]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - usr.sbin/camdd/camdd.c
Upgrade Unbound to 1.6.4. More to follow.
[FreeBSD/FreeBSD.git] / usr.sbin / camdd / camdd.c
1 /*-
2  * Copyright (c) 1997-2007 Kenneth D. Merry
3  * Copyright (c) 2013, 2014, 2015 Spectra Logic Corporation
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions, and the following disclaimer,
11  *    without modification.
12  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
13  *    substantially similar to the "NO WARRANTY" disclaimer below
14  *    ("Disclaimer") and any redistribution must be conditioned upon
15  *    including a substantially similar Disclaimer requirement for further
16  *    binary redistribution.
17  *
18  * NO WARRANTY
19  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
22  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
27  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
28  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGES.
30  *
31  * Authors: Ken Merry           (Spectra Logic Corporation)
32  */
33
34 /*
35  * This is eventually intended to be:
36  * - A basic data transfer/copy utility
37  * - A simple benchmark utility
38  * - An example of how to use the asynchronous pass(4) driver interface.
39  */
40 #include <sys/cdefs.h>
41 __FBSDID("$FreeBSD$");
42
43 #include <sys/ioctl.h>
44 #include <sys/stdint.h>
45 #include <sys/types.h>
46 #include <sys/endian.h>
47 #include <sys/param.h>
48 #include <sys/sbuf.h>
49 #include <sys/stat.h>
50 #include <sys/event.h>
51 #include <sys/time.h>
52 #include <sys/uio.h>
53 #include <vm/vm.h>
54 #include <machine/bus.h>
55 #include <sys/bus.h>
56 #include <sys/bus_dma.h>
57 #include <sys/mtio.h>
58 #include <sys/conf.h>
59 #include <sys/disk.h>
60
61 #include <stdio.h>
62 #include <stdlib.h>
63 #include <semaphore.h>
64 #include <string.h>
65 #include <unistd.h>
66 #include <inttypes.h>
67 #include <limits.h>
68 #include <fcntl.h>
69 #include <ctype.h>
70 #include <err.h>
71 #include <libutil.h>
72 #include <pthread.h>
73 #include <assert.h>
74 #include <bsdxml.h>
75
76 #include <cam/cam.h>
77 #include <cam/cam_debug.h>
78 #include <cam/cam_ccb.h>
79 #include <cam/scsi/scsi_all.h>
80 #include <cam/scsi/scsi_da.h>
81 #include <cam/scsi/scsi_pass.h>
82 #include <cam/scsi/scsi_message.h>
83 #include <cam/scsi/smp_all.h>
84 #include <camlib.h>
85 #include <mtlib.h>
86 #include <zlib.h>
87
88 typedef enum {
89         CAMDD_CMD_NONE          = 0x00000000,
90         CAMDD_CMD_HELP          = 0x00000001,
91         CAMDD_CMD_WRITE         = 0x00000002,
92         CAMDD_CMD_READ          = 0x00000003
93 } camdd_cmdmask;
94
95 typedef enum {
96         CAMDD_ARG_NONE          = 0x00000000,
97         CAMDD_ARG_VERBOSE       = 0x00000001,
98         CAMDD_ARG_DEVICE        = 0x00000002,
99         CAMDD_ARG_BUS           = 0x00000004,
100         CAMDD_ARG_TARGET        = 0x00000008,
101         CAMDD_ARG_LUN           = 0x00000010,
102         CAMDD_ARG_UNIT          = 0x00000020,
103         CAMDD_ARG_TIMEOUT       = 0x00000040,
104         CAMDD_ARG_ERR_RECOVER   = 0x00000080,
105         CAMDD_ARG_RETRIES       = 0x00000100
106 } camdd_argmask;
107
108 typedef enum {
109         CAMDD_DEV_NONE          = 0x00,
110         CAMDD_DEV_PASS          = 0x01,
111         CAMDD_DEV_FILE          = 0x02
112 } camdd_dev_type;
113
114 struct camdd_io_opts {
115         camdd_dev_type  dev_type;
116         char            *dev_name;
117         uint64_t        blocksize;
118         uint64_t        queue_depth;
119         uint64_t        offset;
120         int             min_cmd_size;
121         int             write_dev;
122         uint64_t        debug;
123 };
124
125 typedef enum {
126         CAMDD_BUF_NONE,
127         CAMDD_BUF_DATA,
128         CAMDD_BUF_INDIRECT
129 } camdd_buf_type;
130
131 struct camdd_buf_indirect {
132         /*
133          * Pointer to the source buffer.
134          */
135         struct camdd_buf *src_buf;
136
137         /*
138          * Offset into the source buffer, in bytes.
139          */
140         uint64_t          offset;
141         /*
142          * Pointer to the starting point in the source buffer.
143          */
144         uint8_t          *start_ptr;
145
146         /*
147          * Length of this chunk in bytes.
148          */
149         size_t            len;
150 };
151
152 struct camdd_buf_data {
153         /*
154          * Buffer allocated when we allocate this camdd_buf.  This should
155          * be the size of the blocksize for this device.
156          */
157         uint8_t                 *buf;
158
159         /*
160          * The amount of backing store allocated in buf.  Generally this
161          * will be the blocksize of the device.
162          */
163         uint32_t                 alloc_len;
164
165         /*
166          * The amount of data that was put into the buffer (on reads) or
167          * the amount of data we have put onto the src_list so far (on
168          * writes).
169          */
170         uint32_t                 fill_len;
171
172         /*
173          * The amount of data that was not transferred.
174          */
175         uint32_t                 resid;
176
177         /*
178          * Starting byte offset on the reader.
179          */
180         uint64_t                 src_start_offset;
181         
182         /*
183          * CCB used for pass(4) device targets.
184          */
185         union ccb                ccb;
186
187         /*
188          * Number of scatter/gather segments.
189          */
190         int                      sg_count;
191
192         /*
193          * Set if we had to tack on an extra buffer to round the transfer
194          * up to a sector size.
195          */
196         int                      extra_buf;
197
198         /*
199          * Scatter/gather list used generally when we're the writer for a
200          * pass(4) device. 
201          */
202         bus_dma_segment_t       *segs;
203
204         /*
205          * Scatter/gather list used generally when we're the writer for a
206          * file or block device;
207          */
208         struct iovec            *iovec;
209 };
210
211 union camdd_buf_types {
212         struct camdd_buf_indirect       indirect;
213         struct camdd_buf_data           data;
214 };
215
216 typedef enum {
217         CAMDD_STATUS_NONE,
218         CAMDD_STATUS_OK,
219         CAMDD_STATUS_SHORT_IO,
220         CAMDD_STATUS_EOF,
221         CAMDD_STATUS_ERROR
222 } camdd_buf_status;
223
224 struct camdd_buf {
225         camdd_buf_type           buf_type;
226         union camdd_buf_types    buf_type_spec;
227
228         camdd_buf_status         status;
229
230         uint64_t                 lba;
231         size_t                   len;
232
233         /*
234          * A reference count of how many indirect buffers point to this
235          * buffer.
236          */
237         int                      refcount;
238
239         /*
240          * A link back to our parent device.
241          */
242         struct camdd_dev        *dev;
243         STAILQ_ENTRY(camdd_buf)  links;
244         STAILQ_ENTRY(camdd_buf)  work_links;
245
246         /*
247          * A count of the buffers on the src_list.
248          */
249         int                      src_count;
250
251         /*
252          * List of buffers from our partner thread that are the components
253          * of this buffer for the I/O.  Uses src_links.
254          */
255         STAILQ_HEAD(,camdd_buf)  src_list;
256         STAILQ_ENTRY(camdd_buf)  src_links;
257 };
258
259 #define NUM_DEV_TYPES   2
260
261 struct camdd_dev_pass {
262         int                      scsi_dev_type;
263         int                      protocol;
264         struct cam_device       *dev;
265         uint64_t                 max_sector;
266         uint32_t                 block_len;
267         uint32_t                 cpi_maxio;
268 };
269
270 typedef enum {
271         CAMDD_FILE_NONE,
272         CAMDD_FILE_REG,
273         CAMDD_FILE_STD,
274         CAMDD_FILE_PIPE,
275         CAMDD_FILE_DISK,
276         CAMDD_FILE_TAPE,
277         CAMDD_FILE_TTY,
278         CAMDD_FILE_MEM
279 } camdd_file_type;
280
281 typedef enum {
282         CAMDD_FF_NONE           = 0x00,
283         CAMDD_FF_CAN_SEEK       = 0x01
284 } camdd_file_flags;
285
286 struct camdd_dev_file {
287         int                      fd;
288         struct stat              sb;
289         char                     filename[MAXPATHLEN + 1];
290         camdd_file_type          file_type;
291         camdd_file_flags         file_flags;
292         uint8_t                 *tmp_buf;
293 };
294
295 struct camdd_dev_block {
296         int                      fd;
297         uint64_t                 size_bytes;
298         uint32_t                 block_len;
299 };
300
301 union camdd_dev_spec {
302         struct camdd_dev_pass   pass;
303         struct camdd_dev_file   file;
304         struct camdd_dev_block  block;
305 };
306
307 typedef enum {
308         CAMDD_DEV_FLAG_NONE             = 0x00,
309         CAMDD_DEV_FLAG_EOF              = 0x01,
310         CAMDD_DEV_FLAG_PEER_EOF         = 0x02,
311         CAMDD_DEV_FLAG_ACTIVE           = 0x04,
312         CAMDD_DEV_FLAG_EOF_SENT         = 0x08,
313         CAMDD_DEV_FLAG_EOF_QUEUED       = 0x10
314 } camdd_dev_flags;
315
316 struct camdd_dev {
317         camdd_dev_type           dev_type;
318         union camdd_dev_spec     dev_spec;
319         camdd_dev_flags          flags;
320         char                     device_name[MAXPATHLEN+1];
321         uint32_t                 blocksize;
322         uint32_t                 sector_size;
323         uint64_t                 max_sector;
324         uint64_t                 sector_io_limit;
325         int                      min_cmd_size;
326         int                      write_dev;
327         int                      retry_count;
328         int                      io_timeout;
329         int                      debug;
330         uint64_t                 start_offset_bytes;
331         uint64_t                 next_io_pos_bytes;
332         uint64_t                 next_peer_pos_bytes;
333         uint64_t                 next_completion_pos_bytes;
334         uint64_t                 peer_bytes_queued;
335         uint64_t                 bytes_transferred;
336         uint32_t                 target_queue_depth;
337         uint32_t                 cur_active_io;
338         uint8_t                 *extra_buf;
339         uint32_t                 extra_buf_len;
340         struct camdd_dev        *peer_dev;
341         pthread_mutex_t          mutex;
342         pthread_cond_t           cond;
343         int                      kq;
344
345         int                      (*run)(struct camdd_dev *dev);
346         int                      (*fetch)(struct camdd_dev *dev);
347
348         /*
349          * Buffers that are available for I/O.  Uses links.
350          */
351         STAILQ_HEAD(,camdd_buf)  free_queue;
352
353         /*
354          * Free indirect buffers.  These are used for breaking a large
355          * buffer into multiple pieces.
356          */
357         STAILQ_HEAD(,camdd_buf)  free_indirect_queue;
358
359         /*
360          * Buffers that have been queued to the kernel.  Uses links.
361          */
362         STAILQ_HEAD(,camdd_buf)  active_queue;
363
364         /*
365          * Will generally contain one of our buffers that is waiting for enough
366          * I/O from our partner thread to be able to execute.  This will
367          * generally happen when our per-I/O-size is larger than the
368          * partner thread's per-I/O-size.  Uses links.
369          */
370         STAILQ_HEAD(,camdd_buf)  pending_queue;
371
372         /*
373          * Number of buffers on the pending queue
374          */
375         int                      num_pending_queue;
376
377         /*
378          * Buffers that are filled and ready to execute.  This is used when
379          * our partner (reader) thread sends us blocks that are larger than
380          * our blocksize, and so we have to split them into multiple pieces.
381          */
382         STAILQ_HEAD(,camdd_buf)  run_queue;
383
384         /*
385          * Number of buffers on the run queue.
386          */
387         int                      num_run_queue;
388
389         STAILQ_HEAD(,camdd_buf)  reorder_queue;
390
391         int                      num_reorder_queue;
392
393         /*
394          * Buffers that have been queued to us by our partner thread
395          * (generally the reader thread) to be written out.  Uses
396          * work_links.
397          */
398         STAILQ_HEAD(,camdd_buf)  work_queue;
399
400         /*
401          * Buffers that have been completed by our partner thread.  Uses
402          * work_links.
403          */
404         STAILQ_HEAD(,camdd_buf)  peer_done_queue;
405
406         /*
407          * Number of buffers on the peer done queue.
408          */
409         uint32_t                 num_peer_done_queue;
410
411         /*
412          * A list of buffers that we have queued to our peer thread.  Uses
413          * links.
414          */
415         STAILQ_HEAD(,camdd_buf)  peer_work_queue;
416
417         /*
418          * Number of buffers on the peer work queue.
419          */
420         uint32_t                 num_peer_work_queue;
421 };
422
423 static sem_t camdd_sem;
424 static sig_atomic_t need_exit = 0;
425 static sig_atomic_t error_exit = 0;
426 static sig_atomic_t need_status = 0;
427
428 #ifndef min
429 #define min(a, b) (a < b) ? a : b
430 #endif
431
432 /*
433  * XXX KDM private copy of timespecsub().  This is normally defined in
434  * sys/time.h, but is only enabled in the kernel.  If that definition is
435  * enabled in userland, it breaks the build of libnetbsd.
