd, &compl);
2069                         break;
2070                 case NVME_OPC_GET_FEATURES:
2071                         DPRINTF("%s command GET_FEATURES", __func__);
2072                         nvme_opc_get_features(sc, cmd, &compl);
2073                         break;
2074                 case NVME_OPC_FIRMWARE_ACTIVATE:
2075                         DPRINTF("%s command FIRMWARE_ACTIVATE", __func__);
2076                         pci_nvme_status_tc(&compl.status,
2077                             NVME_SCT_COMMAND_SPECIFIC,
2078                             NVME_SC_INVALID_FIRMWARE_SLOT);
2079                         break;
2080                 case NVME_OPC_ASYNC_EVENT_REQUEST:
2081                         DPRINTF("%s command ASYNC_EVENT_REQ", __func__);
2082                         nvme_opc_async_event_req(sc, cmd, &compl);
2083                         break;
2084                 case NVME_OPC_FORMAT_NVM:
2085                         DPRINTF("%s command FORMAT_NVM", __func__);
2086                         if ((sc->ctrldata.oacs &
2087                             (1 << NVME_CTRLR_DATA_OACS_FORMAT_SHIFT)) == 0) {
2088                                 pci_nvme_status_genc(&compl.status, NVME_SC_INVALID_OPCODE);
2089                                 break;
2090                         }
2091                         nvme_opc_format_nvm(sc, cmd, &compl);
2092                         break;
2093                 case NVME_OPC_SECURITY_SEND:
2094                 case NVME_OPC_SECURITY_RECEIVE:
2095                 case NVME_OPC_SANITIZE:
2096                 case NVME_OPC_GET_LBA_STATUS:
2097                         DPRINTF("%s command OPC=%#x (unsupported)", __func__,
2098                             cmd->opc);
2099                         /* Valid but unsupported opcodes */
2100                         pci_nvme_status_genc(&compl.status, NVME_SC_INVALID_FIELD);
2101                         break;
2102                 default:
2103                         DPRINTF("%s command OPC=%#X (not implemented)",
2104                             __func__,
2105                             cmd->opc);
2106                         pci_nvme_status_genc(&compl.status, NVME_SC_INVALID_OPCODE);
2107                 }
2108                 sqhead = (sqhead + 1) % sq->size;
2109
2110                 if (NVME_COMPLETION_VALID(compl)) {
2111                         pci_nvme_cq_update(sc, &sc->compl_queues[0],
2112                             compl.cdw0,
2113                             cmd->cid,
2114                             0,          /* SQID */
2115                             compl.status);
2116                 }
2117         }
2118
2119         DPRINTF("setting sqhead %u", sqhead);
2120         sq->head = sqhead;
2121
2122         if (cq->head != cq->tail)
2123                 pci_generate_msix(sc->nsc_pi, 0);
2124
2125         pthread_mutex_unlock(&sq->mtx);
2126 }
2127
2128 /*
2129  * Update the Write and Read statistics reported in SMART data
2130  *
2131  * NVMe defines "data unit" as thousand's of 512 byte blocks and is rounded up.
2132  * E.g. 1 data unit is 1 - 1,000 512 byte blocks. 3 data units are 2,001 - 3,000
2133  * 512 byte blocks. Rounding up is achieved by initializing the remainder to 999.
2134  */
2135 static void
2136 pci_nvme_stats_write_read_update(struct pci_nvme_softc *sc, uint8_t opc,
2137     size_t bytes, uint16_t status)
2138 {
2139
2140         pthread_mutex_lock(&sc->mtx);
2141         switch (opc) {
2142         case NVME_OPC_WRITE:
2143                 sc->write_commands++;
2144                 if (status != NVME_SC_SUCCESS)
2145                         break;
2146                 sc->write_dunits_remainder += (bytes / 512);
2147                 while (sc->write_dunits_remainder >= 1000) {
2148                         sc->write_data_units++;
2149                         sc->write_dunits_remainder -= 1000;
2150                 }
2151                 break;
2152         case NVME_OPC_READ:
2153                 sc->read_commands++;
2154                 if (status != NVME_SC_SUCCESS)
2155                         break;
2156                 sc->read_dunits_remainder += (bytes / 512);
2157                 while (sc->read_dunits_remainder >= 1000) {
2158                         sc->read_data_units++;
2159                         sc->read_dunits_remainder -= 1000;
2160                 }
2161                 break;
2162         default:
2163                 DPRINTF("%s: Invalid OPC 0x%02x for stats", __func__, opc);
2164                 break;
2165         }
2166         pthread_mutex_unlock(&sc->mtx);
2167 }
2168
2169 /*
2170  * Check if the combination of Starting LBA (slba) and number of blocks
2171  * exceeds the range of the underlying storage.
2172  *
2173  * Because NVMe specifies the SLBA in blocks as a uint64_t and blockif stores
2174  * the capacity in bytes as a uint64_t, care must be taken to avoid integer
2175  * overflow.
2176  */
2177 static bool
2178 pci_nvme_out_of_range(struct pci_nvme_blockstore *nvstore, uint64_t slba,
2179     uint32_t nblocks)
2180 {
2181         size_t  offset, bytes;
2182
2183         /* Overflow check of multiplying Starting LBA by the sector size */
2184         if (slba >> (64 - nvstore->sectsz_bits))
2185                 return (true);
2186
2187         offset = slba << nvstore->sectsz_bits;
2188         bytes = nblocks << nvstore->sectsz_bits;
2189
2190         /* Overflow check of Number of Logical Blocks */
2191         if ((nvstore->size <= offset) || ((nvstore->size - offset) < bytes))
2192                 return (true);
2193
2194         return (false);
2195 }
2196
2197 static int
2198 pci_nvme_append_iov_req(struct pci_nvme_softc *sc __unused,
2199     struct pci_nvme_ioreq *req, uint64_t gpaddr, size_t size, uint64_t offset)
2200 {
2201         int iovidx;
2202         bool range_is_contiguous;
2203
2204         if (req == NULL)
2205                 return (-1);
2206
2207         if (req->io_req.br_iovcnt == NVME_MAX_IOVEC) {
2208                 return (-1);
2209         }
2210
2211         /*
2212          * Minimize the number of IOVs by concatenating contiguous address
2213          * ranges. If the IOV count is zero, there is no previous range to
2214          * concatenate.
