]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - usr.sbin/camdd/camdd.c
Update tcpdump to 4.9.0.
[FreeBSD/FreeBSD.git] / usr.sbin / camdd / camdd.c
1 /*-
2  * Copyright (c) 1997-2007 Kenneth D. Merry
3  * Copyright (c) 2013, 2014, 2015 Spectra Logic Corporation
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions, and the following disclaimer,
11  *    without modification.
12  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
13  *    substantially similar to the "NO WARRANTY" disclaimer below
14  *    ("Disclaimer") and any redistribution must be conditioned upon
15  *    including a substantially similar Disclaimer requirement for further
16  *    binary redistribution.
17  *
18  * NO WARRANTY
19  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
22  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
27  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
28  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGES.
30  *
31  * Authors: Ken Merry           (Spectra Logic Corporation)
32  */
33
34 /*
35  * This is eventually intended to be:
36  * - A basic data transfer/copy utility
37  * - A simple benchmark utility
38  * - An example of how to use the asynchronous pass(4) driver interface.
39  */
40 #include <sys/cdefs.h>
41 __FBSDID("$FreeBSD$");
42
43 #include <sys/ioctl.h>
44 #include <sys/stdint.h>
45 #include <sys/types.h>
46 #include <sys/endian.h>
47 #include <sys/param.h>
48 #include <sys/sbuf.h>
49 #include <sys/stat.h>
50 #include <sys/event.h>
51 #include <sys/time.h>
52 #include <sys/uio.h>
53 #include <vm/vm.h>
54 #include <machine/bus.h>
55 #include <sys/bus.h>
56 #include <sys/bus_dma.h>
57 #include <sys/mtio.h>
58 #include <sys/conf.h>
59 #include <sys/disk.h>
60
61 #include <stdio.h>
62 #include <stdlib.h>
63 #include <semaphore.h>
64 #include <string.h>
65 #include <unistd.h>
66 #include <inttypes.h>
67 #include <limits.h>
68 #include <fcntl.h>
69 #include <ctype.h>
70 #include <err.h>
71 #include <libutil.h>
72 #include <pthread.h>
73 #include <assert.h>
74 #include <bsdxml.h>
75
76 #include <cam/cam.h>
77 #include <cam/cam_debug.h>
78 #include <cam/cam_ccb.h>
79 #include <cam/scsi/scsi_all.h>
80 #include <cam/scsi/scsi_da.h>
81 #include <cam/scsi/scsi_pass.h>
82 #include <cam/scsi/scsi_message.h>
83 #include <cam/scsi/smp_all.h>
84 #include <camlib.h>
85 #include <mtlib.h>
86 #include <zlib.h>
87
88 typedef enum {
89         CAMDD_CMD_NONE          = 0x00000000,
90         CAMDD_CMD_HELP          = 0x00000001,
91         CAMDD_CMD_WRITE         = 0x00000002,
92         CAMDD_CMD_READ          = 0x00000003
93 } camdd_cmdmask;
94
95 typedef enum {
96         CAMDD_ARG_NONE          = 0x00000000,
97         CAMDD_ARG_VERBOSE       = 0x00000001,
98         CAMDD_ARG_DEVICE        = 0x00000002,
99         CAMDD_ARG_BUS           = 0x00000004,
100         CAMDD_ARG_TARGET        = 0x00000008,
101         CAMDD_ARG_LUN           = 0x00000010,
102         CAMDD_ARG_UNIT          = 0x00000020,
103         CAMDD_ARG_TIMEOUT       = 0x00000040,
104         CAMDD_ARG_ERR_RECOVER   = 0x00000080,
105         CAMDD_ARG_RETRIES       = 0x00000100
106 } camdd_argmask;
107
108 typedef enum {
109         CAMDD_DEV_NONE          = 0x00,
110         CAMDD_DEV_PASS          = 0x01,
111         CAMDD_DEV_FILE          = 0x02
112 } camdd_dev_type;
113
114 struct camdd_io_opts {
115         camdd_dev_type  dev_type;
116         char            *dev_name;
117         uint64_t        blocksize;
118         uint64_t        queue_depth;
119         uint64_t        offset;
120         int             min_cmd_size;
121         int             write_dev;
122         uint64_t        debug;
123 };
124
125 typedef enum {
126         CAMDD_BUF_NONE,
127         CAMDD_BUF_DATA,
128         CAMDD_BUF_INDIRECT
129 } camdd_buf_type;
130
131 struct camdd_buf_indirect {
132         /*
133          * Pointer to the source buffer.
134          */
135         struct camdd_buf *src_buf;
136
137         /*
138          * Offset into the source buffer, in bytes.
139          */
140         uint64_t          offset;
141         /*
142          * Pointer to the starting point in the source buffer.
143          */
144         uint8_t          *start_ptr;
145
146         /*
147          * Length of this chunk in bytes.
148          */
149         size_t            len;
150 };
151
152 struct camdd_buf_data {
153         /*
154          * Buffer allocated when we allocate this camdd_buf.  This should
155          * be the size of the blocksize for this device.
156          */
157         uint8_t                 *buf;
158
159         /*
160          * The amount of backing store allocated in buf.  Generally this
161          * will be the blocksize of the device.
162          */
163         uint32_t                 alloc_len;
164
165         /*
166          * The amount of data that was put into the buffer (on reads) or
167          * the amount of data we have put onto the src_list so far (on
168          * writes).
169          */
170         uint32_t                 fill_len;
171
172         /*
173          * The amount of data that was not transferred.
174          */
175         uint32_t                 resid;
176
177         /*
178          * Starting byte offset on the reader.
179          */
180         uint64_t                 src_start_offset;
181         
182         /*
183          * CCB used for pass(4) device targets.
184          */
185         union ccb                ccb;
186
187         /*
188          * Number of scatter/gather segments.
189          */
190         int                      sg_count;
191
192         /*
193          * Set if we had to tack on an extra buffer to round the transfer
194          * up to a sector size.
195          */
196         int                      extra_buf;
197
198         /*
199          * Scatter/gather list used generally when we're the writer for a
200          * pass(4) device. 
201          */
202         bus_dma_segment_t       *segs;
203
204         /*
205          * Scatter/gather list used generally when we're the writer for a
206          * file or block device;
207          */
208         struct iovec            *iovec;
209 };
210
211 union camdd_buf_types {
212         struct camdd_buf_indirect       indirect;
213         struct camdd_buf_data           data;
214 };
215
216 typedef enum {
217         CAMDD_STATUS_NONE,
218         CAMDD_STATUS_OK,
219         CAMDD_STATUS_SHORT_IO,
220         CAMDD_STATUS_EOF,
221         CAMDD_STATUS_ERROR
222 } camdd_buf_status;
223
224 struct camdd_buf {
225         camdd_buf_type           buf_type;
226         union camdd_buf_types    buf_type_spec;
227
228         camdd_buf_status         status;
229
230         uint64_t                 lba;
231         size_t                   len;
232
233         /*
234          * A reference count of how many indirect buffers point to this
235          * buffer.
236          */
237         int                      refcount;
238
239         /*
240          * A link back to our parent device.
241          */
242         struct camdd_dev        *dev;
243         STAILQ_ENTRY(camdd_buf)  links;
244         STAILQ_ENTRY(camdd_buf)  work_links;
245
246         /*
247          * A count of the buffers on the src_list.
248          */
249         int                      src_count;
250
251         /*
252          * List of buffers from our partner thread that are the components
253          * of this buffer for the I/O.  Uses src_links.
254          */
255         STAILQ_HEAD(,camdd_buf)  src_list;
256         STAILQ_ENTRY(camdd_buf)  src_links;
257 };
258
259 #define NUM_DEV_TYPES   2
260
261 struct camdd_dev_pass {
262         int                      scsi_dev_type;
263         struct cam_device       *dev;
264         uint64_t                 max_sector;
265         uint32_t                 block_len;
266         uint32_t                 cpi_maxio;
267 };
268
269 typedef enum {
270         CAMDD_FILE_NONE,
271         CAMDD_FILE_REG,
272         CAMDD_FILE_STD,
273         CAMDD_FILE_PIPE,
274         CAMDD_FILE_DISK,
275         CAMDD_FILE_TAPE,
276         CAMDD_FILE_TTY,
277         CAMDD_FILE_MEM
278 } camdd_file_type;
279
280 typedef enum {
281         CAMDD_FF_NONE           = 0x00,
282         CAMDD_FF_CAN_SEEK       = 0x01
283 } camdd_file_flags;
284
285 struct camdd_dev_file {
286         int                      fd;
287         struct stat              sb;
288         char                     filename[MAXPATHLEN + 1];
289         camdd_file_type          file_type;
290         camdd_file_flags         file_flags;
291         uint8_t                 *tmp_buf;
292 };
293
294 struct camdd_dev_block {
295         int                      fd;
296         uint64_t                 size_bytes;
297         uint32_t                 block_len;
298 };
299
300 union camdd_dev_spec {
301         struct camdd_dev_pass   pass;
302         struct camdd_dev_file   file;
303         struct camdd_dev_block  block;
304 };
305
306 typedef enum {
307         CAMDD_DEV_FLAG_NONE             = 0x00,
308         CAMDD_DEV_FLAG_EOF              = 0x01,
309         CAMDD_DEV_FLAG_PEER_EOF         = 0x02,
310         CAMDD_DEV_FLAG_ACTIVE           = 0x04,
311         CAMDD_DEV_FLAG_EOF_SENT         = 0x08,
312         CAMDD_DEV_FLAG_EOF_QUEUED       = 0x10
313 } camdd_dev_flags;
314
315 struct camdd_dev {
316         camdd_dev_type           dev_type;
317         union camdd_dev_spec     dev_spec;
318         camdd_dev_flags          flags;
319         char                     device_name[MAXPATHLEN+1];
320         uint32_t                 blocksize;
321         uint32_t                 sector_size;
322         uint64_t                 max_sector;
323         uint64_t                 sector_io_limit;
324         int                      min_cmd_size;
325         int                      write_dev;
326         int                      retry_count;
327         int                      io_timeout;
328         int                      debug;
329         uint64_t                 start_offset_bytes;
330         uint64_t                 next_io_pos_bytes;
331         uint64_t                 next_peer_pos_bytes;
332         uint64_t                 next_completion_pos_bytes;
333         uint64_t                 peer_bytes_queued;
334         uint64_t                 bytes_transferred;
335         uint32_t                 target_queue_depth;
336         uint32_t                 cur_active_io;
337         uint8_t                 *extra_buf;
338         uint32_t                 extra_buf_len;
339         struct camdd_dev        *peer_dev;
340         pthread_mutex_t          mutex;
341         pthread_cond_t           cond;
342         int                      kq;
343
344         int                      (*run)(struct camdd_dev *dev);
345         int                      (*fetch)(struct camdd_dev *dev);
346
347         /*
348          * Buffers that are available for I/O.  Uses links.
349          */
350         STAILQ_HEAD(,camdd_buf)  free_queue;
351
352         /*
353          * Free indirect buffers.  These are used for breaking a large
354          * buffer into multiple pieces.
355          */
356         STAILQ_HEAD(,camdd_buf)  free_indirect_queue;
357
358         /*
359          * Buffers that have been queued to the kernel.  Uses links.
360          */
361         STAILQ_HEAD(,camdd_buf)  active_queue;
362
363         /*
364          * Will generally contain one of our buffers that is waiting for enough
365          * I/O from our partner thread to be able to execute.  This will
366          * generally happen when our per-I/O-size is larger than the
367          * partner thread's per-I/O-size.  Uses links.
368          */
369         STAILQ_HEAD(,camdd_buf)  pending_queue;
370
371         /*
372          * Number of buffers on the pending queue
373          */
374         int                      num_pending_queue;
375
376         /*
377          * Buffers that are filled and ready to execute.  This is used when
378          * our partner (reader) thread sends us blocks that are larger than
379          * our blocksize, and so we have to split them into multiple pieces.
380          */
381         STAILQ_HEAD(,camdd_buf)  run_queue;
382
383         /*
384          * Number of buffers on the run queue.
385          */
386         int                      num_run_queue;
387
388         STAILQ_HEAD(,camdd_buf)  reorder_queue;
389
390         int                      num_reorder_queue;
391
392         /*
393          * Buffers that have been queued to us by our partner thread
394          * (generally the reader thread) to be written out.  Uses
395          * work_links.
396          */
397         STAILQ_HEAD(,camdd_buf)  work_queue;
398
399         /*
400          * Buffers that have been completed by our partner thread.  Uses
401          * work_links.
402          */
403         STAILQ_HEAD(,camdd_buf)  peer_done_queue;
404
405         /*
406          * Number of buffers on the peer done queue.
407          */
408         uint32_t                 num_peer_done_queue;
409
410         /*
411          * A list of buffers that we have queued to our peer thread.  Uses
412          * links.
413          */
414         STAILQ_HEAD(,camdd_buf)  peer_work_queue;
415
416         /*
417          * Number of buffers on the peer work queue.
418          */
419         uint32_t                 num_peer_work_queue;
420 };
421
422 static sem_t camdd_sem;
423 static sig_atomic_t need_exit = 0;
424 static sig_atomic_t error_exit = 0;
425 static sig_atomic_t need_status = 0;
426
427 #ifndef min
428 #define min(a, b) (a < b) ? a : b
429 #endif
430
431 /*
432  * XXX KDM private copy of timespecsub().  This is normally defined in
433  * sys/time.h, but is only enabled in the kernel.  If that definition is
434  * enabled in userland, it breaks the build of libnetbsd.
435  */
436 #ifndef timespecsub
437 #define timespecsub(vvp, uvp)                                           \
438         do {                                                            \
439                 (vvp)->tv_sec -= (uvp)->tv_sec;                         \
440                 (vvp)->tv_nsec -= (uvp)->tv_nsec;                       \
441                 if ((vvp)->tv_nsec < 0) {                               \
442                         (vvp)->tv_sec--;                                \
443                         (vvp)->tv_nsec += 1000000000;                   \
444                 }                                                       \
445         } while (0)
446 #endif
447
448
449 /* Generically useful offsets into the peripheral private area */
450 #define ppriv_ptr0 periph_priv.entries[0].ptr
451 #define ppriv_ptr1 periph_priv.entries[1].ptr
452 #define ppriv_field0 periph_priv.entries[0].field
453 #define ppriv_field1 periph_priv.entries[1].field
454
455 #define ccb_buf ppriv_ptr0
456
457 #define CAMDD_FILE_DEFAULT_BLOCK        524288
458 #define CAMDD_FILE_DEFAULT_DEPTH        1
459 #define CAMDD_PASS_MAX_BLOCK            1048576
460 #define CAMDD_PASS_DEFAULT_DEPTH        6
461 #define CAMDD_PASS_RW_TIMEOUT           60 * 1000
462
463 static int parse_btl(char *tstr, int *bus, int *target, int *lun,
464                      camdd_argmask *arglst);
465 void camdd_free_dev(struct camdd_dev *dev);
466 struct camdd_dev *camdd_alloc_dev(camdd_dev_type dev_type,
467                                   struct kevent *new_ke, int num_ke,
468                                   int retry_count, int timeout);
469 static struct camdd_buf *camdd_alloc_buf(struct camdd_dev *dev,
470                                          camdd_buf_type buf_type);
471 void camdd_release_buf(struct camdd_buf *buf);
472 struct camdd_buf *camdd_get_buf(struct camdd_dev *dev, camdd_buf_type buf_type);
473 int camdd_buf_sg_create(struct camdd_buf *buf, int iovec,
474                         uint32_t sector_size, uint32_t *num_sectors_used,
475                         int *double_buf_needed);
476 uint32_t camdd_buf_get_len(struct camdd_buf *buf);
477 void camdd_buf_add_child(struct camdd_buf *buf, struct camdd_buf *child_buf);
478 int camdd_probe_tape(int fd, char *filename, uint64_t *max_iosize,
479                      uint64_t *max_blk, uint64_t *min_blk, uint64_t *blk_gran);
480 struct camdd_dev *camdd_probe_file(int fd, struct camdd_io_opts *io_opts,
481                                    int retry_count, int timeout);
482 struct camdd_dev *camdd_probe_pass(struct cam_device *cam_dev,
483                                    struct camdd_io_opts *io_opts,
484                                    camdd_argmask arglist, int probe_retry_count,
485                                    int probe_timeout, int io_retry_count,
486                                    int io_timeout);
487 void *camdd_file_worker(void *arg);
488 camdd_buf_status camdd_ccb_status(union ccb *ccb);
489 int camdd_queue_peer_buf(struct camdd_dev *dev, struct camdd_buf *buf);
490 int camdd_complete_peer_buf(struct camdd_dev *dev, struct camdd_buf *peer_buf);
491 void camdd_peer_done(struct camdd_buf *buf);
492 void camdd_complete_buf(struct camdd_dev *dev, struct camdd_buf *buf,
493                         int *error_count);
494 int camdd_pass_fetch(struct camdd_dev *dev);
495 int camdd_file_run(struct camdd_dev *dev);
496 int camdd_pass_run(struct camdd_dev *dev);
497 int camdd_get_next_lba_len(struct camdd_dev *dev, uint64_t *lba, ssize_t *len);
498 int camdd_queue(struct camdd_dev *dev, struct camdd_buf *read_buf);
499 void camdd_get_depth(struct camdd_dev *dev, uint32_t *our_depth,
500                      uint32_t *peer_depth, uint32_t *our_bytes,
501                      uint32_t *peer_bytes);
502 void *camdd_worker(void *arg);
503 void camdd_sig_handler(int sig);
504 void camdd_print_status(struct camdd_dev *camdd_dev,
505                         struct camdd_dev *other_dev,
506                         struct timespec *start_time);
507 int camdd_rw(struct camdd_io_opts *io_opts, int num_io_opts,
508              uint64_t max_io, int retry_count, int timeout);
509 int camdd_parse_io_opts(char *args, int is_write,
510                         struct camdd_io_opts *io_opts);
511 void usage(void);
512
513 /*
514  * Parse out a bus, or a bus, target and lun in the following
515  * format:
516  * bus
517  * bus:target
518  * bus:target:lun
519  *
520  * Returns the number of parsed components, or 0.