436  */
437 #ifndef timespecsub
438 #define timespecsub(vvp, uvp)                                           \
439         do {                                                            \
440                 (vvp)->tv_sec -= (uvp)->tv_sec;                         \
441                 (vvp)->tv_nsec -= (uvp)->tv_nsec;                       \
442                 if ((vvp)->tv_nsec < 0) {                               \
443                         (vvp)->tv_sec--;                                \
444                         (vvp)->tv_nsec += 1000000000;                   \
445                 }                                                       \
446         } while (0)
447 #endif
448
449
450 /* Generically useful offsets into the peripheral private area */
451 #define ppriv_ptr0 periph_priv.entries[0].ptr
452 #define ppriv_ptr1 periph_priv.entries[1].ptr
453 #define ppriv_field0 periph_priv.entries[0].field
454 #define ppriv_field1 periph_priv.entries[1].field
455
456 #define ccb_buf ppriv_ptr0
457
458 #define CAMDD_FILE_DEFAULT_BLOCK        524288
459 #define CAMDD_FILE_DEFAULT_DEPTH        1
460 #define CAMDD_PASS_MAX_BLOCK            1048576
461 #define CAMDD_PASS_DEFAULT_DEPTH        6
462 #define CAMDD_PASS_RW_TIMEOUT           60 * 1000
463
464 static int parse_btl(char *tstr, int *bus, int *target, int *lun,
465                      camdd_argmask *arglst);
466 void camdd_free_dev(struct camdd_dev *dev);
467 struct camdd_dev *camdd_alloc_dev(camdd_dev_type dev_type,
468                                   struct kevent *new_ke, int num_ke,
469                                   int retry_count, int timeout);
470 static struct camdd_buf *camdd_alloc_buf(struct camdd_dev *dev,
471                                          camdd_buf_type buf_type);
472 void camdd_release_buf(struct camdd_buf *buf);
473 struct camdd_buf *camdd_get_buf(struct camdd_dev *dev, camdd_buf_type buf_type);
474 int camdd_buf_sg_create(struct camdd_buf *buf, int iovec,
475                         uint32_t sector_size, uint32_t *num_sectors_used,
476                         int *double_buf_needed);
477 uint32_t camdd_buf_get_len(struct camdd_buf *buf);
478 void camdd_buf_add_child(struct camdd_buf *buf, struct camdd_buf *child_buf);
479 int camdd_probe_tape(int fd, char *filename, uint64_t *max_iosize,
480                      uint64_t *max_blk, uint64_t *min_blk, uint64_t *blk_gran);
481 int camdd_probe_pass_scsi(struct cam_device *cam_dev, union ccb *ccb,
482          camdd_argmask arglist, int probe_retry_count,
483          int probe_timeout, uint64_t *maxsector, uint32_t *block_len);
484 struct camdd_dev *camdd_probe_file(int fd, struct camdd_io_opts *io_opts,
485                                    int retry_count, int timeout);
486 struct camdd_dev *camdd_probe_pass(struct cam_device *cam_dev,
487                                    struct camdd_io_opts *io_opts,
488                                    camdd_argmask arglist, int probe_retry_count,
489                                    int probe_timeout, int io_retry_count,
490                                    int io_timeout);
491 void *camdd_file_worker(void *arg);
492 camdd_buf_status camdd_ccb_status(union ccb *ccb, int protocol);
493 int camdd_get_cgd(struct cam_device *device, struct ccb_getdev *cgd);
494 int camdd_queue_peer_buf(struct camdd_dev *dev, struct camdd_buf *buf);
495 int camdd_complete_peer_buf(struct camdd_dev *dev, struct camdd_buf *peer_buf);
496 void camdd_peer_done(struct camdd_buf *buf);
497 void camdd_complete_buf(struct camdd_dev *dev, struct camdd_buf *buf,
498                         int *error_count);
499 int camdd_pass_fetch(struct camdd_dev *dev);
500 int camdd_file_run(struct camdd_dev *dev);
501 int camdd_pass_run(struct camdd_dev *dev);
502 int camdd_get_next_lba_len(struct camdd_dev *dev, uint64_t *lba, ssize_t *len);
503 int camdd_queue(struct camdd_dev *dev, struct camdd_buf *read_buf);
504 void camdd_get_depth(struct camdd_dev *dev, uint32_t *our_depth,
505                      uint32_t *peer_depth, uint32_t *our_bytes,
506                      uint32_t *peer_bytes);
507 void *camdd_worker(void *arg);
508 void camdd_sig_handler(int sig);
509 void camdd_print_status(struct camdd_dev *camdd_dev,
510                         struct camdd_dev *other_dev,
511                         struct timespec *start_time);
512 int camdd_rw(struct camdd_io_opts *io_opts, int num_io_opts,
513              uint64_t max_io, int retry_count, int timeout);
514 int camdd_parse_io_opts(char *args, int is_write,
515                         struct camdd_io_opts *io_opts);
516 void usage(void);
517
518 /*
519  * Parse out a bus, or a bus, target and lun in the following
520  * format:
521  * bus
522  * bus:target
523  * bus:target:lun
524  *
525  * Returns the number of parsed components, or 0.
526  */
527 static int
528 parse_btl(char *tstr, int *bus, int *target, int *lun, camdd_argmask *arglst)
529 {
530         char *tmpstr;
531         int convs = 0;
532
533         while (isspace(*tstr) && (*tstr != '\0'))
534                 tstr++;
535
536         tmpstr = (char *)strtok(tstr, ":");
537         if ((tmpstr != NULL) && (*tmpstr != '\0')) {
538                 *bus = strtol(tmpstr, NULL, 0);
539                 *arglst |= CAMDD_ARG_BUS;
540                 convs++;
541                 tmpstr = (char *)strtok(NULL, ":");
542                 if ((tmpstr != NULL) && (*tmpstr != '\0')) {
543                         *target = strtol(tmpstr, NULL, 0);
544                         *arglst |= CAMDD_ARG_TARGET;
545                         convs++;
546                         tmpstr = (char *)strtok(NULL, ":");
547                         if ((tmpstr != NULL) && (*tmpstr != '\0')) {
548                                 *lun = strtol(tmpstr, NULL, 0);
549                                 *arglst |= CAMDD_ARG_LUN;
550                                 convs++;
551                         }
552                 }
553         }
554
555         return convs;
556 }
557
558 /*
559  * XXX KDM clean up and free all of the buffers on the queue!
560  */
561 void
562 camdd_free_dev(struct camdd_dev *dev)
563 {
564         if (dev == NULL)
565                 return;
566
567         switch (dev->dev_type) {
568         case CAMDD_DEV_FILE: {
569                 struct camdd_dev_file *file_dev = &dev->dev_spec.file;
570
571                 if (file_dev->fd != -1)
572                         close(file_dev->fd);
573                 free(file_dev->tmp_buf);
574                 break;
575         }
576         case CAMDD_DEV_PASS: {
577                 struct camdd_dev_pass *pass_dev = &dev->dev_spec.pass;
578
579                 if (pass_dev->dev != NULL)
580                         cam_close_device(pass_dev->dev);
581                 break;
582         }
583         default:
584                 break;
585         }
586
587         free(dev);
588 }
589
590 struct camdd_dev *
591 camdd_alloc_dev(camdd_dev_type dev_type, struct kevent *new_ke, int num_ke,
592                 int retry_count, int timeout)
593 {
594         struct camdd_dev *dev = NULL;
595         struct kevent *ke;
596         size_t ke_size;
597         int retval = 0;
598
599         dev = calloc(1, sizeof(*dev));
600         if (dev == NULL) {
601                 warn("%s: unable to malloc %zu bytes", __func__, sizeof(*dev));
602                 goto bailout;
603         }
604
605         dev->dev_type = dev_type;
606         dev->io_timeout = timeout;
607         dev->retry_count = retry_count;
608         STAILQ_INIT(&dev->free_queue);
609         STAILQ_INIT(&dev->free_indirect_queue);
610         STAILQ_INIT(&dev->active_queue);
611         STAILQ_INIT(&dev->pending_queue);
612         STAILQ_INIT(&dev->run_queue);
613         STAILQ_INIT(&dev->reorder_queue);
614         STAILQ_INIT(&dev->work_queue);
615         STAILQ_INIT(&dev->peer_done_queue);
616         STAILQ_INIT(&dev->peer_work_queue);
617         retval = pthread_mutex_init(&dev->mutex, NULL);
618         if (retval != 0) {
619                 warnc(retval, "%s: failed to initialize mutex", __func__);
620                 goto bailout;
621         }
622
623         retval = pthread_cond_init(&dev->cond, NULL);
624         if (retval != 0) {
625                 warnc(retval, "%s: failed to initialize condition variable",
626                       __func__);
627                 goto bailout;
628         }
629
630         dev->kq = kqueue();
631         if (dev->kq == -1) {
632                 warn("%s: Unable to create kqueue", __func__);
633                 goto bailout;
634         }
635
636         ke_size = sizeof(struct kevent) * (num_ke + 4);
637         ke = calloc(1, ke_size);
638         if (ke == NULL) {
639                 warn("%s: unable to malloc %zu bytes", __func__, ke_size);
640                 goto bailout;
641         }
642         if (num_ke > 0)
643                 bcopy(new_ke, ke, num_ke * sizeof(struct kevent));
644
645         EV_SET(&ke[num_ke++], (uintptr_t)&dev->work_queue, EVFILT_USER,
646                EV_ADD|EV_ENABLE|EV_CLEAR, 0,0, 0);
647         EV_SET(&ke[num_ke++], (uintptr_t)&dev->peer_done_queue, EVFILT_USER,
648                EV_ADD|EV_ENABLE|EV_CLEAR, 0,0, 0);
649         EV_SET(&ke[num_ke++], SIGINFO, EVFILT_SIGNAL, EV_ADD|EV_ENABLE, 0,0,0);
650         EV_SET(&ke[num_ke++], SIGINT, EVFILT_SIGNAL, EV_ADD|EV_ENABLE, 0,0,0);
651
652         retval = kevent(dev->kq, ke, num_ke, NULL, 0, NULL);
653         if (retval == -1) {
654                 warn("%s: Unable to register kevents", __func__);
655                 goto bailout;
656         }
657
658
659         return (dev);
660
661 bailout:
662         free(dev);
663
664         return (NULL);
665 }
666
667 static struct camdd_buf *
668 camdd_alloc_buf(struct camdd_dev *dev, camdd_buf_type buf_type)
669 {
670         struct camdd_buf *buf = NULL;
671         uint8_t *data_ptr = NULL;
672
673         /*
674          * We only need to allocate data space for data buffers.
675          */
676         switch (buf_type) {
677         case CAMDD_BUF_DATA:
678                 data_ptr = malloc(dev->blocksize);
679                 if (data_ptr == NULL) {
680                         warn("unable to allocate %u bytes", dev->blocksize);
681                         goto bailout_error;
682                 }
683                 break;
684         default:
685                 break;
686         }
687         
688         buf = calloc(1, sizeof(*buf));
689         if (buf == NULL) {
690                 warn("unable to allocate %zu bytes", sizeof(*buf));
691                 goto bailout_error;
692         }
693
694         buf->buf_type = buf_type;
695         buf->dev = dev;
696         switch (buf_type) {
697         case CAMDD_BUF_DATA: {
698                 struct camdd_buf_data *data;
699
700                 data = &buf->buf_type_spec.data;
701
702                 data->alloc_len = dev->blocksize;
703                 data->buf = data_ptr;
704                 break;
705         }
706         case CAMDD_BUF_INDIRECT:
707                 break;
708         default:
709                 break;
710         }
711         STAILQ_INIT(&buf->src_list);
712
713         return (buf);
714
715 bailout_error:
716         free(data_ptr);
717
718         return (NULL);
719 }
720
721 void
722 camdd_release_buf(struct camdd_buf *buf)
723 {
724         struct camdd_dev *dev;
725
726         dev = buf->dev;
727
728         switch (buf->buf_type) {
729         case CAMDD_BUF_DATA: {
730                 struct camdd_buf_data *data;
731
732                 data = &buf->buf_type_spec.data;
733
734                 if (data->segs != NULL) {
735                         if (data->extra_buf != 0) {
736                                 void *extra_buf;
737
738                                 extra_buf = (void *)
739                                     data->segs[data->sg_count - 1].ds_addr;
740                                 free(extra_buf);
741                                 data->extra_buf = 0;
742                         }
743                         free(data->segs);
744                         data->segs = NULL;
745                         data->sg_count = 0;
746                 } else if (data->iovec != NULL) {
747                         if (data->extra_buf != 0) {
748                                 free(data->iovec[data->sg_count - 1].iov_base);
749                                 data->extra_buf = 0;
750                         }
751                         free(data->iovec);
752                         data->iovec = NULL;
753                         data->sg_count = 0;
754                 }
755                 STAILQ_INSERT_TAIL(&dev->free_queue, buf, links);
756                 break;
757         }
758         case CAMDD_BUF_INDIRECT:
759                 STAILQ_INSERT_TAIL(&dev->free_indirect_queue, buf, links);
760                 break;
761         default:
762                 err(1, "%s: Invalid buffer type %d for released buffer",
763                     __func__, buf->buf_type);
764                 break;
765         }
766 }
767
768 struct camdd_buf *
769 camdd_get_buf(struct camdd_dev *dev, camdd_buf_type buf_type)
770 {
771         struct camdd_buf *buf = NULL;
772
773         switch (buf_type) {
774         case CAMDD_BUF_DATA:
775                 buf = STAILQ_FIRST(&dev->free_queue);
776                 if (buf != NULL) {
777                         struct camdd_buf_data *data;
778                         uint8_t *data_ptr;
779                         uint32_t alloc_len;
780
781                         STAILQ_REMOVE_HEAD(&dev->free_queue, links);
782                         data = &buf->buf_type_spec.data;
783                         data_ptr = data->buf;
784                         alloc_len = data->alloc_len;
785                         bzero(buf, sizeof(*buf));
786                         data->buf = data_ptr;
787                         data->alloc_len = alloc_len;
788                 }
789                 break;
790         case CAMDD_BUF_INDIRECT:
791                 buf = STAILQ_FIRST(&dev->free_indirect_queue);
792                 if (buf != NULL) {
793                         STAILQ_REMOVE_HEAD(&dev->free_indirect_queue, links);
794
795                         bzero(buf, sizeof(*buf));
796                 }
797                 break;
798         default:
799                 warnx("Unknown buffer type %d requested", buf_type);
800                 break;
801         }
802
803
804         if (buf == NULL)
805                 return (camdd_alloc_buf(dev, buf_type));
806         else {
807                 STAILQ_INIT(&buf->src_list);
808                 buf->dev = dev;
809                 buf->buf_type = buf_type;
810
811                 return (buf);
812         }
813 }
814
815 int
816 camdd_buf_sg_create(struct camdd_buf *buf, int iovec, uint32_t sector_size,
817                     uint32_t *num_sectors_used, int *double_buf_needed)
818 {
819         struct camdd_buf *tmp_buf;
820         struct camdd_buf_data *data;
821         uint8_t *extra_buf = NULL;
822         size_t extra_buf_len = 0;
823         int extra_buf_attached = 0;
824         int i, retval = 0;
825
826         data = &buf->buf_type_spec.data;
827
828         data->sg_count = buf->src_count;
829         /*
830          * Compose a scatter/gather list from all of the buffers in the list.