2215          */
2216         if (req->io_req.br_iovcnt == 0)
2217                 range_is_contiguous = false;
2218         else
2219                 range_is_contiguous = (req->prev_gpaddr + req->prev_size) == gpaddr;
2220
2221         if (range_is_contiguous) {
2222                 iovidx = req->io_req.br_iovcnt - 1;
2223
2224                 req->io_req.br_iov[iovidx].iov_base =
2225                     paddr_guest2host(req->sc->nsc_pi->pi_vmctx,
2226                                      req->prev_gpaddr, size);
2227                 if (req->io_req.br_iov[iovidx].iov_base == NULL)
2228                         return (-1);
2229
2230                 req->prev_size += size;
2231                 req->io_req.br_resid += size;
2232
2233                 req->io_req.br_iov[iovidx].iov_len = req->prev_size;
2234         } else {
2235                 iovidx = req->io_req.br_iovcnt;
2236                 if (iovidx == 0) {
2237                         req->io_req.br_offset = offset;
2238                         req->io_req.br_resid = 0;
2239                         req->io_req.br_param = req;
2240                 }
2241
2242                 req->io_req.br_iov[iovidx].iov_base =
2243                     paddr_guest2host(req->sc->nsc_pi->pi_vmctx,
2244                                      gpaddr, size);
2245                 if (req->io_req.br_iov[iovidx].iov_base == NULL)
2246                         return (-1);
2247
2248                 req->io_req.br_iov[iovidx].iov_len = size;
2249
2250                 req->prev_gpaddr = gpaddr;
2251                 req->prev_size = size;
2252                 req->io_req.br_resid += size;
2253
2254                 req->io_req.br_iovcnt++;
2255         }
2256
2257         return (0);
2258 }
2259
2260 static void
2261 pci_nvme_set_completion(struct pci_nvme_softc *sc,
2262     struct nvme_submission_queue *sq, int sqid, uint16_t cid, uint16_t status)
2263 {
2264         struct nvme_completion_queue *cq = &sc->compl_queues[sq->cqid];
2265
2266         DPRINTF("%s sqid %d cqid %u cid %u status: 0x%x 0x%x",
2267                  __func__, sqid, sq->cqid, cid, NVME_STATUS_GET_SCT(status),
2268                  NVME_STATUS_GET_SC(status));
2269
2270         pci_nvme_cq_update(sc, cq, 0, cid, sqid, status);
2271
2272         if (cq->head != cq->tail) {
2273                 if (cq->intr_en & NVME_CQ_INTEN) {
2274                         pci_generate_msix(sc->nsc_pi, cq->intr_vec);
2275                 } else {
2276                         DPRINTF("%s: CQ%u interrupt disabled",
2277                                                 __func__, sq->cqid);
2278                 }
2279         }
2280 }
2281
2282 static void
2283 pci_nvme_release_ioreq(struct pci_nvme_softc *sc, struct pci_nvme_ioreq *req)
2284 {
2285         req->sc = NULL;
2286         req->nvme_sq = NULL;
2287         req->sqid = 0;
2288
2289         pthread_mutex_lock(&sc->mtx);
2290
2291         STAILQ_INSERT_TAIL(&sc->ioreqs_free, req, link);
2292         sc->pending_ios--;
2293
2294         /* when no more IO pending, can set to ready if device reset/enabled */
2295         if (sc->pending_ios == 0 &&
2296             NVME_CC_GET_EN(sc->regs.cc) && !(NVME_CSTS_GET_RDY(sc->regs.csts)))
2297                 sc->regs.csts |= NVME_CSTS_RDY;
2298
2299         pthread_mutex_unlock(&sc->mtx);
2300
2301         sem_post(&sc->iosemlock);
2302 }
2303
2304 static struct pci_nvme_ioreq *
2305 pci_nvme_get_ioreq(struct pci_nvme_softc *sc)
2306 {
2307         struct pci_nvme_ioreq *req = NULL;
2308
2309         sem_wait(&sc->iosemlock);
2310         pthread_mutex_lock(&sc->mtx);
2311
2312         req = STAILQ_FIRST(&sc->ioreqs_free);
2313         assert(req != NULL);
2314         STAILQ_REMOVE_HEAD(&sc->ioreqs_free, link);
2315
2316         req->sc = sc;
2317
2318         sc->pending_ios++;
2319
2320         pthread_mutex_unlock(&sc->mtx);
2321
2322         req->io_req.br_iovcnt = 0;
2323         req->io_req.br_offset = 0;
2324         req->io_req.br_resid = 0;
2325         req->io_req.br_param = req;
2326         req->prev_gpaddr = 0;
2327         req->prev_size = 0;
2328
2329         return req;
2330 }
2331
2332 static void
2333 pci_nvme_io_done(struct blockif_req *br, int err)
2334 {
2335         struct pci_nvme_ioreq *req = br->br_param;
2336         struct nvme_submission_queue *sq = req->nvme_sq;
2337         uint16_t code, status;
2338
2339         DPRINTF("%s error %d %s", __func__, err, strerror(err));
2340
2341         /* TODO return correct error */
2342         code = err ? NVME_SC_DATA_TRANSFER_ERROR : NVME_SC_SUCCESS;
2343         status = 0;
2344         pci_nvme_status_genc(&status, code);
2345
2346         pci_nvme_set_completion(req->sc, sq, req->sqid, req->cid, status);
2347         pci_nvme_stats_write_read_update(req->sc, req->opc,
2348             req->bytes, status);
2349         pci_nvme_release_ioreq(req->sc, req);
2350 }
2351
2352 /*
2353  * Implements the Flush command. The specification states:
2354  *    If a volatile write cache is not present, Flush commands complete
2355  *    successfully and have no effect
2356  * in the description of the Volatile Write Cache (VWC) field of the Identify
2357  * Controller data. Therefore, set status to Success if the command is
2358  * not supported (i.e. RAM or as indicated by the blockif).
