]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - usr.sbin/camdd/camdd.c
Merge llvm trunk r351319, resolve conflicts, and update FREEBSD-Xlist.
[FreeBSD/FreeBSD.git] / usr.sbin / camdd / camdd.c
1 /*-
2  * Copyright (c) 1997-2007 Kenneth D. Merry
3  * Copyright (c) 2013, 2014, 2015 Spectra Logic Corporation
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions, and the following disclaimer,
11  *    without modification.
12  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
13  *    substantially similar to the "NO WARRANTY" disclaimer below
14  *    ("Disclaimer") and any redistribution must be conditioned upon
15  *    including a substantially similar Disclaimer requirement for further
16  *    binary redistribution.
17  *
18  * NO WARRANTY
19  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
22  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
27  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
28  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGES.
30  *
31  * Authors: Ken Merry           (Spectra Logic Corporation)
32  */
33
34 /*
35  * This is eventually intended to be:
36  * - A basic data transfer/copy utility
37  * - A simple benchmark utility
38  * - An example of how to use the asynchronous pass(4) driver interface.
39  */
40 #include <sys/cdefs.h>
41 __FBSDID("$FreeBSD$");
42
43 #include <sys/ioctl.h>
44 #include <sys/stdint.h>
45 #include <sys/types.h>
46 #include <sys/endian.h>
47 #include <sys/param.h>
48 #include <sys/sbuf.h>
49 #include <sys/stat.h>
50 #include <sys/event.h>
51 #include <sys/time.h>
52 #include <sys/uio.h>
53 #include <vm/vm.h>
54 #include <machine/bus.h>
55 #include <sys/bus.h>
56 #include <sys/bus_dma.h>
57 #include <sys/mtio.h>
58 #include <sys/conf.h>
59 #include <sys/disk.h>
60
61 #include <stdio.h>
62 #include <stdlib.h>
63 #include <semaphore.h>
64 #include <string.h>
65 #include <unistd.h>
66 #include <inttypes.h>
67 #include <limits.h>
68 #include <fcntl.h>
69 #include <ctype.h>
70 #include <err.h>
71 #include <libutil.h>
72 #include <pthread.h>
73 #include <assert.h>
74 #include <bsdxml.h>
75
76 #include <cam/cam.h>
77 #include <cam/cam_debug.h>
78 #include <cam/cam_ccb.h>
79 #include <cam/scsi/scsi_all.h>
80 #include <cam/scsi/scsi_da.h>
81 #include <cam/scsi/scsi_pass.h>
82 #include <cam/scsi/scsi_message.h>
83 #include <cam/scsi/smp_all.h>
84 #include <camlib.h>
85 #include <mtlib.h>
86 #include <zlib.h>
87
88 typedef enum {
89         CAMDD_CMD_NONE          = 0x00000000,
90         CAMDD_CMD_HELP          = 0x00000001,
91         CAMDD_CMD_WRITE         = 0x00000002,
92         CAMDD_CMD_READ          = 0x00000003
93 } camdd_cmdmask;
94
95 typedef enum {
96         CAMDD_ARG_NONE          = 0x00000000,
97         CAMDD_ARG_VERBOSE       = 0x00000001,
98         CAMDD_ARG_DEVICE        = 0x00000002,
99         CAMDD_ARG_BUS           = 0x00000004,
100         CAMDD_ARG_TARGET        = 0x00000008,
101         CAMDD_ARG_LUN           = 0x00000010,
102         CAMDD_ARG_UNIT          = 0x00000020,
103         CAMDD_ARG_TIMEOUT       = 0x00000040,
104         CAMDD_ARG_ERR_RECOVER   = 0x00000080,
105         CAMDD_ARG_RETRIES       = 0x00000100
106 } camdd_argmask;
107
108 typedef enum {
109         CAMDD_DEV_NONE          = 0x00,
110         CAMDD_DEV_PASS          = 0x01,
111         CAMDD_DEV_FILE          = 0x02
112 } camdd_dev_type;
113
114 struct camdd_io_opts {
115         camdd_dev_type  dev_type;
116         char            *dev_name;
117         uint64_t        blocksize;
118         uint64_t        queue_depth;
119         uint64_t        offset;
120         int             min_cmd_size;
121         int             write_dev;
122         uint64_t        debug;
123 };
124
125 typedef enum {
126         CAMDD_BUF_NONE,
127         CAMDD_BUF_DATA,
128         CAMDD_BUF_INDIRECT
129 } camdd_buf_type;
130
131 struct camdd_buf_indirect {
132         /*
133          * Pointer to the source buffer.
134          */
135         struct camdd_buf *src_buf;
136
137         /*
138          * Offset into the source buffer, in bytes.
139          */
140         uint64_t          offset;
141         /*
142          * Pointer to the starting point in the source buffer.
143          */
144         uint8_t          *start_ptr;
145
146         /*
147          * Length of this chunk in bytes.
148          */
149         size_t            len;
150 };
151
152 struct camdd_buf_data {
153         /*
154          * Buffer allocated when we allocate this camdd_buf.  This should
155          * be the size of the blocksize for this device.
156          */
157         uint8_t                 *buf;
158
159         /*
160          * The amount of backing store allocated in buf.  Generally this
161          * will be the blocksize of the device.
162          */
163         uint32_t                 alloc_len;
164
165         /*
166          * The amount of data that was put into the buffer (on reads) or
167          * the amount of data we have put onto the src_list so far (on
168          * writes).
169          */
170         uint32_t                 fill_len;
171
172         /*
173          * The amount of data that was not transferred.
174          */
175         uint32_t                 resid;
176
177         /*
178          * Starting byte offset on the reader.
179          */
180         uint64_t                 src_start_offset;
181         
182         /*
183          * CCB used for pass(4) device targets.
184          */
185         union ccb                ccb;
186
187         /*
188          * Number of scatter/gather segments.
189          */
190         int                      sg_count;
191
192         /*
193          * Set if we had to tack on an extra buffer to round the transfer
194          * up to a sector size.
195          */
196         int                      extra_buf;
197
198         /*
199          * Scatter/gather list used generally when we're the writer for a
200          * pass(4) device. 
201          */
202         bus_dma_segment_t       *segs;
203
204         /*
205          * Scatter/gather list used generally when we're the writer for a
206          * file or block device;
207          */
208         struct iovec            *iovec;
209 };
210
211 union camdd_buf_types {
212         struct camdd_buf_indirect       indirect;
213         struct camdd_buf_data           data;
214 };
215
216 typedef enum {
217         CAMDD_STATUS_NONE,
218         CAMDD_STATUS_OK,
219         CAMDD_STATUS_SHORT_IO,
220         CAMDD_STATUS_EOF,
221         CAMDD_STATUS_ERROR
222 } camdd_buf_status;
223
224 struct camdd_buf {
225         camdd_buf_type           buf_type;
226         union camdd_buf_types    buf_type_spec;
227
228         camdd_buf_status         status;
229
230         uint64_t                 lba;
231         size_t                   len;
232
233         /*
234          * A reference count of how many indirect buffers point to this
235          * buffer.
236          */
237         int                      refcount;
238
239         /*
240          * A link back to our parent device.
241          */
242         struct camdd_dev        *dev;
243         STAILQ_ENTRY(camdd_buf)  links;
244         STAILQ_ENTRY(camdd_buf)  work_links;
245
246         /*
247          * A count of the buffers on the src_list.
248          */
249         int                      src_count;
250
251         /*
252          * List of buffers from our partner thread that are the components
253          * of this buffer for the I/O.  Uses src_links.
254          */
255         STAILQ_HEAD(,camdd_buf)  src_list;
256         STAILQ_ENTRY(camdd_buf)  src_links;
257 };
258
259 #define NUM_DEV_TYPES   2
260
261 struct camdd_dev_pass {
262         int                      scsi_dev_type;
263         int                      protocol;
264         struct cam_device       *dev;
265         uint64_t                 max_sector;
266         uint32_t                 block_len;
267         uint32_t                 cpi_maxio;
268 };
269
270 typedef enum {
271         CAMDD_FILE_NONE,
272         CAMDD_FILE_REG,
273         CAMDD_FILE_STD,
274         CAMDD_FILE_PIPE,
275         CAMDD_FILE_DISK,
276         CAMDD_FILE_TAPE,
277         CAMDD_FILE_TTY,
278         CAMDD_FILE_MEM
279 } camdd_file_type;
280
281 typedef enum {
282         CAMDD_FF_NONE           = 0x00,
283         CAMDD_FF_CAN_SEEK       = 0x01
284 } camdd_file_flags;
285
286 struct camdd_dev_file {
287         int                      fd;
288         struct stat              sb;
289         char                     filename[MAXPATHLEN + 1];
290         camdd_file_type          file_type;
291         camdd_file_flags         file_flags;
292         uint8_t                 *tmp_buf;
293 };
294
295 struct camdd_dev_block {
296         int                      fd;
297         uint64_t                 size_bytes;
298         uint32_t                 block_len;
299 };
300
301 union camdd_dev_spec {
302         struct camdd_dev_pass   pass;
303         struct camdd_dev_file   file;
304         struct camdd_dev_block  block;
305 };
306
307 typedef enum {
308         CAMDD_DEV_FLAG_NONE             = 0x00,
309         CAMDD_DEV_FLAG_EOF              = 0x01,
310         CAMDD_DEV_FLAG_PEER_EOF         = 0x02,
311         CAMDD_DEV_FLAG_ACTIVE           = 0x04,
312         CAMDD_DEV_FLAG_EOF_SENT         = 0x08,
313         CAMDD_DEV_FLAG_EOF_QUEUED       = 0x10
314 } camdd_dev_flags;
315
316 struct camdd_dev {
317         camdd_dev_type           dev_type;
318         union camdd_dev_spec     dev_spec;
319         camdd_dev_flags          flags;
320         char                     device_name[MAXPATHLEN+1];
321         uint32_t                 blocksize;
322         uint32_t                 sector_size;
323         uint64_t                 max_sector;
324         uint64_t                 sector_io_limit;
325         int                      min_cmd_size;
326         int                      write_dev;
327         int                      retry_count;
328         int                      io_timeout;
329         int                      debug;
330         uint64_t                 start_offset_bytes;
331         uint64_t                 next_io_pos_bytes;
332         uint64_t                 next_peer_pos_bytes;
333         uint64_t                 next_completion_pos_bytes;
334         uint64_t                 peer_bytes_queued;
335         uint64_t                 bytes_transferred;
336         uint32_t                 target_queue_depth;
337         uint32_t                 cur_active_io;
338         uint8_t                 *extra_buf;
339         uint32_t                 extra_buf_len;
340         struct camdd_dev        *peer_dev;
341         pthread_mutex_t          mutex;
342         pthread_cond_t           cond;
343         int                      kq;
344
345         int                      (*run)(struct camdd_dev *dev);
346         int                      (*fetch)(struct camdd_dev *dev);
347
348         /*
349          * Buffers that are available for I/O.  Uses links.
350          */
351         STAILQ_HEAD(,camdd_buf)  free_queue;
352
353         /*
354          * Free indirect buffers.  These are used for breaking a large
355          * buffer into multiple pieces.
356          */
357         STAILQ_HEAD(,camdd_buf)  free_indirect_queue;
358
359         /*
360          * Buffers that have been queued to the kernel.  Uses links.
361          */
362         STAILQ_HEAD(,camdd_buf)  active_queue;
363
364         /*
365          * Will generally contain one of our buffers that is waiting for enough
366          * I/O from our partner thread to be able to execute.  This will
367          * generally happen when our per-I/O-size is larger than the
368          * partner thread's per-I/O-size.  Uses links.
369          */
370         STAILQ_HEAD(,camdd_buf)  pending_queue;
371
372         /*
373          * Number of buffers on the pending queue
374          */
375         int                      num_pending_queue;
376
377         /*
378          * Buffers that are filled and ready to execute.  This is used when
379          * our partner (reader) thread sends us blocks that are larger than
380          * our blocksize, and so we have to split them into multiple pieces.
381          */
382         STAILQ_HEAD(,camdd_buf)  run_queue;
383
384         /*
385          * Number of buffers on the run queue.
386          */
387         int                      num_run_queue;
388
389         STAILQ_HEAD(,camdd_buf)  reorder_queue;
390
391         int                      num_reorder_queue;
392
393         /*
394          * Buffers that have been queued to us by our partner thread
395          * (generally the reader thread) to be written out.  Uses
396          * work_links.
397          */
398         STAILQ_HEAD(,camdd_buf)  work_queue;
399
400         /*
401          * Buffers that have been completed by our partner thread.  Uses
402          * work_links.
403          */
404         STAILQ_HEAD(,camdd_buf)  peer_done_queue;
405
406         /*
407          * Number of buffers on the peer done queue.
408          */
409         uint32_t                 num_peer_done_queue;
410
411         /*
412          * A list of buffers that we have queued to our peer thread.  Uses
413          * links.
414          */
415         STAILQ_HEAD(,camdd_buf)  peer_work_queue;
416
417         /*
418          * Number of buffers on the peer work queue.
419          */
420         uint32_t                 num_peer_work_queue;
421 };
422
423 static sem_t camdd_sem;
424 static sig_atomic_t need_exit = 0;
425 static sig_atomic_t error_exit = 0;
426 static sig_atomic_t need_status = 0;
427
428 #ifndef min
429 #define min(a, b) (a < b) ? a : b
430 #endif
431
432
433 /* Generically useful offsets into the peripheral private area */
434 #define ppriv_ptr0 periph_priv.entries[0].ptr
435 #define ppriv_ptr1 periph_priv.entries[1].ptr
436 #define ppriv_field0 periph_priv.entries[0].field
437 #define ppriv_field1 periph_priv.entries[1].field
438
439 #define ccb_buf ppriv_ptr0
440
441 #define CAMDD_FILE_DEFAULT_BLOCK        524288
442 #define CAMDD_FILE_DEFAULT_DEPTH        1
443 #define CAMDD_PASS_MAX_BLOCK            1048576
444 #define CAMDD_PASS_DEFAULT_DEPTH        6
445 #define CAMDD_PASS_RW_TIMEOUT           60 * 1000
446
447 static int parse_btl(char *tstr, int *bus, int *target, int *lun,
448                      camdd_argmask *arglst);
449 void camdd_free_dev(struct camdd_dev *dev);
450 struct camdd_dev *camdd_alloc_dev(camdd_dev_type dev_type,
451                                   struct kevent *new_ke, int num_ke,
452                                   int retry_count, int timeout);
453 static struct camdd_buf *camdd_alloc_buf(struct camdd_dev *dev,
454                                          camdd_buf_type buf_type);
455 void camdd_release_buf(struct camdd_buf *buf);
456 struct camdd_buf *camdd_get_buf(struct camdd_dev *dev, camdd_buf_type buf_type);
457 int camdd_buf_sg_create(struct camdd_buf *buf, int iovec,
458                         uint32_t sector_size, uint32_t *num_sectors_used,
459                         int *double_buf_needed);
460 uint32_t camdd_buf_get_len(struct camdd_buf *buf);
461 void camdd_buf_add_child(struct camdd_buf *buf, struct camdd_buf *child_buf);
462 int camdd_probe_tape(int fd, char *filename, uint64_t *max_iosize,
463                      uint64_t *max_blk, uint64_t *min_blk, uint64_t *blk_gran);
464 int camdd_probe_pass_scsi(struct cam_device *cam_dev, union ccb *ccb,
465          camdd_argmask arglist, int probe_retry_count,
466          int probe_timeout, uint64_t *maxsector, uint32_t *block_len);
467 struct camdd_dev *camdd_probe_file(int fd, struct camdd_io_opts *io_opts,
468                                    int retry_count, int timeout);
469 struct camdd_dev *camdd_probe_pass(struct cam_device *cam_dev,
470                                    struct camdd_io_opts *io_opts,
471                                    camdd_argmask arglist, int probe_retry_count,
472                                    int probe_timeout, int io_retry_count,
473                                    int io_timeout);
474 void *camdd_file_worker(void *arg);
475 camdd_buf_status camdd_ccb_status(union ccb *ccb, int protocol);
476 int camdd_get_cgd(struct cam_device *device, struct ccb_getdev *cgd);
477 int camdd_queue_peer_buf(struct camdd_dev *dev, struct camdd_buf *buf);
478 int camdd_complete_peer_buf(struct camdd_dev *dev, struct camdd_buf *peer_buf);
479 void camdd_peer_done(struct camdd_buf *buf);
480 void camdd_complete_buf(struct camdd_dev *dev, struct camdd_buf *buf,
481                         int *error_count);
482 int camdd_pass_fetch(struct camdd_dev *dev);
483 int camdd_file_run(struct camdd_dev *dev);
484 int camdd_pass_run(struct camdd_dev *dev);
485 int camdd_get_next_lba_len(struct camdd_dev *dev, uint64_t *lba, ssize_t *len);
486 int camdd_queue(struct camdd_dev *dev, struct camdd_buf *read_buf);
487 void camdd_get_depth(struct camdd_dev *dev, uint32_t *our_depth,
488                      uint32_t *peer_depth, uint32_t *our_bytes,
489                      uint32_t *peer_bytes);
490 void *camdd_worker(void *arg);
491 void camdd_sig_handler(int sig);
492 void camdd_print_status(struct camdd_dev *camdd_dev,
493                         struct camdd_dev *other_dev,
494                         struct timespec *start_time);
495 int camdd_rw(struct camdd_io_opts *io_opts, int num_io_opts,
496              uint64_t max_io, int retry_count, int timeout);
497 int camdd_parse_io_opts(char *args, int is_write,
498                         struct camdd_io_opts *io_opts);
499 void usage(void);
500
501 /*
502  * Parse out a bus, or a bus, target and lun in the following
503  * format:
504  * bus
505  * bus:target
506  * bus:target:lun
507  *
508  * Returns the number of parsed components, or 0.