831          * If the length of the buffer isn't a multiple of the sector size,
832          * we'll have to add an extra buffer.  This should only happen
833          * at the end of a transfer.
834          */
835         if ((data->fill_len % sector_size) != 0) {
836                 extra_buf_len = sector_size - (data->fill_len % sector_size);
837                 extra_buf = calloc(extra_buf_len, 1);
838                 if (extra_buf == NULL) {
839                         warn("%s: unable to allocate %zu bytes for extra "
840                             "buffer space", __func__, extra_buf_len);
841                         retval = 1;
842                         goto bailout;
843                 }
844                 data->extra_buf = 1;
845                 data->sg_count++;
846         }
847         if (iovec == 0) {
848                 data->segs = calloc(data->sg_count, sizeof(bus_dma_segment_t));
849                 if (data->segs == NULL) {
850                         warn("%s: unable to allocate %zu bytes for S/G list",
851                             __func__, sizeof(bus_dma_segment_t) *
852                             data->sg_count);
853                         retval = 1;
854                         goto bailout;
855                 }
856
857         } else {
858                 data->iovec = calloc(data->sg_count, sizeof(struct iovec));
859                 if (data->iovec == NULL) {
860                         warn("%s: unable to allocate %zu bytes for S/G list",
861                             __func__, sizeof(struct iovec) * data->sg_count);
862                         retval = 1;
863                         goto bailout;
864                 }
865         }
866
867         for (i = 0, tmp_buf = STAILQ_FIRST(&buf->src_list);
868              i < buf->src_count && tmp_buf != NULL; i++,
869              tmp_buf = STAILQ_NEXT(tmp_buf, src_links)) {
870
871                 if (tmp_buf->buf_type == CAMDD_BUF_DATA) {
872                         struct camdd_buf_data *tmp_data;
873
874                         tmp_data = &tmp_buf->buf_type_spec.data;
875                         if (iovec == 0) {
876                                 data->segs[i].ds_addr =
877                                     (bus_addr_t) tmp_data->buf;
878                                 data->segs[i].ds_len = tmp_data->fill_len -
879                                     tmp_data->resid;
880                         } else {
881                                 data->iovec[i].iov_base = tmp_data->buf;
882                                 data->iovec[i].iov_len = tmp_data->fill_len -
883                                     tmp_data->resid;
884                         }
885                         if (((tmp_data->fill_len - tmp_data->resid) %
886                              sector_size) != 0)
887                                 *double_buf_needed = 1;
888                 } else {
889                         struct camdd_buf_indirect *tmp_ind;
890
891                         tmp_ind = &tmp_buf->buf_type_spec.indirect;
892                         if (iovec == 0) {
893                                 data->segs[i].ds_addr =
894                                     (bus_addr_t)tmp_ind->start_ptr;
895                                 data->segs[i].ds_len = tmp_ind->len;
896                         } else {
897                                 data->iovec[i].iov_base = tmp_ind->start_ptr;
898                                 data->iovec[i].iov_len = tmp_ind->len;
899                         }
900                         if ((tmp_ind->len % sector_size) != 0)
901                                 *double_buf_needed = 1;
902                 }
903         }
904
905         if (extra_buf != NULL) {
906                 if (iovec == 0) {
907                         data->segs[i].ds_addr = (bus_addr_t)extra_buf;
908                         data->segs[i].ds_len = extra_buf_len;
909                 } else {
910                         data->iovec[i].iov_base = extra_buf;
911                         data->iovec[i].iov_len = extra_buf_len;
912                 }
913                 extra_buf_attached = 1;
914                 i++;
915         }
916         if ((tmp_buf != NULL) || (i != data->sg_count)) {
917                 warnx("buffer source count does not match "
918                       "number of buffers in list!");
919                 retval = 1;
920                 goto bailout;
921         }
922
923 bailout:
924         if (retval == 0) {
925                 *num_sectors_used = (data->fill_len + extra_buf_len) /
926                     sector_size;
927         } else if (extra_buf_attached == 0) {
928                 /*
929                  * If extra_buf isn't attached yet, we need to free it
930                  * to avoid leaking.
931                  */
932                 free(extra_buf);
933                 data->extra_buf = 0;
934                 data->sg_count--;
935         }
936         return (retval);
937 }
938
939 uint32_t
940 camdd_buf_get_len(struct camdd_buf *buf)
941 {
942         uint32_t len = 0;
943
944         if (buf->buf_type != CAMDD_BUF_DATA) {
945                 struct camdd_buf_indirect *indirect;
946
947                 indirect = &buf->buf_type_spec.indirect;
948                 len = indirect->len;
949         } else {
950                 struct camdd_buf_data *data;
951
952                 data = &buf->buf_type_spec.data;
953                 len = data->fill_len;
954         }
955
956         return (len);
957 }
958
959 void
960 camdd_buf_add_child(struct camdd_buf *buf, struct camdd_buf *child_buf)
961 {
962         struct camdd_buf_data *data;
963
964         assert(buf->buf_type == CAMDD_BUF_DATA);
965
966         data = &buf->buf_type_spec.data;
967
968         STAILQ_INSERT_TAIL(&buf->src_list, child_buf, src_links);
969         buf->src_count++;
970
971         data->fill_len += camdd_buf_get_len(child_buf);
972 }
973
974 typedef enum {
975         CAMDD_TS_MAX_BLK,
976         CAMDD_TS_MIN_BLK,
977         CAMDD_TS_BLK_GRAN,
978         CAMDD_TS_EFF_IOSIZE
979 } camdd_status_item_index;
980
981 static struct camdd_status_items {
982         const char *name;
983         struct mt_status_entry *entry;
984 } req_status_items[] = {
985         { "max_blk", NULL },
986         { "min_blk", NULL },
987         { "blk_gran", NULL },
988         { "max_effective_iosize", NULL }
989 };
990
991 int
992 camdd_probe_tape(int fd, char *filename, uint64_t *max_iosize,
993                  uint64_t *max_blk, uint64_t *min_blk, uint64_t *blk_gran)
994 {
995         struct mt_status_data status_data;
996         char *xml_str = NULL;
997         unsigned int i;
998         int retval = 0;
999         
1000         retval = mt_get_xml_str(fd, MTIOCEXTGET, &xml_str);
1001         if (retval != 0)
1002                 err(1, "Couldn't get XML string from %s", filename);
1003
1004         retval = mt_get_status(xml_str, &status_data);
1005         if (retval != XML_STATUS_OK) {
1006                 warn("couldn't get status for %s", filename);
1007                 retval = 1;
1008                 goto bailout;
1009         } else
1010                 retval = 0;
1011
1012         if (status_data.error != 0) {
1013                 warnx("%s", status_data.error_str);
1014                 retval = 1;
1015                 goto bailout;
1016         }
1017
1018         for (i = 0; i < nitems(req_status_items); i++) {
1019                 char *name;
1020
1021                 name = __DECONST(char *, req_status_items[i].name);
1022                 req_status_items[i].entry = mt_status_entry_find(&status_data,
1023                     name);
1024                 if (req_status_items[i].entry == NULL) {
1025                         errx(1, "Cannot find status entry %s",
1026                             req_status_items[i].name);
1027                 }
1028         }
1029
1030         *max_iosize = req_status_items[CAMDD_TS_EFF_IOSIZE].entry->value_unsigned;
1031         *max_blk= req_status_items[CAMDD_TS_MAX_BLK].entry->value_unsigned;
1032         *min_blk= req_status_items[CAMDD_TS_MIN_BLK].entry->value_unsigned;
1033         *blk_gran = req_status_items[CAMDD_TS_BLK_GRAN].entry->value_unsigned;
1034 bailout:
1035
1036         free(xml_str);
1037         mt_status_free(&status_data);
1038
1039         return (retval);
1040 }
1041
1042 struct camdd_dev *
1043 camdd_probe_file(int fd, struct camdd_io_opts *io_opts, int retry_count,
1044     int timeout)
1045 {
1046         struct camdd_dev *dev = NULL;
1047         struct camdd_dev_file *file_dev;
1048         uint64_t blocksize = io_opts->blocksize;
1049
1050         dev = camdd_alloc_dev(CAMDD_DEV_FILE, NULL, 0, retry_count, timeout);
1051         if (dev == NULL)
1052                 goto bailout;
1053
1054         file_dev = &dev->dev_spec.file;
1055         file_dev->fd = fd;
1056         strlcpy(file_dev->filename, io_opts->dev_name,
1057             sizeof(file_dev->filename));
1058         strlcpy(dev->device_name, io_opts->dev_name, sizeof(dev->device_name));
1059         if (blocksize == 0)
1060                 dev->blocksize = CAMDD_FILE_DEFAULT_BLOCK;
1061         else
1062                 dev->blocksize = blocksize;
1063
1064         if ((io_opts->queue_depth != 0)
1065          && (io_opts->queue_depth != 1)) {
1066                 warnx("Queue depth %ju for %s ignored, only 1 outstanding "
1067                     "command supported", (uintmax_t)io_opts->queue_depth,
1068                     io_opts->dev_name);
1069         }
1070         dev->target_queue_depth = CAMDD_FILE_DEFAULT_DEPTH;
1071         dev->run = camdd_file_run;
1072         dev->fetch = NULL;
1073
1074         /*
1075          * We can effectively access files on byte boundaries.  We'll reset
1076          * this for devices like disks that can be accessed on sector
1077          * boundaries.
1078          */
1079         dev->sector_size = 1;
1080
1081         if ((fd != STDIN_FILENO)
1082          && (fd != STDOUT_FILENO)) {
1083                 int retval;
1084
1085                 retval = fstat(fd, &file_dev->sb);
1086                 if (retval != 0) {
1087                         warn("Cannot stat %s", dev->device_name);
1088                         goto bailout_error;
1089                 }
1090                 if (S_ISREG(file_dev->sb.st_mode)) {
1091                         file_dev->file_type = CAMDD_FILE_REG;
1092                 } else if (S_ISCHR(file_dev->sb.st_mode)) {
1093                         int type;
1094
1095                         if (ioctl(fd, FIODTYPE, &type) == -1)
1096                                 err(1, "FIODTYPE ioctl failed on %s",
1097                                     dev->device_name);
1098                         else {
1099                                 if (type & D_TAPE)
1100                                         file_dev->file_type = CAMDD_FILE_TAPE;
1101                                 else if (type & D_DISK)
1102                                         file_dev->file_type = CAMDD_FILE_DISK;
1103                                 else if (type & D_MEM)
1104                                         file_dev->file_type = CAMDD_FILE_MEM;
1105                                 else if (type & D_TTY)
1106                                         file_dev->file_type = CAMDD_FILE_TTY;
1107                         }
1108                 } else if (S_ISDIR(file_dev->sb.st_mode)) {
1109                         errx(1, "cannot operate on directory %s",
1110                             dev->device_name);
1111                 } else if (S_ISFIFO(file_dev->sb.st_mode)) {
1112                         file_dev->file_type = CAMDD_FILE_PIPE;
1113                 } else
1114                         errx(1, "Cannot determine file type for %s",
1115                             dev->device_name);
1116
1117                 switch (file_dev->file_type) {
1118                 case CAMDD_FILE_REG:
1119                         if (file_dev->sb.st_size != 0)
1120                                 dev->max_sector = file_dev->sb.st_size - 1;
1121                         else
1122                                 dev->max_sector = 0;
1123                         file_dev->file_flags |= CAMDD_FF_CAN_SEEK;
1124                         break;
1125                 case CAMDD_FILE_TAPE: {
1126                         uint64_t max_iosize, max_blk, min_blk, blk_gran;
1127                         /*
1128                          * Check block limits and maximum effective iosize.
1129                          * Make sure the blocksize is within the block
1130                          * limits (and a multiple of the minimum blocksize)
1131                          * and that the blocksize is <= maximum effective
1132                          * iosize.
1133                          */
1134                         retval = camdd_probe_tape(fd, dev->device_name,
1135                             &max_iosize, &max_blk, &min_blk, &blk_gran);
1136                         if (retval != 0)
1137                                 errx(1, "Unable to probe tape %s",
1138                                     dev->device_name);
1139
1140                         /*
1141                          * The blocksize needs to be <= the maximum
1142                          * effective I/O size of the tape device.  Note
1143                          * that this also takes into account the maximum
1144                          * blocksize reported by READ BLOCK LIMITS.
1145                          */
1146                         if (dev->blocksize > max_iosize) {
1147                                 warnx("Blocksize %u too big for %s, limiting "
1148                                     "to %ju", dev->blocksize, dev->device_name,
1149                                     max_iosize);
1150                                 dev->blocksize = max_iosize;
1151                         }
1152
1153                         /*
1154                          * The blocksize needs to be at least min_blk;
1155                          */
1156                         if (dev->blocksize < min_blk) {
1157                                 warnx("Blocksize %u too small for %s, "
1158                                     "increasing to %ju", dev->blocksize,
1159                                     dev->device_name, min_blk);
1160                                 dev->blocksize = min_blk;
1161                         }
1162
1163                         /*
1164                          * And the blocksize needs to be a multiple of
1165                          * the block granularity.
1166                          */
1167                         if ((blk_gran != 0)
1168                          && (dev->blocksize % (1 << blk_gran))) {
1169                                 warnx("Blocksize %u for %s not a multiple of "
1170                                     "%d, adjusting to %d", dev->blocksize,
1171                                     dev->device_name, (1 << blk_gran),
1172                                     dev->blocksize & ~((1 << blk_gran) - 1));
1173                                 dev->blocksize &= ~((1 << blk_gran) - 1);
1174                         }
1175
1176                         if (dev->blocksize == 0) {
1177                                 errx(1, "Unable to derive valid blocksize for "
1178                                     "%s", dev->device_name);
1179                         }
1180
1181                         /*
1182                          * For tape drives, set the sector size to the
1183                          * blocksize so that we make sure not to write
1184                          * less than the blocksize out to the drive.