2359  */
2360 static bool
2361 nvme_opc_flush(struct pci_nvme_softc *sc __unused,
2362     struct nvme_command *cmd __unused,
2363     struct pci_nvme_blockstore *nvstore,
2364     struct pci_nvme_ioreq *req,
2365     uint16_t *status)
2366 {
2367         bool pending = false;
2368
2369         if (nvstore->type == NVME_STOR_RAM) {
2370                 pci_nvme_status_genc(status, NVME_SC_SUCCESS);
2371         } else {
2372                 int err;
2373
2374                 req->io_req.br_callback = pci_nvme_io_done;
2375
2376                 err = blockif_flush(nvstore->ctx, &req->io_req);
2377                 switch (err) {
2378                 case 0:
2379                         pending = true;
2380                         break;
2381                 case EOPNOTSUPP:
2382                         pci_nvme_status_genc(status, NVME_SC_SUCCESS);
2383                         break;
2384                 default:
2385                         pci_nvme_status_genc(status, NVME_SC_INTERNAL_DEVICE_ERROR);
2386                 }
2387         }
2388
2389         return (pending);
2390 }
2391
2392 static uint16_t
2393 nvme_write_read_ram(struct pci_nvme_softc *sc,
2394     struct pci_nvme_blockstore *nvstore,
2395     uint64_t prp1, uint64_t prp2,
2396     size_t offset, uint64_t bytes,
2397     bool is_write)
2398 {
2399         uint8_t *buf = nvstore->ctx;
2400         enum nvme_copy_dir dir;
2401         uint16_t status;
2402
2403         if (is_write)
2404                 dir = NVME_COPY_TO_PRP;
2405         else
2406                 dir = NVME_COPY_FROM_PRP;
2407
2408         status = 0;
2409         if (nvme_prp_memcpy(sc->nsc_pi->pi_vmctx, prp1, prp2,
2410             buf + offset, bytes, dir))
2411                 pci_nvme_status_genc(&status,
2412                     NVME_SC_DATA_TRANSFER_ERROR);
2413         else
2414                 pci_nvme_status_genc(&status, NVME_SC_SUCCESS);
2415
2416         return (status);
2417 }
2418
2419 static uint16_t
2420 nvme_write_read_blockif(struct pci_nvme_softc *sc,
2421     struct pci_nvme_blockstore *nvstore,
2422     struct pci_nvme_ioreq *req,
2423     uint64_t prp1, uint64_t prp2,
2424     size_t offset, uint64_t bytes,
2425     bool is_write)
2426 {
2427         uint64_t size;
2428         int err;
2429         uint16_t status = NVME_NO_STATUS;
2430
2431         size = MIN(PAGE_SIZE - (prp1 % PAGE_SIZE), bytes);
2432         if (pci_nvme_append_iov_req(sc, req, prp1, size, offset)) {
2433                 err = -1;
2434                 goto out;
2435         }
2436
2437         offset += size;
2438         bytes  -= size;
2439
2440         if (bytes == 0) {
2441                 ;
2442         } else if (bytes <= PAGE_SIZE) {
2443                 size = bytes;
2444                 if (pci_nvme_append_iov_req(sc, req, prp2, size, offset)) {
2445                         err = -1;
2446                         goto out;
2447                 }
2448         } else {
2449                 void *vmctx = sc->nsc_pi->pi_vmctx;
2450                 uint64_t *prp_list = &prp2;
2451                 uint64_t *last = prp_list;
2452
2453                 /* PRP2 is pointer to a physical region page list */
2454                 while (bytes) {
2455                         /* Last entry in list points to the next list */
2456                         if ((prp_list == last) && (bytes > PAGE_SIZE)) {
2457                                 uint64_t prp = *prp_list;
2458
2459                                 prp_list = paddr_guest2host(vmctx, prp,
2460                                     PAGE_SIZE - (prp % PAGE_SIZE));
2461                                 if (prp_list == NULL) {
2462                                         err = -1;
2463                                         goto out;
2464                                 }
2465                                 last = prp_list + (NVME_PRP2_ITEMS - 1);
2466                         }
2467
2468                         size = MIN(bytes, PAGE_SIZE);
2469
2470                         if (pci_nvme_append_iov_req(sc, req, *prp_list, size,
2471                             offset)) {
2472                                 err = -1;
2473                                 goto out;
2474                         }
2475
2476                         offset += size;
2477                         bytes  -= size;
2478
2479                         prp_list++;
2480                 }
2481         }
2482         req->io_req.br_callback = pci_nvme_io_done;
2483         if (is_write)
2484                 err = blockif_write(nvstore->ctx, &req->io_req);
2485         else
2486                 err = blockif_read(nvstore->ctx, &req->io_req);
2487 out:
2488         if (err)
2489                 pci_nvme_status_genc(&status, NVME_SC_DATA_TRANSFER_ERROR);
2490
2491         return (status);
2492 }
2493
2494 static bool
2495 nvme_opc_write_read(struct pci_nvme_softc *sc,
2496     struct nvme_command *cmd,
2497     struct pci_nvme_blockstore *nvstore,
2498     struct pci_nvme_ioreq *req,
2499     uint16_t *status)
2500 {
2501         uint64_t lba, nblocks, bytes;
2502         size_t offset;
2503         bool is_write = cmd->opc == NVME_OPC_WRITE;
2504         bool pending = false;
2505
2506         lba = ((uint64_t)cmd->cdw11 << 32) | cmd->cdw10;
2507         nblocks = (cmd->cdw12 & 0xFFFF) + 1;
2508         bytes = nblocks << nvstore->sectsz_bits;
2509         if (bytes > NVME_MAX_DATA_SIZE) {
2510                 WPRINTF("%s command would exceed MDTS", __func__);
2511                 pci_nvme_status_genc(status, NVME_SC_INVALID_FIELD);
2512                 goto out;
2513         }
2514
2515         if (pci_nvme_out_of_range(nvstore, lba, nblocks)) {
2516                 WPRINTF("%s command would exceed LBA range(slba=%#lx nblocks=%#lx)",
2517                     __func__, lba, nblocks);
2518                 pci_nvme_status_genc(status, NVME_SC_LBA_OUT_OF_RANGE);
2519                 goto out;
2520         }
2521
2522         offset = lba << nvstore->sectsz_bits;
2523
2524         req->bytes = bytes;
2525         req->io_req.br_offset = lba;
2526
2527         /* PRP bits 1:0 must be zero */
2528         cmd->prp1 &= ~0x3UL;
2529         cmd->prp2 &= ~0x3UL;
2530
2531         if (nvstore->type == NVME_STOR_RAM) {
2532                 *status = nvme_write_read_ram(sc, nvstore, cmd->prp1,
2533                     cmd->prp2, offset, bytes, is_write);
2534         } else {
2535                 *status = nvme_write_read_blockif(sc, nvstore, req,
2536                     cmd->prp1, cmd->prp2, offset, bytes, is_write);
2537