509  */
510 static int
511 parse_btl(char *tstr, int *bus, int *target, int *lun, camdd_argmask *arglst)
512 {
513         char *tmpstr;
514         int convs = 0;
515
516         while (isspace(*tstr) && (*tstr != '\0'))
517                 tstr++;
518
519         tmpstr = (char *)strtok(tstr, ":");
520         if ((tmpstr != NULL) && (*tmpstr != '\0')) {
521                 *bus = strtol(tmpstr, NULL, 0);
522                 *arglst |= CAMDD_ARG_BUS;
523                 convs++;
524                 tmpstr = (char *)strtok(NULL, ":");
525                 if ((tmpstr != NULL) && (*tmpstr != '\0')) {
526                         *target = strtol(tmpstr, NULL, 0);
527                         *arglst |= CAMDD_ARG_TARGET;
528                         convs++;
529                         tmpstr = (char *)strtok(NULL, ":");
530                         if ((tmpstr != NULL) && (*tmpstr != '\0')) {
531                                 *lun = strtol(tmpstr, NULL, 0);
532                                 *arglst |= CAMDD_ARG_LUN;
533                                 convs++;
534                         }
535                 }
536         }
537
538         return convs;
539 }
540
541 /*
542  * XXX KDM clean up and free all of the buffers on the queue!
543  */
544 void
545 camdd_free_dev(struct camdd_dev *dev)
546 {
547         if (dev == NULL)
548                 return;
549
550         switch (dev->dev_type) {
551         case CAMDD_DEV_FILE: {
552                 struct camdd_dev_file *file_dev = &dev->dev_spec.file;
553
554                 if (file_dev->fd != -1)
555                         close(file_dev->fd);
556                 free(file_dev->tmp_buf);
557                 break;
558         }
559         case CAMDD_DEV_PASS: {
560                 struct camdd_dev_pass *pass_dev = &dev->dev_spec.pass;
561
562                 if (pass_dev->dev != NULL)
563                         cam_close_device(pass_dev->dev);
564                 break;
565         }
566         default:
567                 break;
568         }
569
570         free(dev);
571 }
572
573 struct camdd_dev *
574 camdd_alloc_dev(camdd_dev_type dev_type, struct kevent *new_ke, int num_ke,
575                 int retry_count, int timeout)
576 {
577         struct camdd_dev *dev = NULL;
578         struct kevent *ke;
579         size_t ke_size;
580         int retval = 0;
581
582         dev = calloc(1, sizeof(*dev));
583         if (dev == NULL) {
584                 warn("%s: unable to malloc %zu bytes", __func__, sizeof(*dev));
585                 goto bailout;
586         }
587
588         dev->dev_type = dev_type;
589         dev->io_timeout = timeout;
590         dev->retry_count = retry_count;
591         STAILQ_INIT(&dev->free_queue);
592         STAILQ_INIT(&dev->free_indirect_queue);
593         STAILQ_INIT(&dev->active_queue);
594         STAILQ_INIT(&dev->pending_queue);
595         STAILQ_INIT(&dev->run_queue);
596         STAILQ_INIT(&dev->reorder_queue);
597         STAILQ_INIT(&dev->work_queue);
598         STAILQ_INIT(&dev->peer_done_queue);
599         STAILQ_INIT(&dev->peer_work_queue);
600         retval = pthread_mutex_init(&dev->mutex, NULL);
601         if (retval != 0) {
602                 warnc(retval, "%s: failed to initialize mutex", __func__);
603                 goto bailout;
604         }
605
606         retval = pthread_cond_init(&dev->cond, NULL);
607         if (retval != 0) {
608                 warnc(retval, "%s: failed to initialize condition variable",
609                       __func__);
610                 goto bailout;
611         }
612
613         dev->kq = kqueue();
614         if (dev->kq == -1) {
615                 warn("%s: Unable to create kqueue", __func__);
616                 goto bailout;
617         }
618
619         ke_size = sizeof(struct kevent) * (num_ke + 4);
620         ke = calloc(1, ke_size);
621         if (ke == NULL) {
622                 warn("%s: unable to malloc %zu bytes", __func__, ke_size);
623                 goto bailout;
624         }
625         if (num_ke > 0)
626                 bcopy(new_ke, ke, num_ke * sizeof(struct kevent));
627
628         EV_SET(&ke[num_ke++], (uintptr_t)&dev->work_queue, EVFILT_USER,
629                EV_ADD|EV_ENABLE|EV_CLEAR, 0,0, 0);
630         EV_SET(&ke[num_ke++], (uintptr_t)&dev->peer_done_queue, EVFILT_USER,
631                EV_ADD|EV_ENABLE|EV_CLEAR, 0,0, 0);
632         EV_SET(&ke[num_ke++], SIGINFO, EVFILT_SIGNAL, EV_ADD|EV_ENABLE, 0,0,0);
633         EV_SET(&ke[num_ke++], SIGINT, EVFILT_SIGNAL, EV_ADD|EV_ENABLE, 0,0,0);
634
635         retval = kevent(dev->kq, ke, num_ke, NULL, 0, NULL);
636         if (retval == -1) {
637                 warn("%s: Unable to register kevents", __func__);
638                 goto bailout;
639         }
640
641
642         return (dev);
643
644 bailout:
645         free(dev);
646
647         return (NULL);
648 }
649
650 static struct camdd_buf *
651 camdd_alloc_buf(struct camdd_dev *dev, camdd_buf_type buf_type)
652 {
653         struct camdd_buf *buf = NULL;
654         uint8_t *data_ptr = NULL;
655
656         /*
657          * We only need to allocate data space for data buffers.
658          */
659         switch (buf_type) {
660         case CAMDD_BUF_DATA:
661                 data_ptr = malloc(dev->blocksize);
662                 if (data_ptr == NULL) {
663                         warn("unable to allocate %u bytes", dev->blocksize);
664                         goto bailout_error;
665                 }
666                 break;
667         default:
668                 break;
669         }
670         
671         buf = calloc(1, sizeof(*buf));
672         if (buf == NULL) {
673                 warn("unable to allocate %zu bytes", sizeof(*buf));
674                 goto bailout_error;
675         }
676
677         buf->buf_type = buf_type;
678         buf->dev = dev;
679         switch (buf_type) {
680         case CAMDD_BUF_DATA: {
681                 struct camdd_buf_data *data;
682
683                 data = &buf->buf_type_spec.data;
684
685                 data->alloc_len = dev->blocksize;
686                 data->buf = data_ptr;
687                 break;
688         }
689         case CAMDD_BUF_INDIRECT:
690                 break;
691         default:
692                 break;
693         }
694         STAILQ_INIT(&buf->src_list);
695
696         return (buf);
697
698 bailout_error:
699         free(data_ptr);
700
701         return (NULL);
702 }
703
704 void
705 camdd_release_buf(struct camdd_buf *buf)
706 {
707         struct camdd_dev *dev;
708
709         dev = buf->dev;
710
711         switch (buf->buf_type) {
712         case CAMDD_BUF_DATA: {
713                 struct camdd_buf_data *data;
714
715                 data = &buf->buf_type_spec.data;
716
717                 if (data->segs != NULL) {
718                         if (data->extra_buf != 0) {
719                                 void *extra_buf;
720
721                                 extra_buf = (void *)
722                                     data->segs[data->sg_count - 1].ds_addr;
723                                 free(extra_buf);
724                                 data->extra_buf = 0;
725                         }
726                         free(data->segs);
727                         data->segs = NULL;
728                         data->sg_count = 0;
729                 } else if (data->iovec != NULL) {
730                         if (data->extra_buf != 0) {
731                                 free(data->iovec[data->sg_count - 1].iov_base);
732                                 data->extra_buf = 0;
733                         }
734                         free(data->iovec);
735                         data->iovec = NULL;
736                         data->sg_count = 0;
737                 }
738                 STAILQ_INSERT_TAIL(&dev->free_queue, buf, links);
739                 break;
740         }
741         case CAMDD_BUF_INDIRECT:
742                 STAILQ_INSERT_TAIL(&dev->free_indirect_queue, buf, links);
743                 break;
744         default:
745                 err(1, "%s: Invalid buffer type %d for released buffer",
746                     __func__, buf->buf_type);
747                 break;
748         }
749 }
750
751 struct camdd_buf *
752 camdd_get_buf(struct camdd_dev *dev, camdd_buf_type buf_type)
753 {
754         struct camdd_buf *buf = NULL;
755
756         switch (buf_type) {
757         case CAMDD_BUF_DATA:
758                 buf = STAILQ_FIRST(&dev->free_queue);
759                 if (buf != NULL) {
760                         struct camdd_buf_data *data;
761                         uint8_t *data_ptr;
762                         uint32_t alloc_len;
763
764                         STAILQ_REMOVE_HEAD(&dev->free_queue, links);
765                         data = &buf->buf_type_spec.data;
766                         data_ptr = data->buf;
767                         alloc_len = data->alloc_len;
768                         bzero(buf, sizeof(*buf));
769                         data->buf = data_ptr;
770                         data->alloc_len = alloc_len;
771                 }
772                 break;
773         case CAMDD_BUF_INDIRECT:
774                 buf = STAILQ_FIRST(&dev->free_indirect_queue);
775                 if (buf != NULL) {
776                         STAILQ_REMOVE_HEAD(&dev->free_indirect_queue, links);
777
778                         bzero(buf, sizeof(*buf));
779                 }
780                 break;
781         default:
782                 warnx("Unknown buffer type %d requested", buf_type);
783                 break;
784         }
785
786
787         if (buf == NULL)
788                 return (camdd_alloc_buf(dev, buf_type));
789         else {
790                 STAILQ_INIT(&buf->src_list);
791                 buf->dev = dev;
792                 buf->buf_type = buf_type;
793
794                 return (buf);
795         }
796 }
797
798 int
799 camdd_buf_sg_create(struct camdd_buf *buf, int iovec, uint32_t sector_size,
800                     uint32_t *num_sectors_used, int *double_buf_needed)
801 {
802         struct camdd_buf *tmp_buf;
803         struct camdd_buf_data *data;
804         uint8_t *extra_buf = NULL;
805         size_t extra_buf_len = 0;
806         int extra_buf_attached = 0;
807         int i, retval = 0;
808
809         data = &buf->buf_type_spec.data;
810
811         data->sg_count = buf->src_count;
812         /*
813          * Compose a scatter/gather list from all of the buffers in the list.
814          * If the length of the buffer isn't a multiple of the sector size,
815          * we'll have to add an extra buffer.  This should only happen
816          * at the end of a transfer.
817          */
818         if ((data->fill_len % sector_size) != 0) {
819                 extra_buf_len = sector_size - (data->fill_len % sector_size);
820                 extra_buf = calloc(extra_buf_len, 1);
821                 if (extra_buf == NULL) {
822                         warn("%s: unable to allocate %zu bytes for extra "
823                             "buffer space", __func__, extra_buf_len);
824                         retval = 1;
825                         goto bailout;
826                 }
827                 data->extra_buf = 1;
828                 data->sg_count++;
829         }
830         if (iovec == 0) {
831                 data->segs = calloc(data->sg_count, sizeof(bus_dma_segment_t));
832                 if (data->segs == NULL) {
833                         warn("%s: unable to allocate %zu bytes for S/G list",
834                             __func__, sizeof(bus_dma_segment_t) *
835                             data->sg_count);
836                         retval = 1;
837                         goto bailout;
838                 }
839
840         } else {
841                 data->iovec = calloc(data->sg_count, sizeof(struct iovec));
842                 if (data->iovec == NULL) {
843                         warn("%s: unable to allocate %zu bytes for S/G list",
844                             __func__, sizeof(struct iovec) * data->sg_count);
845                         retval = 1;
846                         goto bailout;
847                 }
848         }
849
850         for (i = 0, tmp_buf = STAILQ_FIRST(&buf->src_list);
851              i < buf->src_count && tmp_buf != NULL; i++,
852              tmp_buf = STAILQ_NEXT(tmp_buf, src_links)) {
853
854                 if (tmp_buf->buf_type == CAMDD_BUF_DATA) {
855                         struct camdd_buf_data *tmp_data;
856
857                         tmp_data = &tmp_buf->buf_type_spec.data;
858                         if (iovec == 0) {
859                                 data->segs[i].ds_addr =
860                                     (bus_addr_t) tmp_data->buf;
861                                 data->segs[i].ds_len = tmp_data->fill_len -
862                                     tmp_data->resid;
863                         } else {
864                                 data->iovec[i].iov_base = tmp_data->buf;
865                                 data->iovec[i].iov_len = tmp_data->fill_len -
866                                     tmp_data->resid;
867                         }
868                         if (((tmp_data->fill_len - tmp_data->resid) %
869                              sector_size) != 0)
870                                 *double_buf_needed = 1;
871                 } else {
872                         struct camdd_buf_indirect *tmp_ind;
873
874                         tmp_ind = &tmp_buf->buf_type_spec.indirect;
875                         if (iovec == 0) {
876                                 data->segs[i].ds_addr =
877                                     (bus_addr_t)tmp_ind->start_ptr;
878                                 data->segs[i].ds_len = tmp_ind->len;
879                         } else {
880                                 data->iovec[i].iov_base = tmp_ind->start_ptr;
881                                 data->iovec[i].iov_len = tmp_ind->len;
882                         }
883                         if ((tmp_ind->len % sector_size) != 0)
884                                 *double_buf_needed = 1;
885                 }
886         }
887
888         if (extra_buf != NULL) {
889                 if (iovec == 0) {
890                         data->segs[i].ds_addr = (bus_addr_t)extra_buf;
891                         data->segs[i].ds_len = extra_buf_len;
892                 } else {
893                         data->iovec[i].iov_base = extra_buf;
894                         data->iovec[i].iov_len = extra_buf_len;
895                 }
896                 extra_buf_attached = 1;
897                 i++;
898         }
899         if ((tmp_buf != NULL) || (i != data->sg_count)) {
900                 warnx("buffer source count does not match "
901                       "number of buffers in list!");
902                 retval = 1;
903                 goto bailout;
904         }
905
906 bailout:
907         if (retval == 0) {
908                 *num_sectors_used = (data->fill_len + extra_buf_len) /
909                     sector_size;
910         } else if (extra_buf_attached == 0) {
911                 /*
912                  * If extra_buf isn't attached yet, we need to free it
913                  * to avoid leaking.