521  */
522 static int
523 parse_btl(char *tstr, int *bus, int *target, int *lun, camdd_argmask *arglst)
524 {
525         char *tmpstr;
526         int convs = 0;
527
528         while (isspace(*tstr) && (*tstr != '\0'))
529                 tstr++;
530
531         tmpstr = (char *)strtok(tstr, ":");
532         if ((tmpstr != NULL) && (*tmpstr != '\0')) {
533                 *bus = strtol(tmpstr, NULL, 0);
534                 *arglst |= CAMDD_ARG_BUS;
535                 convs++;
536                 tmpstr = (char *)strtok(NULL, ":");
537                 if ((tmpstr != NULL) && (*tmpstr != '\0')) {
538                         *target = strtol(tmpstr, NULL, 0);
539                         *arglst |= CAMDD_ARG_TARGET;
540                         convs++;
541                         tmpstr = (char *)strtok(NULL, ":");
542                         if ((tmpstr != NULL) && (*tmpstr != '\0')) {
543                                 *lun = strtol(tmpstr, NULL, 0);
544                                 *arglst |= CAMDD_ARG_LUN;
545                                 convs++;
546                         }
547                 }
548         }
549
550         return convs;
551 }
552
553 /*
554  * XXX KDM clean up and free all of the buffers on the queue!
555  */
556 void
557 camdd_free_dev(struct camdd_dev *dev)
558 {
559         if (dev == NULL)
560                 return;
561
562         switch (dev->dev_type) {
563         case CAMDD_DEV_FILE: {
564                 struct camdd_dev_file *file_dev = &dev->dev_spec.file;
565
566                 if (file_dev->fd != -1)
567                         close(file_dev->fd);
568                 free(file_dev->tmp_buf);
569                 break;
570         }
571         case CAMDD_DEV_PASS: {
572                 struct camdd_dev_pass *pass_dev = &dev->dev_spec.pass;
573
574                 if (pass_dev->dev != NULL)
575                         cam_close_device(pass_dev->dev);
576                 break;
577         }
578         default:
579                 break;
580         }
581
582         free(dev);
583 }
584
585 struct camdd_dev *
586 camdd_alloc_dev(camdd_dev_type dev_type, struct kevent *new_ke, int num_ke,
587                 int retry_count, int timeout)
588 {
589         struct camdd_dev *dev = NULL;
590         struct kevent *ke;
591         size_t ke_size;
592         int retval = 0;
593
594         dev = malloc(sizeof(*dev));
595         if (dev == NULL) {
596                 warn("%s: unable to malloc %zu bytes", __func__, sizeof(*dev));
597                 goto bailout;
598         }
599
600         bzero(dev, sizeof(*dev));
601
602         dev->dev_type = dev_type;
603         dev->io_timeout = timeout;
604         dev->retry_count = retry_count;
605         STAILQ_INIT(&dev->free_queue);
606         STAILQ_INIT(&dev->free_indirect_queue);
607         STAILQ_INIT(&dev->active_queue);
608         STAILQ_INIT(&dev->pending_queue);
609         STAILQ_INIT(&dev->run_queue);
610         STAILQ_INIT(&dev->reorder_queue);
611         STAILQ_INIT(&dev->work_queue);
612         STAILQ_INIT(&dev->peer_done_queue);
613         STAILQ_INIT(&dev->peer_work_queue);
614         retval = pthread_mutex_init(&dev->mutex, NULL);
615         if (retval != 0) {
616                 warnc(retval, "%s: failed to initialize mutex", __func__);
617                 goto bailout;
618         }
619
620         retval = pthread_cond_init(&dev->cond, NULL);
621         if (retval != 0) {
622                 warnc(retval, "%s: failed to initialize condition variable",
623                       __func__);
624                 goto bailout;
625         }
626
627         dev->kq = kqueue();
628         if (dev->kq == -1) {
629                 warn("%s: Unable to create kqueue", __func__);
630                 goto bailout;
631         }
632
633         ke_size = sizeof(struct kevent) * (num_ke + 4);
634         ke = malloc(ke_size);
635         if (ke == NULL) {
636                 warn("%s: unable to malloc %zu bytes", __func__, ke_size);
637                 goto bailout;
638         }
639         bzero(ke, ke_size);
640         if (num_ke > 0)
641                 bcopy(new_ke, ke, num_ke * sizeof(struct kevent));
642
643         EV_SET(&ke[num_ke++], (uintptr_t)&dev->work_queue, EVFILT_USER,
644                EV_ADD|EV_ENABLE|EV_CLEAR, 0,0, 0);
645         EV_SET(&ke[num_ke++], (uintptr_t)&dev->peer_done_queue, EVFILT_USER,
646                EV_ADD|EV_ENABLE|EV_CLEAR, 0,0, 0);
647         EV_SET(&ke[num_ke++], SIGINFO, EVFILT_SIGNAL, EV_ADD|EV_ENABLE, 0,0,0);
648         EV_SET(&ke[num_ke++], SIGINT, EVFILT_SIGNAL, EV_ADD|EV_ENABLE, 0,0,0);
649
650         retval = kevent(dev->kq, ke, num_ke, NULL, 0, NULL);
651         if (retval == -1) {
652                 warn("%s: Unable to register kevents", __func__);
653                 goto bailout;
654         }
655
656
657         return (dev);
658
659 bailout:
660         free(dev);
661
662         return (NULL);
663 }
664
665 static struct camdd_buf *
666 camdd_alloc_buf(struct camdd_dev *dev, camdd_buf_type buf_type)
667 {
668         struct camdd_buf *buf = NULL;
669         uint8_t *data_ptr = NULL;
670
671         /*
672          * We only need to allocate data space for data buffers.
673          */
674         switch (buf_type) {
675         case CAMDD_BUF_DATA:
676                 data_ptr = malloc(dev->blocksize);
677                 if (data_ptr == NULL) {
678                         warn("unable to allocate %u bytes", dev->blocksize);
679                         goto bailout_error;
680                 }
681                 break;
682         default:
683                 break;
684         }
685         
686         buf = malloc(sizeof(*buf));
687         if (buf == NULL) {
688                 warn("unable to allocate %zu bytes", sizeof(*buf));
689                 goto bailout_error;
690         }
691
692         bzero(buf, sizeof(*buf));
693         buf->buf_type = buf_type;
694         buf->dev = dev;
695         switch (buf_type) {
696         case CAMDD_BUF_DATA: {
697                 struct camdd_buf_data *data;
698
699                 data = &buf->buf_type_spec.data;
700
701                 data->alloc_len = dev->blocksize;
702                 data->buf = data_ptr;
703                 break;
704         }
705         case CAMDD_BUF_INDIRECT:
706                 break;
707         default:
708                 break;
709         }
710         STAILQ_INIT(&buf->src_list);
711
712         return (buf);
713
714 bailout_error:
715         free(data_ptr);
716
717         return (NULL);
718 }
719
720 void
721 camdd_release_buf(struct camdd_buf *buf)
722 {
723         struct camdd_dev *dev;
724
725         dev = buf->dev;
726
727         switch (buf->buf_type) {
728         case CAMDD_BUF_DATA: {
729                 struct camdd_buf_data *data;
730
731                 data = &buf->buf_type_spec.data;
732
733                 if (data->segs != NULL) {
734                         if (data->extra_buf != 0) {
735                                 void *extra_buf;
736
737                                 extra_buf = (void *)
738                                     data->segs[data->sg_count - 1].ds_addr;
739                                 free(extra_buf);
740                                 data->extra_buf = 0;
741                         }
742                         free(data->segs);
743                         data->segs = NULL;
744                         data->sg_count = 0;
745                 } else if (data->iovec != NULL) {
746                         if (data->extra_buf != 0) {
747                                 free(data->iovec[data->sg_count - 1].iov_base);
748                                 data->extra_buf = 0;
749                         }
750                         free(data->iovec);
751                         data->iovec = NULL;
752                         data->sg_count = 0;
753                 }
754                 STAILQ_INSERT_TAIL(&dev->free_queue, buf, links);
755                 break;
756         }
757         case CAMDD_BUF_INDIRECT:
758                 STAILQ_INSERT_TAIL(&dev->free_indirect_queue, buf, links);
759                 break;
760         default:
761                 err(1, "%s: Invalid buffer type %d for released buffer",
762                     __func__, buf->buf_type);
763                 break;
764         }
765 }
766
767 struct camdd_buf *
768 camdd_get_buf(struct camdd_dev *dev, camdd_buf_type buf_type)
769 {
770         struct camdd_buf *buf = NULL;
771
772         switch (buf_type) {
773         case CAMDD_BUF_DATA:
774                 buf = STAILQ_FIRST(&dev->free_queue);
775                 if (buf != NULL) {
776                         struct camdd_buf_data *data;
777                         uint8_t *data_ptr;
778                         uint32_t alloc_len;
779
780                         STAILQ_REMOVE_HEAD(&dev->free_queue, links);
781                         data = &buf->buf_type_spec.data;
782                         data_ptr = data->buf;
783                         alloc_len = data->alloc_len;
784                         bzero(buf, sizeof(*buf));
785                         data->buf = data_ptr;
786                         data->alloc_len = alloc_len;
787                 }
788                 break;
789         case CAMDD_BUF_INDIRECT:
790                 buf = STAILQ_FIRST(&dev->free_indirect_queue);
791                 if (buf != NULL) {
792                         STAILQ_REMOVE_HEAD(&dev->free_indirect_queue, links);
793
794                         bzero(buf, sizeof(*buf));
795                 }
796                 break;
797         default:
798                 warnx("Unknown buffer type %d requested", buf_type);
799                 break;
800         }
801
802
803         if (buf == NULL)
804                 return (camdd_alloc_buf(dev, buf_type));
805         else {
806                 STAILQ_INIT(&buf->src_list);
807                 buf->dev = dev;
808                 buf->buf_type = buf_type;
809
810                 return (buf);
811         }
812 }
813
814 int
815 camdd_buf_sg_create(struct camdd_buf *buf, int iovec, uint32_t sector_size,
816                     uint32_t *num_sectors_used, int *double_buf_needed)
817 {
818         struct camdd_buf *tmp_buf;
819         struct camdd_buf_data *data;
820         uint8_t *extra_buf = NULL;
821         size_t extra_buf_len = 0;
822         int i, retval = 0;
823
824         data = &buf->buf_type_spec.data;
825
826         data->sg_count = buf->src_count;
827         /*
828          * Compose a scatter/gather list from all of the buffers in the list.
829          * If the length of the buffer isn't a multiple of the sector size,
830          * we'll have to add an extra buffer.  This should only happen
831          * at the end of a transfer.