2538                 if (*status == NVME_NO_STATUS)
2539                         pending = true;
2540         }
2541 out:
2542         if (!pending)
2543                 pci_nvme_stats_write_read_update(sc, cmd->opc, bytes, *status);
2544
2545         return (pending);
2546 }
2547
2548 static void
2549 pci_nvme_dealloc_sm(struct blockif_req *br, int err)
2550 {
2551         struct pci_nvme_ioreq *req = br->br_param;
2552         struct pci_nvme_softc *sc = req->sc;
2553         bool done = true;
2554         uint16_t status;
2555
2556         status = 0;
2557         if (err) {
2558                 pci_nvme_status_genc(&status, NVME_SC_INTERNAL_DEVICE_ERROR);
2559         } else if ((req->prev_gpaddr + 1) == (req->prev_size)) {
2560                 pci_nvme_status_genc(&status, NVME_SC_SUCCESS);
2561         } else {
2562                 struct iovec *iov = req->io_req.br_iov;
2563
2564                 req->prev_gpaddr++;
2565                 iov += req->prev_gpaddr;
2566
2567                 /* The iov_* values already include the sector size */
2568                 req->io_req.br_offset = (off_t)iov->iov_base;
2569                 req->io_req.br_resid = iov->iov_len;
2570                 if (blockif_delete(sc->nvstore.ctx, &req->io_req)) {
2571                         pci_nvme_status_genc(&status,
2572                             NVME_SC_INTERNAL_DEVICE_ERROR);
2573                 } else
2574                         done = false;
2575         }
2576
2577         if (done) {
2578                 pci_nvme_set_completion(sc, req->nvme_sq, req->sqid, req->cid,
2579                     status);
2580                 pci_nvme_release_ioreq(sc, req);
2581         }
2582 }
2583
2584 static bool
2585 nvme_opc_dataset_mgmt(struct pci_nvme_softc *sc,
2586     struct nvme_command *cmd,
2587     struct pci_nvme_blockstore *nvstore,
2588     struct pci_nvme_ioreq *req,
2589     uint16_t *status)
2590 {
2591         struct nvme_dsm_range *range = NULL;
2592         uint32_t nr, r, non_zero, dr;
2593         int err;
2594         bool pending = false;
2595
2596         if ((sc->ctrldata.oncs & NVME_ONCS_DSM) == 0) {
2597                 pci_nvme_status_genc(status, NVME_SC_INVALID_OPCODE);
2598                 goto out;
2599         }
2600
2601         nr = cmd->cdw10 & 0xff;
2602
2603         /* copy locally because a range entry could straddle PRPs */
2604         range = calloc(1, NVME_MAX_DSM_TRIM);
2605         if (range == NULL) {
2606                 pci_nvme_status_genc(status, NVME_SC_INTERNAL_DEVICE_ERROR);
2607                 goto out;
2608         }
2609         nvme_prp_memcpy(sc->nsc_pi->pi_vmctx, cmd->prp1, cmd->prp2,
2610             (uint8_t *)range, NVME_MAX_DSM_TRIM, NVME_COPY_FROM_PRP);
2611
2612         /* Check for invalid ranges and the number of non-zero lengths */
2613         non_zero = 0;
2614         for (r = 0; r <= nr; r++) {
2615                 if (pci_nvme_out_of_range(nvstore,
2616                     range[r].starting_lba, range[r].length)) {
2617                         pci_nvme_status_genc(status, NVME_SC_LBA_OUT_OF_RANGE);
2618                         goto out;
2619                 }
2620                 if (range[r].length != 0)
2621                         non_zero++;
2622         }
2623
2624         if (cmd->cdw11 & NVME_DSM_ATTR_DEALLOCATE) {
2625                 size_t offset, bytes;
2626                 int sectsz_bits = sc->nvstore.sectsz_bits;
2627
2628                 /*
2629                  * DSM calls are advisory only, and compliant controllers
2630                  * may choose to take no actions (i.e. return Success).
2631                  */
2632                 if (!nvstore->deallocate) {
2633                         pci_nvme_status_genc(status, NVME_SC_SUCCESS);
2634                         goto out;
2635                 }
2636
2637                 /* If all ranges have a zero length, return Success */
2638                 if (non_zero == 0) {
2639                         pci_nvme_status_genc(status, NVME_SC_SUCCESS);
2640                         goto out;
2641                 }
2642
2643                 if (req == NULL) {
2644                         pci_nvme_status_genc(status, NVME_SC_INTERNAL_DEVICE_ERROR);
2645                         goto out;
2646                 }
2647
2648                 offset = range[0].starting_lba << sectsz_bits;
2649                 bytes = range[0].length << sectsz_bits;
2650
2651                 /*
2652                  * If the request is for more than a single range, store
2653                  * the ranges in the br_iov. Optimize for the common case
2654                  * of a single range.
2655                  *
2656                  * Note that NVMe Number of Ranges is a zero based value
2657                  */
2658                 req->io_req.br_iovcnt = 0;
2659                 req->io_req.br_offset = offset;
2660                 req->io_req.br_resid = bytes;
2661
2662                 if (nr == 0) {
2663                         req->io_req.br_callback = pci_nvme_io_done;
2664                 } else {
2665                         struct iovec *iov = req->io_req.br_iov;
2666
2667                         for (r = 0, dr = 0; r <= nr; r++) {
2668                                 offset = range[r].starting_lba << sectsz_bits;
2669                                 bytes = range[r].length << sectsz_bits;
2670                                 if (bytes == 0)
2671                                         continue;
2672
2673                                 if ((nvstore->size - offset) < bytes) {
2674                                         pci_nvme_status_genc(status,
2675                                             NVME_SC_LBA_OUT_OF_RANGE);
2676                                         goto out;
2677                                 }
2678                                 iov[dr].iov_base = (void *)offset;
2679                                 iov[dr].iov_len = bytes;
2680                                 dr++;
2681                         }
2682                         req->io_req.br_callback = pci_nvme_dealloc_sm;
2683
2684                         /*
2685                          * Use prev_gpaddr to track the current entry and
2686                          * prev_size to track the number of entries
2687                          */
2688                         req->prev_gpaddr = 0;
2689                         req->prev_size = dr;
2690                 }
2691
2692                 err = blockif_delete(nvstore->ctx, &req->io_req);
2693                 if (err)
2694                         pci_nvme_status_genc(status, NVME_SC_INTERNAL_DEVICE_ERROR);