914                  */
915                 free(extra_buf);
916                 data->extra_buf = 0;
917                 data->sg_count--;
918         }
919         return (retval);
920 }
921
922 uint32_t
923 camdd_buf_get_len(struct camdd_buf *buf)
924 {
925         uint32_t len = 0;
926
927         if (buf->buf_type != CAMDD_BUF_DATA) {
928                 struct camdd_buf_indirect *indirect;
929
930                 indirect = &buf->buf_type_spec.indirect;
931                 len = indirect->len;
932         } else {
933                 struct camdd_buf_data *data;
934
935                 data = &buf->buf_type_spec.data;
936                 len = data->fill_len;
937         }
938
939         return (len);
940 }
941
942 void
943 camdd_buf_add_child(struct camdd_buf *buf, struct camdd_buf *child_buf)
944 {
945         struct camdd_buf_data *data;
946
947         assert(buf->buf_type == CAMDD_BUF_DATA);
948
949         data = &buf->buf_type_spec.data;
950
951         STAILQ_INSERT_TAIL(&buf->src_list, child_buf, src_links);
952         buf->src_count++;
953
954         data->fill_len += camdd_buf_get_len(child_buf);
955 }
956
957 typedef enum {
958         CAMDD_TS_MAX_BLK,
959         CAMDD_TS_MIN_BLK,
960         CAMDD_TS_BLK_GRAN,
961         CAMDD_TS_EFF_IOSIZE
962 } camdd_status_item_index;
963
964 static struct camdd_status_items {
965         const char *name;
966         struct mt_status_entry *entry;
967 } req_status_items[] = {
968         { "max_blk", NULL },
969         { "min_blk", NULL },
970         { "blk_gran", NULL },
971         { "max_effective_iosize", NULL }
972 };
973
974 int
975 camdd_probe_tape(int fd, char *filename, uint64_t *max_iosize,
976                  uint64_t *max_blk, uint64_t *min_blk, uint64_t *blk_gran)
977 {
978         struct mt_status_data status_data;
979         char *xml_str = NULL;
980         unsigned int i;
981         int retval = 0;
982         
983         retval = mt_get_xml_str(fd, MTIOCEXTGET, &xml_str);
984         if (retval != 0)
985                 err(1, "Couldn't get XML string from %s", filename);
986
987         retval = mt_get_status(xml_str, &status_data);
988         if (retval != XML_STATUS_OK) {
989                 warn("couldn't get status for %s", filename);
990                 retval = 1;
991                 goto bailout;
992         } else
993                 retval = 0;
994
995         if (status_data.error != 0) {
996                 warnx("%s", status_data.error_str);
997                 retval = 1;
998                 goto bailout;
999         }
1000
1001         for (i = 0; i < nitems(req_status_items); i++) {
1002                 char *name;
1003
1004                 name = __DECONST(char *, req_status_items[i].name);
1005                 req_status_items[i].entry = mt_status_entry_find(&status_data,
1006                     name);
1007                 if (req_status_items[i].entry == NULL) {
1008                         errx(1, "Cannot find status entry %s",
1009                             req_status_items[i].name);
1010                 }
1011         }
1012
1013         *max_iosize = req_status_items[CAMDD_TS_EFF_IOSIZE].entry->value_unsigned;
1014         *max_blk= req_status_items[CAMDD_TS_MAX_BLK].entry->value_unsigned;
1015         *min_blk= req_status_items[CAMDD_TS_MIN_BLK].entry->value_unsigned;
1016         *blk_gran = req_status_items[CAMDD_TS_BLK_GRAN].entry->value_unsigned;
1017 bailout:
1018
1019         free(xml_str);
1020         mt_status_free(&status_data);
1021
1022         return (retval);
1023 }
1024
1025 struct camdd_dev *
1026 camdd_probe_file(int fd, struct camdd_io_opts *io_opts, int retry_count,
1027     int timeout)
1028 {
1029         struct camdd_dev *dev = NULL;
1030         struct camdd_dev_file *file_dev;
1031         uint64_t blocksize = io_opts->blocksize;
1032
1033         dev = camdd_alloc_dev(CAMDD_DEV_FILE, NULL, 0, retry_count, timeout);
1034         if (dev == NULL)
1035                 goto bailout;
1036
1037         file_dev = &dev->dev_spec.file;
1038         file_dev->fd = fd;
1039         strlcpy(file_dev->filename, io_opts->dev_name,
1040             sizeof(file_dev->filename));
1041         strlcpy(dev->device_name, io_opts->dev_name, sizeof(dev->device_name));
1042         if (blocksize == 0)
1043                 dev->blocksize = CAMDD_FILE_DEFAULT_BLOCK;
1044         else
1045                 dev->blocksize = blocksize;
1046
1047         if ((io_opts->queue_depth != 0)
1048          && (io_opts->queue_depth != 1)) {
1049                 warnx("Queue depth %ju for %s ignored, only 1 outstanding "
1050                     "command supported", (uintmax_t)io_opts->queue_depth,
1051                     io_opts->dev_name);
1052         }
1053         dev->target_queue_depth = CAMDD_FILE_DEFAULT_DEPTH;
1054         dev->run = camdd_file_run;
1055         dev->fetch = NULL;
1056
1057         /*
1058          * We can effectively access files on byte boundaries.  We'll reset
1059          * this for devices like disks that can be accessed on sector
1060          * boundaries.
1061          */
1062         dev->sector_size = 1;
1063
1064         if ((fd != STDIN_FILENO)
1065          && (fd != STDOUT_FILENO)) {
1066                 int retval;
1067
1068                 retval = fstat(fd, &file_dev->sb);
1069                 if (retval != 0) {
1070                         warn("Cannot stat %s", dev->device_name);
1071                         goto bailout_error;
1072                 }
1073                 if (S_ISREG(file_dev->sb.st_mode)) {
1074                         file_dev->file_type = CAMDD_FILE_REG;
1075                 } else if (S_ISCHR(file_dev->sb.st_mode)) {
1076                         int type;
1077
1078                         if (ioctl(fd, FIODTYPE, &type) == -1)
1079                                 err(1, "FIODTYPE ioctl failed on %s",
1080                                     dev->device_name);
1081                         else {
1082                                 if (type & D_TAPE)
1083                                         file_dev->file_type = CAMDD_FILE_TAPE;
1084                                 else if (type & D_DISK)
1085                                         file_dev->file_type = CAMDD_FILE_DISK;
1086                                 else if (type & D_MEM)
1087                                         file_dev->file_type = CAMDD_FILE_MEM;
1088                                 else if (type & D_TTY)
1089                                         file_dev->file_type = CAMDD_FILE_TTY;
1090                         }
1091                 } else if (S_ISDIR(file_dev->sb.st_mode)) {
1092                         errx(1, "cannot operate on directory %s",
1093                             dev->device_name);
1094                 } else if (S_ISFIFO(file_dev->sb.st_mode)) {
1095                         file_dev->file_type = CAMDD_FILE_PIPE;
1096                 } else
1097                         errx(1, "Cannot determine file type for %s",
1098                             dev->device_name);
1099
1100                 switch (file_dev->file_type) {
1101                 case CAMDD_FILE_REG:
1102                         if (file_dev->sb.st_size != 0)
1103                                 dev->max_sector = file_dev->sb.st_size - 1;
1104                         else
1105                                 dev->max_sector = 0;
1106                         file_dev->file_flags |= CAMDD_FF_CAN_SEEK;
1107                         break;
1108                 case CAMDD_FILE_TAPE: {
1109                         uint64_t max_iosize, max_blk, min_blk, blk_gran;
1110                         /*
1111                          * Check block limits and maximum effective iosize.
1112                          * Make sure the blocksize is within the block
1113                          * limits (and a multiple of the minimum blocksize)
1114                          * and that the blocksize is <= maximum effective
1115                          * iosize.
1116                          */
1117                         retval = camdd_probe_tape(fd, dev->device_name,
1118                             &max_iosize, &max_blk, &min_blk, &blk_gran);
1119                         if (retval != 0)
1120                                 errx(1, "Unable to probe tape %s",
1121                                     dev->device_name);
1122
1123                         /*
1124                          * The blocksize needs to be <= the maximum
1125                          * effective I/O size of the tape device.  Note
1126                          * that this also takes into account the maximum
1127                          * blocksize reported by READ BLOCK LIMITS.
1128                          */
1129                         if (dev->blocksize > max_iosize) {
1130                                 warnx("Blocksize %u too big for %s, limiting "
1131                                     "to %ju", dev->blocksize, dev->device_name,
1132                                     max_iosize);
1133                                 dev->blocksize = max_iosize;
1134                         }
1135
1136                         /*
1137                          * The blocksize needs to be at least min_blk;
1138                          */
1139                         if (dev->blocksize < min_blk) {
1140                                 warnx("Blocksize %u too small for %s, "
1141                                     "increasing to %ju", dev->blocksize,
1142                                     dev->device_name, min_blk);
1143                                 dev->blocksize = min_blk;
1144                         }
1145
1146                         /*
1147                          * And the blocksize needs to be a multiple of
1148                          * the block granularity.
1149                          */
1150                         if ((blk_gran != 0)
1151                          && (dev->blocksize % (1 << blk_gran))) {
1152                                 warnx("Blocksize %u for %s not a multiple of "
1153                                     "%d, adjusting to %d", dev->blocksize,
1154                                     dev->device_name, (1 << blk_gran),
1155                                     dev->blocksize & ~((1 << blk_gran) - 1));
1156                                 dev->blocksize &= ~((1 << blk_gran) - 1);
1157                         }
1158
1159                         if (dev->blocksize == 0) {
1160                                 errx(1, "Unable to derive valid blocksize for "
1161                                     "%s", dev->device_name);
1162                         }
1163
1164                         /*
1165                          * For tape drives, set the sector size to the
1166                          * blocksize so that we make sure not to write
1167                          * less than the blocksize out to the drive.
1168                          */
1169                         dev->sector_size = dev->blocksize;
1170                         break;
1171                 }
1172                 case CAMDD_FILE_DISK: {
1173                         off_t media_size;
1174                         unsigned int sector_size;
1175
1176                         file_dev->file_flags |= CAMDD_FF_CAN_SEEK;
1177
1178                         if (ioctl(fd, DIOCGSECTORSIZE, &sector_size) == -1) {
1179                                 err(1, "DIOCGSECTORSIZE ioctl failed on %s",
1180                                     dev->device_name);
1181                         }
1182
1183                         if (sector_size == 0) {
1184                                 errx(1, "DIOCGSECTORSIZE ioctl returned "
1185                                     "invalid sector size %u for %s",
1186                                     sector_size, dev->device_name);
1187                         }
1188
1189                         if (ioctl(fd, DIOCGMEDIASIZE, &media_size) == -1) {
1190                                 err(1, "DIOCGMEDIASIZE ioctl failed on %s",
1191                                     dev->device_name);
1192                         }
1193
1194                         if (media_size == 0) {
1195                                 errx(1, "DIOCGMEDIASIZE ioctl returned "
1196                                     "invalid media size %ju for %s",
1197                                     (uintmax_t)media_size, dev->device_name);
1198                         }
1199
1200                         if (dev->blocksize % sector_size) {
1201                                 errx(1, "%s blocksize %u not a multiple of "
1202                                     "sector size %u", dev->device_name,
1203                                     dev->blocksize, sector_size);
1204                         }
1205
1206                         dev->sector_size = sector_size;
1207                         dev->max_sector = (media_size / sector_size) - 1;
1208                         break;
1209                 }
1210                 case CAMDD_FILE_MEM:
1211                         file_dev->file_flags |= CAMDD_FF_CAN_SEEK;
1212                         break;
1213                 default:
1214                         break;
1215                 }
1216         }
1217
1218         if ((io_opts->offset != 0)
1219          && ((file_dev->file_flags & CAMDD_FF_CAN_SEEK) == 0)) {
1220                 warnx("Offset %ju specified for %s, but we cannot seek on %s",
1221                     io_opts->offset, io_opts->dev_name, io_opts->dev_name);
1222                 goto bailout_error;
1223         }
1224 #if 0
1225         else if ((io_opts->offset != 0)
1226                 && ((io_opts->offset % dev->sector_size) != 0)) {
1227                 warnx("Offset %ju for %s is not a multiple of the "
1228                       "sector size %u", io_opts->offset, 
1229                       io_opts->dev_name, dev->sector_size);
1230                 goto bailout_error;
1231         } else {
1232                 dev->start_offset_bytes = io_opts->offset;
1233         }
1234 #endif
1235
1236 bailout:
1237         return (dev);
1238
1239 bailout_error:
1240         camdd_free_dev(dev);
1241         return (NULL);
1242 }
1243
1244 /*
1245  * Get a get device CCB for the specified device.
1246  */
1247 int
1248 camdd_get_cgd(struct cam_device *device, struct ccb_getdev *cgd)
1249 {
1250         union ccb *ccb;
1251         int retval = 0;
1252
1253         ccb = cam_getccb(device);
1254  
1255         if (ccb == NULL) {
1256                 warnx("%s: couldn't allocate CCB", __func__);
1257                 return -1;
1258         }
1259
1260         CCB_CLEAR_ALL_EXCEPT_HDR(&ccb->cgd);
1261
1262         ccb->ccb_h.func_code = XPT_GDEV_TYPE;
1263  
1264         if (cam_send_ccb(device, ccb) < 0) {
1265                 warn("%s: error sending Get Device Information CCB", __func__);
1266                         cam_error_print(device, ccb, CAM_ESF_ALL,
1267                                         CAM_EPF_ALL, stderr);
1268                 retval = -1;
1269                 goto bailout;
1270         }
1271
1272         if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
1273                         cam_error_print(device, ccb, CAM_ESF_ALL,
1274                                         CAM_EPF_ALL, stderr);
1275                 retval = -1;
1276                 goto bailout;
1277         }
1278
1279         bcopy(&ccb->cgd, cgd, sizeof(struct ccb_getdev));
1280
1281 bailout:
1282         cam_freeccb(ccb);
1283  
1284         return retval;
1285 }
1286
1287 int
1288 camdd_probe_pass_scsi(struct cam_device *cam_dev, union ccb *ccb,
1289                  camdd_argmask arglist, int probe_retry_count,
1290                  int probe_timeout, uint64_t *maxsector, uint32_t *block_len)
1291 {
1292         struct scsi_read_capacity_data rcap;
1293         struct scsi_read_capacity_data_long rcaplong;
1294         int retval = -1;
1295
1296         if (ccb == NULL) {
1297                 warnx("%s: error passed ccb is NULL", __func__);
1298                 goto bailout;
1299         }
1300
1301         CCB_CLEAR_ALL_EXCEPT_HDR(&ccb->csio);
1302
1303         scsi_read_capacity(&ccb->csio,
1304                            /*retries*/ probe_retry_count,
1305                            /*cbfcnp*/ NULL,
1306                            /*tag_action*/ MSG_SIMPLE_Q_TAG,
1307                            &rcap,
1308                            SSD_FULL_SIZE,
1309                            /*timeout*/ probe_timeout ? probe_timeout : 5000);
1310
1311         /* Disable freezing the device queue */
1312         ccb->ccb_h.flags |= CAM_DEV_QFRZDIS;
1313
1314         if (arglist & CAMDD_ARG_ERR_RECOVER)
1315                 ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER;
1316
1317         if (cam_send_ccb(cam_dev, ccb) < 0) {
1318                 warn("error sending READ CAPACITY command");
1319
1320                 cam_error_print(cam_dev, ccb, CAM_ESF_ALL,
1321                                 CAM_EPF_ALL, stderr);
1322
1323                 goto bailout;
1324         }
1325
1326         if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
1327                 cam_error_print(cam_dev, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr);
1328                 goto bailout;
1329         }
1330
1331         *maxsector = scsi_4btoul(rcap.addr);
1332         *block_len = scsi_4btoul(rcap.length);
1333
1334         /*
1335          * A last block of 2^32-1 means that the true capacity is over 2TB,
1336          * and we need to issue the long READ CAPACITY to get the real
1337          * capacity.  Otherwise, we're all set.
1338          */
1339         if (*maxsector != 0xffffffff) {
1340                 retval = 0;
1341                 goto bailout;
1342         }
1343
1344         scsi_read_capacity_16(&ccb->csio,
1345                               /*retries*/ probe_retry_count,
1346                               /*cbfcnp*/ NULL,
1347                               /*tag_action*/ MSG_SIMPLE_Q_TAG,
1348                               /*lba*/ 0,
1349                               /*reladdr*/ 0,
1350                               /*pmi*/ 0,
1351                               (uint8_t *)&rcaplong,
1352                               sizeof(rcaplong),
1353                               /*sense_len*/ SSD_FULL_SIZE,
1354                               /*timeout*/ probe_timeout ? probe_timeout : 5000);
1355
1356         /* Disable freezing the device queue */
1357         ccb->ccb_h.flags |= CAM_DEV_QFRZDIS;
1358
1359         if (arglist & CAMDD_ARG_ERR_RECOVER)
1360                 ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER;
1361
1362         if (cam_send_ccb(cam_dev, ccb) < 0) {
1363                 warn("error sending READ CAPACITY (16) command");
1364                 cam_error_print(cam_dev, ccb, CAM_ESF_ALL,
1365                                 CAM_EPF_ALL, stderr);
1366                 goto bailout;
1367         }
1368
1369         if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
1370                 cam_error_print(cam_dev, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr);
1371                 goto bailout;
1372         }
1373
1374         *maxsector = scsi_8btou64(rcaplong.addr);
1375         *block_len = scsi_4btoul(rcaplong.length);
1376
1377         retval = 0;
1378
1379 bailout:
1380         return retval;
1381 }
1382
1383 /*
1384  * Need to implement this.  Do a basic probe:
1385  * - Check the inquiry data, make sure we're talking to a device that we
1386  *   can reasonably expect to talk to -- direct, RBC, CD, WORM.