832          */
833         if ((data->fill_len % sector_size) != 0) {
834                 extra_buf_len = sector_size - (data->fill_len % sector_size);
835                 extra_buf = calloc(extra_buf_len, 1);
836                 if (extra_buf == NULL) {
837                         warn("%s: unable to allocate %zu bytes for extra "
838                             "buffer space", __func__, extra_buf_len);
839                         retval = 1;
840                         goto bailout;
841                 }
842                 data->extra_buf = 1;
843                 data->sg_count++;
844         }
845         if (iovec == 0) {
846                 data->segs = calloc(data->sg_count, sizeof(bus_dma_segment_t));
847                 if (data->segs == NULL) {
848                         warn("%s: unable to allocate %zu bytes for S/G list",
849                             __func__, sizeof(bus_dma_segment_t) *
850                             data->sg_count);
851                         retval = 1;
852                         goto bailout;
853                 }
854
855         } else {
856                 data->iovec = calloc(data->sg_count, sizeof(struct iovec));
857                 if (data->iovec == NULL) {
858                         warn("%s: unable to allocate %zu bytes for S/G list",
859                             __func__, sizeof(struct iovec) * data->sg_count);
860                         retval = 1;
861                         goto bailout;
862                 }
863         }
864
865         for (i = 0, tmp_buf = STAILQ_FIRST(&buf->src_list);
866              i < buf->src_count && tmp_buf != NULL; i++,
867              tmp_buf = STAILQ_NEXT(tmp_buf, src_links)) {
868
869                 if (tmp_buf->buf_type == CAMDD_BUF_DATA) {
870                         struct camdd_buf_data *tmp_data;
871
872                         tmp_data = &tmp_buf->buf_type_spec.data;
873                         if (iovec == 0) {
874                                 data->segs[i].ds_addr =
875                                     (bus_addr_t) tmp_data->buf;
876                                 data->segs[i].ds_len = tmp_data->fill_len -
877                                     tmp_data->resid;
878                         } else {
879                                 data->iovec[i].iov_base = tmp_data->buf;
880                                 data->iovec[i].iov_len = tmp_data->fill_len -
881                                     tmp_data->resid;
882                         }
883                         if (((tmp_data->fill_len - tmp_data->resid) %
884                              sector_size) != 0)
885                                 *double_buf_needed = 1;
886                 } else {
887                         struct camdd_buf_indirect *tmp_ind;
888
889                         tmp_ind = &tmp_buf->buf_type_spec.indirect;
890                         if (iovec == 0) {
891                                 data->segs[i].ds_addr =
892                                     (bus_addr_t)tmp_ind->start_ptr;
893                                 data->segs[i].ds_len = tmp_ind->len;
894                         } else {
895                                 data->iovec[i].iov_base = tmp_ind->start_ptr;
896                                 data->iovec[i].iov_len = tmp_ind->len;
897                         }
898                         if ((tmp_ind->len % sector_size) != 0)
899                                 *double_buf_needed = 1;
900                 }
901         }
902
903         if (extra_buf != NULL) {
904                 if (iovec == 0) {
905                         data->segs[i].ds_addr = (bus_addr_t)extra_buf;
906                         data->segs[i].ds_len = extra_buf_len;
907                 } else {
908                         data->iovec[i].iov_base = extra_buf;
909                         data->iovec[i].iov_len = extra_buf_len;
910                 }
911                 i++;
912         }
913         if ((tmp_buf != NULL) || (i != data->sg_count)) {
914                 warnx("buffer source count does not match "
915                       "number of buffers in list!");
916                 retval = 1;
917                 goto bailout;
918         }
919
920 bailout:
921         if (retval == 0) {
922                 *num_sectors_used = (data->fill_len + extra_buf_len) /
923                     sector_size;
924         }
925         return (retval);
926 }
927
928 uint32_t
929 camdd_buf_get_len(struct camdd_buf *buf)
930 {
931         uint32_t len = 0;
932
933         if (buf->buf_type != CAMDD_BUF_DATA) {
934                 struct camdd_buf_indirect *indirect;
935
936                 indirect = &buf->buf_type_spec.indirect;
937                 len = indirect->len;
938         } else {
939                 struct camdd_buf_data *data;
940
941                 data = &buf->buf_type_spec.data;
942                 len = data->fill_len;
943         }
944
945         return (len);
946 }
947
948 void
949 camdd_buf_add_child(struct camdd_buf *buf, struct camdd_buf *child_buf)
950 {
951         struct camdd_buf_data *data;
952
953         assert(buf->buf_type == CAMDD_BUF_DATA);
954
955         data = &buf->buf_type_spec.data;
956
957         STAILQ_INSERT_TAIL(&buf->src_list, child_buf, src_links);
958         buf->src_count++;
959
960         data->fill_len += camdd_buf_get_len(child_buf);
961 }
962
963 typedef enum {
964         CAMDD_TS_MAX_BLK,
965         CAMDD_TS_MIN_BLK,
966         CAMDD_TS_BLK_GRAN,
967         CAMDD_TS_EFF_IOSIZE
968 } camdd_status_item_index;
969
970 static struct camdd_status_items {
971         const char *name;
972         struct mt_status_entry *entry;
973 } req_status_items[] = {
974         { "max_blk", NULL },
975         { "min_blk", NULL },
976         { "blk_gran", NULL },
977         { "max_effective_iosize", NULL }
978 };
979
980 int
981 camdd_probe_tape(int fd, char *filename, uint64_t *max_iosize,
982                  uint64_t *max_blk, uint64_t *min_blk, uint64_t *blk_gran)
983 {
984         struct mt_status_data status_data;
985         char *xml_str = NULL;
986         unsigned int i;
987         int retval = 0;
988         
989         retval = mt_get_xml_str(fd, MTIOCEXTGET, &xml_str);
990         if (retval != 0)
991                 err(1, "Couldn't get XML string from %s", filename);
992
993         retval = mt_get_status(xml_str, &status_data);
994         if (retval != XML_STATUS_OK) {
995                 warn("couldn't get status for %s", filename);
996                 retval = 1;
997                 goto bailout;
998         } else
999                 retval = 0;
1000
1001         if (status_data.error != 0) {
1002                 warnx("%s", status_data.error_str);
1003                 retval = 1;
1004                 goto bailout;
1005         }
1006
1007         for (i = 0; i < sizeof(req_status_items) /
1008              sizeof(req_status_items[0]); i++) {
1009                 char *name;
1010
1011                 name = __DECONST(char *, req_status_items[i].name);
1012                 req_status_items[i].entry = mt_status_entry_find(&status_data,
1013                     name);
1014                 if (req_status_items[i].entry == NULL) {
1015                         errx(1, "Cannot find status entry %s",
1016                             req_status_items[i].name);
1017                 }
1018         }
1019
1020         *max_iosize = req_status_items[CAMDD_TS_EFF_IOSIZE].entry->value_unsigned;
1021         *max_blk= req_status_items[CAMDD_TS_MAX_BLK].entry->value_unsigned;
1022         *min_blk= req_status_items[CAMDD_TS_MIN_BLK].entry->value_unsigned;
1023         *blk_gran = req_status_items[CAMDD_TS_BLK_GRAN].entry->value_unsigned;
1024 bailout:
1025
1026         free(xml_str);
1027         mt_status_free(&status_data);
1028
1029         return (retval);
1030 }
1031
1032 struct camdd_dev *
1033 camdd_probe_file(int fd, struct camdd_io_opts *io_opts, int retry_count,
1034     int timeout)
1035 {
1036         struct camdd_dev *dev = NULL;
1037         struct camdd_dev_file *file_dev;
1038         uint64_t blocksize = io_opts->blocksize;
1039
1040         dev = camdd_alloc_dev(CAMDD_DEV_FILE, NULL, 0, retry_count, timeout);
1041         if (dev == NULL)
1042                 goto bailout;
1043
1044         file_dev = &dev->dev_spec.file;
1045         file_dev->fd = fd;
1046         strlcpy(file_dev->filename, io_opts->dev_name,
1047             sizeof(file_dev->filename));
1048         strlcpy(dev->device_name, io_opts->dev_name, sizeof(dev->device_name));
1049         if (blocksize == 0)
1050                 dev->blocksize = CAMDD_FILE_DEFAULT_BLOCK;
1051         else
1052                 dev->blocksize = blocksize;
1053
1054         if ((io_opts->queue_depth != 0)
1055          && (io_opts->queue_depth != 1)) {
1056                 warnx("Queue depth %ju for %s ignored, only 1 outstanding "
1057                     "command supported", (uintmax_t)io_opts->queue_depth,
1058                     io_opts->dev_name);
1059         }
1060         dev->target_queue_depth = CAMDD_FILE_DEFAULT_DEPTH;
1061         dev->run = camdd_file_run;
1062         dev->fetch = NULL;
1063
1064         /*
1065          * We can effectively access files on byte boundaries.  We'll reset
1066          * this for devices like disks that can be accessed on sector
1067          * boundaries.
1068          */
1069         dev->sector_size = 1;
1070
1071         if ((fd != STDIN_FILENO)
1072          && (fd != STDOUT_FILENO)) {
1073                 int retval;
1074
1075                 retval = fstat(fd, &file_dev->sb);
1076                 if (retval != 0) {
1077                         warn("Cannot stat %s", dev->device_name);
1078                         goto bailout_error;
1079                 }
1080                 if (S_ISREG(file_dev->sb.st_mode)) {
1081                         file_dev->file_type = CAMDD_FILE_REG;
1082                 } else if (S_ISCHR(file_dev->sb.st_mode)) {
1083                         int type;
1084
1085                         if (ioctl(fd, FIODTYPE, &type) == -1)
1086                                 err(1, "FIODTYPE ioctl failed on %s",
1087                                     dev->device_name);
1088                         else {
1089                                 if (type & D_TAPE)
1090                                         file_dev->file_type = CAMDD_FILE_TAPE;
1091                                 else if (type & D_DISK)
1092                                         file_dev->file_type = CAMDD_FILE_DISK;
1093                                 else if (type & D_MEM)
1094                                         file_dev->file_type = CAMDD_FILE_MEM;
1095                                 else if (type & D_TTY)
1096                                         file_dev->file_type = CAMDD_FILE_TTY;
1097                         }
1098                 } else if (S_ISDIR(file_dev->sb.st_mode)) {
1099                         errx(1, "cannot operate on directory %s",
1100                             dev->device_name);
1101                 } else if (S_ISFIFO(file_dev->sb.st_mode)) {
1102                         file_dev->file_type = CAMDD_FILE_PIPE;
1103                 } else
1104                         errx(1, "Cannot determine file type for %s",
1105                             dev->device_name);
1106
1107                 switch (file_dev->file_type) {
1108                 case CAMDD_FILE_REG:
1109                         if (file_dev->sb.st_size != 0)
1110                                 dev->max_sector = file_dev->sb.st_size - 1;
1111                         else
1112                                 dev->max_sector = 0;
1113                         file_dev->file_flags |= CAMDD_FF_CAN_SEEK;
1114                         break;
1115                 case CAMDD_FILE_TAPE: {
1116                         uint64_t max_iosize, max_blk, min_blk, blk_gran;
1117                         /*
1118                          * Check block limits and maximum effective iosize.
1119                          * Make sure the blocksize is within the block
1120                          * limits (and a multiple of the minimum blocksize)
1121                          * and that the blocksize is <= maximum effective
1122                          * iosize.
1123                          */
1124                         retval = camdd_probe_tape(fd, dev->device_name,
1125                             &max_iosize, &max_blk, &min_blk, &blk_gran);
1126                         if (retval != 0)
1127                                 errx(1, "Unable to probe tape %s",
1128                                     dev->device_name);
1129
1130                         /*
1131                          * The blocksize needs to be <= the maximum
1132                          * effective I/O size of the tape device.  Note
1133                          * that this also takes into account the maximum
1134                          * blocksize reported by READ BLOCK LIMITS.
1135                          */
1136                         if (dev->blocksize > max_iosize) {
1137                                 warnx("Blocksize %u too big for %s, limiting "
1138                                     "to %ju", dev->blocksize, dev->device_name,
1139                                     max_iosize);
1140                                 dev->blocksize = max_iosize;
1141                         }
1142
1143                         /*
1144                          * The blocksize needs to be at least min_blk;
1145                          */
1146                         if (dev->blocksize < min_blk) {
1147                                 warnx("Blocksize %u too small for %s, "
1148                                     "increasing to %ju", dev->blocksize,
1149                                     dev->device_name, min_blk);
1150                                 dev->blocksize = min_blk;
1151                         }
1152
1153                         /*
1154                          * And the blocksize needs to be a multiple of
1155                          * the block granularity.
1156                          */
1157                         if ((blk_gran != 0)
1158                          && (dev->blocksize % (1 << blk_gran))) {
1159                                 warnx("Blocksize %u for %s not a multiple of "
1160                                     "%d, adjusting to %d", dev->blocksize,
1161                                     dev->device_name, (1 << blk_gran),
1162                                     dev->blocksize & ~((1 << blk_gran) - 1));
1163                                 dev->blocksize &= ~((1 << blk_gran) - 1);
1164                         }
1165
1166                         if (dev->blocksize == 0) {
1167                                 errx(1, "Unable to derive valid blocksize for "
1168                                     "%s", dev->device_name);
1169                         }
1170
1171                         /*
1172                          * For tape drives, set the sector size to the
1173                          * blocksize so that we make sure not to write
1174                          * less than the blocksize out to the drive.
1175                          */
1176                         dev->sector_size = dev->blocksize;
1177                         break;
1178                 }
1179                 case CAMDD_FILE_DISK: {
1180                         off_t media_size;
1181                         unsigned int sector_size;
1182
1183                         file_dev->file_flags |= CAMDD_FF_CAN_SEEK;
1184
1185                         if (ioctl(fd, DIOCGSECTORSIZE, &sector_size) == -1) {
1186                                 err(1, "DIOCGSECTORSIZE ioctl failed on %s",
1187                                     dev->device_name);
1188                         }
1189
1190                         if (sector_size == 0) {
1191                                 errx(1, "DIOCGSECTORSIZE ioctl returned "
1192                                     "invalid sector size %u for %s",
1193                                     sector_size, dev->device_name);
1194                         }
1195
1196                         if (ioctl(fd, DIOCGMEDIASIZE, &media_size) == -1) {
1197                                 err(1, "DIOCGMEDIASIZE ioctl failed on %s",
1198                                     dev->device_name);
1199                         }
1200
1201                         if (media_size == 0) {
1202                                 errx(1, "DIOCGMEDIASIZE ioctl returned "
1203                                     "invalid media size %ju for %s",
1204                                     (uintmax_t)media_size, dev->device_name);
1205                         }
1206
1207                         if (dev->blocksize % sector_size) {
1208                                 errx(1, "%s blocksize %u not a multiple of "
1209                                     "sector size %u", dev->device_name,
1210                                     dev->blocksize, sector_size);
1211                         }
1212
1213                         dev->sector_size = sector_size;
1214                         dev->max_sector = (media_size / sector_size) - 1;
1215                         break;
1216                 }
1217                 case CAMDD_FILE_MEM:
1218                         file_dev->file_flags |= CAMDD_FF_CAN_SEEK;
1219                         break;
1220                 default:
1221                         break;
1222                 }
1223         }
1224
1225         if ((io_opts->offset != 0)
1226          && ((file_dev->file_flags & CAMDD_FF_CAN_SEEK) == 0)) {
1227                 warnx("Offset %ju specified for %s, but we cannot seek on %s",
1228                     io_opts->offset, io_opts->dev_name, io_opts->dev_name);
1229                 goto bailout_error;
1230         }
1231 #if 0
1232         else if ((io_opts->offset != 0)
1233                 && ((io_opts->offset % dev->sector_size) != 0)) {
1234                 warnx("Offset %ju for %s is not a multiple of the "
1235                       "sector size %u", io_opts->offset, 
1236                       io_opts->dev_name, dev->sector_size);
1237                 goto bailout_error;
1238         } else {
1239                 dev->start_offset_bytes = io_opts->offset;
1240         }
1241 #endif
1242
1243 bailout:
1244         return (dev);
1245
1246 bailout_error:
1247         camdd_free_dev(dev);
1248         return (NULL);
1249 }
1250
1251 /*
1252  * Need to implement this.  Do a basic probe:
1253  * - Check the inquiry data, make sure we're talking to a device that we
1254  *   can reasonably expect to talk to -- direct, RBC, CD, WORM.
1255  * - Send a test unit ready, make sure the device is available.
1256  * - Get the capacity and block size.
1257  */
1258 struct camdd_dev *
1259 camdd_probe_pass(struct cam_device *cam_dev, struct camdd_io_opts *io_opts,
1260                  camdd_argmask arglist, int probe_retry_count,
1261                  int probe_timeout, int io_retry_count, int io_timeout)
1262 {
1263         union ccb *ccb;
1264         uint64_t maxsector;
1265         uint32_t cpi_maxio, max_iosize, pass_numblocks;
1266         uint32_t block_len;
1267         struct scsi_read_capacity_data rcap;
1268         struct scsi_read_capacity_data_long rcaplong;
1269         struct camdd_dev *dev;
1270         struct camdd_dev_pass *pass_dev;
1271         struct kevent ke;
1272         int scsi_dev_type;
1273
1274         dev = NULL;
1275
1276         scsi_dev_type = SID_TYPE(&cam_dev->inq_data);
1277         maxsector = 0;
1278         block_len = 0;
1279
1280         /*
1281          * For devices that support READ CAPACITY, we'll attempt to get the
1282          * capacity.  Otherwise, we really don't support tape or other
1283          * devices via SCSI passthrough, so just return an error in that case.
1284          */
1285         switch (scsi_dev_type) {
1286         case T_DIRECT:
1287         case T_WORM:
1288         case T_CDROM:
1289         case T_OPTICAL:
1290         case T_RBC:
1291         case T_ZBC_HM:
1292                 break;
1293         default:
1294                 errx(1, "Unsupported SCSI device type %d", scsi_dev_type);
1295                 break; /*NOTREACHED*/
1296         }
1297
1298         ccb = cam_getccb(cam_dev);
1299
1300         if (ccb == NULL) {
1301                 warnx("%s: error allocating ccb", __func__);
1302                 goto bailout;
1303         }
1304
1305         CCB_CLEAR_ALL_EXCEPT_HDR(&ccb->csio);
1306
1307         scsi_read_capacity(&ccb->csio,
1308                            /*retries*/ probe_retry_count,
1309                            /*cbfcnp*/ NULL,
1310                            /*tag_action*/ MSG_SIMPLE_Q_TAG,
1311                            &rcap,
1312                            SSD_FULL_SIZE,
1313                            /*timeout*/ probe_timeout ? probe_timeout : 5000);
1314
1315         /* Disable freezing the device queue */
1316         ccb->ccb_h.flags |= CAM_DEV_QFRZDIS;
1317
1318         if (arglist & CAMDD_ARG_ERR_RECOVER)
1319                 ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER;
1320
1321         if (cam_send_ccb(cam_dev, ccb) < 0) {
1322                 warn("error sending READ CAPACITY command");
1323
1324                 cam_error_print(cam_dev, ccb, CAM_ESF_ALL,
1325                                 CAM_EPF_ALL, stderr);
1326
1327                 goto bailout;
1328         }
1329
1330         if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
1331                 cam_error_print(cam_dev, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr);
1332                 goto bailout;
1333         }
1334
1335         maxsector = scsi_4btoul(rcap.addr);
1336         block_len = scsi_4btoul(rcap.length);
1337
1338         /*
1339          * A last block of 2^32-1 means that the true capacity is over 2TB,
1340          * and we need to issue the long READ CAPACITY to get the real
1341          * capacity.  Otherwise, we're all set.