2695                 else
2696                         pending = true;
2697         }
2698 out:
2699         free(range);
2700         return (pending);
2701 }
2702
2703 static void
2704 pci_nvme_handle_io_cmd(struct pci_nvme_softc* sc, uint16_t idx)
2705 {
2706         struct nvme_submission_queue *sq;
2707         uint16_t status;
2708         uint16_t sqhead;
2709
2710         /* handle all submissions up to sq->tail index */
2711         sq = &sc->submit_queues[idx];
2712
2713         pthread_mutex_lock(&sq->mtx);
2714
2715         sqhead = sq->head;
2716         DPRINTF("nvme_handle_io qid %u head %u tail %u cmdlist %p",
2717                  idx, sqhead, sq->tail, sq->qbase);
2718
2719         while (sqhead != atomic_load_acq_short(&sq->tail)) {
2720                 struct nvme_command *cmd;
2721                 struct pci_nvme_ioreq *req;
2722                 uint32_t nsid;
2723                 bool pending;
2724
2725                 pending = false;
2726                 req = NULL;
2727                 status = 0;
2728
2729                 cmd = &sq->qbase[sqhead];
2730                 sqhead = (sqhead + 1) % sq->size;
2731
2732                 nsid = le32toh(cmd->nsid);
2733                 if ((nsid == 0) || (nsid > sc->ctrldata.nn)) {
2734                         pci_nvme_status_genc(&status,
2735                             NVME_SC_INVALID_NAMESPACE_OR_FORMAT);
2736                         status |=
2737                             NVME_STATUS_DNR_MASK << NVME_STATUS_DNR_SHIFT;
2738                         goto complete;
2739                 }
2740
2741                 req = pci_nvme_get_ioreq(sc);
2742                 if (req == NULL) {
2743                         pci_nvme_status_genc(&status,
2744                             NVME_SC_INTERNAL_DEVICE_ERROR);
2745                         WPRINTF("%s: unable to allocate IO req", __func__);
2746                         goto complete;
2747                 }
2748                 req->nvme_sq = sq;
2749                 req->sqid = idx;
2750                 req->opc = cmd->opc;
2751                 req->cid = cmd->cid;
2752                 req->nsid = cmd->nsid;
2753
2754                 switch (cmd->opc) {
2755                 case NVME_OPC_FLUSH:
2756                         pending = nvme_opc_flush(sc, cmd, &sc->nvstore,
2757                             req, &status);
2758                         break;
2759                 case NVME_OPC_WRITE:
2760                 case NVME_OPC_READ:
2761                         pending = nvme_opc_write_read(sc, cmd, &sc->nvstore,
2762                             req, &status);
2763                         break;
2764                 case NVME_OPC_WRITE_ZEROES:
2765                         /* TODO: write zeroes
2766                         WPRINTF("%s write zeroes lba 0x%lx blocks %u",
2767                                 __func__, lba, cmd->cdw12 & 0xFFFF); */
2768                         pci_nvme_status_genc(&status, NVME_SC_SUCCESS);
2769                         break;
2770                 case NVME_OPC_DATASET_MANAGEMENT:
2771                         pending = nvme_opc_dataset_mgmt(sc, cmd, &sc->nvstore,
2772                             req, &status);
2773                         break;
2774                 default:
2775                         WPRINTF("%s unhandled io command 0x%x",
2776                             __func__, cmd->opc);
2777                         pci_nvme_status_genc(&status, NVME_SC_INVALID_OPCODE);
2778                 }
2779 complete:
2780                 if (!pending) {
2781                         pci_nvme_set_completion(sc, sq, idx, cmd->cid, status);
2782                         if (req != NULL)
2783                                 pci_nvme_release_ioreq(sc, req);
2784                 }
2785         }
2786
2787         sq->head = sqhead;
2788
2789         pthread_mutex_unlock(&sq->mtx);
2790 }
2791
2792 static void
2793 pci_nvme_handle_doorbell(struct pci_nvme_softc* sc,
2794         uint64_t idx, int is_sq, uint64_t value)
2795 {
2796         DPRINTF("nvme doorbell %lu, %s, val 0x%lx",
2797                 idx, is_sq ? "SQ" : "CQ", value & 0xFFFF);
2798
2799         if (is_sq) {
2800                 if (idx > sc->num_squeues) {
2801                         WPRINTF("%s queue index %lu overflow from "
2802                                  "guest (max %u)",
2803                                  __func__, idx, sc->num_squeues);
2804                         return;
2805                 }
2806
2807                 atomic_store_short(&sc->submit_queues[idx].tail,
2808                                    (uint16_t)value);
2809
2810                 if (idx == 0) {
2811                         pci_nvme_handle_admin_cmd(sc, value);
2812                 } else {
2813                         /* submission queue; handle new entries in SQ */
2814                         if (idx > sc->num_squeues) {
2815                                 WPRINTF("%s SQ index %lu overflow from "
2816                                          "guest (max %u)",
2817                                          __func__, idx, sc->num_squeues);
2818                                 return;
2819                         }
2820                         pci_nvme_handle_io_cmd(sc, (uint16_t)idx);
2821                 }
2822         } else {
2823                 if (idx > sc->num_cqueues) {
2824                         WPRINTF("%s queue index %lu overflow from "
2825                                  "guest (max %u)",
2826                                  __func__, idx, sc->num_cqueues);
2827                         return;
2828                 }
2829
2830                 atomic_store_short(&sc->compl_queues[idx].head,
2831                                 (uint16_t)value);
2832         }
2833 }
2834
2835 static void
2836 pci_nvme_bar0_reg_dumps(const char *func, uint64_t offset, int iswrite)
2837 {
2838         const char *s = iswrite ? "WRITE" : "READ";
2839
2840         switch (offset) {
2841         case NVME_CR_CAP_LOW:
2842                 DPRINTF("%s %s NVME_CR_CAP_LOW", func, s);
2843                 break;
2844         case NVME_CR_CAP_HI:
2845                 DPRINTF("%s %s NVME_CR_CAP_HI", func, s);
2846                 break;
2847         case NVME_CR_VS:
2848                 DPRINTF("%s %s NVME_CR_VS", func, s);
2849                 break;
2850         case NVME_CR_INTMS:
2851                 DPRINTF("%s %s NVME_CR_INTMS", func, s);
2852                 break;
2853         case NVME_CR_INTMC:
2854                 DPRINTF("%s %s NVME_CR_INTMC", func, s);