1387  * - Send a test unit ready, make sure the device is available.
1388  * - Get the capacity and block size.
1389  */
1390 struct camdd_dev *
1391 camdd_probe_pass(struct cam_device *cam_dev, struct camdd_io_opts *io_opts,
1392                  camdd_argmask arglist, int probe_retry_count,
1393                  int probe_timeout, int io_retry_count, int io_timeout)
1394 {
1395         union ccb *ccb;
1396         uint64_t maxsector = 0;
1397         uint32_t cpi_maxio, max_iosize, pass_numblocks;
1398         uint32_t block_len = 0;
1399         struct camdd_dev *dev = NULL;
1400         struct camdd_dev_pass *pass_dev;
1401         struct kevent ke;
1402         struct ccb_getdev cgd;
1403         int retval;
1404         int scsi_dev_type;
1405
1406         if ((retval = camdd_get_cgd(cam_dev, &cgd)) != 0) {
1407                 warnx("%s: error retrieving CGD", __func__);
1408                 return NULL;
1409         }
1410
1411         ccb = cam_getccb(cam_dev);
1412
1413         if (ccb == NULL) {
1414                 warnx("%s: error allocating ccb", __func__);
1415                 goto bailout;
1416         }
1417
1418         switch (cgd.protocol) {
1419         case PROTO_SCSI:
1420                 scsi_dev_type = SID_TYPE(&cam_dev->inq_data);
1421
1422                 /*
1423                  * For devices that support READ CAPACITY, we'll attempt to get the
1424                  * capacity.  Otherwise, we really don't support tape or other
1425                  * devices via SCSI passthrough, so just return an error in that case.
1426                  */
1427                 switch (scsi_dev_type) {
1428                 case T_DIRECT:
1429                 case T_WORM:
1430                 case T_CDROM:
1431                 case T_OPTICAL:
1432                 case T_RBC:
1433                 case T_ZBC_HM:
1434                         break;
1435                 default:
1436                         errx(1, "Unsupported SCSI device type %d", scsi_dev_type);
1437                         break; /*NOTREACHED*/
1438                 }
1439
1440                 if ((retval = camdd_probe_pass_scsi(cam_dev, ccb, probe_retry_count,
1441                                                 arglist, probe_timeout, &maxsector,
1442                                                 &block_len))) {
1443                         goto bailout;
1444                 }
1445                 break;
1446         default:
1447                 errx(1, "Unsupported PROTO type %d", cgd.protocol);
1448                 break; /*NOTREACHED*/
1449         }
1450
1451         if (block_len == 0) {
1452                 warnx("Sector size for %s%u is 0, cannot continue",
1453                     cam_dev->device_name, cam_dev->dev_unit_num);
1454                 goto bailout_error;
1455         }
1456
1457         CCB_CLEAR_ALL_EXCEPT_HDR(&ccb->cpi);
1458
1459         ccb->ccb_h.func_code = XPT_PATH_INQ;
1460         ccb->ccb_h.flags = CAM_DIR_NONE;
1461         ccb->ccb_h.retry_count = 1;
1462         
1463         if (cam_send_ccb(cam_dev, ccb) < 0) {
1464                 warn("error sending XPT_PATH_INQ CCB");
1465
1466                 cam_error_print(cam_dev, ccb, CAM_ESF_ALL,
1467                                 CAM_EPF_ALL, stderr);
1468                 goto bailout;
1469         }
1470
1471         EV_SET(&ke, cam_dev->fd, EVFILT_READ, EV_ADD|EV_ENABLE, 0, 0, 0);
1472
1473         dev = camdd_alloc_dev(CAMDD_DEV_PASS, &ke, 1, io_retry_count,
1474                               io_timeout);
1475         if (dev == NULL)
1476                 goto bailout;
1477
1478         pass_dev = &dev->dev_spec.pass;
1479         pass_dev->scsi_dev_type = scsi_dev_type;
1480         pass_dev->protocol = cgd.protocol;
1481         pass_dev->dev = cam_dev;
1482         pass_dev->max_sector = maxsector;
1483         pass_dev->block_len = block_len;
1484         pass_dev->cpi_maxio = ccb->cpi.maxio;
1485         snprintf(dev->device_name, sizeof(dev->device_name), "%s%u",
1486                  pass_dev->dev->device_name, pass_dev->dev->dev_unit_num);
1487         dev->sector_size = block_len;
1488         dev->max_sector = maxsector;
1489         
1490
1491         /*
1492          * Determine the optimal blocksize to use for this device.
1493          */
1494
1495         /*
1496          * If the controller has not specified a maximum I/O size,
1497          * just go with 128K as a somewhat conservative value.
1498          */
1499         if (pass_dev->cpi_maxio == 0)
1500                 cpi_maxio = 131072;
1501         else
1502                 cpi_maxio = pass_dev->cpi_maxio;
1503
1504         /*
1505          * If the controller has a large maximum I/O size, limit it
1506          * to something smaller so that the kernel doesn't have trouble
1507          * allocating buffers to copy data in and out for us.
1508          * XXX KDM this is until we have unmapped I/O support in the kernel.
1509          */
1510         max_iosize = min(cpi_maxio, CAMDD_PASS_MAX_BLOCK);
1511
1512         /*
1513          * If we weren't able to get a block size for some reason,
1514          * default to 512 bytes.
1515          */
1516         block_len = pass_dev->block_len;
1517         if (block_len == 0)
1518                 block_len = 512;
1519
1520         /*
1521          * Figure out how many blocksize chunks will fit in the
1522          * maximum I/O size.
1523          */
1524         pass_numblocks = max_iosize / block_len;
1525
1526         /*
1527          * And finally, multiple the number of blocks by the LBA
1528          * length to get our maximum block size;
1529          */
1530         dev->blocksize = pass_numblocks * block_len;
1531
1532         if (io_opts->blocksize != 0) {
1533                 if ((io_opts->blocksize % dev->sector_size) != 0) {
1534                         warnx("Blocksize %ju for %s is not a multiple of "
1535                               "sector size %u", (uintmax_t)io_opts->blocksize, 
1536                               dev->device_name, dev->sector_size);
1537                         goto bailout_error;
1538                 }
1539                 dev->blocksize = io_opts->blocksize;
1540         }
1541         dev->target_queue_depth = CAMDD_PASS_DEFAULT_DEPTH;
1542         if (io_opts->queue_depth != 0)
1543                 dev->target_queue_depth = io_opts->queue_depth;
1544
1545         if (io_opts->offset != 0) {
1546                 if (io_opts->offset > (dev->max_sector * dev->sector_size)) {
1547                         warnx("Offset %ju is past the end of device %s",
1548                             io_opts->offset, dev->device_name);
1549                         goto bailout_error;
1550                 }
1551 #if 0
1552                 else if ((io_opts->offset % dev->sector_size) != 0) {
1553                         warnx("Offset %ju for %s is not a multiple of the "
1554                               "sector size %u", io_opts->offset, 
1555                               dev->device_name, dev->sector_size);
1556                         goto bailout_error;
1557                 }
1558                 dev->start_offset_bytes = io_opts->offset;
1559 #endif
1560         }
1561
1562         dev->min_cmd_size = io_opts->min_cmd_size;
1563
1564         dev->run = camdd_pass_run;
1565         dev->fetch = camdd_pass_fetch;
1566
1567 bailout:
1568         cam_freeccb(ccb);
1569
1570         return (dev);
1571
1572 bailout_error:
1573         cam_freeccb(ccb);
1574
1575         camdd_free_dev(dev);
1576
1577         return (NULL);
1578 }
1579
1580 void *
1581 camdd_worker(void *arg)
1582 {
1583         struct camdd_dev *dev = arg;
1584         struct camdd_buf *buf;
1585         struct timespec ts, *kq_ts;
1586
1587         ts.tv_sec = 0;
1588         ts.tv_nsec = 0;
1589
1590         pthread_mutex_lock(&dev->mutex);
1591
1592         dev->flags |= CAMDD_DEV_FLAG_ACTIVE;
1593
1594         for (;;) {
1595                 struct kevent ke;
1596                 int retval = 0;
1597
1598                 /*
1599                  * XXX KDM check the reorder queue depth?
1600                  */
1601                 if (dev->write_dev == 0) {
1602                         uint32_t our_depth, peer_depth, peer_bytes, our_bytes;
1603                         uint32_t target_depth = dev->target_queue_depth;
1604                         uint32_t peer_target_depth =
1605                             dev->peer_dev->target_queue_depth;
1606                         uint32_t peer_blocksize = dev->peer_dev->blocksize;
1607
1608                         camdd_get_depth(dev, &our_depth, &peer_depth,
1609                                         &our_bytes, &peer_bytes);
1610
1611 #if 0
1612                         while (((our_depth < target_depth)
1613                              && (peer_depth < peer_target_depth))
1614                             || ((peer_bytes + our_bytes) <
1615                                  (peer_blocksize * 2))) {
1616 #endif
1617                         while (((our_depth + peer_depth) <
1618                                 (target_depth + peer_target_depth))
1619                             || ((peer_bytes + our_bytes) <
1620                                 (peer_blocksize * 3))) {
1621
1622                                 retval = camdd_queue(dev, NULL);
1623                                 if (retval == 1)
1624                                         break;
1625                                 else if (retval != 0) {
1626                                         error_exit = 1;
1627                                         goto bailout;
1628                                 }
1629
1630                                 camdd_get_depth(dev, &our_depth, &peer_depth,
1631                                                 &our_bytes, &peer_bytes);
1632                         }
1633                 }
1634                 /*
1635                  * See if we have any I/O that is ready to execute.
1636                  */
1637                 buf = STAILQ_FIRST(&dev->run_queue);
1638                 if (buf != NULL) {
1639                         while (dev->target_queue_depth > dev->cur_active_io) {
1640                                 retval = dev->run(dev);
1641                                 if (retval == -1) {
1642                                         dev->flags |= CAMDD_DEV_FLAG_EOF;
1643                                         error_exit = 1;
1644                                         break;
1645                                 } else if (retval != 0) {
1646                                         break;
1647                                 }
1648                         }
1649                 }
1650
1651                 /*
1652                  * We've reached EOF, or our partner has reached EOF.
1653                  */
1654                 if ((dev->flags & CAMDD_DEV_FLAG_EOF)
1655                  || (dev->flags & CAMDD_DEV_FLAG_PEER_EOF)) {
1656                         if (dev->write_dev != 0) {
1657                                 if ((STAILQ_EMPTY(&dev->work_queue))
1658                                  && (dev->num_run_queue == 0)
1659                                  && (dev->cur_active_io == 0)) {
1660                                         goto bailout;
1661                                 }
1662                         } else {
1663                                 /*
1664                                  * If we're the reader, and the writer
1665                                  * got EOF, he is already done.  If we got
1666                                  * the EOF, then we need to wait until
1667                                  * everything is flushed out for the writer.
1668                                  */
1669                                 if (dev->flags & CAMDD_DEV_FLAG_PEER_EOF) {
1670                                         goto bailout;
1671                                 } else if ((dev->num_peer_work_queue == 0)
1672                                         && (dev->num_peer_done_queue == 0)
1673                                         && (dev->cur_active_io == 0)
1674                                         && (dev->num_run_queue == 0)) {
1675                                         goto bailout;
1676                                 }
1677                         }
1678                         /*
1679                          * XXX KDM need to do something about the pending
1680                          * queue and cleanup resources.
1681                          */
1682                 } 
1683
1684                 if ((dev->write_dev == 0)
1685                  && (dev->cur_active_io == 0)
1686                  && (dev->peer_bytes_queued < dev->peer_dev->blocksize))
1687                         kq_ts = &ts;
1688                 else
1689                         kq_ts = NULL;
1690
1691                 /*
1692                  * Run kevent to see if there are events to process.
1693                  */
1694                 pthread_mutex_unlock(&dev->mutex);
1695                 retval = kevent(dev->kq, NULL, 0, &ke, 1, kq_ts);
1696                 pthread_mutex_lock(&dev->mutex);
1697                 if (retval == -1) {
1698                         warn("%s: error returned from kevent",__func__);
1699                         goto bailout;
1700                 } else if (retval != 0) {
1701                         switch (ke.filter) {
1702                         case EVFILT_READ:
1703                                 if (dev->fetch != NULL) {
1704                                         retval = dev->fetch(dev);
1705                                         if (retval == -1) {
1706                                                 error_exit = 1;
1707                                                 goto bailout;
1708                                         }
1709                                 }
1710                                 break;
1711                         case EVFILT_SIGNAL:
1712                                 /*
1713                                  * We register for this so we don't get
1714                                  * an error as a result of a SIGINFO or a
1715                                  * SIGINT.  It will actually get handled
1716                                  * by the signal handler.  If we get a
1717                                  * SIGINT, bail out without printing an
1718                                  * error message.  Any other signals 
1719                                  * will result in the error message above.
1720                                  */
1721                                 if (ke.ident == SIGINT)
1722                                         goto bailout;
1723                                 break;
1724                         case EVFILT_USER:
1725                                 retval = 0;
1726                                 /*
1727                                  * Check to see if the other thread has
1728                                  * queued any I/O for us to do.  (In this
1729                                  * case we're the writer.)
1730                                  */
1731                                 for (buf = STAILQ_FIRST(&dev->work_queue);
1732                                      buf != NULL;
1733                                      buf = STAILQ_FIRST(&dev->work_queue)) {
1734                                         STAILQ_REMOVE_HEAD(&dev->work_queue,
1735                                                            work_links);
1736                                         retval = camdd_queue(dev, buf);
1737                                         /*
1738                                          * We keep going unless we get an
1739                                          * actual error.  If we get EOF, we
1740                                          * still want to remove the buffers
1741                                          * from the queue and send the back
1742                                          * to the reader thread.
1743                                          */
1744                                         if (retval == -1) {
1745                                                 error_exit = 1;
1746                                                 goto bailout;
1747                                         } else
1748                                                 retval = 0;
1749                                 }
1750
1751                                 /*
1752                                  * Next check to see if the other thread has
1753                                  * queued any completed buffers back to us.
1754                                  * (In this case we're the reader.)
1755                                  */
1756                                 for (buf = STAILQ_FIRST(&dev->peer_done_queue);
1757                                      buf != NULL;
1758                                      buf = STAILQ_FIRST(&dev->peer_done_queue)){
1759                                         STAILQ_REMOVE_HEAD(
1760                                             &dev->peer_done_queue, work_links);
1761                                         dev->num_peer_done_queue--;
1762                                         camdd_peer_done(buf);
1763                                 }
1764                                 break;
1765                         default:
1766                                 warnx("%s: unknown kevent filter %d",
1767                                       __func__, ke.filter);
1768                                 break;
1769                         }
1770                 }
1771         }
1772
1773 bailout:
1774
1775         dev->flags &= ~CAMDD_DEV_FLAG_ACTIVE;
1776
1777         /* XXX KDM cleanup resources here? */
1778
1779         pthread_mutex_unlock(&dev->mutex);
1780
1781         need_exit = 1;
1782         sem_post(&camdd_sem);
1783
1784         return (NULL);
1785 }
1786
1787 /*
1788  * Simplistic translation of CCB status to our local status.