1342          */
1343         if (maxsector != 0xffffffff)
1344                 goto rcap_done;
1345
1346         scsi_read_capacity_16(&ccb->csio,
1347                               /*retries*/ probe_retry_count,
1348                               /*cbfcnp*/ NULL,
1349                               /*tag_action*/ MSG_SIMPLE_Q_TAG,
1350                               /*lba*/ 0,
1351                               /*reladdr*/ 0,
1352                               /*pmi*/ 0,
1353                               (uint8_t *)&rcaplong,
1354                               sizeof(rcaplong),
1355                               /*sense_len*/ SSD_FULL_SIZE,
1356                               /*timeout*/ probe_timeout ? probe_timeout : 5000);
1357
1358         /* Disable freezing the device queue */
1359         ccb->ccb_h.flags |= CAM_DEV_QFRZDIS;
1360
1361         if (arglist & CAMDD_ARG_ERR_RECOVER)
1362                 ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER;
1363
1364         if (cam_send_ccb(cam_dev, ccb) < 0) {
1365                 warn("error sending READ CAPACITY (16) command");
1366                 cam_error_print(cam_dev, ccb, CAM_ESF_ALL,
1367                                 CAM_EPF_ALL, stderr);
1368                 goto bailout;
1369         }
1370
1371         if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
1372                 cam_error_print(cam_dev, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr);
1373                 goto bailout;
1374         }
1375
1376         maxsector = scsi_8btou64(rcaplong.addr);
1377         block_len = scsi_4btoul(rcaplong.length);
1378
1379 rcap_done:
1380         if (block_len == 0) {
1381                 warnx("Sector size for %s%u is 0, cannot continue",
1382                     cam_dev->device_name, cam_dev->dev_unit_num);
1383                 goto bailout_error;
1384         }
1385
1386         CCB_CLEAR_ALL_EXCEPT_HDR(&ccb->cpi);
1387
1388         ccb->ccb_h.func_code = XPT_PATH_INQ;
1389         ccb->ccb_h.flags = CAM_DIR_NONE;
1390         ccb->ccb_h.retry_count = 1;
1391         
1392         if (cam_send_ccb(cam_dev, ccb) < 0) {
1393                 warn("error sending XPT_PATH_INQ CCB");
1394
1395                 cam_error_print(cam_dev, ccb, CAM_ESF_ALL,
1396                                 CAM_EPF_ALL, stderr);
1397                 goto bailout;
1398         }
1399
1400         EV_SET(&ke, cam_dev->fd, EVFILT_READ, EV_ADD|EV_ENABLE, 0, 0, 0);
1401
1402         dev = camdd_alloc_dev(CAMDD_DEV_PASS, &ke, 1, io_retry_count,
1403                               io_timeout);
1404         if (dev == NULL)
1405                 goto bailout;
1406
1407         pass_dev = &dev->dev_spec.pass;
1408         pass_dev->scsi_dev_type = scsi_dev_type;
1409         pass_dev->dev = cam_dev;
1410         pass_dev->max_sector = maxsector;
1411         pass_dev->block_len = block_len;
1412         pass_dev->cpi_maxio = ccb->cpi.maxio;
1413         snprintf(dev->device_name, sizeof(dev->device_name), "%s%u",
1414                  pass_dev->dev->device_name, pass_dev->dev->dev_unit_num);
1415         dev->sector_size = block_len;
1416         dev->max_sector = maxsector;
1417         
1418
1419         /*
1420          * Determine the optimal blocksize to use for this device.
1421          */
1422
1423         /*
1424          * If the controller has not specified a maximum I/O size,
1425          * just go with 128K as a somewhat conservative value.
1426          */
1427         if (pass_dev->cpi_maxio == 0)
1428                 cpi_maxio = 131072;
1429         else
1430                 cpi_maxio = pass_dev->cpi_maxio;
1431
1432         /*
1433          * If the controller has a large maximum I/O size, limit it
1434          * to something smaller so that the kernel doesn't have trouble
1435          * allocating buffers to copy data in and out for us.
1436          * XXX KDM this is until we have unmapped I/O support in the kernel.
1437          */
1438         max_iosize = min(cpi_maxio, CAMDD_PASS_MAX_BLOCK);
1439
1440         /*
1441          * If we weren't able to get a block size for some reason,
1442          * default to 512 bytes.
1443          */
1444         block_len = pass_dev->block_len;
1445         if (block_len == 0)
1446                 block_len = 512;
1447
1448         /*
1449          * Figure out how many blocksize chunks will fit in the
1450          * maximum I/O size.
1451          */
1452         pass_numblocks = max_iosize / block_len;
1453
1454         /*
1455          * And finally, multiple the number of blocks by the LBA
1456          * length to get our maximum block size;
1457          */
1458         dev->blocksize = pass_numblocks * block_len;
1459
1460         if (io_opts->blocksize != 0) {
1461                 if ((io_opts->blocksize % dev->sector_size) != 0) {
1462                         warnx("Blocksize %ju for %s is not a multiple of "
1463                               "sector size %u", (uintmax_t)io_opts->blocksize, 
1464                               dev->device_name, dev->sector_size);
1465                         goto bailout_error;
1466                 }
1467                 dev->blocksize = io_opts->blocksize;
1468         }
1469         dev->target_queue_depth = CAMDD_PASS_DEFAULT_DEPTH;
1470         if (io_opts->queue_depth != 0)
1471                 dev->target_queue_depth = io_opts->queue_depth;
1472
1473         if (io_opts->offset != 0) {
1474                 if (io_opts->offset > (dev->max_sector * dev->sector_size)) {
1475                         warnx("Offset %ju is past the end of device %s",
1476                             io_opts->offset, dev->device_name);
1477                         goto bailout_error;
1478                 }
1479 #if 0
1480                 else if ((io_opts->offset % dev->sector_size) != 0) {
1481                         warnx("Offset %ju for %s is not a multiple of the "
1482                               "sector size %u", io_opts->offset, 
1483                               dev->device_name, dev->sector_size);
1484                         goto bailout_error;
1485                 }
1486                 dev->start_offset_bytes = io_opts->offset;
1487 #endif
1488         }
1489
1490         dev->min_cmd_size = io_opts->min_cmd_size;
1491
1492         dev->run = camdd_pass_run;
1493         dev->fetch = camdd_pass_fetch;
1494
1495 bailout:
1496         cam_freeccb(ccb);
1497
1498         return (dev);
1499
1500 bailout_error:
1501         cam_freeccb(ccb);
1502
1503         camdd_free_dev(dev);
1504
1505         return (NULL);
1506 }
1507
1508 void *
1509 camdd_worker(void *arg)
1510 {
1511         struct camdd_dev *dev = arg;
1512         struct camdd_buf *buf;
1513         struct timespec ts, *kq_ts;
1514
1515         ts.tv_sec = 0;
1516         ts.tv_nsec = 0;
1517
1518         pthread_mutex_lock(&dev->mutex);
1519
1520         dev->flags |= CAMDD_DEV_FLAG_ACTIVE;
1521
1522         for (;;) {
1523                 struct kevent ke;
1524                 int retval = 0;
1525
1526                 /*
1527                  * XXX KDM check the reorder queue depth?
1528                  */
1529                 if (dev->write_dev == 0) {
1530                         uint32_t our_depth, peer_depth, peer_bytes, our_bytes;
1531                         uint32_t target_depth = dev->target_queue_depth;
1532                         uint32_t peer_target_depth =
1533                             dev->peer_dev->target_queue_depth;
1534                         uint32_t peer_blocksize = dev->peer_dev->blocksize;
1535
1536                         camdd_get_depth(dev, &our_depth, &peer_depth,
1537                                         &our_bytes, &peer_bytes);
1538
1539 #if 0
1540                         while (((our_depth < target_depth)
1541                              && (peer_depth < peer_target_depth))
1542                             || ((peer_bytes + our_bytes) <
1543                                  (peer_blocksize * 2))) {
1544 #endif
1545                         while (((our_depth + peer_depth) <
1546                                 (target_depth + peer_target_depth))
1547                             || ((peer_bytes + our_bytes) <
1548                                 (peer_blocksize * 3))) {
1549
1550                                 retval = camdd_queue(dev, NULL);
1551                                 if (retval == 1)
1552                                         break;
1553                                 else if (retval != 0) {
1554                                         error_exit = 1;
1555                                         goto bailout;
1556                                 }
1557
1558                                 camdd_get_depth(dev, &our_depth, &peer_depth,
1559                                                 &our_bytes, &peer_bytes);
1560                         }
1561                 }
1562                 /*
1563                  * See if we have any I/O that is ready to execute.
1564                  */
1565                 buf = STAILQ_FIRST(&dev->run_queue);
1566                 if (buf != NULL) {
1567                         while (dev->target_queue_depth > dev->cur_active_io) {
1568                                 retval = dev->run(dev);
1569                                 if (retval == -1) {
1570                                         dev->flags |= CAMDD_DEV_FLAG_EOF;
1571                                         error_exit = 1;
1572                                         break;
1573                                 } else if (retval != 0) {
1574                                         break;
1575                                 }
1576                         }
1577                 }
1578
1579                 /*
1580                  * We've reached EOF, or our partner has reached EOF.
1581                  */
1582                 if ((dev->flags & CAMDD_DEV_FLAG_EOF)
1583                  || (dev->flags & CAMDD_DEV_FLAG_PEER_EOF)) {
1584                         if (dev->write_dev != 0) {
1585                                 if ((STAILQ_EMPTY(&dev->work_queue))
1586                                  && (dev->num_run_queue == 0)
1587                                  && (dev->cur_active_io == 0)) {
1588                                         goto bailout;
1589                                 }
1590                         } else {
1591                                 /*
1592                                  * If we're the reader, and the writer
1593                                  * got EOF, he is already done.  If we got
1594                                  * the EOF, then we need to wait until
1595                                  * everything is flushed out for the writer.
1596                                  */
1597                                 if (dev->flags & CAMDD_DEV_FLAG_PEER_EOF) {
1598                                         goto bailout;
1599                                 } else if ((dev->num_peer_work_queue == 0)
1600                                         && (dev->num_peer_done_queue == 0)
1601                                         && (dev->cur_active_io == 0)
1602                                         && (dev->num_run_queue == 0)) {
1603                                         goto bailout;
1604                                 }
1605                         }
1606                         /*
1607                          * XXX KDM need to do something about the pending
1608                          * queue and cleanup resources.
1609                          */
1610                 } 
1611
1612                 if ((dev->write_dev == 0)
1613                  && (dev->cur_active_io == 0)
1614                  && (dev->peer_bytes_queued < dev->peer_dev->blocksize))
1615                         kq_ts = &ts;
1616                 else
1617                         kq_ts = NULL;
1618
1619                 /*
1620                  * Run kevent to see if there are events to process.
1621                  */
1622                 pthread_mutex_unlock(&dev->mutex);
1623                 retval = kevent(dev->kq, NULL, 0, &ke, 1, kq_ts);
1624                 pthread_mutex_lock(&dev->mutex);
1625                 if (retval == -1) {
1626                         warn("%s: error returned from kevent",__func__);
1627                         goto bailout;
1628                 } else if (retval != 0) {
1629                         switch (ke.filter) {
1630                         case EVFILT_READ:
1631                                 if (dev->fetch != NULL) {
1632                                         retval = dev->fetch(dev);
1633                                         if (retval == -1) {
1634                                                 error_exit = 1;
1635                                                 goto bailout;
1636                                         }
1637                                 }
1638                                 break;
1639                         case EVFILT_SIGNAL:
1640                                 /*
1641                                  * We register for this so we don't get
1642                                  * an error as a result of a SIGINFO or a
1643                                  * SIGINT.  It will actually get handled
1644                                  * by the signal handler.  If we get a
1645                                  * SIGINT, bail out without printing an
1646                                  * error message.  Any other signals 
1647                                  * will result in the error message above.
1648                                  */
1649                                 if (ke.ident == SIGINT)
1650                                         goto bailout;
1651                                 break;
1652                         case EVFILT_USER:
1653                                 retval = 0;
1654                                 /*
1655                                  * Check to see if the other thread has
1656                                  * queued any I/O for us to do.  (In this
1657                                  * case we're the writer.)
1658                                  */
1659                                 for (buf = STAILQ_FIRST(&dev->work_queue);
1660                                      buf != NULL;
1661                                      buf = STAILQ_FIRST(&dev->work_queue)) {
1662                                         STAILQ_REMOVE_HEAD(&dev->work_queue,
1663                                                            work_links);
1664                                         retval = camdd_queue(dev, buf);
1665                                         /*
1666                                          * We keep going unless we get an
1667                                          * actual error.  If we get EOF, we
1668                                          * still want to remove the buffers
1669                                          * from the queue and send the back
1670                                          * to the reader thread.
1671                                          */
1672                                         if (retval == -1) {
1673                                                 error_exit = 1;
1674                                                 goto bailout;
1675                                         } else
1676                                                 retval = 0;
1677                                 }
1678
1679                                 /*
1680                                  * Next check to see if the other thread has
1681                                  * queued any completed buffers back to us.
1682                                  * (In this case we're the reader.)
1683                                  */
1684                                 for (buf = STAILQ_FIRST(&dev->peer_done_queue);
1685                                      buf != NULL;
1686                                      buf = STAILQ_FIRST(&dev->peer_done_queue)){
1687                                         STAILQ_REMOVE_HEAD(
1688                                             &dev->peer_done_queue, work_links);
1689                                         dev->num_peer_done_queue--;
1690                                         camdd_peer_done(buf);
1691                                 }
1692                                 break;
1693                         default:
1694                                 warnx("%s: unknown kevent filter %d",
1695                                       __func__, ke.filter);
1696                                 break;
1697                         }
1698                 }
1699         }
1700
1701 bailout:
1702
1703         dev->flags &= ~CAMDD_DEV_FLAG_ACTIVE;
1704
1705         /* XXX KDM cleanup resources here? */
1706
1707         pthread_mutex_unlock(&dev->mutex);
1708
1709         need_exit = 1;
1710         sem_post(&camdd_sem);
1711
1712         return (NULL);
1713 }
1714
1715 /*
1716  * Simplistic translation of CCB status to our local status.
1717  */
1718 camdd_buf_status
1719 camdd_ccb_status(union ccb *ccb)
1720 {
1721         camdd_buf_status status = CAMDD_STATUS_NONE;
1722         cam_status ccb_status;
1723
1724         ccb_status = ccb->ccb_h.status & CAM_STATUS_MASK;
1725
1726         switch (ccb_status) {
1727         case CAM_REQ_CMP: {
1728                 if (ccb->csio.resid == 0) {
1729                         status = CAMDD_STATUS_OK;
1730                 } else if (ccb->csio.dxfer_len > ccb->csio.resid) {
1731                         status = CAMDD_STATUS_SHORT_IO;
1732                 } else {
1733                         status = CAMDD_STATUS_EOF;
1734                 }
1735                 break;
1736         }
1737         case CAM_SCSI_STATUS_ERROR: {
1738                 switch (ccb->csio.scsi_status) {
1739                 case SCSI_STATUS_OK:
1740                 case SCSI_STATUS_COND_MET:
1741                 case SCSI_STATUS_INTERMED:
1742                 case SCSI_STATUS_INTERMED_COND_MET:
1743                         status = CAMDD_STATUS_OK;
1744                         break;
1745                 case SCSI_STATUS_CMD_TERMINATED:
1746                 case SCSI_STATUS_CHECK_COND:
1747                 case SCSI_STATUS_QUEUE_FULL:
1748                 case SCSI_STATUS_BUSY:
1749                 case SCSI_STATUS_RESERV_CONFLICT:
1750                 default:
1751                         status = CAMDD_STATUS_ERROR;
1752                         break;
1753                 }
1754                 break;
1755         }
1756         default:
1757                 status = CAMDD_STATUS_ERROR;
1758                 break;
1759         }
1760
1761         return (status);
1762 }
1763
1764 /*
1765  * Queue a buffer to our peer's work thread for writing.