1185                          */
1186                         dev->sector_size = dev->blocksize;
1187                         break;
1188                 }
1189                 case CAMDD_FILE_DISK: {
1190                         off_t media_size;
1191                         unsigned int sector_size;
1192
1193                         file_dev->file_flags |= CAMDD_FF_CAN_SEEK;
1194
1195                         if (ioctl(fd, DIOCGSECTORSIZE, &sector_size) == -1) {
1196                                 err(1, "DIOCGSECTORSIZE ioctl failed on %s",
1197                                     dev->device_name);
1198                         }
1199
1200                         if (sector_size == 0) {
1201                                 errx(1, "DIOCGSECTORSIZE ioctl returned "
1202                                     "invalid sector size %u for %s",
1203                                     sector_size, dev->device_name);
1204                         }
1205
1206                         if (ioctl(fd, DIOCGMEDIASIZE, &media_size) == -1) {
1207                                 err(1, "DIOCGMEDIASIZE ioctl failed on %s",
1208                                     dev->device_name);
1209                         }
1210
1211                         if (media_size == 0) {
1212                                 errx(1, "DIOCGMEDIASIZE ioctl returned "
1213                                     "invalid media size %ju for %s",
1214                                     (uintmax_t)media_size, dev->device_name);
1215                         }
1216
1217                         if (dev->blocksize % sector_size) {
1218                                 errx(1, "%s blocksize %u not a multiple of "
1219                                     "sector size %u", dev->device_name,
1220                                     dev->blocksize, sector_size);
1221                         }
1222
1223                         dev->sector_size = sector_size;
1224                         dev->max_sector = (media_size / sector_size) - 1;
1225                         break;
1226                 }
1227                 case CAMDD_FILE_MEM:
1228                         file_dev->file_flags |= CAMDD_FF_CAN_SEEK;
1229                         break;
1230                 default:
1231                         break;
1232                 }
1233         }
1234
1235         if ((io_opts->offset != 0)
1236          && ((file_dev->file_flags & CAMDD_FF_CAN_SEEK) == 0)) {
1237                 warnx("Offset %ju specified for %s, but we cannot seek on %s",
1238                     io_opts->offset, io_opts->dev_name, io_opts->dev_name);
1239                 goto bailout_error;
1240         }
1241 #if 0
1242         else if ((io_opts->offset != 0)
1243                 && ((io_opts->offset % dev->sector_size) != 0)) {
1244                 warnx("Offset %ju for %s is not a multiple of the "
1245                       "sector size %u", io_opts->offset, 
1246                       io_opts->dev_name, dev->sector_size);
1247                 goto bailout_error;
1248         } else {
1249                 dev->start_offset_bytes = io_opts->offset;
1250         }
1251 #endif
1252
1253 bailout:
1254         return (dev);
1255
1256 bailout_error:
1257         camdd_free_dev(dev);
1258         return (NULL);
1259 }
1260
1261 /*
1262  * Get a get device CCB for the specified device.
1263  */
1264 int
1265 camdd_get_cgd(struct cam_device *device, struct ccb_getdev *cgd)
1266 {
1267         union ccb *ccb;
1268         int retval = 0;
1269
1270         ccb = cam_getccb(device);
1271  
1272         if (ccb == NULL) {
1273                 warnx("%s: couldn't allocate CCB", __func__);
1274                 return -1;
1275         }
1276
1277         CCB_CLEAR_ALL_EXCEPT_HDR(&ccb->cgd);
1278
1279         ccb->ccb_h.func_code = XPT_GDEV_TYPE;
1280  
1281         if (cam_send_ccb(device, ccb) < 0) {
1282                 warn("%s: error sending Get Device Information CCB", __func__);
1283                         cam_error_print(device, ccb, CAM_ESF_ALL,
1284                                         CAM_EPF_ALL, stderr);
1285                 retval = -1;
1286                 goto bailout;
1287         }
1288
1289         if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
1290                         cam_error_print(device, ccb, CAM_ESF_ALL,
1291                                         CAM_EPF_ALL, stderr);
1292                 retval = -1;
1293                 goto bailout;
1294         }
1295
1296         bcopy(&ccb->cgd, cgd, sizeof(struct ccb_getdev));
1297
1298 bailout:
1299         cam_freeccb(ccb);
1300  
1301         return retval;
1302 }
1303
1304 int
1305 camdd_probe_pass_scsi(struct cam_device *cam_dev, union ccb *ccb,
1306                  camdd_argmask arglist, int probe_retry_count,
1307                  int probe_timeout, uint64_t *maxsector, uint32_t *block_len)
1308 {
1309         struct scsi_read_capacity_data rcap;
1310         struct scsi_read_capacity_data_long rcaplong;
1311         int retval = -1;
1312
1313         if (ccb == NULL) {
1314                 warnx("%s: error passed ccb is NULL", __func__);
1315                 goto bailout;
1316         }
1317
1318         CCB_CLEAR_ALL_EXCEPT_HDR(&ccb->csio);
1319
1320         scsi_read_capacity(&ccb->csio,
1321                            /*retries*/ probe_retry_count,
1322                            /*cbfcnp*/ NULL,
1323                            /*tag_action*/ MSG_SIMPLE_Q_TAG,
1324                            &rcap,
1325                            SSD_FULL_SIZE,
1326                            /*timeout*/ probe_timeout ? probe_timeout : 5000);
1327
1328         /* Disable freezing the device queue */
1329         ccb->ccb_h.flags |= CAM_DEV_QFRZDIS;
1330
1331         if (arglist & CAMDD_ARG_ERR_RECOVER)
1332                 ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER;
1333
1334         if (cam_send_ccb(cam_dev, ccb) < 0) {
1335                 warn("error sending READ CAPACITY command");
1336
1337                 cam_error_print(cam_dev, ccb, CAM_ESF_ALL,
1338                                 CAM_EPF_ALL, stderr);
1339
1340                 goto bailout;
1341         }
1342
1343         if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
1344                 cam_error_print(cam_dev, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr);
1345                 goto bailout;
1346         }
1347
1348         *maxsector = scsi_4btoul(rcap.addr);
1349         *block_len = scsi_4btoul(rcap.length);
1350
1351         /*
1352          * A last block of 2^32-1 means that the true capacity is over 2TB,
1353          * and we need to issue the long READ CAPACITY to get the real
1354          * capacity.  Otherwise, we're all set.
1355          */
1356         if (*maxsector != 0xffffffff) {
1357                 retval = 0;
1358                 goto bailout;
1359         }
1360
1361         scsi_read_capacity_16(&ccb->csio,
1362                               /*retries*/ probe_retry_count,
1363                               /*cbfcnp*/ NULL,
1364                               /*tag_action*/ MSG_SIMPLE_Q_TAG,
1365                               /*lba*/ 0,
1366                               /*reladdr*/ 0,
1367                               /*pmi*/ 0,
1368                               (uint8_t *)&rcaplong,
1369                               sizeof(rcaplong),
1370                               /*sense_len*/ SSD_FULL_SIZE,
1371                               /*timeout*/ probe_timeout ? probe_timeout : 5000);
1372
1373         /* Disable freezing the device queue */
1374         ccb->ccb_h.flags |= CAM_DEV_QFRZDIS;
1375
1376         if (arglist & CAMDD_ARG_ERR_RECOVER)
1377                 ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER;
1378
1379         if (cam_send_ccb(cam_dev, ccb) < 0) {
1380                 warn("error sending READ CAPACITY (16) command");
1381                 cam_error_print(cam_dev, ccb, CAM_ESF_ALL,
1382                                 CAM_EPF_ALL, stderr);
1383                 goto bailout;
1384         }
1385
1386         if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
1387                 cam_error_print(cam_dev, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr);
1388                 goto bailout;
1389         }
1390
1391         *maxsector = scsi_8btou64(rcaplong.addr);
1392         *block_len = scsi_4btoul(rcaplong.length);
1393
1394         retval = 0;
1395
1396 bailout:
1397         return retval;
1398 }
1399
1400 /*
1401  * Need to implement this.  Do a basic probe:
1402  * - Check the inquiry data, make sure we're talking to a device that we
1403  *   can reasonably expect to talk to -- direct, RBC, CD, WORM.
1404  * - Send a test unit ready, make sure the device is available.
1405  * - Get the capacity and block size.
1406  */
1407 struct camdd_dev *
1408 camdd_probe_pass(struct cam_device *cam_dev, struct camdd_io_opts *io_opts,
1409                  camdd_argmask arglist, int probe_retry_count,
1410                  int probe_timeout, int io_retry_count, int io_timeout)
1411 {
1412         union ccb *ccb;
1413         uint64_t maxsector = 0;
1414         uint32_t cpi_maxio, max_iosize, pass_numblocks;
1415         uint32_t block_len = 0;
1416         struct camdd_dev *dev = NULL;
1417         struct camdd_dev_pass *pass_dev;
1418         struct kevent ke;
1419         struct ccb_getdev cgd;
1420         int retval;
1421         int scsi_dev_type;
1422
1423         if ((retval = camdd_get_cgd(cam_dev, &cgd)) != 0) {
1424                 warnx("%s: error retrieving CGD", __func__);
1425                 return NULL;
1426         }
1427
1428         ccb = cam_getccb(cam_dev);
1429
1430         if (ccb == NULL) {
1431                 warnx("%s: error allocating ccb", __func__);
1432                 goto bailout;
1433         }
1434
1435         switch (cgd.protocol) {
1436         case PROTO_SCSI:
1437                 scsi_dev_type = SID_TYPE(&cam_dev->inq_data);
1438
1439                 /*
1440                  * For devices that support READ CAPACITY, we'll attempt to get the
1441                  * capacity.  Otherwise, we really don't support tape or other
1442                  * devices via SCSI passthrough, so just return an error in that case.
1443                  */
1444                 switch (scsi_dev_type) {
1445                 case T_DIRECT:
1446                 case T_WORM:
1447                 case T_CDROM:
1448                 case T_OPTICAL:
1449                 case T_RBC:
1450                 case T_ZBC_HM:
1451                         break;
1452                 default:
1453                         errx(1, "Unsupported SCSI device type %d", scsi_dev_type);
1454                         break; /*NOTREACHED*/
1455                 }
1456
1457                 if ((retval = camdd_probe_pass_scsi(cam_dev, ccb, probe_retry_count,
1458                                                 arglist, probe_timeout, &maxsector,
1459                                                 &block_len))) {
1460                         goto bailout;
1461                 }
1462                 break;
1463         default:
1464                 errx(1, "Unsupported PROTO type %d", cgd.protocol);
1465                 break; /*NOTREACHED*/
1466         }
1467
1468         if (block_len == 0) {
1469                 warnx("Sector size for %s%u is 0, cannot continue",
1470                     cam_dev->device_name, cam_dev->dev_unit_num);
1471                 goto bailout_error;
1472         }
1473
1474         CCB_CLEAR_ALL_EXCEPT_HDR(&ccb->cpi);
1475
1476         ccb->ccb_h.func_code = XPT_PATH_INQ;
1477         ccb->ccb_h.flags = CAM_DIR_NONE;
1478         ccb->ccb_h.retry_count = 1;
1479         
1480         if (cam_send_ccb(cam_dev, ccb) < 0) {
1481                 warn("error sending XPT_PATH_INQ CCB");
1482
1483                 cam_error_print(cam_dev, ccb, CAM_ESF_ALL,
1484                                 CAM_EPF_ALL, stderr);
1485                 goto bailout;
1486         }
1487
1488         EV_SET(&ke, cam_dev->fd, EVFILT_READ, EV_ADD|EV_ENABLE, 0, 0, 0);
1489
1490         dev = camdd_alloc_dev(CAMDD_DEV_PASS, &ke, 1, io_retry_count,
1491                               io_timeout);
1492         if (dev == NULL)
1493                 goto bailout;
1494
1495         pass_dev = &dev->dev_spec.pass;
1496         pass_dev->scsi_dev_type = scsi_dev_type;
1497         pass_dev->protocol = cgd.protocol;
1498         pass_dev->dev = cam_dev;
1499         pass_dev->max_sector = maxsector;
1500         pass_dev->block_len = block_len;
1501         pass_dev->cpi_maxio = ccb->cpi.maxio;
1502         snprintf(dev->device_name, sizeof(dev->device_name), "%s%u",
1503                  pass_dev->dev->device_name, pass_dev->dev->dev_unit_num);
1504         dev->sector_size = block_len;
1505         dev->max_sector = maxsector;
1506         
1507
1508         /*
1509          * Determine the optimal blocksize to use for this device.
1510          */
1511
1512         /*
1513          * If the controller has not specified a maximum I/O size,
1514          * just go with 128K as a somewhat conservative value.
1515          */
1516         if (pass_dev->cpi_maxio == 0)
1517                 cpi_maxio = 131072;
1518         else
1519                 cpi_maxio = pass_dev->cpi_maxio;
1520
1521         /*
1522          * If the controller has a large maximum I/O size, limit it
1523          * to something smaller so that the kernel doesn't have trouble
1524          * allocating buffers to copy data in and out for us.
1525          * XXX KDM this is until we have unmapped I/O support in the kernel.
1526          */
1527         max_iosize = min(cpi_maxio, CAMDD_PASS_MAX_BLOCK);
1528
1529         /*
1530          * If we weren't able to get a block size for some reason,
1531          * default to 512 bytes.
1532          */
1533         block_len = pass_dev->block_len;
1534         if (block_len == 0)
1535                 block_len = 512;
1536
1537         /*
1538          * Figure out how many blocksize chunks will fit in the
1539          * maximum I/O size.