1789  */
1790 camdd_buf_status
1791 camdd_ccb_status(union ccb *ccb, int protocol)
1792 {
1793         camdd_buf_status status = CAMDD_STATUS_NONE;
1794         cam_status ccb_status;
1795
1796         ccb_status = ccb->ccb_h.status & CAM_STATUS_MASK;
1797
1798         switch (protocol) {
1799         case PROTO_SCSI:
1800                 switch (ccb_status) {
1801                 case CAM_REQ_CMP: {
1802                         if (ccb->csio.resid == 0) {
1803                                 status = CAMDD_STATUS_OK;
1804                         } else if (ccb->csio.dxfer_len > ccb->csio.resid) {
1805                                 status = CAMDD_STATUS_SHORT_IO;
1806                         } else {
1807                                 status = CAMDD_STATUS_EOF;
1808                         }
1809                         break;
1810                 }
1811                 case CAM_SCSI_STATUS_ERROR: {
1812                         switch (ccb->csio.scsi_status) {
1813                         case SCSI_STATUS_OK:
1814                         case SCSI_STATUS_COND_MET:
1815                         case SCSI_STATUS_INTERMED:
1816                         case SCSI_STATUS_INTERMED_COND_MET:
1817                                 status = CAMDD_STATUS_OK;
1818                                 break;
1819                         case SCSI_STATUS_CMD_TERMINATED:
1820                         case SCSI_STATUS_CHECK_COND:
1821                         case SCSI_STATUS_QUEUE_FULL:
1822                         case SCSI_STATUS_BUSY:
1823                         case SCSI_STATUS_RESERV_CONFLICT:
1824                         default:
1825                                 status = CAMDD_STATUS_ERROR;
1826                                 break;
1827                         }
1828                         break;
1829                 }
1830                 default:
1831                         status = CAMDD_STATUS_ERROR;
1832                         break;
1833                 }
1834                 break;
1835         default:
1836                 status = CAMDD_STATUS_ERROR;
1837                 break;
1838         }
1839
1840         return (status);
1841 }
1842
1843 /*
1844  * Queue a buffer to our peer's work thread for writing.
1845  *
1846  * Returns 0 for success, -1 for failure, 1 if the other thread exited.
1847  */
1848 int
1849 camdd_queue_peer_buf(struct camdd_dev *dev, struct camdd_buf *buf)
1850 {
1851         struct kevent ke;
1852         STAILQ_HEAD(, camdd_buf) local_queue;
1853         struct camdd_buf *buf1, *buf2;
1854         struct camdd_buf_data *data = NULL;
1855         uint64_t peer_bytes_queued = 0;
1856         int active = 1;
1857         int retval = 0;
1858
1859         STAILQ_INIT(&local_queue);
1860
1861         /*
1862          * Since we're the reader, we need to queue our I/O to the writer
1863          * in sequential order in order to make sure it gets written out
1864          * in sequential order.
1865          *
1866          * Check the next expected I/O starting offset.  If this doesn't
1867          * match, put it on the reorder queue.
1868          */
1869         if ((buf->lba * dev->sector_size) != dev->next_completion_pos_bytes) {
1870
1871                 /*
1872                  * If there is nothing on the queue, there is no sorting
1873                  * needed.
1874                  */
1875                 if (STAILQ_EMPTY(&dev->reorder_queue)) {
1876                         STAILQ_INSERT_TAIL(&dev->reorder_queue, buf, links);
1877                         dev->num_reorder_queue++;
1878                         goto bailout;
1879                 }
1880
1881                 /*
1882                  * Sort in ascending order by starting LBA.  There should
1883                  * be no identical LBAs.
1884                  */
1885                 for (buf1 = STAILQ_FIRST(&dev->reorder_queue); buf1 != NULL;
1886                      buf1 = buf2) {
1887                         buf2 = STAILQ_NEXT(buf1, links);
1888                         if (buf->lba < buf1->lba) {
1889                                 /*
1890                                  * If we're less than the first one, then
1891                                  * we insert at the head of the list
1892                                  * because this has to be the first element
1893                                  * on the list.
1894                                  */
1895                                 STAILQ_INSERT_HEAD(&dev->reorder_queue,
1896                                                    buf, links);
1897                                 dev->num_reorder_queue++;
1898                                 break;
1899                         } else if (buf->lba > buf1->lba) {
1900                                 if (buf2 == NULL) {
1901                                         STAILQ_INSERT_TAIL(&dev->reorder_queue, 
1902                                             buf, links);
1903                                         dev->num_reorder_queue++;
1904                                         break;
1905                                 } else if (buf->lba < buf2->lba) {
1906                                         STAILQ_INSERT_AFTER(&dev->reorder_queue,
1907                                             buf1, buf, links);
1908                                         dev->num_reorder_queue++;
1909                                         break;
1910                                 }
1911                         } else {
1912                                 errx(1, "Found buffers with duplicate LBA %ju!",
1913                                      buf->lba);
1914                         }
1915                 }
1916                 goto bailout;
1917         } else {
1918
1919                 /*
1920                  * We're the next expected I/O completion, so put ourselves
1921                  * on the local queue to be sent to the writer.  We use
1922                  * work_links here so that we can queue this to the 
1923                  * peer_work_queue before taking the buffer off of the
1924                  * local_queue.
1925                  */
1926                 dev->next_completion_pos_bytes += buf->len;
1927                 STAILQ_INSERT_TAIL(&local_queue, buf, work_links);
1928
1929                 /*
1930                  * Go through the reorder queue looking for more sequential
1931                  * I/O and add it to the local queue.
1932                  */
1933                 for (buf1 = STAILQ_FIRST(&dev->reorder_queue); buf1 != NULL;
1934                      buf1 = STAILQ_FIRST(&dev->reorder_queue)) {
1935                         /*
1936                          * As soon as we see an I/O that is out of sequence,
1937                          * we're done.
1938                          */
1939                         if ((buf1->lba * dev->sector_size) !=
1940                              dev->next_completion_pos_bytes)
1941                                 break;
1942
1943                         STAILQ_REMOVE_HEAD(&dev->reorder_queue, links);
1944                         dev->num_reorder_queue--;
1945                         STAILQ_INSERT_TAIL(&local_queue, buf1, work_links);
1946                         dev->next_completion_pos_bytes += buf1->len;
1947                 }
1948         }
1949
1950         /*
1951          * Setup the event to let the other thread know that it has work
1952          * pending.
1953          */
1954         EV_SET(&ke, (uintptr_t)&dev->peer_dev->work_queue, EVFILT_USER, 0,
1955                NOTE_TRIGGER, 0, NULL);
1956
1957         /*
1958          * Put this on our shadow queue so that we know what we've queued
1959          * to the other thread.
1960          */
1961         STAILQ_FOREACH_SAFE(buf1, &local_queue, work_links, buf2) {
1962                 if (buf1->buf_type != CAMDD_BUF_DATA) {
1963                         errx(1, "%s: should have a data buffer, not an "
1964                             "indirect buffer", __func__);
1965                 }
1966                 data = &buf1->buf_type_spec.data;
1967
1968                 /*
1969                  * We only need to send one EOF to the writer, and don't
1970                  * need to continue sending EOFs after that.
1971                  */
1972                 if (buf1->status == CAMDD_STATUS_EOF) {
1973                         if (dev->flags & CAMDD_DEV_FLAG_EOF_SENT) {
1974                                 STAILQ_REMOVE(&local_queue, buf1, camdd_buf,
1975                                     work_links);
1976                                 camdd_release_buf(buf1);
1977                                 retval = 1;
1978                                 continue;
1979                         }
1980                         dev->flags |= CAMDD_DEV_FLAG_EOF_SENT;
1981                 }
1982
1983
1984                 STAILQ_INSERT_TAIL(&dev->peer_work_queue, buf1, links);
1985                 peer_bytes_queued += (data->fill_len - data->resid);
1986                 dev->peer_bytes_queued += (data->fill_len - data->resid);
1987                 dev->num_peer_work_queue++;
1988         }
1989
1990         if (STAILQ_FIRST(&local_queue) == NULL)
1991                 goto bailout;
1992
1993         /*
1994          * Drop our mutex and pick up the other thread's mutex.  We need to
1995          * do this to avoid deadlocks.
1996          */
1997         pthread_mutex_unlock(&dev->mutex);
1998         pthread_mutex_lock(&dev->peer_dev->mutex);
1999
2000         if (dev->peer_dev->flags & CAMDD_DEV_FLAG_ACTIVE) {
2001                 /*
2002                  * Put the buffers on the other thread's incoming work queue.
2003                  */
2004                 for (buf1 = STAILQ_FIRST(&local_queue); buf1 != NULL;
2005                      buf1 = STAILQ_FIRST(&local_queue)) {
2006                         STAILQ_REMOVE_HEAD(&local_queue, work_links);
2007                         STAILQ_INSERT_TAIL(&dev->peer_dev->work_queue, buf1,
2008                                            work_links);
2009                 }
2010                 /*
2011                  * Send an event to the other thread's kqueue to let it know
2012                  * that there is something on the work queue.
2013                  */
2014                 retval = kevent(dev->peer_dev->kq, &ke, 1, NULL, 0, NULL);
2015                 if (retval == -1)
2016                         warn("%s: unable to add peer work_queue kevent",
2017                              __func__);
2018                 else
2019                         retval = 0;
2020         } else
2021                 active = 0;
2022
2023         pthread_mutex_unlock(&dev->peer_dev->mutex);
2024         pthread_mutex_lock(&dev->mutex);
2025
2026         /*
2027          * If the other side isn't active, run through the queue and
2028          * release all of the buffers.
2029          */
2030         if (active == 0) {
2031                 for (buf1 = STAILQ_FIRST(&local_queue); buf1 != NULL;
2032                      buf1 = STAILQ_FIRST(&local_queue)) {
2033                         STAILQ_REMOVE_HEAD(&local_queue, work_links);
2034                         STAILQ_REMOVE(&dev->peer_work_queue, buf1, camdd_buf,
2035                                       links);
2036                         dev->num_peer_work_queue--;
2037                         camdd_release_buf(buf1);
2038                 }
2039                 dev->peer_bytes_queued -= peer_bytes_queued;
2040                 retval = 1;
2041         }
2042
2043 bailout:
2044         return (retval);
2045 }
2046
2047 /*
2048  * Return a buffer to the reader thread when we have completed writing it.
2049  */
2050 int
2051 camdd_complete_peer_buf(struct camdd_dev *dev, struct camdd_buf *peer_buf)
2052 {
2053         struct kevent ke;
2054         int retval = 0;
2055
2056         /*
2057          * Setup the event to let the other thread know that we have
2058          * completed a buffer.
2059          */
2060         EV_SET(&ke, (uintptr_t)&dev->peer_dev->peer_done_queue, EVFILT_USER, 0,
2061                NOTE_TRIGGER, 0, NULL);
2062
2063         /*
2064          * Drop our lock and acquire the other thread's lock before
2065          * manipulating 
2066          */
2067         pthread_mutex_unlock(&dev->mutex);
2068         pthread_mutex_lock(&dev->peer_dev->mutex);
2069
2070         /*
2071          * Put the buffer on the reader thread's peer done queue now that
2072          * we have completed it.
2073          */
2074         STAILQ_INSERT_TAIL(&dev->peer_dev->peer_done_queue, peer_buf,
2075                            work_links);
2076         dev->peer_dev->num_peer_done_queue++;
2077
2078         /*
2079          * Send an event to the peer thread to let it know that we've added
2080          * something to its peer done queue.
2081          */
2082         retval = kevent(dev->peer_dev->kq, &ke, 1, NULL, 0, NULL);
2083         if (retval == -1)
2084                 warn("%s: unable to add peer_done_queue kevent", __func__);
2085         else
2086                 retval = 0;
2087
2088         /*
2089          * Drop the other thread's lock and reacquire ours.
2090          */
2091         pthread_mutex_unlock(&dev->peer_dev->mutex);
2092         pthread_mutex_lock(&dev->mutex);
2093
2094         return (retval);
2095 }
2096
2097 /*
2098  * Free a buffer that was written out by the writer thread and returned to
2099  * the reader thread.
2100  */
2101 void
2102 camdd_peer_done(struct camdd_buf *buf)
2103 {
2104         struct camdd_dev *dev;
2105         struct camdd_buf_data *data;
2106
2107         dev = buf->dev;
2108         if (buf->buf_type != CAMDD_BUF_DATA) {
2109                 errx(1, "%s: should have a data buffer, not an "
2110                     "indirect buffer", __func__);
2111         }
2112
2113         data = &buf->buf_type_spec.data;
2114
2115         STAILQ_REMOVE(&dev->peer_work_queue, buf, camdd_buf, links);
2116         dev->num_peer_work_queue--;
2117         dev->peer_bytes_queued -= (data->fill_len - data->resid);
2118
2119         if (buf->status == CAMDD_STATUS_EOF)
2120                 dev->flags |= CAMDD_DEV_FLAG_PEER_EOF;
2121
2122         STAILQ_INSERT_TAIL(&dev->free_queue, buf, links);
2123 }
2124
2125 /*
2126  * Assumes caller holds the lock for this device.
2127  */
2128 void
2129 camdd_complete_buf(struct camdd_dev *dev, struct camdd_buf *buf,
2130                    int *error_count)
2131 {
2132         int retval = 0;
2133
2134         /*
2135          * If we're the reader, we need to send the completed I/O
2136          * to the writer.  If we're the writer, we need to just
2137          * free up resources, or let the reader know if we've
2138          * encountered an error.
2139          */
2140         if (dev->write_dev == 0) {
2141                 retval = camdd_queue_peer_buf(dev, buf);
2142                 if (retval != 0)
2143                         (*error_count)++;
2144         } else {
2145                 struct camdd_buf *tmp_buf, *next_buf;
2146
2147                 STAILQ_FOREACH_SAFE(tmp_buf, &buf->src_list, src_links,
2148                                     next_buf) {
2149                         struct camdd_buf *src_buf;
2150                         struct camdd_buf_indirect *indirect;
2151
2152                         STAILQ_REMOVE(&buf->src_list, tmp_buf,
2153                                       camdd_buf, src_links);
2154
2155                         tmp_buf->status = buf->status;
2156
2157                         if (tmp_buf->buf_type == CAMDD_BUF_DATA) {
2158                                 camdd_complete_peer_buf(dev, tmp_buf);
2159                                 continue;
2160                         }
2161
2162                         indirect = &tmp_buf->buf_type_spec.indirect;
2163                         src_buf = indirect->src_buf;
2164                         src_buf->refcount--;
2165                         /*
2166                          * XXX KDM we probably need to account for
2167                          * exactly how many bytes we were able to
2168                          * write.  Allocate the residual to the
2169                          * first N buffers?  Or just track the
2170                          * number of bytes written?  Right now the reader
2171                          * doesn't do anything with a residual.
2172                          */
2173                         src_buf->status = buf->status;
2174                         if (src_buf->refcount <= 0)
2175                                 camdd_complete_peer_buf(dev, src_buf);
2176                         STAILQ_INSERT_TAIL(&dev->free_indirect_queue,
2177                                            tmp_buf, links);
2178                 }
2179
2180                 STAILQ_INSERT_TAIL(&dev->free_queue, buf, links);
2181         }
2182 }
2183
2184 /*
2185  * Fetch all completed commands from the pass(4) device.
2186  *
2187  * Returns the number of commands received, or -1 if any of the commands
2188  * completed with an error.  Returns 0 if no commands are available.
2189  */
2190 int
2191 camdd_pass_fetch(struct camdd_dev *dev)
2192 {
2193         struct camdd_dev_pass *pass_dev = &dev->dev_spec.pass;
2194         union ccb ccb;
2195         int retval = 0, num_fetched = 0, error_count = 0;
2196
2197         pthread_mutex_unlock(&dev->mutex);
2198         /*
2199          * XXX KDM we don't distinguish between EFAULT and ENOENT.
2200          */
2201         while ((retval = ioctl(pass_dev->dev->fd, CAMIOGET, &ccb)) != -1) {
2202                 struct camdd_buf *buf;
2203                 struct camdd_buf_data *data;
2204                 cam_status ccb_status;
2205                 union ccb *buf_ccb;
2206
2207                 buf = ccb.ccb_h.ccb_buf;
2208                 data = &buf->buf_type_spec.data;
2209                 buf_ccb = &data->ccb;
2210
2211                 num_fetched++;
2212
2213                 /*
2214                  * Copy the CCB back out so we get status, sense data, etc.
2215                  */
2216                 bcopy(&ccb, buf_ccb, sizeof(ccb));
2217
2218                 pthread_mutex_lock(&dev->mutex);
2219
2220                 /*
2221                  * We're now done, so take this off the active queue.