1766  *
1767  * Returns 0 for success, -1 for failure, 1 if the other thread exited.
1768  */
1769 int
1770 camdd_queue_peer_buf(struct camdd_dev *dev, struct camdd_buf *buf)
1771 {
1772         struct kevent ke;
1773         STAILQ_HEAD(, camdd_buf) local_queue;
1774         struct camdd_buf *buf1, *buf2;
1775         struct camdd_buf_data *data = NULL;
1776         uint64_t peer_bytes_queued = 0;
1777         int active = 1;
1778         int retval = 0;
1779
1780         STAILQ_INIT(&local_queue);
1781
1782         /*
1783          * Since we're the reader, we need to queue our I/O to the writer
1784          * in sequential order in order to make sure it gets written out
1785          * in sequential order.
1786          *
1787          * Check the next expected I/O starting offset.  If this doesn't
1788          * match, put it on the reorder queue.
1789          */
1790         if ((buf->lba * dev->sector_size) != dev->next_completion_pos_bytes) {
1791
1792                 /*
1793                  * If there is nothing on the queue, there is no sorting
1794                  * needed.
1795                  */
1796                 if (STAILQ_EMPTY(&dev->reorder_queue)) {
1797                         STAILQ_INSERT_TAIL(&dev->reorder_queue, buf, links);
1798                         dev->num_reorder_queue++;
1799                         goto bailout;
1800                 }
1801
1802                 /*
1803                  * Sort in ascending order by starting LBA.  There should
1804                  * be no identical LBAs.
1805                  */
1806                 for (buf1 = STAILQ_FIRST(&dev->reorder_queue); buf1 != NULL;
1807                      buf1 = buf2) {
1808                         buf2 = STAILQ_NEXT(buf1, links);
1809                         if (buf->lba < buf1->lba) {
1810                                 /*
1811                                  * If we're less than the first one, then
1812                                  * we insert at the head of the list
1813                                  * because this has to be the first element
1814                                  * on the list.
1815                                  */
1816                                 STAILQ_INSERT_HEAD(&dev->reorder_queue,
1817                                                    buf, links);
1818                                 dev->num_reorder_queue++;
1819                                 break;
1820                         } else if (buf->lba > buf1->lba) {
1821                                 if (buf2 == NULL) {
1822                                         STAILQ_INSERT_TAIL(&dev->reorder_queue, 
1823                                             buf, links);
1824                                         dev->num_reorder_queue++;
1825                                         break;
1826                                 } else if (buf->lba < buf2->lba) {
1827                                         STAILQ_INSERT_AFTER(&dev->reorder_queue,
1828                                             buf1, buf, links);
1829                                         dev->num_reorder_queue++;
1830                                         break;
1831                                 }
1832                         } else {
1833                                 errx(1, "Found buffers with duplicate LBA %ju!",
1834                                      buf->lba);
1835                         }
1836                 }
1837                 goto bailout;
1838         } else {
1839
1840                 /*
1841                  * We're the next expected I/O completion, so put ourselves
1842                  * on the local queue to be sent to the writer.  We use
1843                  * work_links here so that we can queue this to the 
1844                  * peer_work_queue before taking the buffer off of the
1845                  * local_queue.
1846                  */
1847                 dev->next_completion_pos_bytes += buf->len;
1848                 STAILQ_INSERT_TAIL(&local_queue, buf, work_links);
1849
1850                 /*
1851                  * Go through the reorder queue looking for more sequential
1852                  * I/O and add it to the local queue.
1853                  */
1854                 for (buf1 = STAILQ_FIRST(&dev->reorder_queue); buf1 != NULL;
1855                      buf1 = STAILQ_FIRST(&dev->reorder_queue)) {
1856                         /*
1857                          * As soon as we see an I/O that is out of sequence,
1858                          * we're done.
1859                          */
1860                         if ((buf1->lba * dev->sector_size) !=
1861                              dev->next_completion_pos_bytes)
1862                                 break;
1863
1864                         STAILQ_REMOVE_HEAD(&dev->reorder_queue, links);
1865                         dev->num_reorder_queue--;
1866                         STAILQ_INSERT_TAIL(&local_queue, buf1, work_links);
1867                         dev->next_completion_pos_bytes += buf1->len;
1868                 }
1869         }
1870
1871         /*
1872          * Setup the event to let the other thread know that it has work
1873          * pending.
1874          */
1875         EV_SET(&ke, (uintptr_t)&dev->peer_dev->work_queue, EVFILT_USER, 0,
1876                NOTE_TRIGGER, 0, NULL);
1877
1878         /*
1879          * Put this on our shadow queue so that we know what we've queued
1880          * to the other thread.
1881          */
1882         STAILQ_FOREACH_SAFE(buf1, &local_queue, work_links, buf2) {
1883                 if (buf1->buf_type != CAMDD_BUF_DATA) {
1884                         errx(1, "%s: should have a data buffer, not an "
1885                             "indirect buffer", __func__);
1886                 }
1887                 data = &buf1->buf_type_spec.data;
1888
1889                 /*
1890                  * We only need to send one EOF to the writer, and don't
1891                  * need to continue sending EOFs after that.
1892                  */
1893                 if (buf1->status == CAMDD_STATUS_EOF) {
1894                         if (dev->flags & CAMDD_DEV_FLAG_EOF_SENT) {
1895                                 STAILQ_REMOVE(&local_queue, buf1, camdd_buf,
1896                                     work_links);
1897                                 camdd_release_buf(buf1);
1898                                 retval = 1;
1899                                 continue;
1900                         }
1901                         dev->flags |= CAMDD_DEV_FLAG_EOF_SENT;
1902                 }
1903
1904
1905                 STAILQ_INSERT_TAIL(&dev->peer_work_queue, buf1, links);
1906                 peer_bytes_queued += (data->fill_len - data->resid);
1907                 dev->peer_bytes_queued += (data->fill_len - data->resid);
1908                 dev->num_peer_work_queue++;
1909         }
1910
1911         if (STAILQ_FIRST(&local_queue) == NULL)
1912                 goto bailout;
1913
1914         /*
1915          * Drop our mutex and pick up the other thread's mutex.  We need to
1916          * do this to avoid deadlocks.
1917          */
1918         pthread_mutex_unlock(&dev->mutex);
1919         pthread_mutex_lock(&dev->peer_dev->mutex);
1920
1921         if (dev->peer_dev->flags & CAMDD_DEV_FLAG_ACTIVE) {
1922                 /*
1923                  * Put the buffers on the other thread's incoming work queue.
1924                  */
1925                 for (buf1 = STAILQ_FIRST(&local_queue); buf1 != NULL;
1926                      buf1 = STAILQ_FIRST(&local_queue)) {
1927                         STAILQ_REMOVE_HEAD(&local_queue, work_links);
1928                         STAILQ_INSERT_TAIL(&dev->peer_dev->work_queue, buf1,
1929                                            work_links);
1930                 }
1931                 /*
1932                  * Send an event to the other thread's kqueue to let it know
1933                  * that there is something on the work queue.
1934                  */
1935                 retval = kevent(dev->peer_dev->kq, &ke, 1, NULL, 0, NULL);
1936                 if (retval == -1)
1937                         warn("%s: unable to add peer work_queue kevent",
1938                              __func__);
1939                 else
1940                         retval = 0;
1941         } else
1942                 active = 0;
1943
1944         pthread_mutex_unlock(&dev->peer_dev->mutex);
1945         pthread_mutex_lock(&dev->mutex);
1946
1947         /*
1948          * If the other side isn't active, run through the queue and
1949          * release all of the buffers.
1950          */
1951         if (active == 0) {
1952                 for (buf1 = STAILQ_FIRST(&local_queue); buf1 != NULL;
1953                      buf1 = STAILQ_FIRST(&local_queue)) {
1954                         STAILQ_REMOVE_HEAD(&local_queue, work_links);
1955                         STAILQ_REMOVE(&dev->peer_work_queue, buf1, camdd_buf,
1956                                       links);
1957                         dev->num_peer_work_queue--;
1958                         camdd_release_buf(buf1);
1959                 }
1960                 dev->peer_bytes_queued -= peer_bytes_queued;
1961                 retval = 1;
1962         }
1963
1964 bailout:
1965         return (retval);
1966 }
1967
1968 /*
1969  * Return a buffer to the reader thread when we have completed writing it.
1970  */
1971 int
1972 camdd_complete_peer_buf(struct camdd_dev *dev, struct camdd_buf *peer_buf)
1973 {
1974         struct kevent ke;
1975         int retval = 0;
1976
1977         /*
1978          * Setup the event to let the other thread know that we have
1979          * completed a buffer.
1980          */
1981         EV_SET(&ke, (uintptr_t)&dev->peer_dev->peer_done_queue, EVFILT_USER, 0,
1982                NOTE_TRIGGER, 0, NULL);
1983
1984         /*
1985          * Drop our lock and acquire the other thread's lock before
1986          * manipulating 
1987          */
1988         pthread_mutex_unlock(&dev->mutex);
1989         pthread_mutex_lock(&dev->peer_dev->mutex);
1990
1991         /*
1992          * Put the buffer on the reader thread's peer done queue now that
1993          * we have completed it.
1994          */
1995         STAILQ_INSERT_TAIL(&dev->peer_dev->peer_done_queue, peer_buf,
1996                            work_links);
1997         dev->peer_dev->num_peer_done_queue++;
1998
1999         /*
2000          * Send an event to the peer thread to let it know that we've added
2001          * something to its peer done queue.
2002          */
2003         retval = kevent(dev->peer_dev->kq, &ke, 1, NULL, 0, NULL);
2004         if (retval == -1)
2005                 warn("%s: unable to add peer_done_queue kevent", __func__);
2006         else
2007                 retval = 0;
2008
2009         /*
2010          * Drop the other thread's lock and reacquire ours.
2011          */
2012         pthread_mutex_unlock(&dev->peer_dev->mutex);
2013         pthread_mutex_lock(&dev->mutex);
2014
2015         return (retval);
2016 }
2017
2018 /*
2019  * Free a buffer that was written out by the writer thread and returned to
2020  * the reader thread.
2021  */
2022 void
2023 camdd_peer_done(struct camdd_buf *buf)
2024 {
2025         struct camdd_dev *dev;
2026         struct camdd_buf_data *data;
2027
2028         dev = buf->dev;
2029         if (buf->buf_type != CAMDD_BUF_DATA) {
2030                 errx(1, "%s: should have a data buffer, not an "
2031                     "indirect buffer", __func__);
2032         }
2033
2034         data = &buf->buf_type_spec.data;
2035
2036         STAILQ_REMOVE(&dev->peer_work_queue, buf, camdd_buf, links);
2037         dev->num_peer_work_queue--;
2038         dev->peer_bytes_queued -= (data->fill_len - data->resid);
2039
2040         if (buf->status == CAMDD_STATUS_EOF)
2041                 dev->flags |= CAMDD_DEV_FLAG_PEER_EOF;
2042
2043         STAILQ_INSERT_TAIL(&dev->free_queue, buf, links);
2044 }
2045
2046 /*
2047  * Assumes caller holds the lock for this device.
2048  */
2049 void
2050 camdd_complete_buf(struct camdd_dev *dev, struct camdd_buf *buf,
2051                    int *error_count)
2052 {
2053         int retval = 0;
2054
2055         /*
2056          * If we're the reader, we need to send the completed I/O
2057          * to the writer.  If we're the writer, we need to just
2058          * free up resources, or let the reader know if we've
2059          * encountered an error.
2060          */
2061         if (dev->write_dev == 0) {
2062                 retval = camdd_queue_peer_buf(dev, buf);
2063                 if (retval != 0)
2064                         (*error_count)++;
2065         } else {
2066                 struct camdd_buf *tmp_buf, *next_buf;
2067
2068                 STAILQ_FOREACH_SAFE(tmp_buf, &buf->src_list, src_links,
2069                                     next_buf) {
2070                         struct camdd_buf *src_buf;
2071                         struct camdd_buf_indirect *indirect;
2072
2073                         STAILQ_REMOVE(&buf->src_list, tmp_buf,
2074                                       camdd_buf, src_links);
2075
2076                         tmp_buf->status = buf->status;
2077
2078                         if (tmp_buf->buf_type == CAMDD_BUF_DATA) {
2079                                 camdd_complete_peer_buf(dev, tmp_buf);
2080                                 continue;
2081                         }
2082
2083                         indirect = &tmp_buf->buf_type_spec.indirect;
2084                         src_buf = indirect->src_buf;
2085                         src_buf->refcount--;
2086                         /*
2087                          * XXX KDM we probably need to account for
2088                          * exactly how many bytes we were able to
2089                          * write.  Allocate the residual to the
2090                          * first N buffers?  Or just track the
2091                          * number of bytes written?  Right now the reader
2092                          * doesn't do anything with a residual.
2093                          */
2094                         src_buf->status = buf->status;
2095                         if (src_buf->refcount <= 0)
2096                                 camdd_complete_peer_buf(dev, src_buf);
2097                         STAILQ_INSERT_TAIL(&dev->free_indirect_queue,
2098                                            tmp_buf, links);
2099                 }
2100
2101                 STAILQ_INSERT_TAIL(&dev->free_queue, buf, links);
2102         }
2103 }
2104
2105 /*
2106  * Fetch all completed commands from the pass(4) device.
2107  *
2108  * Returns the number of commands received, or -1 if any of the commands
2109  * completed with an error.  Returns 0 if no commands are available.
2110  */
2111 int
2112 camdd_pass_fetch(struct camdd_dev *dev)
2113 {
2114         struct camdd_dev_pass *pass_dev = &dev->dev_spec.pass;
2115         union ccb ccb;
2116         int retval = 0, num_fetched = 0, error_count = 0;
2117
2118         pthread_mutex_unlock(&dev->mutex);
2119         /*
2120          * XXX KDM we don't distinguish between EFAULT and ENOENT.
2121          */
2122         while ((retval = ioctl(pass_dev->dev->fd, CAMIOGET, &ccb)) != -1) {
2123                 struct camdd_buf *buf;
2124                 struct camdd_buf_data *data;
2125                 cam_status ccb_status;
2126                 union ccb *buf_ccb;
2127
2128                 buf = ccb.ccb_h.ccb_buf;
2129                 data = &buf->buf_type_spec.data;
2130                 buf_ccb = &data->ccb;
2131
2132                 num_fetched++;
2133
2134                 /*
2135                  * Copy the CCB back out so we get status, sense data, etc.
2136                  */
2137                 bcopy(&ccb, buf_ccb, sizeof(ccb));
2138
2139                 pthread_mutex_lock(&dev->mutex);
2140
2141                 /*
2142                  * We're now done, so take this off the active queue.
2143                  */
2144                 STAILQ_REMOVE(&dev->active_queue, buf, camdd_buf, links);
2145                 dev->cur_active_io--;
2146
2147                 ccb_status = ccb.ccb_h.status & CAM_STATUS_MASK;
2148                 if (ccb_status != CAM_REQ_CMP) {
2149                         cam_error_print(pass_dev->dev, &ccb, CAM_ESF_ALL,
2150                                         CAM_EPF_ALL, stderr);
2151                 }
2152
2153                 data->resid = ccb.csio.resid;
2154                 dev->bytes_transferred += (ccb.csio.dxfer_len - ccb.csio.resid);
2155
2156                 if (buf->status == CAMDD_STATUS_NONE)
2157                         buf->status = camdd_ccb_status(&ccb);
2158                 if (buf->status == CAMDD_STATUS_ERROR)
2159                         error_count++;
2160                 else if (buf->status == CAMDD_STATUS_EOF) {
2161                         /*
2162                          * Once we queue this buffer to our partner thread,
2163                          * he will know that we've hit EOF.