2855                 break;
2856         case NVME_CR_CC:
2857                 DPRINTF("%s %s NVME_CR_CC", func, s);
2858                 break;
2859         case NVME_CR_CSTS:
2860                 DPRINTF("%s %s NVME_CR_CSTS", func, s);
2861                 break;
2862         case NVME_CR_NSSR:
2863                 DPRINTF("%s %s NVME_CR_NSSR", func, s);
2864                 break;
2865         case NVME_CR_AQA:
2866                 DPRINTF("%s %s NVME_CR_AQA", func, s);
2867                 break;
2868         case NVME_CR_ASQ_LOW:
2869                 DPRINTF("%s %s NVME_CR_ASQ_LOW", func, s);
2870                 break;
2871         case NVME_CR_ASQ_HI:
2872                 DPRINTF("%s %s NVME_CR_ASQ_HI", func, s);
2873                 break;
2874         case NVME_CR_ACQ_LOW:
2875                 DPRINTF("%s %s NVME_CR_ACQ_LOW", func, s);
2876                 break;
2877         case NVME_CR_ACQ_HI:
2878                 DPRINTF("%s %s NVME_CR_ACQ_HI", func, s);
2879                 break;
2880         default:
2881                 DPRINTF("unknown nvme bar-0 offset 0x%lx", offset);
2882         }
2883
2884 }
2885
2886 static void
2887 pci_nvme_write_bar_0(struct pci_nvme_softc *sc, uint64_t offset, int size,
2888     uint64_t value)
2889 {
2890         uint32_t ccreg;
2891
2892         if (offset >= NVME_DOORBELL_OFFSET) {
2893                 uint64_t belloffset = offset - NVME_DOORBELL_OFFSET;
2894                 uint64_t idx = belloffset / 8; /* door bell size = 2*int */
2895                 int is_sq = (belloffset % 8) < 4;
2896
2897                 if ((sc->regs.csts & NVME_CSTS_RDY) == 0) {
2898                         WPRINTF("doorbell write prior to RDY (offset=%#lx)\n",
2899                             offset);
2900                         return;
2901                 }
2902
2903                 if (belloffset > ((sc->max_queues+1) * 8 - 4)) {
2904                         WPRINTF("guest attempted an overflow write offset "
2905                                  "0x%lx, val 0x%lx in %s",
2906                                  offset, value, __func__);
2907                         return;
2908                 }
2909
2910                 if (is_sq) {
2911                         if (sc->submit_queues[idx].qbase == NULL)
2912                                 return;
2913                 } else if (sc->compl_queues[idx].qbase == NULL)
2914                         return;
2915
2916                 pci_nvme_handle_doorbell(sc, idx, is_sq, value);
2917                 return;
2918         }
2919
2920         DPRINTF("nvme-write offset 0x%lx, size %d, value 0x%lx",
2921                 offset, size, value);
2922
2923         if (size != 4) {
2924                 WPRINTF("guest wrote invalid size %d (offset 0x%lx, "
2925                          "val 0x%lx) to bar0 in %s",
2926                          size, offset, value, __func__);
2927                 /* TODO: shutdown device */
2928                 return;
2929         }
2930
2931         pci_nvme_bar0_reg_dumps(__func__, offset, 1);
2932
2933         pthread_mutex_lock(&sc->mtx);
2934
2935         switch (offset) {
2936         case NVME_CR_CAP_LOW:
2937         case NVME_CR_CAP_HI:
2938                 /* readonly */
2939                 break;
2940         case NVME_CR_VS:
2941                 /* readonly */
2942                 break;
2943         case NVME_CR_INTMS:
2944                 /* MSI-X, so ignore */
2945                 break;
2946         case NVME_CR_INTMC:
2947                 /* MSI-X, so ignore */
2948                 break;
2949         case NVME_CR_CC:
2950                 ccreg = (uint32_t)value;
2951
2952                 DPRINTF("%s NVME_CR_CC en %x css %x shn %x iosqes %u "
2953                          "iocqes %u",
2954                         __func__,
2955                          NVME_CC_GET_EN(ccreg), NVME_CC_GET_CSS(ccreg),
2956                          NVME_CC_GET_SHN(ccreg), NVME_CC_GET_IOSQES(ccreg),
2957                          NVME_CC_GET_IOCQES(ccreg));
2958
2959                 if (NVME_CC_GET_SHN(ccreg)) {
2960                         /* perform shutdown - flush out data to backend */
2961                         sc->regs.csts &= ~(NVME_CSTS_REG_SHST_MASK <<
2962                             NVME_CSTS_REG_SHST_SHIFT);
2963                         sc->regs.csts |= NVME_SHST_COMPLETE <<
2964                             NVME_CSTS_REG_SHST_SHIFT;
2965                 }
2966                 if (NVME_CC_GET_EN(ccreg) != NVME_CC_GET_EN(sc->regs.cc)) {
2967                         if (NVME_CC_GET_EN(ccreg) == 0)
2968                                 /* transition 1-> causes controller reset */
2969                                 pci_nvme_reset_locked(sc);
2970                         else
2971                                 pci_nvme_init_controller(sc);
2972                 }
2973
2974                 /* Insert the iocqes, iosqes and en bits from the write */
2975                 sc->regs.cc &= ~NVME_CC_WRITE_MASK;
2976                 sc->regs.cc |= ccreg & NVME_CC_WRITE_MASK;
2977                 if (NVME_CC_GET_EN(ccreg) == 0) {
2978                         /* Insert the ams, mps and css bit fields */
2979                         sc->regs.cc &= ~NVME_CC_NEN_WRITE_MASK;
2980                         sc->regs.cc |= ccreg & NVME_CC_NEN_WRITE_MASK;
2981                         sc->regs.csts &= ~NVME_CSTS_RDY;
2982                 } else if ((sc->pending_ios == 0) &&
2983                     !(sc->regs.csts & NVME_CSTS_CFS)) {
2984                         sc->regs.csts |= NVME_CSTS_RDY;
2985                 }
2986                 break;
2987         case NVME_CR_CSTS:
2988                 break;
2989         case NVME_CR_NSSR:
2990                 /* ignore writes; don't support subsystem reset */
2991                 break;
2992         case NVME_CR_AQA:
2993                 sc->regs.aqa = (uint32_t)value;
2994                 break;
2995         case NVME_CR_ASQ_LOW:
2996                 sc->regs.asq = (sc->regs.asq & (0xFFFFFFFF00000000)) |
2997                                (0xFFFFF000 & value);
2998                 break;
2999         case NVME_CR_ASQ_HI:
3000                 sc->regs.asq = (sc->regs.asq & (0x00000000FFFFFFFF)) |
3001                                (value << 32);
3002                 break;
3003         case NVME_CR_ACQ_LOW:
3004                 sc->regs.acq = (sc->regs.acq & (0xFFFFFFFF00000000)) |
3005                                (0xFFFFF000 & value);
3006                 break;
3007         case NVME_CR_ACQ_HI:
3008                 sc->regs.acq = (sc->regs.acq & (0x00000000FFFFFFFF)) |
3009                                (value << 32);
3010                 break;
3011         default:
3012                 DPRINTF("%s unknown offset 0x%lx, value 0x%lx size %d",
3013                          __func__, offset, value, size);
3014         }
3015         pthread_mutex_unlock(&sc->mtx);
3016 }
3017
3018 static void
3019 pci_nvme_write(struct pci_devinst *pi, int baridx, uint64_t offset, int size,
3020     uint64_t value)
3021 {
3022         struct pci_nvme_softc* sc = pi->pi_arg;
3023
3024         if (baridx == pci_msix_table_bar(pi) ||
3025             baridx == pci_msix_pba_bar(pi)) {
3026                 DPRINTF("nvme-write baridx %d, msix: off 0x%lx, size %d, "
3027                          " value 0x%lx", baridx, offset, size, value);
3028
3029                 pci_emul_msix_twrite(pi, offset, size, value);
3030                 return;
3031         }
3032
3033         switch (baridx) {
3034         case 0:
3035                 pci_nvme_write_bar_0(sc, offset, size, value);
3036                 break;
3037
3038         default:
3039                 DPRINTF("%s unknown baridx %d, val 0x%lx",
3040                          __func__, baridx, value);
3041         }
3042 }
3043
3044 static uint64_t pci_nvme_read_bar_0(struct pci_nvme_softc* sc,
3045         uint64_t offset, int size)
3046 {
3047         uint64_t value;
3048
3049         pci_nvme_bar0_reg_dumps(__func__, offset, 0);
3050
3051         if (offset < NVME_DOORBELL_OFFSET) {
3052                 void *p = &(sc->regs);
3053                 pthread_mutex_lock(&sc->mtx);
3054                 memcpy(&value, (void *)((uintptr_t)p + offset), size);
3055                 pthread_mutex_unlock(&sc->mtx);
3056         } else {
3057                 value = 0;
3058                 WPRINTF("pci_nvme: read invalid offset %ld", offset);
3059         }
3060
3061         switch (size) {
3062         case 1:
3063                 value &= 0xFF;
3064                 break;
3065         case 2:
3066                 value &= 0xFFFF;
3067                 break;
3068         case 4:
3069                 value &= 0xFFFFFFFF;
3070                 break;
3071         }
3072
3073         DPRINTF("   nvme-read offset 0x%lx, size %d -> value 0x%x",
3074                  offset, size, (uint32_t)value);
3075
3076         return (value);
3077 }
3078
3079
3080
3081 static uint64_t
3082 pci_nvme_read(struct pci_devinst *pi, int baridx, uint64_t offset, int size)
3083 {
3084         struct pci_nvme_softc* sc = pi->pi_arg;
3085
3086         if (baridx == pci_msix_table_bar(pi) ||
3087             baridx == pci_msix_pba_bar(pi)) {
3088                 DPRINTF("nvme-read bar: %d, msix: regoff 0x%lx, size %d",
3089                         baridx, offset, size);
3090
3091                 return pci_emul_msix_tread(pi, offset, size);
3092         }
3093
3094         switch (baridx) {
3095         case 0:
3096                 return pci_nvme_read_bar_0(sc, offset, size);
3097
3098         default:
3099                 DPRINTF("unknown bar %d, 0x%lx", baridx, offset);
3100         }
3101
3102         return (0);
3103 }
3104
3105 static int
3106 pci_nvme_parse_config(struct pci_nvme_softc *sc, nvlist_t *nvl)
3107 {
3108         char bident[sizeof("XXX:XXX")];
3109         const char *value;
3110         uint32_t sectsz;
3111
3112         sc->max_queues = NVME_QUEUES;
3113         sc->max_qentries = NVME_MAX_QENTRIES;
3114         sc->ioslots = NVME_IOSLOTS;
3115         sc->num_squeues = sc->max_queues;
3116         sc->num_cqueues = sc->max_queues;
3117         sc->dataset_management = NVME_DATASET_MANAGEMENT_AUTO;
3118         sectsz = 0;
3119         snprintf(sc->ctrldata.sn, sizeof(sc->ctrldata.sn),
3120                  "NVME-%d-%d", sc->nsc_pi->pi_slot, sc->nsc_pi->pi_func);
3121
3122         value = get_config_value_node(nvl, "maxq");
3123         if (value != NULL)
3124                 sc->max_queues = atoi(value);
3125         value = get_config_value_node(nvl, "qsz");
3126         if (value != NULL) {
3127                 sc->max_qentries = atoi(value);
3128                 if (sc->max_qentries <= 0) {
3129                         EPRINTLN("nvme: Invalid qsz option %d",
3130                             sc->max_qentries);
3131                         return (-1);
3132                 }
3133         }
3134         value = get_config_value_node(nvl, "ioslots");
3135         if (value != NULL) {
3136                 sc->ioslots = atoi(value);
3137                 if (sc->ioslots <= 0) {
3138                         EPRINTLN("Invalid ioslots option %d", sc->ioslots);
3139                         return (-1);
3140                 }
3141         }
3142         value = get_config_value_node(nvl, "sectsz");
3143         if (value != NULL)
3144                 sectsz = atoi(value);
3145         value = get_config_value_node(nvl, "ser");
3146         if (value != NULL) {
3147                 /*
3148                  * This field indicates the Product Serial Number in
3149                  * 7-bit ASCII, unused bytes should be space characters.
3150                  * Ref: NVMe v1.3c.
3151                  */
3152                 cpywithpad((char *)sc->ctrldata.sn,
3153                     sizeof(sc->ctrldata.sn), value, ' ');
3154         }
3155         value = get_config_value_node(nvl, "eui64");
3156         if (value != NULL)
3157                 sc->nvstore.eui64 = htobe64(strtoull(value, NULL, 0));
3158         value = get_config_value_node(nvl, "dsm");
3159         if (value != NULL) {
3160                 if (strcmp(value, "auto") == 0)
3161                         sc->dataset_management = NVME_DATASET_MANAGEMENT_AUTO;
3162                 else if (strcmp(value, "enable") == 0)
3163                         sc->dataset_management = NVME_DATASET_MANAGEMENT_ENABLE;
3164                 else if (strcmp(value, "disable") == 0)
3165                         sc->dataset_management = NVME_DATASET_MANAGEMENT_DISABLE;
3166         }
3167
3168         value = get_config_value_node(nvl, "bootindex");
3169         if (value != NULL) {
3170                 if (pci_emul_add_boot_device(sc->nsc_pi, atoi(value))) {
3171                         EPRINTLN("Invalid bootindex %d", atoi(value));
3172                         return (-1);
3173                 }
3174         }
3175
3176         value = get_config_value_node(nvl, "ram");
3177         if (value != NULL) {
3178                 uint64_t sz = strtoull(value, NULL, 10);
3179
3180                 sc->nvstore.type = NVME_STOR_RAM;