1540          */
1541         pass_numblocks = max_iosize / block_len;
1542
1543         /*
1544          * And finally, multiple the number of blocks by the LBA
1545          * length to get our maximum block size;
1546          */
1547         dev->blocksize = pass_numblocks * block_len;
1548
1549         if (io_opts->blocksize != 0) {
1550                 if ((io_opts->blocksize % dev->sector_size) != 0) {
1551                         warnx("Blocksize %ju for %s is not a multiple of "
1552                               "sector size %u", (uintmax_t)io_opts->blocksize, 
1553                               dev->device_name, dev->sector_size);
1554                         goto bailout_error;
1555                 }
1556                 dev->blocksize = io_opts->blocksize;
1557         }
1558         dev->target_queue_depth = CAMDD_PASS_DEFAULT_DEPTH;
1559         if (io_opts->queue_depth != 0)
1560                 dev->target_queue_depth = io_opts->queue_depth;
1561
1562         if (io_opts->offset != 0) {
1563                 if (io_opts->offset > (dev->max_sector * dev->sector_size)) {
1564                         warnx("Offset %ju is past the end of device %s",
1565                             io_opts->offset, dev->device_name);
1566                         goto bailout_error;
1567                 }
1568 #if 0
1569                 else if ((io_opts->offset % dev->sector_size) != 0) {
1570                         warnx("Offset %ju for %s is not a multiple of the "
1571                               "sector size %u", io_opts->offset, 
1572                               dev->device_name, dev->sector_size);
1573                         goto bailout_error;
1574                 }
1575                 dev->start_offset_bytes = io_opts->offset;
1576 #endif
1577         }
1578
1579         dev->min_cmd_size = io_opts->min_cmd_size;
1580
1581         dev->run = camdd_pass_run;
1582         dev->fetch = camdd_pass_fetch;
1583
1584 bailout:
1585         cam_freeccb(ccb);
1586
1587         return (dev);
1588
1589 bailout_error:
1590         cam_freeccb(ccb);
1591
1592         camdd_free_dev(dev);
1593
1594         return (NULL);
1595 }
1596
1597 void *
1598 camdd_worker(void *arg)
1599 {
1600         struct camdd_dev *dev = arg;
1601         struct camdd_buf *buf;
1602         struct timespec ts, *kq_ts;
1603
1604         ts.tv_sec = 0;
1605         ts.tv_nsec = 0;
1606
1607         pthread_mutex_lock(&dev->mutex);
1608
1609         dev->flags |= CAMDD_DEV_FLAG_ACTIVE;
1610
1611         for (;;) {
1612                 struct kevent ke;
1613                 int retval = 0;
1614
1615                 /*
1616                  * XXX KDM check the reorder queue depth?
1617                  */
1618                 if (dev->write_dev == 0) {
1619                         uint32_t our_depth, peer_depth, peer_bytes, our_bytes;
1620                         uint32_t target_depth = dev->target_queue_depth;
1621                         uint32_t peer_target_depth =
1622                             dev->peer_dev->target_queue_depth;
1623                         uint32_t peer_blocksize = dev->peer_dev->blocksize;
1624
1625                         camdd_get_depth(dev, &our_depth, &peer_depth,
1626                                         &our_bytes, &peer_bytes);
1627
1628 #if 0
1629                         while (((our_depth < target_depth)
1630                              && (peer_depth < peer_target_depth))
1631                             || ((peer_bytes + our_bytes) <
1632                                  (peer_blocksize * 2))) {
1633 #endif
1634                         while (((our_depth + peer_depth) <
1635                                 (target_depth + peer_target_depth))
1636                             || ((peer_bytes + our_bytes) <
1637                                 (peer_blocksize * 3))) {
1638
1639                                 retval = camdd_queue(dev, NULL);
1640                                 if (retval == 1)
1641                                         break;
1642                                 else if (retval != 0) {
1643                                         error_exit = 1;
1644                                         goto bailout;
1645                                 }
1646
1647                                 camdd_get_depth(dev, &our_depth, &peer_depth,
1648                                                 &our_bytes, &peer_bytes);
1649                         }
1650                 }
1651                 /*
1652                  * See if we have any I/O that is ready to execute.
1653                  */
1654                 buf = STAILQ_FIRST(&dev->run_queue);
1655                 if (buf != NULL) {
1656                         while (dev->target_queue_depth > dev->cur_active_io) {
1657                                 retval = dev->run(dev);
1658                                 if (retval == -1) {
1659                                         dev->flags |= CAMDD_DEV_FLAG_EOF;
1660                                         error_exit = 1;
1661                                         break;
1662                                 } else if (retval != 0) {
1663                                         break;
1664                                 }
1665                         }
1666                 }
1667
1668                 /*
1669                  * We've reached EOF, or our partner has reached EOF.
1670                  */
1671                 if ((dev->flags & CAMDD_DEV_FLAG_EOF)
1672                  || (dev->flags & CAMDD_DEV_FLAG_PEER_EOF)) {
1673                         if (dev->write_dev != 0) {
1674                                 if ((STAILQ_EMPTY(&dev->work_queue))
1675                                  && (dev->num_run_queue == 0)
1676                                  && (dev->cur_active_io == 0)) {
1677                                         goto bailout;
1678                                 }
1679                         } else {
1680                                 /*
1681                                  * If we're the reader, and the writer
1682                                  * got EOF, he is already done.  If we got
1683                                  * the EOF, then we need to wait until
1684                                  * everything is flushed out for the writer.
1685                                  */
1686                                 if (dev->flags & CAMDD_DEV_FLAG_PEER_EOF) {
1687                                         goto bailout;
1688                                 } else if ((dev->num_peer_work_queue == 0)
1689                                         && (dev->num_peer_done_queue == 0)
1690                                         && (dev->cur_active_io == 0)
1691                                         && (dev->num_run_queue == 0)) {
1692                                         goto bailout;
1693                                 }
1694                         }
1695                         /*
1696                          * XXX KDM need to do something about the pending
1697                          * queue and cleanup resources.
1698                          */
1699                 } 
1700
1701                 if ((dev->write_dev == 0)
1702                  && (dev->cur_active_io == 0)
1703                  && (dev->peer_bytes_queued < dev->peer_dev->blocksize))
1704                         kq_ts = &ts;
1705                 else
1706                         kq_ts = NULL;
1707
1708                 /*
1709                  * Run kevent to see if there are events to process.
1710                  */
1711                 pthread_mutex_unlock(&dev->mutex);
1712                 retval = kevent(dev->kq, NULL, 0, &ke, 1, kq_ts);
1713                 pthread_mutex_lock(&dev->mutex);
1714                 if (retval == -1) {
1715                         warn("%s: error returned from kevent",__func__);
1716                         goto bailout;
1717                 } else if (retval != 0) {
1718                         switch (ke.filter) {
1719                         case EVFILT_READ:
1720                                 if (dev->fetch != NULL) {
1721                                         retval = dev->fetch(dev);
1722                                         if (retval == -1) {
1723                                                 error_exit = 1;
1724                                                 goto bailout;
1725                                         }
1726                                 }
1727                                 break;
1728                         case EVFILT_SIGNAL:
1729                                 /*
1730                                  * We register for this so we don't get
1731                                  * an error as a result of a SIGINFO or a
1732                                  * SIGINT.  It will actually get handled
1733                                  * by the signal handler.  If we get a
1734                                  * SIGINT, bail out without printing an
1735                                  * error message.  Any other signals 
1736                                  * will result in the error message above.
1737                                  */
1738                                 if (ke.ident == SIGINT)
1739                                         goto bailout;
1740                                 break;
1741                         case EVFILT_USER:
1742                                 retval = 0;
1743                                 /*
1744                                  * Check to see if the other thread has
1745                                  * queued any I/O for us to do.  (In this
1746                                  * case we're the writer.)
1747                                  */
1748                                 for (buf = STAILQ_FIRST(&dev->work_queue);
1749                                      buf != NULL;
1750                                      buf = STAILQ_FIRST(&dev->work_queue)) {
1751                                         STAILQ_REMOVE_HEAD(&dev->work_queue,
1752                                                            work_links);
1753                                         retval = camdd_queue(dev, buf);
1754                                         /*
1755                                          * We keep going unless we get an
1756                                          * actual error.  If we get EOF, we
1757                                          * still want to remove the buffers
1758                                          * from the queue and send the back
1759                                          * to the reader thread.
1760                                          */
1761                                         if (retval == -1) {
1762                                                 error_exit = 1;
1763                                                 goto bailout;
1764                                         } else
1765                                                 retval = 0;
1766                                 }
1767
1768                                 /*
1769                                  * Next check to see if the other thread has
1770                                  * queued any completed buffers back to us.
1771                                  * (In this case we're the reader.)
1772                                  */
1773                                 for (buf = STAILQ_FIRST(&dev->peer_done_queue);
1774                                      buf != NULL;
1775                                      buf = STAILQ_FIRST(&dev->peer_done_queue)){
1776                                         STAILQ_REMOVE_HEAD(
1777                                             &dev->peer_done_queue, work_links);
1778                                         dev->num_peer_done_queue--;
1779                                         camdd_peer_done(buf);
1780                                 }
1781                                 break;
1782                         default:
1783                                 warnx("%s: unknown kevent filter %d",
1784                                       __func__, ke.filter);
1785                                 break;
1786                         }
1787                 }
1788         }
1789
1790 bailout:
1791
1792         dev->flags &= ~CAMDD_DEV_FLAG_ACTIVE;
1793
1794         /* XXX KDM cleanup resources here? */
1795
1796         pthread_mutex_unlock(&dev->mutex);
1797
1798         need_exit = 1;
1799         sem_post(&camdd_sem);
1800
1801         return (NULL);
1802 }
1803
1804 /*
1805  * Simplistic translation of CCB status to our local status.
1806  */
1807 camdd_buf_status
1808 camdd_ccb_status(union ccb *ccb, int protocol)
1809 {
1810         camdd_buf_status status = CAMDD_STATUS_NONE;
1811         cam_status ccb_status;
1812
1813         ccb_status = ccb->ccb_h.status & CAM_STATUS_MASK;
1814
1815         switch (protocol) {
1816         case PROTO_SCSI:
1817                 switch (ccb_status) {
1818                 case CAM_REQ_CMP: {
1819                         if (ccb->csio.resid == 0) {
1820                                 status = CAMDD_STATUS_OK;
1821                         } else if (ccb->csio.dxfer_len > ccb->csio.resid) {
1822                                 status = CAMDD_STATUS_SHORT_IO;
1823                         } else {
1824                                 status = CAMDD_STATUS_EOF;
1825                         }
1826                         break;
1827                 }
1828                 case CAM_SCSI_STATUS_ERROR: {
1829                         switch (ccb->csio.scsi_status) {
1830                         case SCSI_STATUS_OK:
1831                         case SCSI_STATUS_COND_MET:
1832                         case SCSI_STATUS_INTERMED:
1833                         case SCSI_STATUS_INTERMED_COND_MET:
1834                                 status = CAMDD_STATUS_OK;
1835                                 break;
1836                         case SCSI_STATUS_CMD_TERMINATED:
1837                         case SCSI_STATUS_CHECK_COND:
1838                         case SCSI_STATUS_QUEUE_FULL:
1839                         case SCSI_STATUS_BUSY:
1840                         case SCSI_STATUS_RESERV_CONFLICT:
1841                         default:
1842                                 status = CAMDD_STATUS_ERROR;
1843                                 break;
1844                         }
1845                         break;
1846                 }
1847                 default:
1848                         status = CAMDD_STATUS_ERROR;
1849                         break;
1850                 }
1851                 break;
1852         default:
1853                 status = CAMDD_STATUS_ERROR;
1854                 break;
1855         }
1856
1857         return (status);
1858 }
1859
1860 /*
1861  * Queue a buffer to our peer's work thread for writing.
1862  *
1863  * Returns 0 for success, -1 for failure, 1 if the other thread exited.
1864  */
1865 int
1866 camdd_queue_peer_buf(struct camdd_dev *dev, struct camdd_buf *buf)
1867 {
1868         struct kevent ke;
1869         STAILQ_HEAD(, camdd_buf) local_queue;
1870         struct camdd_buf *buf1, *buf2;
1871         struct camdd_buf_data *data = NULL;
1872         uint64_t peer_bytes_queued = 0;
1873         int active = 1;
1874         int retval = 0;
1875
1876         STAILQ_INIT(&local_queue);
1877
1878         /*
1879          * Since we're the reader, we need to queue our I/O to the writer
1880          * in sequential order in order to make sure it gets written out
1881          * in sequential order.
1882          *
1883          * Check the next expected I/O starting offset.  If this doesn't
1884          * match, put it on the reorder queue.
1885          */
1886         if ((buf->lba * dev->sector_size) != dev->next_completion_pos_bytes) {
1887
1888                 /*
1889                  * If there is nothing on the queue, there is no sorting
1890                  * needed.
1891                  */
1892                 if (STAILQ_EMPTY(&dev->reorder_queue)) {
1893                         STAILQ_INSERT_TAIL(&dev->reorder_queue, buf, links);
1894                         dev->num_reorder_queue++;
1895                         goto bailout;
1896                 }
1897
1898                 /*
1899                  * Sort in ascending order by starting LBA.  There should
1900                  * be no identical LBAs.
1901                  */
1902                 for (buf1 = STAILQ_FIRST(&dev->reorder_queue); buf1 != NULL;
1903                      buf1 = buf2) {
1904                         buf2 = STAILQ_NEXT(buf1, links);
1905                         if (buf->lba < buf1->lba) {
1906                                 /*
1907                                  * If we're less than the first one, then
1908                                  * we insert at the head of the list
1909                                  * because this has to be the first element
1910                                  * on the list.
1911                                  */
1912                                 STAILQ_INSERT_HEAD(&dev->reorder_queue,
1913                                                    buf, links);
1914                                 dev->num_reorder_queue++;
1915                                 break;
1916                         } else if (buf->lba > buf1->lba) {
1917                                 if (buf2 == NULL) {
1918                                         STAILQ_INSERT_TAIL(&dev->reorder_queue, 
1919                                             buf, links);
1920                                         dev->num_reorder_queue++;
1921                                         break;
1922                                 } else if (buf->lba < buf2->lba) {
1923                                         STAILQ_INSERT_AFTER(&dev->reorder_queue,
1924                                             buf1, buf, links);
1925                                         dev->num_reorder_queue++;
1926                                         break;
1927                                 }
1928                         } else {
1929                                 errx(1, "Found buffers with duplicate LBA %ju!",
1930                                      buf->lba);
1931                         }
1932                 }
1933                 goto bailout;
1934         } else {
1935
1936                 /*
1937                  * We're the next expected I/O completion, so put ourselves
1938                  * on the local queue to be sent to the writer.  We use
1939                  * work_links here so that we can queue this to the 
1940                  * peer_work_queue before taking the buffer off of the
1941                  * local_queue.
1942                  */
1943                 dev->next_completion_pos_bytes += buf->len;
1944                 STAILQ_INSERT_TAIL(&local_queue, buf, work_links);
1945
1946                 /*
1947                  * Go through the reorder queue looking for more sequential
1948                  * I/O and add it to the local queue.
1949                  */
1950                 for (buf1 = STAILQ_FIRST(&dev->reorder_queue); buf1 != NULL;
1951                      buf1 = STAILQ_FIRST(&dev->reorder_queue)) {
1952                         /*
1953                          * As soon as we see an I/O that is out of sequence,
1954                          * we're done.