2164                          */
2165                         dev->flags |= CAMDD_DEV_FLAG_EOF;
2166                 }
2167
2168                 camdd_complete_buf(dev, buf, &error_count);
2169
2170                 /*
2171                  * Unlock in preparation for the ioctl call.
2172                  */
2173                 pthread_mutex_unlock(&dev->mutex);
2174         }
2175
2176         pthread_mutex_lock(&dev->mutex);
2177
2178         if (error_count > 0)
2179                 return (-1);
2180         else
2181                 return (num_fetched);
2182 }
2183
2184 /*
2185  * Returns -1 for error, 0 for success/continue, and 1 for resource
2186  * shortage/stop processing.
2187  */
2188 int
2189 camdd_file_run(struct camdd_dev *dev)
2190 {
2191         struct camdd_dev_file *file_dev = &dev->dev_spec.file;
2192         struct camdd_buf_data *data;
2193         struct camdd_buf *buf;
2194         off_t io_offset;
2195         int retval = 0, write_dev = dev->write_dev;
2196         int error_count = 0, no_resources = 0, double_buf_needed = 0;
2197         uint32_t num_sectors = 0, db_len = 0;
2198
2199         buf = STAILQ_FIRST(&dev->run_queue);
2200         if (buf == NULL) {
2201                 no_resources = 1;
2202                 goto bailout;
2203         } else if ((dev->write_dev == 0)
2204                 && (dev->flags & (CAMDD_DEV_FLAG_EOF |
2205                                   CAMDD_DEV_FLAG_EOF_SENT))) {
2206                 STAILQ_REMOVE(&dev->run_queue, buf, camdd_buf, links);
2207                 dev->num_run_queue--;
2208                 buf->status = CAMDD_STATUS_EOF;
2209                 error_count++;
2210                 goto bailout;
2211         }
2212
2213         /*
2214          * If we're writing, we need to go through the source buffer list
2215          * and create an S/G list.
2216          */
2217         if (write_dev != 0) {
2218                 retval = camdd_buf_sg_create(buf, /*iovec*/ 1,
2219                     dev->sector_size, &num_sectors, &double_buf_needed);
2220                 if (retval != 0) {
2221                         no_resources = 1;
2222                         goto bailout;
2223                 }
2224         }
2225
2226         STAILQ_REMOVE(&dev->run_queue, buf, camdd_buf, links);
2227         dev->num_run_queue--;
2228
2229         data = &buf->buf_type_spec.data;
2230
2231         /*
2232          * pread(2) and pwrite(2) offsets are byte offsets.
2233          */
2234         io_offset = buf->lba * dev->sector_size;
2235
2236         /*
2237          * Unlock the mutex while we read or write.
2238          */
2239         pthread_mutex_unlock(&dev->mutex);
2240
2241         /*
2242          * Note that we don't need to double buffer if we're the reader
2243          * because in that case, we have allocated a single buffer of
2244          * sufficient size to do the read.  This copy is necessary on
2245          * writes because if one of the components of the S/G list is not
2246          * a sector size multiple, the kernel will reject the write.  This
2247          * is unfortunate but not surprising.  So this will make sure that
2248          * we're using a single buffer that is a multiple of the sector size.
2249          */
2250         if ((double_buf_needed != 0)
2251          && (data->sg_count > 1)
2252          && (write_dev != 0)) {
2253                 uint32_t cur_offset;
2254                 int i;
2255
2256                 if (file_dev->tmp_buf == NULL)
2257                         file_dev->tmp_buf = calloc(dev->blocksize, 1);
2258                 if (file_dev->tmp_buf == NULL) {
2259                         buf->status = CAMDD_STATUS_ERROR;
2260                         error_count++;
2261                         pthread_mutex_lock(&dev->mutex);
2262                         goto bailout;
2263                 }
2264                 for (i = 0, cur_offset = 0; i < data->sg_count; i++) {
2265                         bcopy(data->iovec[i].iov_base,
2266                             &file_dev->tmp_buf[cur_offset],
2267                             data->iovec[i].iov_len);
2268                         cur_offset += data->iovec[i].iov_len;
2269                 }
2270                 db_len = cur_offset;
2271         }
2272
2273         if (file_dev->file_flags & CAMDD_FF_CAN_SEEK) {
2274                 if (write_dev == 0) {
2275                         /*
2276                          * XXX KDM is there any way we would need a S/G
2277                          * list here?
2278                          */
2279                         retval = pread(file_dev->fd, data->buf,
2280                             buf->len, io_offset);
2281                 } else {
2282                         if (double_buf_needed != 0) {
2283                                 retval = pwrite(file_dev->fd, file_dev->tmp_buf,
2284                                     db_len, io_offset);
2285                         } else if (data->sg_count == 0) {
2286                                 retval = pwrite(file_dev->fd, data->buf,
2287                                     data->fill_len, io_offset);
2288                         } else {
2289                                 retval = pwritev(file_dev->fd, data->iovec,
2290                                     data->sg_count, io_offset);
2291                         }
2292                 }
2293         } else {
2294                 if (write_dev == 0) {
2295                         /*
2296                          * XXX KDM is there any way we would need a S/G
2297                          * list here?
2298                          */
2299                         retval = read(file_dev->fd, data->buf, buf->len);
2300                 } else {
2301                         if (double_buf_needed != 0) {
2302                                 retval = write(file_dev->fd, file_dev->tmp_buf,
2303                                     db_len);
2304                         } else if (data->sg_count == 0) {
2305                                 retval = write(file_dev->fd, data->buf,
2306                                     data->fill_len);
2307                         } else {
2308                                 retval = writev(file_dev->fd, data->iovec,
2309                                     data->sg_count);
2310                         }
2311                 }
2312         }
2313
2314         /* We're done, re-acquire the lock */
2315         pthread_mutex_lock(&dev->mutex);
2316
2317         if (retval >= (ssize_t)data->fill_len) {
2318                 /*
2319                  * If the bytes transferred is more than the request size,
2320                  * that indicates an overrun, which should only happen at
2321                  * the end of a transfer if we have to round up to a sector
2322                  * boundary.
2323                  */
2324                 if (buf->status == CAMDD_STATUS_NONE)
2325                         buf->status = CAMDD_STATUS_OK;
2326                 data->resid = 0;
2327                 dev->bytes_transferred += retval;
2328         } else if (retval == -1) {
2329                 warn("Error %s %s", (write_dev) ? "writing to" :
2330                     "reading from", file_dev->filename);
2331
2332                 buf->status = CAMDD_STATUS_ERROR;
2333                 data->resid = data->fill_len;
2334                 error_count++;
2335
2336                 if (dev->debug == 0)
2337                         goto bailout;
2338
2339                 if ((double_buf_needed != 0)
2340                  && (write_dev != 0)) {
2341                         fprintf(stderr, "%s: fd %d, DB buf %p, len %u lba %ju "
2342                             "offset %ju\n", __func__, file_dev->fd,
2343                             file_dev->tmp_buf, db_len, (uintmax_t)buf->lba,
2344                             (uintmax_t)io_offset);
2345                 } else if (data->sg_count == 0) {
2346                         fprintf(stderr, "%s: fd %d, buf %p, len %u, lba %ju "
2347                             "offset %ju\n", __func__, file_dev->fd, data->buf,
2348                             data->fill_len, (uintmax_t)buf->lba,
2349                             (uintmax_t)io_offset);
2350                 } else {
2351                         int i;
2352
2353                         fprintf(stderr, "%s: fd %d, len %u, lba %ju "
2354                             "offset %ju\n", __func__, file_dev->fd, 
2355                             data->fill_len, (uintmax_t)buf->lba,
2356                             (uintmax_t)io_offset);
2357
2358                         for (i = 0; i < data->sg_count; i++) {
2359                                 fprintf(stderr, "index %d ptr %p len %zu\n",
2360                                     i, data->iovec[i].iov_base,
2361                                     data->iovec[i].iov_len);
2362                         }
2363                 }
2364         } else if (retval == 0) {
2365                 buf->status = CAMDD_STATUS_EOF;
2366                 if (dev->debug != 0)
2367                         printf("%s: got EOF from %s!\n", __func__,
2368                             file_dev->filename);
2369                 data->resid = data->fill_len;
2370                 error_count++;
2371         } else if (retval < (ssize_t)data->fill_len) {
2372                 if (buf->status == CAMDD_STATUS_NONE)
2373                         buf->status = CAMDD_STATUS_SHORT_IO;
2374                 data->resid = data->fill_len - retval;
2375                 dev->bytes_transferred += retval;
2376         }
2377
2378 bailout:
2379         if (buf != NULL) {
2380                 if (buf->status == CAMDD_STATUS_EOF) {
2381                         struct camdd_buf *buf2;
2382                         dev->flags |= CAMDD_DEV_FLAG_EOF;
2383                         STAILQ_FOREACH(buf2, &dev->run_queue, links)
2384                                 buf2->status = CAMDD_STATUS_EOF;
2385                 }
2386
2387                 camdd_complete_buf(dev, buf, &error_count);
2388         }
2389
2390         if (error_count != 0)
2391                 return (-1);
2392         else if (no_resources != 0)
2393                 return (1);
2394         else
2395                 return (0);
2396 }
2397
2398 /*
2399  * Execute one command from the run queue.  Returns 0 for success, 1 for
2400  * stop processing, and -1 for error.
2401  */
2402 int
2403 camdd_pass_run(struct camdd_dev *dev)
2404 {
2405         struct camdd_buf *buf = NULL;
2406         struct camdd_dev_pass *pass_dev = &dev->dev_spec.pass;
2407         struct camdd_buf_data *data;
2408         uint32_t num_blocks, sectors_used = 0;
2409         union ccb *ccb;
2410         int retval = 0, is_write = dev->write_dev;
2411         int double_buf_needed = 0;
2412
2413         buf = STAILQ_FIRST(&dev->run_queue);
2414         if (buf == NULL) {
2415                 retval = 1;
2416                 goto bailout;
2417         }
2418
2419         /*
2420          * If we're writing, we need to go through the source buffer list
2421          * and create an S/G list.
2422          */
2423         if (is_write != 0) {
2424                 retval = camdd_buf_sg_create(buf, /*iovec*/ 0,dev->sector_size,
2425                     &sectors_used, &double_buf_needed);
2426                 if (retval != 0) {
2427                         retval = -1;
2428                         goto bailout;
2429                 }
2430         }
2431
2432         STAILQ_REMOVE(&dev->run_queue, buf, camdd_buf, links);
2433         dev->num_run_queue--;
2434
2435         data = &buf->buf_type_spec.data;
2436
2437         ccb = &data->ccb;
2438         CCB_CLEAR_ALL_EXCEPT_HDR(&ccb->csio);
2439
2440         /*
2441          * In almost every case the number of blocks should be the device
2442          * block size.  The exception may be at the end of an I/O stream
2443          * for a partial block or at the end of a device.
2444          */
2445         if (is_write != 0)
2446                 num_blocks = sectors_used;
2447         else
2448                 num_blocks = data->fill_len / pass_dev->block_len;
2449
2450         scsi_read_write(&ccb->csio,
2451                         /*retries*/ dev->retry_count,
2452                         /*cbfcnp*/ NULL,
2453                         /*tag_action*/ MSG_SIMPLE_Q_TAG,
2454                         /*readop*/ (dev->write_dev == 0) ? SCSI_RW_READ :
2455                                    SCSI_RW_WRITE,
2456                         /*byte2*/ 0,
2457                         /*minimum_cmd_size*/ dev->min_cmd_size,
2458                         /*lba*/ buf->lba,
2459                         /*block_count*/ num_blocks,
2460                         /*data_ptr*/ (data->sg_count != 0) ?
2461                                      (uint8_t *)data->segs : data->buf,
2462                         /*dxfer_len*/ (num_blocks * pass_dev->block_len),
2463                         /*sense_len*/ SSD_FULL_SIZE,
2464                         /*timeout*/ dev->io_timeout);
2465
2466         /* Disable freezing the device queue */
2467         ccb->ccb_h.flags |= CAM_DEV_QFRZDIS;
2468
2469         if (dev->retry_count != 0)
2470                 ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER;
2471
2472         if (data->sg_count != 0) {
2473                 ccb->csio.sglist_cnt = data->sg_count;
2474                 ccb->ccb_h.flags |= CAM_DATA_SG;
2475         }
2476
2477         /*
2478          * Store a pointer to the buffer in the CCB.  The kernel will
2479          * restore this when we get it back, and we'll use it to identify
2480          * the buffer this CCB came from.
2481          */
2482         ccb->ccb_h.ccb_buf = buf;
2483
2484         /*
2485          * Unlock our mutex in preparation for issuing the ioctl.
2486          */
2487         pthread_mutex_unlock(&dev->mutex);
2488         /*
2489          * Queue the CCB to the pass(4) driver.
2490          */
2491         if (ioctl(pass_dev->dev->fd, CAMIOQUEUE, ccb) == -1) {
2492                 pthread_mutex_lock(&dev->mutex);
2493
2494                 warn("%s: error sending CAMIOQUEUE ioctl to %s%u", __func__,
2495                      pass_dev->dev->device_name, pass_dev->dev->dev_unit_num);
2496                 warn("%s: CCB address is %p", __func__, ccb);
2497                 retval = -1;
2498
2499                 STAILQ_INSERT_TAIL(&dev->free_queue, buf, links);
2500         } else {
2501                 pthread_mutex_lock(&dev->mutex);
2502
2503                 dev->cur_active_io++;
2504                 STAILQ_INSERT_TAIL(&dev->active_queue, buf, links);
2505         }
2506
2507 bailout:
2508         return (retval);
2509 }
2510
2511 int
2512 camdd_get_next_lba_len(struct camdd_dev *dev, uint64_t *lba, ssize_t *len)
2513 {
2514         struct camdd_dev_pass *pass_dev;
2515         uint32_t num_blocks;
2516         int retval = 0;
2517
2518         pass_dev = &dev->dev_spec.pass;
2519
2520         *lba = dev->next_io_pos_bytes / dev->sector_size;
2521         *len = dev->blocksize;
2522         num_blocks = *len / dev->sector_size;
2523
2524         /*
2525          * If max_sector is 0, then we have no set limit.  This can happen
2526          * if we're writing to a file in a filesystem, or reading from
2527          * something like /dev/zero.
2528          */
2529         if ((dev->max_sector != 0)
2530          || (dev->sector_io_limit != 0)) {
2531                 uint64_t max_sector;
2532
2533                 if ((dev->max_sector != 0)
2534                  && (dev->sector_io_limit != 0)) 
2535                         max_sector = min(dev->sector_io_limit, dev->max_sector);
2536                 else if (dev->max_sector != 0)
2537                         max_sector = dev->max_sector;
2538                 else
2539                         max_sector = dev->sector_io_limit;
2540
2541
2542                 /*
2543                  * Check to see whether we're starting off past the end of
2544                  * the device.  If so, we need to just send an EOF      
2545                  * notification to the writer.
2546                  */
2547                 if (*lba > max_sector) {
2548                         *len = 0;
2549                         retval = 1;
2550                 } else if (((*lba + num_blocks) > max_sector + 1)
2551                         || ((*lba + num_blocks) < *lba)) {
2552                         /*
2553                          * If we get here (but pass the first check), we
2554                          * can trim the request length down to go to the
2555                          * end of the device.
2556                          */
2557                         num_blocks = (max_sector + 1) - *lba;
2558                         *len = num_blocks * dev->sector_size;
2559                         retval = 1;
2560                 }
2561         }
2562
2563         dev->next_io_pos_bytes += *len;
2564
2565         return (retval);
2566 }
2567
2568 /*
2569  * Returns 0 for success, 1 for EOF detected, and -1 for failure.