2222                  */
2223                 STAILQ_REMOVE(&dev->active_queue, buf, camdd_buf, links);
2224                 dev->cur_active_io--;
2225
2226                 ccb_status = ccb.ccb_h.status & CAM_STATUS_MASK;
2227                 if (ccb_status != CAM_REQ_CMP) {
2228                         cam_error_print(pass_dev->dev, &ccb, CAM_ESF_ALL,
2229                                         CAM_EPF_ALL, stderr);
2230                 }
2231
2232                 switch (pass_dev->protocol) {
2233                 case PROTO_SCSI:
2234                         data->resid = ccb.csio.resid;
2235                         dev->bytes_transferred += (ccb.csio.dxfer_len - ccb.csio.resid);
2236                         break;
2237                 default:
2238                         return -1;
2239                         break;
2240                 }
2241
2242                 if (buf->status == CAMDD_STATUS_NONE)
2243                         buf->status = camdd_ccb_status(&ccb, pass_dev->protocol);
2244                 if (buf->status == CAMDD_STATUS_ERROR)
2245                         error_count++;
2246                 else if (buf->status == CAMDD_STATUS_EOF) {
2247                         /*
2248                          * Once we queue this buffer to our partner thread,
2249                          * he will know that we've hit EOF.
2250                          */
2251                         dev->flags |= CAMDD_DEV_FLAG_EOF;
2252                 }
2253
2254                 camdd_complete_buf(dev, buf, &error_count);
2255
2256                 /*
2257                  * Unlock in preparation for the ioctl call.
2258                  */
2259                 pthread_mutex_unlock(&dev->mutex);
2260         }
2261
2262         pthread_mutex_lock(&dev->mutex);
2263
2264         if (error_count > 0)
2265                 return (-1);
2266         else
2267                 return (num_fetched);
2268 }
2269
2270 /*
2271  * Returns -1 for error, 0 for success/continue, and 1 for resource
2272  * shortage/stop processing.
2273  */
2274 int
2275 camdd_file_run(struct camdd_dev *dev)
2276 {
2277         struct camdd_dev_file *file_dev = &dev->dev_spec.file;
2278         struct camdd_buf_data *data;
2279         struct camdd_buf *buf;
2280         off_t io_offset;
2281         int retval = 0, write_dev = dev->write_dev;
2282         int error_count = 0, no_resources = 0, double_buf_needed = 0;
2283         uint32_t num_sectors = 0, db_len = 0;
2284
2285         buf = STAILQ_FIRST(&dev->run_queue);
2286         if (buf == NULL) {
2287                 no_resources = 1;
2288                 goto bailout;
2289         } else if ((dev->write_dev == 0)
2290                 && (dev->flags & (CAMDD_DEV_FLAG_EOF |
2291                                   CAMDD_DEV_FLAG_EOF_SENT))) {
2292                 STAILQ_REMOVE(&dev->run_queue, buf, camdd_buf, links);
2293                 dev->num_run_queue--;
2294                 buf->status = CAMDD_STATUS_EOF;
2295                 error_count++;
2296                 goto bailout;
2297         }
2298
2299         /*
2300          * If we're writing, we need to go through the source buffer list
2301          * and create an S/G list.
2302          */
2303         if (write_dev != 0) {
2304                 retval = camdd_buf_sg_create(buf, /*iovec*/ 1,
2305                     dev->sector_size, &num_sectors, &double_buf_needed);
2306                 if (retval != 0) {
2307                         no_resources = 1;
2308                         goto bailout;
2309                 }
2310         }
2311
2312         STAILQ_REMOVE(&dev->run_queue, buf, camdd_buf, links);
2313         dev->num_run_queue--;
2314
2315         data = &buf->buf_type_spec.data;
2316
2317         /*
2318          * pread(2) and pwrite(2) offsets are byte offsets.
2319          */
2320         io_offset = buf->lba * dev->sector_size;
2321
2322         /*
2323          * Unlock the mutex while we read or write.
2324          */
2325         pthread_mutex_unlock(&dev->mutex);
2326
2327         /*
2328          * Note that we don't need to double buffer if we're the reader
2329          * because in that case, we have allocated a single buffer of
2330          * sufficient size to do the read.  This copy is necessary on
2331          * writes because if one of the components of the S/G list is not
2332          * a sector size multiple, the kernel will reject the write.  This
2333          * is unfortunate but not surprising.  So this will make sure that
2334          * we're using a single buffer that is a multiple of the sector size.
2335          */
2336         if ((double_buf_needed != 0)
2337          && (data->sg_count > 1)
2338          && (write_dev != 0)) {
2339                 uint32_t cur_offset;
2340                 int i;
2341
2342                 if (file_dev->tmp_buf == NULL)
2343                         file_dev->tmp_buf = calloc(dev->blocksize, 1);
2344                 if (file_dev->tmp_buf == NULL) {
2345                         buf->status = CAMDD_STATUS_ERROR;
2346                         error_count++;
2347                         pthread_mutex_lock(&dev->mutex);
2348                         goto bailout;
2349                 }
2350                 for (i = 0, cur_offset = 0; i < data->sg_count; i++) {
2351                         bcopy(data->iovec[i].iov_base,
2352                             &file_dev->tmp_buf[cur_offset],
2353                             data->iovec[i].iov_len);
2354                         cur_offset += data->iovec[i].iov_len;
2355                 }
2356                 db_len = cur_offset;
2357         }
2358
2359         if (file_dev->file_flags & CAMDD_FF_CAN_SEEK) {
2360                 if (write_dev == 0) {
2361                         /*
2362                          * XXX KDM is there any way we would need a S/G
2363                          * list here?
2364                          */
2365                         retval = pread(file_dev->fd, data->buf,
2366                             buf->len, io_offset);
2367                 } else {
2368                         if (double_buf_needed != 0) {
2369                                 retval = pwrite(file_dev->fd, file_dev->tmp_buf,
2370                                     db_len, io_offset);
2371                         } else if (data->sg_count == 0) {
2372                                 retval = pwrite(file_dev->fd, data->buf,
2373                                     data->fill_len, io_offset);
2374                         } else {
2375                                 retval = pwritev(file_dev->fd, data->iovec,
2376                                     data->sg_count, io_offset);
2377                         }
2378                 }
2379         } else {
2380                 if (write_dev == 0) {
2381                         /*
2382                          * XXX KDM is there any way we would need a S/G
2383                          * list here?
2384                          */
2385                         retval = read(file_dev->fd, data->buf, buf->len);
2386                 } else {
2387                         if (double_buf_needed != 0) {
2388                                 retval = write(file_dev->fd, file_dev->tmp_buf,
2389                                     db_len);
2390                         } else if (data->sg_count == 0) {
2391                                 retval = write(file_dev->fd, data->buf,
2392                                     data->fill_len);
2393                         } else {
2394                                 retval = writev(file_dev->fd, data->iovec,
2395                                     data->sg_count);
2396                         }
2397                 }
2398         }
2399
2400         /* We're done, re-acquire the lock */
2401         pthread_mutex_lock(&dev->mutex);
2402
2403         if (retval >= (ssize_t)data->fill_len) {
2404                 /*
2405                  * If the bytes transferred is more than the request size,
2406                  * that indicates an overrun, which should only happen at
2407                  * the end of a transfer if we have to round up to a sector
2408                  * boundary.
2409                  */
2410                 if (buf->status == CAMDD_STATUS_NONE)
2411                         buf->status = CAMDD_STATUS_OK;
2412                 data->resid = 0;
2413                 dev->bytes_transferred += retval;
2414         } else if (retval == -1) {
2415                 warn("Error %s %s", (write_dev) ? "writing to" :
2416                     "reading from", file_dev->filename);
2417
2418                 buf->status = CAMDD_STATUS_ERROR;
2419                 data->resid = data->fill_len;
2420                 error_count++;
2421
2422                 if (dev->debug == 0)
2423                         goto bailout;
2424
2425                 if ((double_buf_needed != 0)
2426                  && (write_dev != 0)) {
2427                         fprintf(stderr, "%s: fd %d, DB buf %p, len %u lba %ju "
2428                             "offset %ju\n", __func__, file_dev->fd,
2429                             file_dev->tmp_buf, db_len, (uintmax_t)buf->lba,
2430                             (uintmax_t)io_offset);
2431                 } else if (data->sg_count == 0) {
2432                         fprintf(stderr, "%s: fd %d, buf %p, len %u, lba %ju "
2433                             "offset %ju\n", __func__, file_dev->fd, data->buf,
2434                             data->fill_len, (uintmax_t)buf->lba,
2435                             (uintmax_t)io_offset);
2436                 } else {
2437                         int i;
2438
2439                         fprintf(stderr, "%s: fd %d, len %u, lba %ju "
2440                             "offset %ju\n", __func__, file_dev->fd, 
2441                             data->fill_len, (uintmax_t)buf->lba,
2442                             (uintmax_t)io_offset);
2443
2444                         for (i = 0; i < data->sg_count; i++) {
2445                                 fprintf(stderr, "index %d ptr %p len %zu\n",
2446                                     i, data->iovec[i].iov_base,
2447                                     data->iovec[i].iov_len);
2448                         }
2449                 }
2450         } else if (retval == 0) {
2451                 buf->status = CAMDD_STATUS_EOF;
2452                 if (dev->debug != 0)
2453                         printf("%s: got EOF from %s!\n", __func__,
2454                             file_dev->filename);
2455                 data->resid = data->fill_len;
2456                 error_count++;
2457         } else if (retval < (ssize_t)data->fill_len) {
2458                 if (buf->status == CAMDD_STATUS_NONE)
2459                         buf->status = CAMDD_STATUS_SHORT_IO;
2460                 data->resid = data->fill_len - retval;
2461                 dev->bytes_transferred += retval;
2462         }
2463
2464 bailout:
2465         if (buf != NULL) {
2466                 if (buf->status == CAMDD_STATUS_EOF) {
2467                         struct camdd_buf *buf2;
2468                         dev->flags |= CAMDD_DEV_FLAG_EOF;
2469                         STAILQ_FOREACH(buf2, &dev->run_queue, links)
2470                                 buf2->status = CAMDD_STATUS_EOF;
2471                 }
2472
2473                 camdd_complete_buf(dev, buf, &error_count);
2474         }
2475
2476         if (error_count != 0)
2477                 return (-1);
2478         else if (no_resources != 0)
2479                 return (1);
2480         else
2481                 return (0);
2482 }
2483
2484 /*
2485  * Execute one command from the run queue.  Returns 0 for success, 1 for
2486  * stop processing, and -1 for error.
2487  */
2488 int
2489 camdd_pass_run(struct camdd_dev *dev)
2490 {
2491         struct camdd_buf *buf = NULL;
2492         struct camdd_dev_pass *pass_dev = &dev->dev_spec.pass;
2493         struct camdd_buf_data *data;
2494         uint32_t num_blocks, sectors_used = 0;
2495         union ccb *ccb;
2496         int retval = 0, is_write = dev->write_dev;
2497         int double_buf_needed = 0;
2498
2499         buf = STAILQ_FIRST(&dev->run_queue);
2500         if (buf == NULL) {
2501                 retval = 1;
2502                 goto bailout;
2503         }
2504
2505         /*
2506          * If we're writing, we need to go through the source buffer list
2507          * and create an S/G list.
2508          */
2509         if (is_write != 0) {
2510                 retval = camdd_buf_sg_create(buf, /*iovec*/ 0,dev->sector_size,
2511                     &sectors_used, &double_buf_needed);
2512                 if (retval != 0) {
2513                         retval = -1;
2514                         goto bailout;
2515                 }
2516         }
2517
2518         STAILQ_REMOVE(&dev->run_queue, buf, camdd_buf, links);
2519         dev->num_run_queue--;
2520
2521         data = &buf->buf_type_spec.data;
2522
2523         /*
2524          * In almost every case the number of blocks should be the device
2525          * block size.  The exception may be at the end of an I/O stream
2526          * for a partial block or at the end of a device.
2527          */
2528         if (is_write != 0)
2529                 num_blocks = sectors_used;
2530         else
2531                 num_blocks = data->fill_len / pass_dev->block_len;
2532
2533         ccb = &data->ccb;
2534
2535         switch (pass_dev->protocol) {
2536         case PROTO_SCSI:
2537                 CCB_CLEAR_ALL_EXCEPT_HDR(&ccb->csio);
2538
2539                 scsi_read_write(&ccb->csio,
2540                                 /*retries*/ dev->retry_count,
2541                                 /*cbfcnp*/ NULL,
2542                                 /*tag_action*/ MSG_SIMPLE_Q_TAG,
2543                                 /*readop*/ (dev->write_dev == 0) ? SCSI_RW_READ :
2544                                            SCSI_RW_WRITE,
2545                                 /*byte2*/ 0,
2546                                 /*minimum_cmd_size*/ dev->min_cmd_size,
2547                                 /*lba*/ buf->lba,
2548                                 /*block_count*/ num_blocks,
2549                                 /*data_ptr*/ (data->sg_count != 0) ?
2550                                              (uint8_t *)data->segs : data->buf,
2551                                 /*dxfer_len*/ (num_blocks * pass_dev->block_len),
2552                                 /*sense_len*/ SSD_FULL_SIZE,
2553                                 /*timeout*/ dev->io_timeout);
2554
2555                 if (data->sg_count != 0) {
2556                         ccb->csio.sglist_cnt = data->sg_count;
2557                 }
2558                 break;
2559         default:
2560                 retval = -1;
2561                 goto bailout;
2562         }
2563
2564         /* Disable freezing the device queue */
2565         ccb->ccb_h.flags |= CAM_DEV_QFRZDIS;
2566
2567         if (dev->retry_count != 0)
2568                 ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER;
2569
2570         if (data->sg_count != 0) {
2571                 ccb->ccb_h.flags |= CAM_DATA_SG;
2572         }
2573
2574         /*
2575          * Store a pointer to the buffer in the CCB.  The kernel will
2576          * restore this when we get it back, and we'll use it to identify
2577          * the buffer this CCB came from.
2578          */
2579         ccb->ccb_h.ccb_buf = buf;
2580
2581         /*
2582          * Unlock our mutex in preparation for issuing the ioctl.
2583          */
2584         pthread_mutex_unlock(&dev->mutex);
2585         /*
2586          * Queue the CCB to the pass(4) driver.
2587          */
2588         if (ioctl(pass_dev->dev->fd, CAMIOQUEUE, ccb) == -1) {
2589                 pthread_mutex_lock(&dev->mutex);
2590
2591                 warn("%s: error sending CAMIOQUEUE ioctl to %s%u", __func__,
2592                      pass_dev->dev->device_name, pass_dev->dev->dev_unit_num);
2593                 warn("%s: CCB address is %p", __func__, ccb);
2594                 retval = -1;
2595
2596                 STAILQ_INSERT_TAIL(&dev->free_queue, buf, links);
2597         } else {
2598                 pthread_mutex_lock(&dev->mutex);
2599
2600                 dev->cur_active_io++;
2601                 STAILQ_INSERT_TAIL(&dev->active_queue, buf, links);
2602         }
2603
2604 bailout:
2605         return (retval);
2606 }
2607
2608 int
2609 camdd_get_next_lba_len(struct camdd_dev *dev, uint64_t *lba, ssize_t *len)
2610 {
2611         struct camdd_dev_pass *pass_dev;
2612         uint32_t num_blocks;
2613         int retval = 0;
2614
2615         pass_dev = &dev->dev_spec.pass;
2616
2617         *lba = dev->next_io_pos_bytes / dev->sector_size;
2618         *len = dev->blocksize;
2619         num_blocks = *len / dev->sector_size;
2620
2621         /*
2622          * If max_sector is 0, then we have no set limit.  This can happen
2623          * if we're writing to a file in a filesystem, or reading from
2624          * something like /dev/zero.
2625          */
2626         if ((dev->max_sector != 0)
2627          || (dev->sector_io_limit != 0)) {
2628                 uint64_t max_sector;
2629
2630                 if ((dev->max_sector != 0)
2631                  && (dev->sector_io_limit != 0)) 
2632                         max_sector = min(dev->sector_io_limit, dev->max_sector);
2633                 else if (dev->max_sector != 0)
2634                         max_sector = dev->max_sector;
2635                 else
2636                         max_sector = dev->sector_io_limit;
2637
2638
2639                 /*
2640                  * Check to see whether we're starting off past the end of
2641                  * the device.  If so, we need to just send an EOF      
2642                  * notification to the writer.