1955                          */
1956                         if ((buf1->lba * dev->sector_size) !=
1957                              dev->next_completion_pos_bytes)
1958                                 break;
1959
1960                         STAILQ_REMOVE_HEAD(&dev->reorder_queue, links);
1961                         dev->num_reorder_queue--;
1962                         STAILQ_INSERT_TAIL(&local_queue, buf1, work_links);
1963                         dev->next_completion_pos_bytes += buf1->len;
1964                 }
1965         }
1966
1967         /*
1968          * Setup the event to let the other thread know that it has work
1969          * pending.
1970          */
1971         EV_SET(&ke, (uintptr_t)&dev->peer_dev->work_queue, EVFILT_USER, 0,
1972                NOTE_TRIGGER, 0, NULL);
1973
1974         /*
1975          * Put this on our shadow queue so that we know what we've queued
1976          * to the other thread.
1977          */
1978         STAILQ_FOREACH_SAFE(buf1, &local_queue, work_links, buf2) {
1979                 if (buf1->buf_type != CAMDD_BUF_DATA) {
1980                         errx(1, "%s: should have a data buffer, not an "
1981                             "indirect buffer", __func__);
1982                 }
1983                 data = &buf1->buf_type_spec.data;
1984
1985                 /*
1986                  * We only need to send one EOF to the writer, and don't
1987                  * need to continue sending EOFs after that.
1988                  */
1989                 if (buf1->status == CAMDD_STATUS_EOF) {
1990                         if (dev->flags & CAMDD_DEV_FLAG_EOF_SENT) {
1991                                 STAILQ_REMOVE(&local_queue, buf1, camdd_buf,
1992                                     work_links);
1993                                 camdd_release_buf(buf1);
1994                                 retval = 1;
1995                                 continue;
1996                         }
1997                         dev->flags |= CAMDD_DEV_FLAG_EOF_SENT;
1998                 }
1999
2000
2001                 STAILQ_INSERT_TAIL(&dev->peer_work_queue, buf1, links);
2002                 peer_bytes_queued += (data->fill_len - data->resid);
2003                 dev->peer_bytes_queued += (data->fill_len - data->resid);
2004                 dev->num_peer_work_queue++;
2005         }
2006
2007         if (STAILQ_FIRST(&local_queue) == NULL)
2008                 goto bailout;
2009
2010         /*
2011          * Drop our mutex and pick up the other thread's mutex.  We need to
2012          * do this to avoid deadlocks.
2013          */
2014         pthread_mutex_unlock(&dev->mutex);
2015         pthread_mutex_lock(&dev->peer_dev->mutex);
2016
2017         if (dev->peer_dev->flags & CAMDD_DEV_FLAG_ACTIVE) {
2018                 /*
2019                  * Put the buffers on the other thread's incoming work queue.
2020                  */
2021                 for (buf1 = STAILQ_FIRST(&local_queue); buf1 != NULL;
2022                      buf1 = STAILQ_FIRST(&local_queue)) {
2023                         STAILQ_REMOVE_HEAD(&local_queue, work_links);
2024                         STAILQ_INSERT_TAIL(&dev->peer_dev->work_queue, buf1,
2025                                            work_links);
2026                 }
2027                 /*
2028                  * Send an event to the other thread's kqueue to let it know
2029                  * that there is something on the work queue.
2030                  */
2031                 retval = kevent(dev->peer_dev->kq, &ke, 1, NULL, 0, NULL);
2032                 if (retval == -1)
2033                         warn("%s: unable to add peer work_queue kevent",
2034                              __func__);
2035                 else
2036                         retval = 0;
2037         } else
2038                 active = 0;
2039
2040         pthread_mutex_unlock(&dev->peer_dev->mutex);
2041         pthread_mutex_lock(&dev->mutex);
2042
2043         /*
2044          * If the other side isn't active, run through the queue and
2045          * release all of the buffers.
2046          */
2047         if (active == 0) {
2048                 for (buf1 = STAILQ_FIRST(&local_queue); buf1 != NULL;
2049                      buf1 = STAILQ_FIRST(&local_queue)) {
2050                         STAILQ_REMOVE_HEAD(&local_queue, work_links);
2051                         STAILQ_REMOVE(&dev->peer_work_queue, buf1, camdd_buf,
2052                                       links);
2053                         dev->num_peer_work_queue--;
2054                         camdd_release_buf(buf1);
2055                 }
2056                 dev->peer_bytes_queued -= peer_bytes_queued;
2057                 retval = 1;
2058         }
2059
2060 bailout:
2061         return (retval);
2062 }
2063
2064 /*
2065  * Return a buffer to the reader thread when we have completed writing it.
2066  */
2067 int
2068 camdd_complete_peer_buf(struct camdd_dev *dev, struct camdd_buf *peer_buf)
2069 {
2070         struct kevent ke;
2071         int retval = 0;
2072
2073         /*
2074          * Setup the event to let the other thread know that we have
2075          * completed a buffer.
2076          */
2077         EV_SET(&ke, (uintptr_t)&dev->peer_dev->peer_done_queue, EVFILT_USER, 0,
2078                NOTE_TRIGGER, 0, NULL);
2079
2080         /*
2081          * Drop our lock and acquire the other thread's lock before
2082          * manipulating 
2083          */
2084         pthread_mutex_unlock(&dev->mutex);
2085         pthread_mutex_lock(&dev->peer_dev->mutex);
2086
2087         /*
2088          * Put the buffer on the reader thread's peer done queue now that
2089          * we have completed it.
2090          */
2091         STAILQ_INSERT_TAIL(&dev->peer_dev->peer_done_queue, peer_buf,
2092                            work_links);
2093         dev->peer_dev->num_peer_done_queue++;
2094
2095         /*
2096          * Send an event to the peer thread to let it know that we've added
2097          * something to its peer done queue.
2098          */
2099         retval = kevent(dev->peer_dev->kq, &ke, 1, NULL, 0, NULL);
2100         if (retval == -1)
2101                 warn("%s: unable to add peer_done_queue kevent", __func__);
2102         else
2103                 retval = 0;
2104
2105         /*
2106          * Drop the other thread's lock and reacquire ours.
2107          */
2108         pthread_mutex_unlock(&dev->peer_dev->mutex);
2109         pthread_mutex_lock(&dev->mutex);
2110
2111         return (retval);
2112 }
2113
2114 /*
2115  * Free a buffer that was written out by the writer thread and returned to
2116  * the reader thread.
2117  */
2118 void
2119 camdd_peer_done(struct camdd_buf *buf)
2120 {
2121         struct camdd_dev *dev;
2122         struct camdd_buf_data *data;
2123
2124         dev = buf->dev;
2125         if (buf->buf_type != CAMDD_BUF_DATA) {
2126                 errx(1, "%s: should have a data buffer, not an "
2127                     "indirect buffer", __func__);
2128         }
2129
2130         data = &buf->buf_type_spec.data;
2131
2132         STAILQ_REMOVE(&dev->peer_work_queue, buf, camdd_buf, links);
2133         dev->num_peer_work_queue--;
2134         dev->peer_bytes_queued -= (data->fill_len - data->resid);
2135
2136         if (buf->status == CAMDD_STATUS_EOF)
2137                 dev->flags |= CAMDD_DEV_FLAG_PEER_EOF;
2138
2139         STAILQ_INSERT_TAIL(&dev->free_queue, buf, links);
2140 }
2141
2142 /*
2143  * Assumes caller holds the lock for this device.
2144  */
2145 void
2146 camdd_complete_buf(struct camdd_dev *dev, struct camdd_buf *buf,
2147                    int *error_count)
2148 {
2149         int retval = 0;
2150
2151         /*
2152          * If we're the reader, we need to send the completed I/O
2153          * to the writer.  If we're the writer, we need to just
2154          * free up resources, or let the reader know if we've
2155          * encountered an error.
2156          */
2157         if (dev->write_dev == 0) {
2158                 retval = camdd_queue_peer_buf(dev, buf);
2159                 if (retval != 0)
2160                         (*error_count)++;
2161         } else {
2162                 struct camdd_buf *tmp_buf, *next_buf;
2163
2164                 STAILQ_FOREACH_SAFE(tmp_buf, &buf->src_list, src_links,
2165                                     next_buf) {
2166                         struct camdd_buf *src_buf;
2167                         struct camdd_buf_indirect *indirect;
2168
2169                         STAILQ_REMOVE(&buf->src_list, tmp_buf,
2170                                       camdd_buf, src_links);
2171
2172                         tmp_buf->status = buf->status;
2173
2174                         if (tmp_buf->buf_type == CAMDD_BUF_DATA) {
2175                                 camdd_complete_peer_buf(dev, tmp_buf);
2176                                 continue;
2177                         }
2178
2179                         indirect = &tmp_buf->buf_type_spec.indirect;
2180                         src_buf = indirect->src_buf;
2181                         src_buf->refcount--;
2182                         /*
2183                          * XXX KDM we probably need to account for
2184                          * exactly how many bytes we were able to
2185                          * write.  Allocate the residual to the
2186                          * first N buffers?  Or just track the
2187                          * number of bytes written?  Right now the reader
2188                          * doesn't do anything with a residual.
2189                          */
2190                         src_buf->status = buf->status;
2191                         if (src_buf->refcount <= 0)
2192                                 camdd_complete_peer_buf(dev, src_buf);
2193                         STAILQ_INSERT_TAIL(&dev->free_indirect_queue,
2194                                            tmp_buf, links);
2195                 }
2196
2197                 STAILQ_INSERT_TAIL(&dev->free_queue, buf, links);
2198         }
2199 }
2200
2201 /*
2202  * Fetch all completed commands from the pass(4) device.
2203  *
2204  * Returns the number of commands received, or -1 if any of the commands
2205  * completed with an error.  Returns 0 if no commands are available.
2206  */
2207 int
2208 camdd_pass_fetch(struct camdd_dev *dev)
2209 {
2210         struct camdd_dev_pass *pass_dev = &dev->dev_spec.pass;
2211         union ccb ccb;
2212         int retval = 0, num_fetched = 0, error_count = 0;
2213
2214         pthread_mutex_unlock(&dev->mutex);
2215         /*
2216          * XXX KDM we don't distinguish between EFAULT and ENOENT.
2217          */
2218         while ((retval = ioctl(pass_dev->dev->fd, CAMIOGET, &ccb)) != -1) {
2219                 struct camdd_buf *buf;
2220                 struct camdd_buf_data *data;
2221                 cam_status ccb_status;
2222                 union ccb *buf_ccb;
2223
2224                 buf = ccb.ccb_h.ccb_buf;
2225                 data = &buf->buf_type_spec.data;
2226                 buf_ccb = &data->ccb;
2227
2228                 num_fetched++;
2229
2230                 /*
2231                  * Copy the CCB back out so we get status, sense data, etc.
2232                  */
2233                 bcopy(&ccb, buf_ccb, sizeof(ccb));
2234
2235                 pthread_mutex_lock(&dev->mutex);
2236
2237                 /*
2238                  * We're now done, so take this off the active queue.
2239                  */
2240                 STAILQ_REMOVE(&dev->active_queue, buf, camdd_buf, links);
2241                 dev->cur_active_io--;
2242
2243                 ccb_status = ccb.ccb_h.status & CAM_STATUS_MASK;
2244                 if (ccb_status != CAM_REQ_CMP) {
2245                         cam_error_print(pass_dev->dev, &ccb, CAM_ESF_ALL,
2246                                         CAM_EPF_ALL, stderr);
2247                 }
2248
2249                 switch (pass_dev->protocol) {
2250                 case PROTO_SCSI:
2251                         data->resid = ccb.csio.resid;
2252                         dev->bytes_transferred += (ccb.csio.dxfer_len - ccb.csio.resid);
2253                         break;
2254                 default:
2255                         return -1;
2256                         break;
2257                 }
2258
2259                 if (buf->status == CAMDD_STATUS_NONE)
2260                         buf->status = camdd_ccb_status(&ccb, pass_dev->protocol);
2261                 if (buf->status == CAMDD_STATUS_ERROR)
2262                         error_count++;
2263                 else if (buf->status == CAMDD_STATUS_EOF) {
2264                         /*
2265                          * Once we queue this buffer to our partner thread,
2266                          * he will know that we've hit EOF.
2267                          */
2268                         dev->flags |= CAMDD_DEV_FLAG_EOF;
2269                 }
2270
2271                 camdd_complete_buf(dev, buf, &error_count);
2272
2273                 /*
2274                  * Unlock in preparation for the ioctl call.
2275                  */
2276                 pthread_mutex_unlock(&dev->mutex);
2277         }
2278
2279         pthread_mutex_lock(&dev->mutex);
2280
2281         if (error_count > 0)
2282                 return (-1);
2283         else
2284                 return (num_fetched);
2285 }
2286
2287 /*
2288  * Returns -1 for error, 0 for success/continue, and 1 for resource
2289  * shortage/stop processing.
2290  */
2291 int
2292 camdd_file_run(struct camdd_dev *dev)
2293 {
2294         struct camdd_dev_file *file_dev = &dev->dev_spec.file;
2295         struct camdd_buf_data *data;
2296         struct camdd_buf *buf;
2297         off_t io_offset;
2298         int retval = 0, write_dev = dev->write_dev;
2299         int error_count = 0, no_resources = 0, double_buf_needed = 0;
2300         uint32_t num_sectors = 0, db_len = 0;
2301
2302         buf = STAILQ_FIRST(&dev->run_queue);
2303         if (buf == NULL) {
2304                 no_resources = 1;
2305                 goto bailout;
2306         } else if ((dev->write_dev == 0)
2307                 && (dev->flags & (CAMDD_DEV_FLAG_EOF |
2308                                   CAMDD_DEV_FLAG_EOF_SENT))) {
2309                 STAILQ_REMOVE(&dev->run_queue, buf, camdd_buf, links);
2310                 dev->num_run_queue--;
2311                 buf->status = CAMDD_STATUS_EOF;
2312                 error_count++;
2313                 goto bailout;
2314         }
2315
2316         /*
2317          * If we're writing, we need to go through the source buffer list
2318          * and create an S/G list.
2319          */
2320         if (write_dev != 0) {
2321                 retval = camdd_buf_sg_create(buf, /*iovec*/ 1,
2322                     dev->sector_size, &num_sectors, &double_buf_needed);
2323                 if (retval != 0) {
2324                         no_resources = 1;
2325                         goto bailout;
2326                 }
2327         }
2328
2329         STAILQ_REMOVE(&dev->run_queue, buf, camdd_buf, links);
2330         dev->num_run_queue--;
2331
2332         data = &buf->buf_type_spec.data;
2333
2334         /*
2335          * pread(2) and pwrite(2) offsets are byte offsets.