2570  */
2571 int
2572 camdd_queue(struct camdd_dev *dev, struct camdd_buf *read_buf)
2573 {
2574         struct camdd_buf *buf = NULL;
2575         struct camdd_buf_data *data;
2576         struct camdd_dev_pass *pass_dev;
2577         size_t new_len;
2578         struct camdd_buf_data *rb_data;
2579         int is_write = dev->write_dev;
2580         int eof_flush_needed = 0;
2581         int retval = 0;
2582         int error;
2583
2584         pass_dev = &dev->dev_spec.pass;
2585
2586         /*
2587          * If we've gotten EOF or our partner has, we should not continue
2588          * queueing I/O.  If we're a writer, though, we should continue
2589          * to write any buffers that don't have EOF status.
2590          */
2591         if ((dev->flags & CAMDD_DEV_FLAG_EOF)
2592          || ((dev->flags & CAMDD_DEV_FLAG_PEER_EOF)
2593           && (is_write == 0))) {
2594                 /*
2595                  * Tell the worker thread that we have seen EOF.
2596                  */
2597                 retval = 1;
2598
2599                 /*
2600                  * If we're the writer, send the buffer back with EOF status.
2601                  */
2602                 if (is_write) {
2603                         read_buf->status = CAMDD_STATUS_EOF;
2604                         
2605                         error = camdd_complete_peer_buf(dev, read_buf);
2606                 }
2607                 goto bailout;
2608         }
2609
2610         if (is_write == 0) {
2611                 buf = camdd_get_buf(dev, CAMDD_BUF_DATA);
2612                 if (buf == NULL) {
2613                         retval = -1;
2614                         goto bailout;
2615                 }
2616                 data = &buf->buf_type_spec.data;
2617
2618                 retval = camdd_get_next_lba_len(dev, &buf->lba, &buf->len);
2619                 if (retval != 0) {
2620                         buf->status = CAMDD_STATUS_EOF;
2621
2622                         if ((buf->len == 0)
2623                          && ((dev->flags & (CAMDD_DEV_FLAG_EOF_SENT |
2624                              CAMDD_DEV_FLAG_EOF_QUEUED)) != 0)) {
2625                                 camdd_release_buf(buf);
2626                                 goto bailout;
2627                         }
2628                         dev->flags |= CAMDD_DEV_FLAG_EOF_QUEUED;
2629                 }
2630
2631                 data->fill_len = buf->len;
2632                 data->src_start_offset = buf->lba * dev->sector_size;
2633
2634                 /*
2635                  * Put this on the run queue.
2636                  */
2637                 STAILQ_INSERT_TAIL(&dev->run_queue, buf, links);
2638                 dev->num_run_queue++;
2639
2640                 /* We're done. */
2641                 goto bailout;
2642         }
2643
2644         /*
2645          * Check for new EOF status from the reader.
2646          */
2647         if ((read_buf->status == CAMDD_STATUS_EOF)
2648          || (read_buf->status == CAMDD_STATUS_ERROR)) {
2649                 dev->flags |= CAMDD_DEV_FLAG_PEER_EOF;
2650                 if ((STAILQ_FIRST(&dev->pending_queue) == NULL)
2651                  && (read_buf->len == 0)) {
2652                         camdd_complete_peer_buf(dev, read_buf);
2653                         retval = 1;
2654                         goto bailout;
2655                 } else
2656                         eof_flush_needed = 1;
2657         }
2658
2659         /*
2660          * See if we have a buffer we're composing with pieces from our
2661          * partner thread.
2662          */
2663         buf = STAILQ_FIRST(&dev->pending_queue);
2664         if (buf == NULL) {
2665                 uint64_t lba;
2666                 ssize_t len;
2667
2668                 retval = camdd_get_next_lba_len(dev, &lba, &len);
2669                 if (retval != 0) {
2670                         read_buf->status = CAMDD_STATUS_EOF;
2671
2672                         if (len == 0) {
2673                                 dev->flags |= CAMDD_DEV_FLAG_EOF;
2674                                 error = camdd_complete_peer_buf(dev, read_buf);
2675                                 goto bailout;
2676                         }
2677                 }
2678
2679                 /*
2680                  * If we don't have a pending buffer, we need to grab a new
2681                  * one from the free list or allocate another one.
2682                  */
2683                 buf = camdd_get_buf(dev, CAMDD_BUF_DATA);
2684                 if (buf == NULL) {
2685                         retval = 1;
2686                         goto bailout;
2687                 }
2688
2689                 buf->lba = lba;
2690                 buf->len = len;
2691
2692                 STAILQ_INSERT_TAIL(&dev->pending_queue, buf, links);
2693                 dev->num_pending_queue++;
2694         }
2695
2696         data = &buf->buf_type_spec.data;
2697
2698         rb_data = &read_buf->buf_type_spec.data;
2699
2700         if ((rb_data->src_start_offset != dev->next_peer_pos_bytes)
2701          && (dev->debug != 0)) {
2702                 printf("%s: WARNING: reader offset %#jx != expected offset "
2703                     "%#jx\n", __func__, (uintmax_t)rb_data->src_start_offset,
2704                     (uintmax_t)dev->next_peer_pos_bytes);
2705         }
2706         dev->next_peer_pos_bytes = rb_data->src_start_offset +
2707             (rb_data->fill_len - rb_data->resid);
2708
2709         new_len = (rb_data->fill_len - rb_data->resid) + data->fill_len;
2710         if (new_len < buf->len) {
2711                 /*
2712                  * There are three cases here:
2713                  * 1. We need more data to fill up a block, so we put 
2714                  *    this I/O on the queue and wait for more I/O.
2715                  * 2. We have a pending buffer in the queue that is
2716                  *    smaller than our blocksize, but we got an EOF.  So we
2717                  *    need to go ahead and flush the write out.
2718                  * 3. We got an error.
2719                  */
2720
2721                 /*
2722                  * Increment our fill length.
2723                  */
2724                 data->fill_len += (rb_data->fill_len - rb_data->resid);
2725
2726                 /*
2727                  * Add the new read buffer to the list for writing.
2728                  */
2729                 STAILQ_INSERT_TAIL(&buf->src_list, read_buf, src_links);
2730
2731                 /* Increment the count */
2732                 buf->src_count++;
2733
2734                 if (eof_flush_needed == 0) {
2735                         /*
2736                          * We need to exit, because we don't have enough
2737                          * data yet.
2738                          */
2739                         goto bailout;
2740                 } else {
2741                         /*
2742                          * Take the buffer off of the pending queue.
2743                          */
2744                         STAILQ_REMOVE(&dev->pending_queue, buf, camdd_buf,
2745                                       links);
2746                         dev->num_pending_queue--;
2747
2748                         /*
2749                          * If we need an EOF flush, but there is no data
2750                          * to flush, go ahead and return this buffer.
2751                          */
2752                         if (data->fill_len == 0) {
2753                                 camdd_complete_buf(dev, buf, /*error_count*/0);
2754                                 retval = 1;
2755                                 goto bailout;
2756                         }
2757
2758                         /*
2759                          * Put this on the next queue for execution.
2760                          */
2761                         STAILQ_INSERT_TAIL(&dev->run_queue, buf, links);
2762                         dev->num_run_queue++;
2763                 }
2764         } else if (new_len == buf->len) {
2765                 /*
2766                  * We have enough data to completey fill one block,
2767                  * so we're ready to issue the I/O.
2768                  */
2769
2770                 /*
2771                  * Take the buffer off of the pending queue.
2772                  */
2773                 STAILQ_REMOVE(&dev->pending_queue, buf, camdd_buf, links);
2774                 dev->num_pending_queue--;
2775
2776                 /*
2777                  * Add the new read buffer to the list for writing.
2778                  */
2779                 STAILQ_INSERT_TAIL(&buf->src_list, read_buf, src_links);
2780
2781                 /* Increment the count */
2782                 buf->src_count++;
2783
2784                 /*
2785                  * Increment our fill length.
2786                  */
2787                 data->fill_len += (rb_data->fill_len - rb_data->resid);
2788
2789                 /*
2790                  * Put this on the next queue for execution.
2791                  */
2792                 STAILQ_INSERT_TAIL(&dev->run_queue, buf, links);
2793                 dev->num_run_queue++;
2794         } else {
2795                 struct camdd_buf *idb;
2796                 struct camdd_buf_indirect *indirect;
2797                 uint32_t len_to_go, cur_offset;
2798
2799                 
2800                 idb = camdd_get_buf(dev, CAMDD_BUF_INDIRECT);
2801                 if (idb == NULL) {
2802                         retval = 1;
2803                         goto bailout;
2804                 }
2805                 indirect = &idb->buf_type_spec.indirect;
2806                 indirect->src_buf = read_buf;
2807                 read_buf->refcount++;
2808                 indirect->offset = 0;
2809                 indirect->start_ptr = rb_data->buf;
2810                 /*
2811                  * We've already established that there is more
2812                  * data in read_buf than we have room for in our
2813                  * current write request.  So this particular chunk
2814                  * of the request should just be the remainder
2815                  * needed to fill up a block.
2816                  */
2817                 indirect->len = buf->len - (data->fill_len - data->resid);
2818
2819                 camdd_buf_add_child(buf, idb);
2820
2821                 /*
2822                  * This buffer is ready to execute, so we can take
2823                  * it off the pending queue and put it on the run
2824                  * queue.
2825                  */
2826                 STAILQ_REMOVE(&dev->pending_queue, buf, camdd_buf,
2827                               links);
2828                 dev->num_pending_queue--;
2829                 STAILQ_INSERT_TAIL(&dev->run_queue, buf, links);
2830                 dev->num_run_queue++;
2831
2832                 cur_offset = indirect->offset + indirect->len;
2833
2834                 /*
2835                  * The resulting I/O would be too large to fit in
2836                  * one block.  We need to split this I/O into
2837                  * multiple pieces.  Allocate as many buffers as needed.
2838                  */
2839                 for (len_to_go = rb_data->fill_len - rb_data->resid -
2840                      indirect->len; len_to_go > 0;) {
2841                         struct camdd_buf *new_buf;
2842                         struct camdd_buf_data *new_data;
2843                         uint64_t lba;
2844                         ssize_t len;
2845
2846                         retval = camdd_get_next_lba_len(dev, &lba, &len);
2847                         if ((retval != 0)
2848                          && (len == 0)) {
2849                                 /*
2850                                  * The device has already been marked
2851                                  * as EOF, and there is no space left.
2852                                  */
2853                                 goto bailout;
2854                         }
2855
2856                         new_buf = camdd_get_buf(dev, CAMDD_BUF_DATA);
2857                         if (new_buf == NULL) {
2858                                 retval = 1;
2859                                 goto bailout;
2860                         }
2861
2862                         new_buf->lba = lba;
2863                         new_buf->len = len;
2864
2865                         idb = camdd_get_buf(dev, CAMDD_BUF_INDIRECT);
2866                         if (idb == NULL) {
2867                                 retval = 1;
2868                                 goto bailout;
2869                         }
2870
2871                         indirect = &idb->buf_type_spec.indirect;
2872
2873                         indirect->src_buf = read_buf;
2874                         read_buf->refcount++;
2875                         indirect->offset = cur_offset;
2876                         indirect->start_ptr = rb_data->buf + cur_offset;
2877                         indirect->len = min(len_to_go, new_buf->len);
2878 #if 0
2879                         if (((indirect->len % dev->sector_size) != 0)
2880                          || ((indirect->offset % dev->sector_size) != 0)) {
2881                                 warnx("offset %ju len %ju not aligned with "
2882                                     "sector size %u", indirect->offset,
2883                                     (uintmax_t)indirect->len, dev->sector_size);
2884                         }
2885 #endif
2886                         cur_offset += indirect->len;
2887                         len_to_go -= indirect->len;
2888
2889                         camdd_buf_add_child(new_buf, idb);
2890
2891                         new_data = &new_buf->buf_type_spec.data;
2892
2893                         if ((new_data->fill_len == new_buf->len)
2894                          || (eof_flush_needed != 0)) {
2895                                 STAILQ_INSERT_TAIL(&dev->run_queue,
2896                                                    new_buf, links);
2897                                 dev->num_run_queue++;
2898                         } else if (new_data->fill_len < buf->len) {
2899                                 STAILQ_INSERT_TAIL(&dev->pending_queue,
2900                                                 new_buf, links);
2901                                 dev->num_pending_queue++;
2902                         } else {
2903                                 warnx("%s: too much data in new "
2904                                       "buffer!", __func__);
2905                                 retval = 1;
2906                                 goto bailout;
2907                         }
2908                 }
2909         }
2910
2911 bailout:
2912         return (retval);
2913 }
2914
2915 void
2916 camdd_get_depth(struct camdd_dev *dev, uint32_t *our_depth,
2917                 uint32_t *peer_depth, uint32_t *our_bytes, uint32_t *peer_bytes)
2918 {
2919         *our_depth = dev->cur_active_io + dev->num_run_queue;
2920         if (dev->num_peer_work_queue >
2921             dev->num_peer_done_queue)
2922                 *peer_depth = dev->num_peer_work_queue -
2923                               dev->num_peer_done_queue;
2924         else
2925                 *peer_depth = 0;
2926         *our_bytes = *our_depth * dev->blocksize;
2927         *peer_bytes = dev->peer_bytes_queued;
2928 }
2929
2930 void
2931 camdd_sig_handler(int sig)
2932 {
2933         if (sig == SIGINFO)
2934                 need_status = 1;
2935         else {
2936                 need_exit = 1;
2937                 error_exit = 1;
2938         }
2939
2940         sem_post(&camdd_sem);
2941 }
2942
2943 void
2944 camdd_print_status(struct camdd_dev *camdd_dev, struct camdd_dev *other_dev, 
2945                    struct timespec *start_time)
2946 {
2947         struct timespec done_time;
2948         uint64_t total_ns;
2949         long double mb_sec, total_sec;
2950         int error = 0;
2951
2952         error = clock_gettime(CLOCK_MONOTONIC_PRECISE, &done_time);
2953         if (error != 0) {
2954                 warn("Unable to get done time");
2955                 return;
2956         }
2957
2958         timespecsub(&done_time, start_time);
2959         
2960         total_ns = done_time.tv_nsec + (done_time.tv_sec * 1000000000);
2961         total_sec = total_ns;
2962         total_sec /= 1000000000;
2963
2964         fprintf(stderr, "%ju bytes %s %s\n%ju bytes %s %s\n"
2965                 "%.4Lf seconds elapsed\n",
2966                 (uintmax_t)camdd_dev->bytes_transferred,
2967                 (camdd_dev->write_dev == 0) ?  "read from" : "written to",
2968                 camdd_dev->device_name,
2969                 (uintmax_t)other_dev->bytes_transferred,
2970                 (other_dev->write_dev == 0) ? "read from" : "written to",
2971                 other_dev->device_name, total_sec);
2972
2973         mb_sec = min(other_dev->bytes_transferred,camdd_dev->bytes_transferred);
2974         mb_sec /= 1024 * 1024;
2975         mb_sec *= 1000000000;
2976         mb_sec /= total_ns;
2977         fprintf(stderr, "%.2Lf MB/sec\n", mb_sec);
2978 }
2979
2980 int
2981 camdd_rw(struct camdd_io_opts *io_opts, int num_io_opts, uint64_t max_io,
2982          int retry_count, int timeout)
2983 {
2984         struct cam_device *new_cam_dev = NULL;
2985         struct camdd_dev *devs[2];
2986         struct timespec start_time;
2987         pthread_t threads[2];
2988         int unit = 0;
2989         int error = 0;
2990         int i;
2991
2992         if (num_io_opts != 2) {
2993                 warnx("Must have one input and one output path");
2994                 error = 1;
2995                 goto bailout;
2996         }
2997
2998         bzero(devs, sizeof(devs));
2999
3000         for (i = 0; i < num_io_opts; i++) {
3001                 switch (io_opts[i].dev_type) {
3002                 case CAMDD_DEV_PASS: {
3003                         if (isdigit(io_opts[i].dev_name[0])) {
3004                                 camdd_argmask new_arglist = CAMDD_ARG_NONE;
3005                                 int bus = 0, target = 0, lun = 0;
3006                                 int rv;
3007
3008                                 /* device specified as bus:target[:lun] */
3009                                 rv = parse_btl(io_opts[i].dev_name, &bus,
3010                                     &target, &lun, &new_arglist);
3011                                 if (rv < 2) {