2643                  */
2644                 if (*lba > max_sector) {
2645                         *len = 0;
2646                         retval = 1;
2647                 } else if (((*lba + num_blocks) > max_sector + 1)
2648                         || ((*lba + num_blocks) < *lba)) {
2649                         /*
2650                          * If we get here (but pass the first check), we
2651                          * can trim the request length down to go to the
2652                          * end of the device.
2653                          */
2654                         num_blocks = (max_sector + 1) - *lba;
2655                         *len = num_blocks * dev->sector_size;
2656                         retval = 1;
2657                 }
2658         }
2659
2660         dev->next_io_pos_bytes += *len;
2661
2662         return (retval);
2663 }
2664
2665 /*
2666  * Returns 0 for success, 1 for EOF detected, and -1 for failure.
2667  */
2668 int
2669 camdd_queue(struct camdd_dev *dev, struct camdd_buf *read_buf)
2670 {
2671         struct camdd_buf *buf = NULL;
2672         struct camdd_buf_data *data;
2673         struct camdd_dev_pass *pass_dev;
2674         size_t new_len;
2675         struct camdd_buf_data *rb_data;
2676         int is_write = dev->write_dev;
2677         int eof_flush_needed = 0;
2678         int retval = 0;
2679         int error;
2680
2681         pass_dev = &dev->dev_spec.pass;
2682
2683         /*
2684          * If we've gotten EOF or our partner has, we should not continue
2685          * queueing I/O.  If we're a writer, though, we should continue
2686          * to write any buffers that don't have EOF status.
2687          */
2688         if ((dev->flags & CAMDD_DEV_FLAG_EOF)
2689          || ((dev->flags & CAMDD_DEV_FLAG_PEER_EOF)
2690           && (is_write == 0))) {
2691                 /*
2692                  * Tell the worker thread that we have seen EOF.
2693                  */
2694                 retval = 1;
2695
2696                 /*
2697                  * If we're the writer, send the buffer back with EOF status.
2698                  */
2699                 if (is_write) {
2700                         read_buf->status = CAMDD_STATUS_EOF;
2701                         
2702                         error = camdd_complete_peer_buf(dev, read_buf);
2703                 }
2704                 goto bailout;
2705         }
2706
2707         if (is_write == 0) {
2708                 buf = camdd_get_buf(dev, CAMDD_BUF_DATA);
2709                 if (buf == NULL) {
2710                         retval = -1;
2711                         goto bailout;
2712                 }
2713                 data = &buf->buf_type_spec.data;
2714
2715                 retval = camdd_get_next_lba_len(dev, &buf->lba, &buf->len);
2716                 if (retval != 0) {
2717                         buf->status = CAMDD_STATUS_EOF;
2718
2719                         if ((buf->len == 0)
2720                          && ((dev->flags & (CAMDD_DEV_FLAG_EOF_SENT |
2721                              CAMDD_DEV_FLAG_EOF_QUEUED)) != 0)) {
2722                                 camdd_release_buf(buf);
2723                                 goto bailout;
2724                         }
2725                         dev->flags |= CAMDD_DEV_FLAG_EOF_QUEUED;
2726                 }
2727
2728                 data->fill_len = buf->len;
2729                 data->src_start_offset = buf->lba * dev->sector_size;
2730
2731                 /*
2732                  * Put this on the run queue.
2733                  */
2734                 STAILQ_INSERT_TAIL(&dev->run_queue, buf, links);
2735                 dev->num_run_queue++;
2736
2737                 /* We're done. */
2738                 goto bailout;
2739         }
2740
2741         /*
2742          * Check for new EOF status from the reader.
2743          */
2744         if ((read_buf->status == CAMDD_STATUS_EOF)
2745          || (read_buf->status == CAMDD_STATUS_ERROR)) {
2746                 dev->flags |= CAMDD_DEV_FLAG_PEER_EOF;
2747                 if ((STAILQ_FIRST(&dev->pending_queue) == NULL)
2748                  && (read_buf->len == 0)) {
2749                         camdd_complete_peer_buf(dev, read_buf);
2750                         retval = 1;
2751                         goto bailout;
2752                 } else
2753                         eof_flush_needed = 1;
2754         }
2755
2756         /*
2757          * See if we have a buffer we're composing with pieces from our
2758          * partner thread.
2759          */
2760         buf = STAILQ_FIRST(&dev->pending_queue);
2761         if (buf == NULL) {
2762                 uint64_t lba;
2763                 ssize_t len;
2764
2765                 retval = camdd_get_next_lba_len(dev, &lba, &len);
2766                 if (retval != 0) {
2767                         read_buf->status = CAMDD_STATUS_EOF;
2768
2769                         if (len == 0) {
2770                                 dev->flags |= CAMDD_DEV_FLAG_EOF;
2771                                 error = camdd_complete_peer_buf(dev, read_buf);
2772                                 goto bailout;
2773                         }
2774                 }
2775
2776                 /*
2777                  * If we don't have a pending buffer, we need to grab a new
2778                  * one from the free list or allocate another one.
2779                  */
2780                 buf = camdd_get_buf(dev, CAMDD_BUF_DATA);
2781                 if (buf == NULL) {
2782                         retval = 1;
2783                         goto bailout;
2784                 }
2785
2786                 buf->lba = lba;
2787                 buf->len = len;
2788
2789                 STAILQ_INSERT_TAIL(&dev->pending_queue, buf, links);
2790                 dev->num_pending_queue++;
2791         }
2792
2793         data = &buf->buf_type_spec.data;
2794
2795         rb_data = &read_buf->buf_type_spec.data;
2796
2797         if ((rb_data->src_start_offset != dev->next_peer_pos_bytes)
2798          && (dev->debug != 0)) {
2799                 printf("%s: WARNING: reader offset %#jx != expected offset "
2800                     "%#jx\n", __func__, (uintmax_t)rb_data->src_start_offset,
2801                     (uintmax_t)dev->next_peer_pos_bytes);
2802         }
2803         dev->next_peer_pos_bytes = rb_data->src_start_offset +
2804             (rb_data->fill_len - rb_data->resid);
2805
2806         new_len = (rb_data->fill_len - rb_data->resid) + data->fill_len;
2807         if (new_len < buf->len) {
2808                 /*
2809                  * There are three cases here:
2810                  * 1. We need more data to fill up a block, so we put 
2811                  *    this I/O on the queue and wait for more I/O.
2812                  * 2. We have a pending buffer in the queue that is
2813                  *    smaller than our blocksize, but we got an EOF.  So we
2814                  *    need to go ahead and flush the write out.
2815                  * 3. We got an error.
2816                  */
2817
2818                 /*
2819                  * Increment our fill length.
2820                  */
2821                 data->fill_len += (rb_data->fill_len - rb_data->resid);
2822
2823                 /*
2824                  * Add the new read buffer to the list for writing.
2825                  */
2826                 STAILQ_INSERT_TAIL(&buf->src_list, read_buf, src_links);
2827
2828                 /* Increment the count */
2829                 buf->src_count++;
2830
2831                 if (eof_flush_needed == 0) {
2832                         /*
2833                          * We need to exit, because we don't have enough
2834                          * data yet.
2835                          */
2836                         goto bailout;
2837                 } else {
2838                         /*
2839                          * Take the buffer off of the pending queue.
2840                          */
2841                         STAILQ_REMOVE(&dev->pending_queue, buf, camdd_buf,
2842                                       links);
2843                         dev->num_pending_queue--;
2844
2845                         /*
2846                          * If we need an EOF flush, but there is no data
2847                          * to flush, go ahead and return this buffer.
2848                          */
2849                         if (data->fill_len == 0) {
2850                                 camdd_complete_buf(dev, buf, /*error_count*/0);
2851                                 retval = 1;
2852                                 goto bailout;
2853                         }
2854
2855                         /*
2856                          * Put this on the next queue for execution.
2857                          */
2858                         STAILQ_INSERT_TAIL(&dev->run_queue, buf, links);
2859                         dev->num_run_queue++;
2860                 }
2861         } else if (new_len == buf->len) {
2862                 /*
2863                  * We have enough data to completey fill one block,
2864                  * so we're ready to issue the I/O.
2865                  */
2866
2867                 /*
2868                  * Take the buffer off of the pending queue.
2869                  */
2870                 STAILQ_REMOVE(&dev->pending_queue, buf, camdd_buf, links);
2871                 dev->num_pending_queue--;
2872
2873                 /*
2874                  * Add the new read buffer to the list for writing.
2875                  */
2876                 STAILQ_INSERT_TAIL(&buf->src_list, read_buf, src_links);
2877
2878                 /* Increment the count */
2879                 buf->src_count++;
2880
2881                 /*
2882                  * Increment our fill length.
2883                  */
2884                 data->fill_len += (rb_data->fill_len - rb_data->resid);
2885
2886                 /*
2887                  * Put this on the next queue for execution.
2888                  */
2889                 STAILQ_INSERT_TAIL(&dev->run_queue, buf, links);
2890                 dev->num_run_queue++;
2891         } else {
2892                 struct camdd_buf *idb;
2893                 struct camdd_buf_indirect *indirect;
2894                 uint32_t len_to_go, cur_offset;
2895
2896                 
2897                 idb = camdd_get_buf(dev, CAMDD_BUF_INDIRECT);
2898                 if (idb == NULL) {
2899                         retval = 1;
2900                         goto bailout;
2901                 }
2902                 indirect = &idb->buf_type_spec.indirect;
2903                 indirect->src_buf = read_buf;
2904                 read_buf->refcount++;
2905                 indirect->offset = 0;
2906                 indirect->start_ptr = rb_data->buf;
2907                 /*
2908                  * We've already established that there is more
2909                  * data in read_buf than we have room for in our
2910                  * current write request.  So this particular chunk
2911                  * of the request should just be the remainder
2912                  * needed to fill up a block.
2913                  */
2914                 indirect->len = buf->len - (data->fill_len - data->resid);
2915
2916                 camdd_buf_add_child(buf, idb);
2917
2918                 /*
2919                  * This buffer is ready to execute, so we can take
2920                  * it off the pending queue and put it on the run
2921                  * queue.
2922                  */
2923                 STAILQ_REMOVE(&dev->pending_queue, buf, camdd_buf,
2924                               links);
2925                 dev->num_pending_queue--;
2926                 STAILQ_INSERT_TAIL(&dev->run_queue, buf, links);
2927                 dev->num_run_queue++;
2928
2929                 cur_offset = indirect->offset + indirect->len;
2930
2931                 /*
2932                  * The resulting I/O would be too large to fit in
2933                  * one block.  We need to split this I/O into
2934                  * multiple pieces.  Allocate as many buffers as needed.
2935                  */
2936                 for (len_to_go = rb_data->fill_len - rb_data->resid -
2937                      indirect->len; len_to_go > 0;) {
2938                         struct camdd_buf *new_buf;
2939                         struct camdd_buf_data *new_data;
2940                         uint64_t lba;
2941                         ssize_t len;
2942
2943                         retval = camdd_get_next_lba_len(dev, &lba, &len);
2944                         if ((retval != 0)
2945                          && (len == 0)) {
2946                                 /*
2947                                  * The device has already been marked
2948                                  * as EOF, and there is no space left.
2949                                  */
2950                                 goto bailout;
2951                         }
2952
2953                         new_buf = camdd_get_buf(dev, CAMDD_BUF_DATA);
2954                         if (new_buf == NULL) {
2955                                 retval = 1;
2956                                 goto bailout;
2957                         }
2958
2959                         new_buf->lba = lba;
2960                         new_buf->len = len;
2961
2962                         idb = camdd_get_buf(dev, CAMDD_BUF_INDIRECT);
2963                         if (idb == NULL) {
2964                                 retval = 1;
2965                                 goto bailout;
2966                         }
2967
2968                         indirect = &idb->buf_type_spec.indirect;
2969
2970                         indirect->src_buf = read_buf;
2971                         read_buf->refcount++;
2972                         indirect->offset = cur_offset;
2973                         indirect->start_ptr = rb_data->buf + cur_offset;
2974                         indirect->len = min(len_to_go, new_buf->len);
2975 #if 0
2976                         if (((indirect->len % dev->sector_size) != 0)
2977                          || ((indirect->offset % dev->sector_size) != 0)) {
2978                                 warnx("offset %ju len %ju not aligned with "
2979                                     "sector size %u", indirect->offset,
2980                                     (uintmax_t)indirect->len, dev->sector_size);
2981                         }
2982 #endif
2983                         cur_offset += indirect->len;
2984                         len_to_go -= indirect->len;
2985
2986                         camdd_buf_add_child(new_buf, idb);
2987
2988                         new_data = &new_buf->buf_type_spec.data;
2989
2990                         if ((new_data->fill_len == new_buf->len)
2991                          || (eof_flush_needed != 0)) {
2992                                 STAILQ_INSERT_TAIL(&dev->run_queue,
2993                                                    new_buf, links);
2994                                 dev->num_run_queue++;
2995                         } else if (new_data->fill_len < buf->len) {
2996                                 STAILQ_INSERT_TAIL(&dev->pending_queue,
2997                                                 new_buf, links);
2998                                 dev->num_pending_queue++;
2999                         } else {
3000                                 warnx("%s: too much data in new "
3001                                       "buffer!", __func__);
3002                                 retval = 1;
3003                                 goto bailout;
3004                         }
3005                 }
3006         }
3007
3008 bailout:
3009         return (retval);
3010 }
3011
3012 void
3013 camdd_get_depth(struct camdd_dev *dev, uint32_t *our_depth,
3014                 uint32_t *peer_depth, uint32_t *our_bytes, uint32_t *peer_bytes)
3015 {
3016         *our_depth = dev->cur_active_io + dev->num_run_queue;
3017         if (dev->num_peer_work_queue >
3018             dev->num_peer_done_queue)
3019                 *peer_depth = dev->num_peer_work_queue -
3020                               dev->num_peer_done_queue;
3021         else
3022                 *peer_depth = 0;
3023         *our_bytes = *our_depth * dev->blocksize;
3024         *peer_bytes = dev->peer_bytes_queued;
3025 }
3026
3027 void
3028 camdd_sig_handler(int sig)
3029 {
3030         if (sig == SIGINFO)
3031                 need_status = 1;
3032         else {
3033                 need_exit = 1;
3034                 error_exit = 1;
3035         }
3036
3037         sem_post(&camdd_sem);
3038 }
3039
3040 void
3041 camdd_print_status(struct camdd_dev *camdd_dev, struct camdd_dev *other_dev, 
3042                    struct timespec *start_time)
3043 {
3044         struct timespec done_time;
3045         uint64_t total_ns;
3046         long double mb_sec, total_sec;
3047         int error = 0;
3048
3049         error = clock_gettime(CLOCK_MONOTONIC_PRECISE, &done_time);
3050         if (error != 0) {
3051                 warn("Unable to get done time");
3052                 return;
3053         }
3054
3055         timespecsub(&done_time, start_time, &done_time);
3056         
3057         total_ns = done_time.tv_nsec + (done_time.tv_sec * 1000000000);
3058         total_sec = total_ns;
3059         total_sec /= 1000000000;
3060
3061         fprintf(stderr, "%ju bytes %s %s\n%ju bytes %s %s\n"
3062                 "%.4Lf seconds elapsed\n",
3063                 (uintmax_t)camdd_dev->bytes_transferred,
3064                 (camdd_dev->write_dev == 0) ?  "read from" : "written to",
3065                 camdd_dev->device_name,
3066                 (uintmax_t)other_dev->bytes_transferred,
3067                 (other_dev->write_dev == 0) ? "read from" : "written to",
3068                 other_dev->device_name, total_sec);
3069
3070         mb_sec = min(other_dev->bytes_transferred,camdd_dev->bytes_transferred);
3071         mb_sec /= 1024 * 1024;
3072         mb_sec *= 1000000000;
3073         mb_sec /= total_ns;
3074         fprintf(stderr, "%.2Lf MB/sec\n", mb_sec);
3075 }
3076
3077 int
3078 camdd_rw(struct camdd_io_opts *io_opts, int num_io_opts, uint64_t max_io,
3079          int retry_count, int timeout)
3080 {
3081         struct cam_device *new_cam_dev = NULL;
3082         struct camdd_dev *devs[2];
3083         struct timespec start_time;
3084         pthread_t threads[2];
3085         int unit = 0;
3086         int error = 0;
3087         int i;
3088
3089         if (num_io_opts != 2) {
3090                 warnx("Must have one input and one output path");
3091                 error = 1;
3092                 goto bailout;
3093         }
3094
3095         bzero(devs, sizeof(devs));
3096
3097         for (i = 0; i < num_io_opts; i++) {
3098                 switch (io_opts[i].dev_type) {