2336          */
2337         io_offset = buf->lba * dev->sector_size;
2338
2339         /*
2340          * Unlock the mutex while we read or write.
2341          */
2342         pthread_mutex_unlock(&dev->mutex);
2343
2344         /*
2345          * Note that we don't need to double buffer if we're the reader
2346          * because in that case, we have allocated a single buffer of
2347          * sufficient size to do the read.  This copy is necessary on
2348          * writes because if one of the components of the S/G list is not
2349          * a sector size multiple, the kernel will reject the write.  This
2350          * is unfortunate but not surprising.  So this will make sure that
2351          * we're using a single buffer that is a multiple of the sector size.
2352          */
2353         if ((double_buf_needed != 0)
2354          && (data->sg_count > 1)
2355          && (write_dev != 0)) {
2356                 uint32_t cur_offset;
2357                 int i;
2358
2359                 if (file_dev->tmp_buf == NULL)
2360                         file_dev->tmp_buf = calloc(dev->blocksize, 1);
2361                 if (file_dev->tmp_buf == NULL) {
2362                         buf->status = CAMDD_STATUS_ERROR;
2363                         error_count++;
2364                         pthread_mutex_lock(&dev->mutex);
2365                         goto bailout;
2366                 }
2367                 for (i = 0, cur_offset = 0; i < data->sg_count; i++) {
2368                         bcopy(data->iovec[i].iov_base,
2369                             &file_dev->tmp_buf[cur_offset],
2370                             data->iovec[i].iov_len);
2371                         cur_offset += data->iovec[i].iov_len;
2372                 }
2373                 db_len = cur_offset;
2374         }
2375
2376         if (file_dev->file_flags & CAMDD_FF_CAN_SEEK) {
2377                 if (write_dev == 0) {
2378                         /*
2379                          * XXX KDM is there any way we would need a S/G
2380                          * list here?
2381                          */
2382                         retval = pread(file_dev->fd, data->buf,
2383                             buf->len, io_offset);
2384                 } else {
2385                         if (double_buf_needed != 0) {
2386                                 retval = pwrite(file_dev->fd, file_dev->tmp_buf,
2387                                     db_len, io_offset);
2388                         } else if (data->sg_count == 0) {
2389                                 retval = pwrite(file_dev->fd, data->buf,
2390                                     data->fill_len, io_offset);
2391                         } else {
2392                                 retval = pwritev(file_dev->fd, data->iovec,
2393                                     data->sg_count, io_offset);
2394                         }
2395                 }
2396         } else {
2397                 if (write_dev == 0) {
2398                         /*
2399                          * XXX KDM is there any way we would need a S/G
2400                          * list here?
2401                          */
2402                         retval = read(file_dev->fd, data->buf, buf->len);
2403                 } else {
2404                         if (double_buf_needed != 0) {
2405                                 retval = write(file_dev->fd, file_dev->tmp_buf,
2406                                     db_len);
2407                         } else if (data->sg_count == 0) {
2408                                 retval = write(file_dev->fd, data->buf,
2409                                     data->fill_len);
2410                         } else {
2411                                 retval = writev(file_dev->fd, data->iovec,
2412                                     data->sg_count);
2413                         }
2414                 }
2415         }
2416
2417         /* We're done, re-acquire the lock */
2418         pthread_mutex_lock(&dev->mutex);
2419
2420         if (retval >= (ssize_t)data->fill_len) {
2421                 /*
2422                  * If the bytes transferred is more than the request size,
2423                  * that indicates an overrun, which should only happen at
2424                  * the end of a transfer if we have to round up to a sector
2425                  * boundary.
2426                  */
2427                 if (buf->status == CAMDD_STATUS_NONE)
2428                         buf->status = CAMDD_STATUS_OK;
2429                 data->resid = 0;
2430                 dev->bytes_transferred += retval;
2431         } else if (retval == -1) {
2432                 warn("Error %s %s", (write_dev) ? "writing to" :
2433                     "reading from", file_dev->filename);
2434
2435                 buf->status = CAMDD_STATUS_ERROR;
2436                 data->resid = data->fill_len;
2437                 error_count++;
2438
2439                 if (dev->debug == 0)
2440                         goto bailout;
2441
2442                 if ((double_buf_needed != 0)
2443                  && (write_dev != 0)) {
2444                         fprintf(stderr, "%s: fd %d, DB buf %p, len %u lba %ju "
2445                             "offset %ju\n", __func__, file_dev->fd,
2446                             file_dev->tmp_buf, db_len, (uintmax_t)buf->lba,
2447                             (uintmax_t)io_offset);
2448                 } else if (data->sg_count == 0) {
2449                         fprintf(stderr, "%s: fd %d, buf %p, len %u, lba %ju "
2450                             "offset %ju\n", __func__, file_dev->fd, data->buf,
2451                             data->fill_len, (uintmax_t)buf->lba,
2452                             (uintmax_t)io_offset);
2453                 } else {
2454                         int i;
2455
2456                         fprintf(stderr, "%s: fd %d, len %u, lba %ju "
2457                             "offset %ju\n", __func__, file_dev->fd, 
2458                             data->fill_len, (uintmax_t)buf->lba,
2459                             (uintmax_t)io_offset);
2460
2461                         for (i = 0; i < data->sg_count; i++) {
2462                                 fprintf(stderr, "index %d ptr %p len %zu\n",
2463                                     i, data->iovec[i].iov_base,
2464                                     data->iovec[i].iov_len);
2465                         }
2466                 }
2467         } else if (retval == 0) {
2468                 buf->status = CAMDD_STATUS_EOF;
2469                 if (dev->debug != 0)
2470                         printf("%s: got EOF from %s!\n", __func__,
2471                             file_dev->filename);
2472                 data->resid = data->fill_len;
2473                 error_count++;
2474         } else if (retval < (ssize_t)data->fill_len) {
2475                 if (buf->status == CAMDD_STATUS_NONE)
2476                         buf->status = CAMDD_STATUS_SHORT_IO;
2477                 data->resid = data->fill_len - retval;
2478                 dev->bytes_transferred += retval;
2479         }
2480
2481 bailout:
2482         if (buf != NULL) {
2483                 if (buf->status == CAMDD_STATUS_EOF) {
2484                         struct camdd_buf *buf2;
2485                         dev->flags |= CAMDD_DEV_FLAG_EOF;
2486                         STAILQ_FOREACH(buf2, &dev->run_queue, links)
2487                                 buf2->status = CAMDD_STATUS_EOF;
2488                 }
2489
2490                 camdd_complete_buf(dev, buf, &error_count);
2491         }
2492
2493         if (error_count != 0)
2494                 return (-1);
2495         else if (no_resources != 0)
2496                 return (1);
2497         else
2498                 return (0);
2499 }
2500
2501 /*
2502  * Execute one command from the run queue.  Returns 0 for success, 1 for
2503  * stop processing, and -1 for error.
2504  */
2505 int
2506 camdd_pass_run(struct camdd_dev *dev)
2507 {
2508         struct camdd_buf *buf = NULL;
2509         struct camdd_dev_pass *pass_dev = &dev->dev_spec.pass;
2510         struct camdd_buf_data *data;
2511         uint32_t num_blocks, sectors_used = 0;
2512         union ccb *ccb;
2513         int retval = 0, is_write = dev->write_dev;
2514         int double_buf_needed = 0;
2515
2516         buf = STAILQ_FIRST(&dev->run_queue);
2517         if (buf == NULL) {
2518                 retval = 1;
2519                 goto bailout;
2520         }
2521
2522         /*
2523          * If we're writing, we need to go through the source buffer list
2524          * and create an S/G list.
2525          */
2526         if (is_write != 0) {
2527                 retval = camdd_buf_sg_create(buf, /*iovec*/ 0,dev->sector_size,
2528                     &sectors_used, &double_buf_needed);
2529                 if (retval != 0) {
2530                         retval = -1;
2531                         goto bailout;
2532                 }
2533         }
2534
2535         STAILQ_REMOVE(&dev->run_queue, buf, camdd_buf, links);
2536         dev->num_run_queue--;
2537
2538         data = &buf->buf_type_spec.data;
2539
2540         /*
2541          * In almost every case the number of blocks should be the device
2542          * block size.  The exception may be at the end of an I/O stream
2543          * for a partial block or at the end of a device.
2544          */
2545         if (is_write != 0)
2546                 num_blocks = sectors_used;
2547         else
2548                 num_blocks = data->fill_len / pass_dev->block_len;
2549
2550         ccb = &data->ccb;
2551
2552         switch (pass_dev->protocol) {
2553         case PROTO_SCSI:
2554                 CCB_CLEAR_ALL_EXCEPT_HDR(&ccb->csio);
2555
2556                 scsi_read_write(&ccb->csio,
2557                                 /*retries*/ dev->retry_count,
2558                                 /*cbfcnp*/ NULL,
2559                                 /*tag_action*/ MSG_SIMPLE_Q_TAG,
2560                                 /*readop*/ (dev->write_dev == 0) ? SCSI_RW_READ :
2561                                            SCSI_RW_WRITE,
2562                                 /*byte2*/ 0,
2563                                 /*minimum_cmd_size*/ dev->min_cmd_size,
2564                                 /*lba*/ buf->lba,
2565                                 /*block_count*/ num_blocks,
2566                                 /*data_ptr*/ (data->sg_count != 0) ?
2567                                              (uint8_t *)data->segs : data->buf,
2568                                 /*dxfer_len*/ (num_blocks * pass_dev->block_len),
2569                                 /*sense_len*/ SSD_FULL_SIZE,
2570                                 /*timeout*/ dev->io_timeout);
2571
2572                 if (data->sg_count != 0) {
2573                         ccb->csio.sglist_cnt = data->sg_count;
2574                 }
2575                 break;
2576         default:
2577                 retval = -1;
2578                 goto bailout;
2579         }
2580
2581         /* Disable freezing the device queue */
2582         ccb->ccb_h.flags |= CAM_DEV_QFRZDIS;
2583
2584         if (dev->retry_count != 0)
2585                 ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER;
2586
2587         if (data->sg_count != 0) {
2588                 ccb->ccb_h.flags |= CAM_DATA_SG;
2589         }
2590
2591         /*
2592          * Store a pointer to the buffer in the CCB.  The kernel will
2593          * restore this when we get it back, and we'll use it to identify
2594          * the buffer this CCB came from.
2595          */
2596         ccb->ccb_h.ccb_buf = buf;
2597
2598         /*
2599          * Unlock our mutex in preparation for issuing the ioctl.
2600          */
2601         pthread_mutex_unlock(&dev->mutex);
2602         /*
2603          * Queue the CCB to the pass(4) driver.
2604          */
2605         if (ioctl(pass_dev->dev->fd, CAMIOQUEUE, ccb) == -1) {
2606                 pthread_mutex_lock(&dev->mutex);
2607
2608                 warn("%s: error sending CAMIOQUEUE ioctl to %s%u", __func__,
2609                      pass_dev->dev->device_name, pass_dev->dev->dev_unit_num);
2610                 warn("%s: CCB address is %p", __func__, ccb);
2611                 retval = -1;
2612
2613                 STAILQ_INSERT_TAIL(&dev->free_queue, buf, links);
2614         } else {
2615                 pthread_mutex_lock(&dev->mutex);
2616
2617                 dev->cur_active_io++;
2618                 STAILQ_INSERT_TAIL(&dev->active_queue, buf, links);
2619         }
2620
2621 bailout:
2622         return (retval);
2623 }
2624
2625 int
2626 camdd_get_next_lba_len(struct camdd_dev *dev, uint64_t *lba, ssize_t *len)
2627 {
2628         struct camdd_dev_pass *pass_dev;
2629         uint32_t num_blocks;
2630         int retval = 0;
2631
2632         pass_dev = &dev->dev_spec.pass;
2633
2634         *lba = dev->next_io_pos_bytes / dev->sector_size;
2635         *len = dev->blocksize;
2636         num_blocks = *len / dev->sector_size;
2637
2638         /*
2639          * If max_sector is 0, then we have no set limit.  This can happen
2640          * if we're writing to a file in a filesystem, or reading from
2641          * something like /dev/zero.
2642          */
2643         if ((dev->max_sector != 0)
2644          || (dev->sector_io_limit != 0)) {
2645                 uint64_t max_sector;
2646
2647                 if ((dev->max_sector != 0)
2648                  && (dev->sector_io_limit != 0)) 
2649                         max_sector = min(dev->sector_io_limit, dev->max_sector);
2650                 else if (dev->max_sector != 0)
2651                         max_sector = dev->max_sector;
2652                 else
2653                         max_sector = dev->sector_io_limit;
2654
2655
2656                 /*
2657                  * Check to see whether we're starting off past the end of
2658                  * the device.  If so, we need to just send an EOF      
2659                  * notification to the writer.
2660                  */
2661                 if (*lba > max_sector) {
2662                         *len = 0;
2663                         retval = 1;
2664                 } else if (((*lba + num_blocks) > max_sector + 1)
2665                         || ((*lba + num_blocks) < *lba)) {
2666                         /*
2667                          * If we get here (but pass the first check), we
2668                          * can trim the request length down to go to the
2669                          * end of the device.
2670                          */
2671                         num_blocks = (max_sector + 1) - *lba;
2672                         *len = num_blocks * dev->sector_size;
2673                         retval = 1;
2674                 }
2675         }
2676
2677         dev->next_io_pos_bytes += *len;
2678
2679         return (retval);
2680 }
2681
2682 /*
2683  * Returns 0 for success, 1 for EOF detected, and -1 for failure.
2684  */
2685 int
2686 camdd_queue(struct camdd_dev *dev, struct camdd_buf *read_buf)
2687 {
2688         struct camdd_buf *buf = NULL;
2689         struct camdd_buf_data *data;
2690         struct camdd_dev_pass *pass_dev;
2691         size_t new_len;
2692         struct camdd_buf_data *rb_data;
2693         int is_write = dev->write_dev;
2694         int eof_flush_needed = 0;
2695         int retval = 0;
2696         int error;
2697
2698         pass_dev = &dev->dev_spec.pass;
2699
2700         /*
2701          * If we've gotten EOF or our partner has, we should not continue
2702          * queueing I/O.  If we're a writer, though, we should continue
2703          * to write any buffers that don't have EOF status.