3012                                         warnx("numeric device specification "
3013                                              "must be either bus:target, or "
3014                                              "bus:target:lun");
3015                                         error = 1;
3016                                         goto bailout;
3017                                 }
3018                                 /* default to 0 if lun was not specified */
3019                                 if ((new_arglist & CAMDD_ARG_LUN) == 0) {
3020                                         lun = 0;
3021                                         new_arglist |= CAMDD_ARG_LUN;
3022                                 }
3023                                 new_cam_dev = cam_open_btl(bus, target, lun,
3024                                     O_RDWR, NULL);
3025                         } else {
3026                                 char name[30];
3027
3028                                 if (cam_get_device(io_opts[i].dev_name, name,
3029                                                    sizeof name, &unit) == -1) {
3030                                         warnx("%s", cam_errbuf);
3031                                         error = 1;
3032                                         goto bailout;
3033                                 }
3034                                 new_cam_dev = cam_open_spec_device(name, unit,
3035                                     O_RDWR, NULL);
3036                         }
3037
3038                         if (new_cam_dev == NULL) {
3039                                 warnx("%s", cam_errbuf);
3040                                 error = 1;
3041                                 goto bailout;
3042                         }
3043
3044                         devs[i] = camdd_probe_pass(new_cam_dev,
3045                             /*io_opts*/ &io_opts[i],
3046                             CAMDD_ARG_ERR_RECOVER, 
3047                             /*probe_retry_count*/ 3,
3048                             /*probe_timeout*/ 5000,
3049                             /*io_retry_count*/ retry_count,
3050                             /*io_timeout*/ timeout);
3051                         if (devs[i] == NULL) {
3052                                 warn("Unable to probe device %s%u",
3053                                      new_cam_dev->device_name,
3054                                      new_cam_dev->dev_unit_num);
3055                                 error = 1;
3056                                 goto bailout;
3057                         }
3058                         break;
3059                 }
3060                 case CAMDD_DEV_FILE: {
3061                         int fd = -1;
3062
3063                         if (io_opts[i].dev_name[0] == '-') {
3064                                 if (io_opts[i].write_dev != 0)
3065                                         fd = STDOUT_FILENO;
3066                                 else
3067                                         fd = STDIN_FILENO;
3068                         } else {
3069                                 if (io_opts[i].write_dev != 0) {
3070                                         fd = open(io_opts[i].dev_name,
3071                                             O_RDWR | O_CREAT, S_IWUSR |S_IRUSR);
3072                                 } else {
3073                                         fd = open(io_opts[i].dev_name,
3074                                             O_RDONLY);
3075                                 }
3076                         }
3077                         if (fd == -1) {
3078                                 warn("error opening file %s",
3079                                     io_opts[i].dev_name);
3080                                 error = 1;
3081                                 goto bailout;
3082                         }
3083
3084                         devs[i] = camdd_probe_file(fd, &io_opts[i],
3085                             retry_count, timeout);
3086                         if (devs[i] == NULL) {
3087                                 error = 1;
3088                                 goto bailout;
3089                         }
3090
3091                         break;
3092                 }
3093                 default:
3094                         warnx("Unknown device type %d (%s)",
3095                             io_opts[i].dev_type, io_opts[i].dev_name);
3096                         error = 1;
3097                         goto bailout;
3098                         break; /*NOTREACHED */
3099                 }
3100
3101                 devs[i]->write_dev = io_opts[i].write_dev;
3102
3103                 devs[i]->start_offset_bytes = io_opts[i].offset;
3104
3105                 if (max_io != 0) {
3106                         devs[i]->sector_io_limit =
3107                             (devs[i]->start_offset_bytes /
3108                             devs[i]->sector_size) +
3109                             (max_io / devs[i]->sector_size) - 1;
3110                         devs[i]->sector_io_limit =
3111                             (devs[i]->start_offset_bytes /
3112                             devs[i]->sector_size) +
3113                             (max_io / devs[i]->sector_size) - 1;
3114                 }
3115
3116                 devs[i]->next_io_pos_bytes = devs[i]->start_offset_bytes;
3117                 devs[i]->next_completion_pos_bytes =devs[i]->start_offset_bytes;
3118         }
3119
3120         devs[0]->peer_dev = devs[1];
3121         devs[1]->peer_dev = devs[0];
3122         devs[0]->next_peer_pos_bytes = devs[0]->peer_dev->next_io_pos_bytes;
3123         devs[1]->next_peer_pos_bytes = devs[1]->peer_dev->next_io_pos_bytes;
3124
3125         sem_init(&camdd_sem, /*pshared*/ 0, 0);
3126
3127         signal(SIGINFO, camdd_sig_handler);
3128         signal(SIGINT, camdd_sig_handler);
3129
3130         error = clock_gettime(CLOCK_MONOTONIC_PRECISE, &start_time);
3131         if (error != 0) {
3132                 warn("Unable to get start time");
3133                 goto bailout;
3134         }
3135
3136         for (i = 0; i < num_io_opts; i++) {
3137                 error = pthread_create(&threads[i], NULL, camdd_worker,
3138                                        (void *)devs[i]);
3139                 if (error != 0) {
3140                         warnc(error, "pthread_create() failed");
3141                         goto bailout;
3142                 }
3143         }
3144
3145         for (;;) {
3146                 if ((sem_wait(&camdd_sem) == -1)
3147                  || (need_exit != 0)) {
3148                         struct kevent ke;
3149
3150                         for (i = 0; i < num_io_opts; i++) {
3151                                 EV_SET(&ke, (uintptr_t)&devs[i]->work_queue,
3152                                     EVFILT_USER, 0, NOTE_TRIGGER, 0, NULL);
3153
3154                                 devs[i]->flags |= CAMDD_DEV_FLAG_EOF;
3155
3156                                 error = kevent(devs[i]->kq, &ke, 1, NULL, 0,
3157                                                 NULL);
3158                                 if (error == -1)
3159                                         warn("%s: unable to wake up thread",
3160                                             __func__);
3161                                 error = 0;
3162                         }
3163                         break;
3164                 } else if (need_status != 0) {
3165                         camdd_print_status(devs[0], devs[1], &start_time);
3166                         need_status = 0;
3167                 }
3168         } 
3169         for (i = 0; i < num_io_opts; i++) {
3170                 pthread_join(threads[i], NULL);
3171         }
3172
3173         camdd_print_status(devs[0], devs[1], &start_time);
3174
3175 bailout:
3176
3177         for (i = 0; i < num_io_opts; i++)
3178                 camdd_free_dev(devs[i]);
3179
3180         return (error + error_exit);
3181 }
3182
3183 void
3184 usage(void)
3185 {
3186         fprintf(stderr,
3187 "usage:  camdd <-i|-o pass=pass0,bs=1M,offset=1M,depth=4>\n"
3188 "              <-i|-o file=/tmp/file,bs=512K,offset=1M>\n"
3189 "              <-i|-o file=/dev/da0,bs=512K,offset=1M>\n"
3190 "              <-i|-o file=/dev/nsa0,bs=512K>\n"
3191 "              [-C retry_count][-E][-m max_io_amt][-t timeout_secs][-v][-h]\n"
3192 "Option description\n"
3193 "-i <arg=val>  Specify input device/file and parameters\n"
3194 "-o <arg=val>  Specify output device/file and parameters\n"
3195 "Input and Output parameters\n"
3196 "pass=name     Specify a pass(4) device like pass0 or /dev/pass0\n"
3197 "file=name     Specify a file or device, /tmp/foo, /dev/da0, /dev/null\n"
3198 "              or - for stdin/stdout\n"
3199 "bs=blocksize  Specify blocksize in bytes, or using K, M, G, etc. suffix\n"
3200 "offset=len    Specify starting offset in bytes or using K, M, G suffix\n"
3201 "              NOTE: offset cannot be specified on tapes, pipes, stdin/out\n"
3202 "depth=N       Specify a numeric queue depth.  This only applies to pass(4)\n"
3203 "mcs=N         Specify a minimum cmd size for pass(4) read/write commands\n"
3204 "Optional arguments\n"
3205 "-C retry_cnt  Specify a retry count for pass(4) devices\n"
3206 "-E            Enable CAM error recovery for pass(4) devices\n"
3207 "-m max_io     Specify the maximum amount to be transferred in bytes or\n"
3208 "              using K, G, M, etc. suffixes\n"
3209 "-t timeout    Specify the I/O timeout to use with pass(4) devices\n"
3210 "-v            Enable verbose error recovery\n"
3211 "-h            Print this message\n");
3212 }
3213
3214
3215 int
3216 camdd_parse_io_opts(char *args, int is_write, struct camdd_io_opts *io_opts)
3217 {
3218         char *tmpstr, *tmpstr2;
3219         char *orig_tmpstr = NULL;
3220         int retval = 0;
3221
3222         io_opts->write_dev = is_write;
3223
3224         tmpstr = strdup(args);
3225         if (tmpstr == NULL) {
3226                 warn("strdup failed");
3227                 retval = 1;
3228                 goto bailout;
3229         }
3230         orig_tmpstr = tmpstr;
3231         while ((tmpstr2 = strsep(&tmpstr, ",")) != NULL) {
3232                 char *name, *value;
3233
3234                 /*
3235                  * If the user creates an empty parameter by putting in two
3236                  * commas, skip over it and look for the next field.
3237                  */
3238                 if (*tmpstr2 == '\0')
3239                         continue;
3240
3241                 name = strsep(&tmpstr2, "=");
3242                 if (*name == '\0') {
3243                         warnx("Got empty I/O parameter name");
3244                         retval = 1;
3245                         goto bailout;
3246                 }
3247                 value = strsep(&tmpstr2, "=");
3248                 if ((value == NULL)
3249                  || (*value == '\0')) {
3250                         warnx("Empty I/O parameter value for %s", name);
3251                         retval = 1;
3252                         goto bailout;
3253                 }
3254                 if (strncasecmp(name, "file", 4) == 0) {
3255                         io_opts->dev_type = CAMDD_DEV_FILE;
3256                         io_opts->dev_name = strdup(value);
3257                         if (io_opts->dev_name == NULL) {
3258                                 warn("Error allocating memory");
3259                                 retval = 1;
3260                                 goto bailout;
3261                         }
3262                 } else if (strncasecmp(name, "pass", 4) == 0) {
3263                         io_opts->dev_type = CAMDD_DEV_PASS;
3264                         io_opts->dev_name = strdup(value);
3265                         if (io_opts->dev_name == NULL) {
3266                                 warn("Error allocating memory");
3267                                 retval = 1;
3268                                 goto bailout;
3269                         }
3270                 } else if ((strncasecmp(name, "bs", 2) == 0)
3271                         || (strncasecmp(name, "blocksize", 9) == 0)) {
3272                         retval = expand_number(value, &io_opts->blocksize);
3273                         if (retval == -1) {
3274                                 warn("expand_number(3) failed on %s=%s", name,
3275                                     value);
3276                                 retval = 1;
3277                                 goto bailout;
3278                         }
3279                 } else if (strncasecmp(name, "depth", 5) == 0) {
3280                         char *endptr;
3281
3282                         io_opts->queue_depth = strtoull(value, &endptr, 0);
3283                         if (*endptr != '\0') {
3284                                 warnx("invalid queue depth %s", value);
3285                                 retval = 1;
3286                                 goto bailout;
3287                         }
3288                 } else if (strncasecmp(name, "mcs", 3) == 0) {
3289                         char *endptr;
3290
3291                         io_opts->min_cmd_size = strtol(value, &endptr, 0);
3292                         if ((*endptr != '\0')
3293                          || ((io_opts->min_cmd_size > 16)
3294                           || (io_opts->min_cmd_size < 0))) {
3295                                 warnx("invalid minimum cmd size %s", value);
3296                                 retval = 1;
3297                                 goto bailout;
3298                         }
3299                 } else if (strncasecmp(name, "offset", 6) == 0) {
3300                         retval = expand_number(value, &io_opts->offset);
3301                         if (retval == -1) {
3302                                 warn("expand_number(3) failed on %s=%s", name,
3303                                     value);
3304                                 retval = 1;
3305                                 goto bailout;
3306                         }
3307                 } else if (strncasecmp(name, "debug", 5) == 0) {
3308                         char *endptr;
3309
3310                         io_opts->debug = strtoull(value, &endptr, 0);
3311                         if (*endptr != '\0') {
3312                                 warnx("invalid debug level %s", value);
3313                                 retval = 1;
3314                                 goto bailout;
3315                         }
3316                 } else {
3317                         warnx("Unrecognized parameter %s=%s", name, value);
3318                 }
3319         }
3320 bailout:
3321         free(orig_tmpstr);
3322
3323         return (retval);
3324 }
3325
3326 int
3327 main(int argc, char **argv)
3328 {
3329         int c;
3330         camdd_argmask arglist = CAMDD_ARG_NONE;
3331         int timeout = 0, retry_count = 1;
3332         int error = 0;
3333         uint64_t max_io = 0;
3334         struct camdd_io_opts *opt_list = NULL;
3335
3336         if (argc == 1) {
3337                 usage();
3338                 exit(1);
3339         }
3340
3341         opt_list = calloc(2, sizeof(struct camdd_io_opts));
3342         if (opt_list == NULL) {
3343                 warn("Unable to allocate option list");
3344                 error = 1;
3345                 goto bailout;
3346         }
3347
3348         while ((c = getopt(argc, argv, "C:Ehi:m:o:t:v")) != -1){
3349                 switch (c) {
3350                 case 'C':
3351                         retry_count = strtol(optarg, NULL, 0);
3352                         if (retry_count < 0)
3353                                 errx(1, "retry count %d is < 0",
3354                                      retry_count);
3355                         arglist |= CAMDD_ARG_RETRIES;
3356                         break;
3357                 case 'E':
3358                         arglist |= CAMDD_ARG_ERR_RECOVER;
3359                         break;
3360                 case 'i':
3361                 case 'o':
3362                         if (((c == 'i')
3363                           && (opt_list[0].dev_type != CAMDD_DEV_NONE))
3364                          || ((c == 'o')
3365                           && (opt_list[1].dev_type != CAMDD_DEV_NONE))) {
3366                                 errx(1, "Only one input and output path "
3367                                     "allowed");
3368                         }
3369                         error = camdd_parse_io_opts(optarg, (c == 'o') ? 1 : 0,
3370                             (c == 'o') ? &opt_list[1] : &opt_list[0]);
3371                         if (error != 0)
3372                                 goto bailout;
3373                         break;
3374                 case 'm':
3375                         error = expand_number(optarg, &max_io);
3376                         if (error == -1) {
3377                                 warn("invalid maximum I/O amount %s", optarg);
3378                                 error = 1;
3379                                 goto bailout;
3380                         }
3381                         break;
3382                 case 't':
3383                         timeout = strtol(optarg, NULL, 0);
3384                         if (timeout < 0)
3385                                 errx(1, "invalid timeout %d", timeout);
3386                         /* Convert the timeout from seconds to ms */
3387                         timeout *= 1000;
3388                         arglist |= CAMDD_ARG_TIMEOUT;
3389                         break;
3390                 case 'v':
3391                         arglist |= CAMDD_ARG_VERBOSE;
3392                         break;
3393                 case 'h':
3394                 default:
3395                         usage();
3396                         exit(1);
3397                         break; /*NOTREACHED*/
3398                 }
3399         }
3400
3401         if ((opt_list[0].dev_type == CAMDD_DEV_NONE)
3402          || (opt_list[1].dev_type == CAMDD_DEV_NONE))
3403                 errx(1, "Must specify both -i and -o");
3404
3405         /*
3406          * Set the timeout if the user hasn't specified one.
3407          */
3408         if (timeout == 0)
3409                 timeout = CAMDD_PASS_RW_TIMEOUT;
3410
3411         error = camdd_rw(opt_list, 2, max_io, retry_count, timeout);
3412
3413 bailout:
3414         free(opt_list);
3415
3416         exit(error);
3417 }