3099                 case CAMDD_DEV_PASS: {
3100                         if (isdigit(io_opts[i].dev_name[0])) {
3101                                 camdd_argmask new_arglist = CAMDD_ARG_NONE;
3102                                 int bus = 0, target = 0, lun = 0;
3103                                 int rv;
3104
3105                                 /* device specified as bus:target[:lun] */
3106                                 rv = parse_btl(io_opts[i].dev_name, &bus,
3107                                     &target, &lun, &new_arglist);
3108                                 if (rv < 2) {
3109                                         warnx("numeric device specification "
3110                                              "must be either bus:target, or "
3111                                              "bus:target:lun");
3112                                         error = 1;
3113                                         goto bailout;
3114                                 }
3115                                 /* default to 0 if lun was not specified */
3116                                 if ((new_arglist & CAMDD_ARG_LUN) == 0) {
3117                                         lun = 0;
3118                                         new_arglist |= CAMDD_ARG_LUN;
3119                                 }
3120                                 new_cam_dev = cam_open_btl(bus, target, lun,
3121                                     O_RDWR, NULL);
3122                         } else {
3123                                 char name[30];
3124
3125                                 if (cam_get_device(io_opts[i].dev_name, name,
3126                                                    sizeof name, &unit) == -1) {
3127                                         warnx("%s", cam_errbuf);
3128                                         error = 1;
3129                                         goto bailout;
3130                                 }
3131                                 new_cam_dev = cam_open_spec_device(name, unit,
3132                                     O_RDWR, NULL);
3133                         }
3134
3135                         if (new_cam_dev == NULL) {
3136                                 warnx("%s", cam_errbuf);
3137                                 error = 1;
3138                                 goto bailout;
3139                         }
3140
3141                         devs[i] = camdd_probe_pass(new_cam_dev,
3142                             /*io_opts*/ &io_opts[i],
3143                             CAMDD_ARG_ERR_RECOVER, 
3144                             /*probe_retry_count*/ 3,
3145                             /*probe_timeout*/ 5000,
3146                             /*io_retry_count*/ retry_count,
3147                             /*io_timeout*/ timeout);
3148                         if (devs[i] == NULL) {
3149                                 warn("Unable to probe device %s%u",
3150                                      new_cam_dev->device_name,
3151                                      new_cam_dev->dev_unit_num);
3152                                 error = 1;
3153                                 goto bailout;
3154                         }
3155                         break;
3156                 }
3157                 case CAMDD_DEV_FILE: {
3158                         int fd = -1;
3159
3160                         if (io_opts[i].dev_name[0] == '-') {
3161                                 if (io_opts[i].write_dev != 0)
3162                                         fd = STDOUT_FILENO;
3163                                 else
3164                                         fd = STDIN_FILENO;
3165                         } else {
3166                                 if (io_opts[i].write_dev != 0) {
3167                                         fd = open(io_opts[i].dev_name,
3168                                             O_RDWR | O_CREAT, S_IWUSR |S_IRUSR);
3169                                 } else {
3170                                         fd = open(io_opts[i].dev_name,
3171                                             O_RDONLY);
3172                                 }
3173                         }
3174                         if (fd == -1) {
3175                                 warn("error opening file %s",
3176                                     io_opts[i].dev_name);
3177                                 error = 1;
3178                                 goto bailout;
3179                         }
3180
3181                         devs[i] = camdd_probe_file(fd, &io_opts[i],
3182                             retry_count, timeout);
3183                         if (devs[i] == NULL) {
3184                                 error = 1;
3185                                 goto bailout;
3186                         }
3187
3188                         break;
3189                 }
3190                 default:
3191                         warnx("Unknown device type %d (%s)",
3192                             io_opts[i].dev_type, io_opts[i].dev_name);
3193                         error = 1;
3194                         goto bailout;
3195                         break; /*NOTREACHED */
3196                 }
3197
3198                 devs[i]->write_dev = io_opts[i].write_dev;
3199
3200                 devs[i]->start_offset_bytes = io_opts[i].offset;
3201
3202                 if (max_io != 0) {
3203                         devs[i]->sector_io_limit =
3204                             (devs[i]->start_offset_bytes /
3205                             devs[i]->sector_size) +
3206                             (max_io / devs[i]->sector_size) - 1;
3207                 }
3208
3209                 devs[i]->next_io_pos_bytes = devs[i]->start_offset_bytes;
3210                 devs[i]->next_completion_pos_bytes =devs[i]->start_offset_bytes;
3211         }
3212
3213         devs[0]->peer_dev = devs[1];
3214         devs[1]->peer_dev = devs[0];
3215         devs[0]->next_peer_pos_bytes = devs[0]->peer_dev->next_io_pos_bytes;
3216         devs[1]->next_peer_pos_bytes = devs[1]->peer_dev->next_io_pos_bytes;
3217
3218         sem_init(&camdd_sem, /*pshared*/ 0, 0);
3219
3220         signal(SIGINFO, camdd_sig_handler);
3221         signal(SIGINT, camdd_sig_handler);
3222
3223         error = clock_gettime(CLOCK_MONOTONIC_PRECISE, &start_time);
3224         if (error != 0) {
3225                 warn("Unable to get start time");
3226                 goto bailout;
3227         }
3228
3229         for (i = 0; i < num_io_opts; i++) {
3230                 error = pthread_create(&threads[i], NULL, camdd_worker,
3231                                        (void *)devs[i]);
3232                 if (error != 0) {
3233                         warnc(error, "pthread_create() failed");
3234                         goto bailout;
3235                 }
3236         }
3237
3238         for (;;) {
3239                 if ((sem_wait(&camdd_sem) == -1)
3240                  || (need_exit != 0)) {
3241                         struct kevent ke;
3242
3243                         for (i = 0; i < num_io_opts; i++) {
3244                                 EV_SET(&ke, (uintptr_t)&devs[i]->work_queue,
3245                                     EVFILT_USER, 0, NOTE_TRIGGER, 0, NULL);
3246
3247                                 devs[i]->flags |= CAMDD_DEV_FLAG_EOF;
3248
3249                                 error = kevent(devs[i]->kq, &ke, 1, NULL, 0,
3250                                                 NULL);
3251                                 if (error == -1)
3252                                         warn("%s: unable to wake up thread",
3253                                             __func__);
3254                                 error = 0;
3255                         }
3256                         break;
3257                 } else if (need_status != 0) {
3258                         camdd_print_status(devs[0], devs[1], &start_time);
3259                         need_status = 0;
3260                 }
3261         } 
3262         for (i = 0; i < num_io_opts; i++) {
3263                 pthread_join(threads[i], NULL);
3264         }
3265
3266         camdd_print_status(devs[0], devs[1], &start_time);
3267
3268 bailout:
3269
3270         for (i = 0; i < num_io_opts; i++)
3271                 camdd_free_dev(devs[i]);
3272
3273         return (error + error_exit);
3274 }
3275
3276 void
3277 usage(void)
3278 {
3279         fprintf(stderr,
3280 "usage:  camdd <-i|-o pass=pass0,bs=1M,offset=1M,depth=4>\n"
3281 "              <-i|-o file=/tmp/file,bs=512K,offset=1M>\n"
3282 "              <-i|-o file=/dev/da0,bs=512K,offset=1M>\n"
3283 "              <-i|-o file=/dev/nsa0,bs=512K>\n"
3284 "              [-C retry_count][-E][-m max_io_amt][-t timeout_secs][-v][-h]\n"
3285 "Option description\n"
3286 "-i <arg=val>  Specify input device/file and parameters\n"
3287 "-o <arg=val>  Specify output device/file and parameters\n"
3288 "Input and Output parameters\n"
3289 "pass=name     Specify a pass(4) device like pass0 or /dev/pass0\n"
3290 "file=name     Specify a file or device, /tmp/foo, /dev/da0, /dev/null\n"
3291 "              or - for stdin/stdout\n"
3292 "bs=blocksize  Specify blocksize in bytes, or using K, M, G, etc. suffix\n"
3293 "offset=len    Specify starting offset in bytes or using K, M, G suffix\n"
3294 "              NOTE: offset cannot be specified on tapes, pipes, stdin/out\n"
3295 "depth=N       Specify a numeric queue depth.  This only applies to pass(4)\n"
3296 "mcs=N         Specify a minimum cmd size for pass(4) read/write commands\n"
3297 "Optional arguments\n"
3298 "-C retry_cnt  Specify a retry count for pass(4) devices\n"
3299 "-E            Enable CAM error recovery for pass(4) devices\n"
3300 "-m max_io     Specify the maximum amount to be transferred in bytes or\n"
3301 "              using K, G, M, etc. suffixes\n"
3302 "-t timeout    Specify the I/O timeout to use with pass(4) devices\n"
3303 "-v            Enable verbose error recovery\n"
3304 "-h            Print this message\n");
3305 }
3306
3307
3308 int
3309 camdd_parse_io_opts(char *args, int is_write, struct camdd_io_opts *io_opts)
3310 {
3311         char *tmpstr, *tmpstr2;
3312         char *orig_tmpstr = NULL;
3313         int retval = 0;
3314
3315         io_opts->write_dev = is_write;
3316
3317         tmpstr = strdup(args);
3318         if (tmpstr == NULL) {
3319                 warn("strdup failed");
3320                 retval = 1;
3321                 goto bailout;
3322         }
3323         orig_tmpstr = tmpstr;
3324         while ((tmpstr2 = strsep(&tmpstr, ",")) != NULL) {
3325                 char *name, *value;
3326
3327                 /*
3328                  * If the user creates an empty parameter by putting in two
3329                  * commas, skip over it and look for the next field.
3330                  */
3331                 if (*tmpstr2 == '\0')
3332                         continue;
3333
3334                 name = strsep(&tmpstr2, "=");
3335                 if (*name == '\0') {
3336                         warnx("Got empty I/O parameter name");
3337                         retval = 1;
3338                         goto bailout;
3339                 }
3340                 value = strsep(&tmpstr2, "=");
3341                 if ((value == NULL)
3342                  || (*value == '\0')) {
3343                         warnx("Empty I/O parameter value for %s", name);
3344                         retval = 1;
3345                         goto bailout;
3346                 }
3347                 if (strncasecmp(name, "file", 4) == 0) {
3348                         io_opts->dev_type = CAMDD_DEV_FILE;
3349                         io_opts->dev_name = strdup(value);
3350                         if (io_opts->dev_name == NULL) {
3351                                 warn("Error allocating memory");
3352                                 retval = 1;
3353                                 goto bailout;
3354                         }
3355                 } else if (strncasecmp(name, "pass", 4) == 0) {
3356                         io_opts->dev_type = CAMDD_DEV_PASS;
3357                         io_opts->dev_name = strdup(value);
3358                         if (io_opts->dev_name == NULL) {
3359                                 warn("Error allocating memory");
3360                                 retval = 1;
3361                                 goto bailout;
3362                         }
3363                 } else if ((strncasecmp(name, "bs", 2) == 0)
3364                         || (strncasecmp(name, "blocksize", 9) == 0)) {
3365                         retval = expand_number(value, &io_opts->blocksize);
3366                         if (retval == -1) {
3367                                 warn("expand_number(3) failed on %s=%s", name,
3368                                     value);
3369                                 retval = 1;
3370                                 goto bailout;
3371                         }
3372                 } else if (strncasecmp(name, "depth", 5) == 0) {
3373                         char *endptr;
3374
3375                         io_opts->queue_depth = strtoull(value, &endptr, 0);
3376                         if (*endptr != '\0') {
3377                                 warnx("invalid queue depth %s", value);
3378                                 retval = 1;
3379                                 goto bailout;
3380                         }
3381                 } else if (strncasecmp(name, "mcs", 3) == 0) {
3382                         char *endptr;
3383
3384                         io_opts->min_cmd_size = strtol(value, &endptr, 0);
3385                         if ((*endptr != '\0')
3386                          || ((io_opts->min_cmd_size > 16)
3387                           || (io_opts->min_cmd_size < 0))) {
3388                                 warnx("invalid minimum cmd size %s", value);
3389                                 retval = 1;
3390                                 goto bailout;
3391                         }
3392                 } else if (strncasecmp(name, "offset", 6) == 0) {
3393                         retval = expand_number(value, &io_opts->offset);
3394                         if (retval == -1) {
3395                                 warn("expand_number(3) failed on %s=%s", name,
3396                                     value);
3397                                 retval = 1;
3398                                 goto bailout;
3399                         }
3400                 } else if (strncasecmp(name, "debug", 5) == 0) {
3401                         char *endptr;
3402
3403                         io_opts->debug = strtoull(value, &endptr, 0);
3404                         if (*endptr != '\0') {
3405                                 warnx("invalid debug level %s", value);
3406                                 retval = 1;
3407                                 goto bailout;
3408                         }
3409                 } else {
3410                         warnx("Unrecognized parameter %s=%s", name, value);
3411                 }
3412         }
3413 bailout:
3414         free(orig_tmpstr);
3415
3416         return (retval);
3417 }
3418
3419 int
3420 main(int argc, char **argv)
3421 {
3422         int c;
3423         camdd_argmask arglist = CAMDD_ARG_NONE;
3424         int timeout = 0, retry_count = 1;
3425         int error = 0;
3426         uint64_t max_io = 0;
3427         struct camdd_io_opts *opt_list = NULL;
3428
3429         if (argc == 1) {
3430                 usage();
3431                 exit(1);
3432         }
3433
3434         opt_list = calloc(2, sizeof(struct camdd_io_opts));
3435         if (opt_list == NULL) {
3436                 warn("Unable to allocate option list");
3437                 error = 1;
3438                 goto bailout;
3439         }
3440
3441         while ((c = getopt(argc, argv, "C:Ehi:m:o:t:v")) != -1){
3442                 switch (c) {
3443                 case 'C':
3444                         retry_count = strtol(optarg, NULL, 0);
3445                         if (retry_count < 0)
3446                                 errx(1, "retry count %d is < 0",
3447                                      retry_count);
3448                         arglist |= CAMDD_ARG_RETRIES;
3449                         break;
3450                 case 'E':
3451                         arglist |= CAMDD_ARG_ERR_RECOVER;
3452                         break;
3453                 case 'i':
3454                 case 'o':
3455                         if (((c == 'i')
3456                           && (opt_list[0].dev_type != CAMDD_DEV_NONE))
3457                          || ((c == 'o')
3458                           && (opt_list[1].dev_type != CAMDD_DEV_NONE))) {
3459                                 errx(1, "Only one input and output path "
3460                                     "allowed");
3461                         }
3462                         error = camdd_parse_io_opts(optarg, (c == 'o') ? 1 : 0,
3463                             (c == 'o') ? &opt_list[1] : &opt_list[0]);
3464                         if (error != 0)
3465                                 goto bailout;
3466                         break;
3467                 case 'm':
3468                         error = expand_number(optarg, &max_io);
3469                         if (error == -1) {
3470                                 warn("invalid maximum I/O amount %s", optarg);
3471                                 error = 1;
3472                                 goto bailout;
3473                         }
3474                         break;
3475                 case 't':
3476                         timeout = strtol(optarg, NULL, 0);
3477                         if (timeout < 0)
3478                                 errx(1, "invalid timeout %d", timeout);
3479                         /* Convert the timeout from seconds to ms */
3480                         timeout *= 1000;
3481                         arglist |= CAMDD_ARG_TIMEOUT;
3482                         break;
3483                 case 'v':
3484                         arglist |= CAMDD_ARG_VERBOSE;
3485                         break;
3486                 case 'h':
3487                 default:
3488                         usage();
3489                         exit(1);
3490                         break; /*NOTREACHED*/
3491                 }
3492         }
3493
3494         if ((opt_list[0].dev_type == CAMDD_DEV_NONE)
3495          || (opt_list[1].dev_type == CAMDD_DEV_NONE))
3496                 errx(1, "Must specify both -i and -o");
3497
3498         /*
3499          * Set the timeout if the user hasn't specified one.
3500          */
3501         if (timeout == 0)
3502                 timeout = CAMDD_PASS_RW_TIMEOUT;
3503
3504         error = camdd_rw(opt_list, 2, max_io, retry_count, timeout);
3505
3506 bailout:
3507         free(opt_list);
3508
3509         exit(error);
3510 }