3181                 sc->nvstore.size = sz * 1024 * 1024;
3182                 sc->nvstore.ctx = calloc(1, sc->nvstore.size);
3183                 sc->nvstore.sectsz = 4096;
3184                 sc->nvstore.sectsz_bits = 12;
3185                 if (sc->nvstore.ctx == NULL) {
3186                         EPRINTLN("nvme: Unable to allocate RAM");
3187                         return (-1);
3188                 }
3189         } else {
3190                 snprintf(bident, sizeof(bident), "%u:%u",
3191                     sc->nsc_pi->pi_slot, sc->nsc_pi->pi_func);
3192                 sc->nvstore.ctx = blockif_open(nvl, bident);
3193                 if (sc->nvstore.ctx == NULL) {
3194                         EPRINTLN("nvme: Could not open backing file: %s",
3195                             strerror(errno));
3196                         return (-1);
3197                 }
3198                 sc->nvstore.type = NVME_STOR_BLOCKIF;
3199                 sc->nvstore.size = blockif_size(sc->nvstore.ctx);
3200         }
3201
3202         if (sectsz == 512 || sectsz == 4096 || sectsz == 8192)
3203                 sc->nvstore.sectsz = sectsz;
3204         else if (sc->nvstore.type != NVME_STOR_RAM)
3205                 sc->nvstore.sectsz = blockif_sectsz(sc->nvstore.ctx);
3206         for (sc->nvstore.sectsz_bits = 9;
3207              (1U << sc->nvstore.sectsz_bits) < sc->nvstore.sectsz;
3208              sc->nvstore.sectsz_bits++);
3209
3210         if (sc->max_queues <= 0 || sc->max_queues > NVME_QUEUES)
3211                 sc->max_queues = NVME_QUEUES;
3212
3213         return (0);
3214 }
3215
3216 static void
3217 pci_nvme_resized(struct blockif_ctxt *bctxt __unused, void *arg,
3218     size_t new_size)
3219 {
3220         struct pci_nvme_softc *sc;
3221         struct pci_nvme_blockstore *nvstore;
3222         struct nvme_namespace_data *nd;
3223
3224         sc = arg;
3225         nvstore = &sc->nvstore;
3226         nd = &sc->nsdata;
3227
3228         nvstore->size = new_size;
3229         pci_nvme_init_nsdata_size(nvstore, nd);
3230
3231         /* Add changed NSID to list */
3232         sc->ns_log.ns[0] = 1;
3233         sc->ns_log.ns[1] = 0;
3234
3235         pci_nvme_aen_post(sc, PCI_NVME_AE_TYPE_NOTICE,
3236             PCI_NVME_AEI_NOTICE_NS_ATTR_CHANGED);
3237 }
3238
3239 static int
3240 pci_nvme_init(struct pci_devinst *pi, nvlist_t *nvl)
3241 {
3242         struct pci_nvme_softc *sc;
3243         uint32_t pci_membar_sz;
3244         int     error;
3245
3246         error = 0;
3247
3248         sc = calloc(1, sizeof(struct pci_nvme_softc));
3249         pi->pi_arg = sc;
3250         sc->nsc_pi = pi;
3251
3252         error = pci_nvme_parse_config(sc, nvl);
3253         if (error < 0)
3254                 goto done;
3255         else
3256                 error = 0;
3257
3258         STAILQ_INIT(&sc->ioreqs_free);
3259         sc->ioreqs = calloc(sc->ioslots, sizeof(struct pci_nvme_ioreq));
3260         for (uint32_t i = 0; i < sc->ioslots; i++) {
3261                 STAILQ_INSERT_TAIL(&sc->ioreqs_free, &sc->ioreqs[i], link);
3262         }
3263
3264         pci_set_cfgdata16(pi, PCIR_DEVICE, 0x0A0A);
3265         pci_set_cfgdata16(pi, PCIR_VENDOR, 0xFB5D);
3266         pci_set_cfgdata8(pi, PCIR_CLASS, PCIC_STORAGE);
3267         pci_set_cfgdata8(pi, PCIR_SUBCLASS, PCIS_STORAGE_NVM);
3268         pci_set_cfgdata8(pi, PCIR_PROGIF,
3269                          PCIP_STORAGE_NVM_ENTERPRISE_NVMHCI_1_0);
3270
3271         /*
3272          * Allocate size of NVMe registers + doorbell space for all queues.
3273          *
3274          * The specification requires a minimum memory I/O window size of 16K.
3275          * The Windows driver will refuse to start a device with a smaller
3276          * window.
3277          */
3278         pci_membar_sz = sizeof(struct nvme_registers) +
3279             2 * sizeof(uint32_t) * (sc->max_queues + 1);
3280         pci_membar_sz = MAX(pci_membar_sz, NVME_MMIO_SPACE_MIN);
3281
3282         DPRINTF("nvme membar size: %u", pci_membar_sz);
3283
3284         error = pci_emul_alloc_bar(pi, 0, PCIBAR_MEM64, pci_membar_sz);
3285         if (error) {
3286                 WPRINTF("%s pci alloc mem bar failed", __func__);
3287                 goto done;
3288         }
3289
3290         error = pci_emul_add_msixcap(pi, sc->max_queues + 1, NVME_MSIX_BAR);
3291         if (error) {
3292                 WPRINTF("%s pci add msixcap failed", __func__);
3293                 goto done;
3294         }
3295
3296         error = pci_emul_add_pciecap(pi, PCIEM_TYPE_ROOT_INT_EP);
3297         if (error) {
3298                 WPRINTF("%s pci add Express capability failed", __func__);
3299                 goto done;
3300         }
3301
3302         pthread_mutex_init(&sc->mtx, NULL);
3303         sem_init(&sc->iosemlock, 0, sc->ioslots);
3304         blockif_register_resize_callback(sc->nvstore.ctx, pci_nvme_resized, sc);
3305
3306         pci_nvme_init_queues(sc, sc->max_queues, sc->max_queues);
3307         /*
3308          * Controller data depends on Namespace data so initialize Namespace
3309          * data first.
3310          */
3311         pci_nvme_init_nsdata(sc, &sc->nsdata, 1, &sc->nvstore);
3312         pci_nvme_init_ctrldata(sc);
3313         pci_nvme_init_logpages(sc);
3314         pci_nvme_init_features(sc);
3315
3316         pci_nvme_aer_init(sc);
3317         pci_nvme_aen_init(sc);
3318
3319         pci_nvme_reset(sc);
3320 done:
3321         return (error);
3322 }
3323
3324 static int
3325 pci_nvme_legacy_config(nvlist_t *nvl, const char *opts)
3326 {
3327         char *cp, *ram;
3328
3329         if (opts == NULL)
3330                 return (0);
3331
3332         if (strncmp(opts, "ram=", 4) == 0) {
3333                 cp = strchr(opts, ',');
3334                 if (cp == NULL) {
3335                         set_config_value_node(nvl, "ram", opts + 4);
3336                         return (0);
3337                 }
3338                 ram = strndup(opts + 4, cp - opts - 4);
3339                 set_config_value_node(nvl, "ram", ram);
3340                 free(ram);
3341                 return (pci_parse_legacy_config(nvl, cp + 1));
3342         } else
3343                 return (blockif_legacy_config(nvl, opts));
3344 }
3345
3346 static const struct pci_devemu pci_de_nvme = {
3347         .pe_emu =       "nvme",
3348         .pe_init =      pci_nvme_init,
3349         .pe_legacy_config = pci_nvme_legacy_config,
3350         .pe_barwrite =  pci_nvme_write,
3351         .pe_barread =   pci_nvme_read
3352 };
3353 PCI_EMUL_SET(pci_de_nvme);