2704          */
2705         if ((dev->flags & CAMDD_DEV_FLAG_EOF)
2706          || ((dev->flags & CAMDD_DEV_FLAG_PEER_EOF)
2707           && (is_write == 0))) {
2708                 /*
2709                  * Tell the worker thread that we have seen EOF.
2710                  */
2711                 retval = 1;
2712
2713                 /*
2714                  * If we're the writer, send the buffer back with EOF status.
2715                  */
2716                 if (is_write) {
2717                         read_buf->status = CAMDD_STATUS_EOF;
2718                         
2719                         error = camdd_complete_peer_buf(dev, read_buf);
2720                 }
2721                 goto bailout;
2722         }
2723
2724         if (is_write == 0) {
2725                 buf = camdd_get_buf(dev, CAMDD_BUF_DATA);
2726                 if (buf == NULL) {
2727                         retval = -1;
2728                         goto bailout;
2729                 }
2730                 data = &buf->buf_type_spec.data;
2731
2732                 retval = camdd_get_next_lba_len(dev, &buf->lba, &buf->len);
2733                 if (retval != 0) {
2734                         buf->status = CAMDD_STATUS_EOF;
2735
2736                         if ((buf->len == 0)
2737                          && ((dev->flags & (CAMDD_DEV_FLAG_EOF_SENT |
2738                              CAMDD_DEV_FLAG_EOF_QUEUED)) != 0)) {
2739                                 camdd_release_buf(buf);
2740                                 goto bailout;
2741                         }
2742                         dev->flags |= CAMDD_DEV_FLAG_EOF_QUEUED;
2743                 }
2744
2745                 data->fill_len = buf->len;
2746                 data->src_start_offset = buf->lba * dev->sector_size;
2747
2748                 /*
2749                  * Put this on the run queue.
2750                  */
2751                 STAILQ_INSERT_TAIL(&dev->run_queue, buf, links);
2752                 dev->num_run_queue++;
2753
2754                 /* We're done. */
2755                 goto bailout;
2756         }
2757
2758         /*
2759          * Check for new EOF status from the reader.
2760          */
2761         if ((read_buf->status == CAMDD_STATUS_EOF)
2762          || (read_buf->status == CAMDD_STATUS_ERROR)) {
2763                 dev->flags |= CAMDD_DEV_FLAG_PEER_EOF;
2764                 if ((STAILQ_FIRST(&dev->pending_queue) == NULL)
2765                  && (read_buf->len == 0)) {
2766                         camdd_complete_peer_buf(dev, read_buf);
2767                         retval = 1;
2768                         goto bailout;
2769                 } else
2770                         eof_flush_needed = 1;
2771         }
2772
2773         /*
2774          * See if we have a buffer we're composing with pieces from our
2775          * partner thread.
2776          */
2777         buf = STAILQ_FIRST(&dev->pending_queue);
2778         if (buf == NULL) {
2779                 uint64_t lba;
2780                 ssize_t len;
2781
2782                 retval = camdd_get_next_lba_len(dev, &lba, &len);
2783                 if (retval != 0) {
2784                         read_buf->status = CAMDD_STATUS_EOF;
2785
2786                         if (len == 0) {
2787                                 dev->flags |= CAMDD_DEV_FLAG_EOF;
2788                                 error = camdd_complete_peer_buf(dev, read_buf);
2789                                 goto bailout;
2790                         }
2791                 }
2792
2793                 /*
2794                  * If we don't have a pending buffer, we need to grab a new
2795                  * one from the free list or allocate another one.
2796                  */
2797                 buf = camdd_get_buf(dev, CAMDD_BUF_DATA);
2798                 if (buf == NULL) {
2799                         retval = 1;
2800                         goto bailout;
2801                 }
2802
2803                 buf->lba = lba;
2804                 buf->len = len;
2805
2806                 STAILQ_INSERT_TAIL(&dev->pending_queue, buf, links);
2807                 dev->num_pending_queue++;
2808         }
2809
2810         data = &buf->buf_type_spec.data;
2811
2812         rb_data = &read_buf->buf_type_spec.data;
2813
2814         if ((rb_data->src_start_offset != dev->next_peer_pos_bytes)
2815          && (dev->debug != 0)) {
2816                 printf("%s: WARNING: reader offset %#jx != expected offset "
2817                     "%#jx\n", __func__, (uintmax_t)rb_data->src_start_offset,
2818                     (uintmax_t)dev->next_peer_pos_bytes);
2819         }
2820         dev->next_peer_pos_bytes = rb_data->src_start_offset +
2821             (rb_data->fill_len - rb_data->resid);
2822
2823         new_len = (rb_data->fill_len - rb_data->resid) + data->fill_len;
2824         if (new_len < buf->len) {
2825                 /*
2826                  * There are three cases here:
2827                  * 1. We need more data to fill up a block, so we put 
2828                  *    this I/O on the queue and wait for more I/O.
2829                  * 2. We have a pending buffer in the queue that is
2830                  *    smaller than our blocksize, but we got an EOF.  So we
2831                  *    need to go ahead and flush the write out.
2832                  * 3. We got an error.
2833                  */
2834
2835                 /*
2836                  * Increment our fill length.
2837                  */
2838                 data->fill_len += (rb_data->fill_len - rb_data->resid);
2839
2840                 /*
2841                  * Add the new read buffer to the list for writing.
2842                  */
2843                 STAILQ_INSERT_TAIL(&buf->src_list, read_buf, src_links);
2844
2845                 /* Increment the count */
2846                 buf->src_count++;
2847
2848                 if (eof_flush_needed == 0) {
2849                         /*
2850                          * We need to exit, because we don't have enough
2851                          * data yet.
2852                          */
2853                         goto bailout;
2854                 } else {
2855                         /*
2856                          * Take the buffer off of the pending queue.
2857                          */
2858                         STAILQ_REMOVE(&dev->pending_queue, buf, camdd_buf,
2859                                       links);
2860                         dev->num_pending_queue--;
2861
2862                         /*
2863                          * If we need an EOF flush, but there is no data
2864                          * to flush, go ahead and return this buffer.
2865                          */
2866                         if (data->fill_len == 0) {
2867                                 camdd_complete_buf(dev, buf, /*error_count*/0);
2868                                 retval = 1;
2869                                 goto bailout;
2870                         }
2871
2872                         /*
2873                          * Put this on the next queue for execution.
2874                          */
2875                         STAILQ_INSERT_TAIL(&dev->run_queue, buf, links);
2876                         dev->num_run_queue++;
2877                 }
2878         } else if (new_len == buf->len) {
2879                 /*
2880                  * We have enough data to completey fill one block,
2881                  * so we're ready to issue the I/O.
2882                  */
2883
2884                 /*
2885                  * Take the buffer off of the pending queue.
2886                  */
2887                 STAILQ_REMOVE(&dev->pending_queue, buf, camdd_buf, links);
2888                 dev->num_pending_queue--;
2889
2890                 /*
2891                  * Add the new read buffer to the list for writing.
2892                  */
2893                 STAILQ_INSERT_TAIL(&buf->src_list, read_buf, src_links);
2894
2895                 /* Increment the count */
2896                 buf->src_count++;
2897
2898                 /*
2899                  * Increment our fill length.
2900                  */
2901                 data->fill_len += (rb_data->fill_len - rb_data->resid);
2902
2903                 /*
2904                  * Put this on the next queue for execution.
2905                  */
2906                 STAILQ_INSERT_TAIL(&dev->run_queue, buf, links);
2907                 dev->num_run_queue++;
2908         } else {
2909                 struct camdd_buf *idb;
2910                 struct camdd_buf_indirect *indirect;
2911                 uint32_t len_to_go, cur_offset;
2912
2913                 
2914                 idb = camdd_get_buf(dev, CAMDD_BUF_INDIRECT);
2915                 if (idb == NULL) {
2916                         retval = 1;
2917                         goto bailout;
2918                 }
2919                 indirect = &idb->buf_type_spec.indirect;
2920                 indirect->src_buf = read_buf;
2921                 read_buf->refcount++;
2922                 indirect->offset = 0;
2923                 indirect->start_ptr = rb_data->buf;
2924                 /*
2925                  * We've already established that there is more
2926                  * data in read_buf than we have room for in our
2927                  * current write request.  So this particular chunk
2928                  * of the request should just be the remainder
2929                  * needed to fill up a block.
2930                  */
2931                 indirect->len = buf->len - (data->fill_len - data->resid);
2932
2933                 camdd_buf_add_child(buf, idb);
2934
2935                 /*
2936                  * This buffer is ready to execute, so we can take
2937                  * it off the pending queue and put it on the run
2938                  * queue.
2939                  */
2940                 STAILQ_REMOVE(&dev->pending_queue, buf, camdd_buf,
2941                               links);
2942                 dev->num_pending_queue--;
2943                 STAILQ_INSERT_TAIL(&dev->run_queue, buf, links);
2944                 dev->num_run_queue++;
2945
2946                 cur_offset = indirect->offset + indirect->len;
2947
2948                 /*
2949                  * The resulting I/O would be too large to fit in
2950                  * one block.  We need to split this I/O into
2951                  * multiple pieces.  Allocate as many buffers as needed.
2952                  */
2953                 for (len_to_go = rb_data->fill_len - rb_data->resid -
2954                      indirect->len; len_to_go > 0;) {
2955                         struct camdd_buf *new_buf;
2956                         struct camdd_buf_data *new_data;
2957                         uint64_t lba;
2958                         ssize_t len;
2959
2960                         retval = camdd_get_next_lba_len(dev, &lba, &len);
2961                         if ((retval != 0)
2962                          && (len == 0)) {
2963                                 /*
2964                                  * The device has already been marked
2965                                  * as EOF, and there is no space left.
2966                                  */
2967                                 goto bailout;
2968                         }
2969
2970                         new_buf = camdd_get_buf(dev, CAMDD_BUF_DATA);
2971                         if (new_buf == NULL) {
2972                                 retval = 1;
2973                                 goto bailout;
2974                         }
2975
2976                         new_buf->lba = lba;
2977                         new_buf->len = len;
2978
2979                         idb = camdd_get_buf(dev, CAMDD_BUF_INDIRECT);
2980                         if (idb == NULL) {
2981                                 retval = 1;
2982                                 goto bailout;
2983                         }
2984
2985                         indirect = &idb->buf_type_spec.indirect;
2986
2987                         indirect->src_buf = read_buf;
2988                         read_buf->refcount++;
2989                         indirect->offset = cur_offset;
2990                         indirect->start_ptr = rb_data->buf + cur_offset;
2991                         indirect->len = min(len_to_go, new_buf->len);
2992 #if 0
2993                         if (((indirect->len % dev->sector_size) != 0)
2994                          || ((indirect->offset % dev->sector_size) != 0)) {
2995                                 warnx("offset %ju len %ju not aligned with "
2996                                     "sector size %u", indirect->offset,
2997                                     (uintmax_t)indirect->len, dev->sector_size);
2998                         }
2999 #endif
3000                         cur_offset += indirect->len;
3001                         len_to_go -= indirect->len;
3002
3003                         camdd_buf_add_child(new_buf, idb);
3004
3005                         new_data = &new_buf->buf_type_spec.data;
3006
3007                         if ((new_data->fill_len == new_buf->len)
3008                          || (eof_flush_needed != 0)) {
3009                                 STAILQ_INSERT_TAIL(&dev->run_queue,
3010                                                    new_buf, links);
3011                                 dev->num_run_queue++;
3012                         } else if (new_data->fill_len < buf->len) {
3013                                 STAILQ_INSERT_TAIL(&dev->pending_queue,
3014                                                 new_buf, links);
3015                                 dev->num_pending_queue++;
3016                         } else {
3017                                 warnx("%s: too much data in new "
3018                                       "buffer!", __func__);
3019                                 retval = 1;
3020                                 goto bailout;
3021                         }
3022                 }
3023         }
3024
3025 bailout:
3026         return (retval);
3027 }
3028
3029 void
3030 camdd_get_depth(struct camdd_dev *dev, uint32_t *our_depth,
3031                 uint32_t *peer_depth, uint32_t *our_bytes, uint32_t *peer_bytes)
3032 {
3033         *our_depth = dev->cur_active_io + dev->num_run_queue;
3034         if (dev->num_peer_work_queue >
3035             dev->num_peer_done_queue)
3036                 *peer_depth = dev->num_peer_work_queue -
3037                               dev->num_peer_done_queue;
3038         else
3039                 *peer_depth = 0;
3040         *our_bytes = *our_depth * dev->blocksize;
3041         *peer_bytes = dev->peer_bytes_queued;
3042 }
3043
3044 void
3045 camdd_sig_handler(int sig)
3046 {
3047         if (sig == SIGINFO)
3048                 need_status = 1;
3049         else {
3050                 need_exit = 1;
3051                 error_exit = 1;
3052         }
3053
3054         sem_post(&camdd_sem);
3055 }
3056
3057 void
3058 camdd_print_status(struct camdd_dev *camdd_dev, struct camdd_dev *other_dev, 
3059                    struct timespec *start_time)
3060 {
3061         struct timespec done_time;
3062         uint64_t total_ns;
3063         long double mb_sec, total_sec;
3064         int error = 0;
3065
3066         error = clock_gettime(CLOCK_MONOTONIC_PRECISE, &done_time);
3067         if (error != 0) {
3068                 warn("Unable to get done time");
3069                 return;
3070         }
3071
3072         timespecsub(&done_time, start_time);
3073         
3074         total_ns = done_time.tv_nsec + (done_time.tv_sec * 1000000000);
3075         total_sec = total_ns;
3076         total_sec /= 1000000000;
3077
3078         fprintf(stderr, "%ju bytes %s %s\n%ju bytes %s %s\n"
3079                 "%.4Lf seconds elapsed\n",
3080                 (uintmax_t)camdd_dev->bytes_transferred,
3081                 (camdd_dev->write_dev == 0) ?  "read from" : "written to",
3082                 camdd_dev->device_name,
3083                 (uintmax_t)other_dev->bytes_transferred,
3084                 (other_dev->write_dev == 0) ? "read from" : "written to",
3085                 other_dev->device_name, total_sec);
3086
3087         mb_sec = min(other_dev->bytes_transferred,camdd_dev->bytes_transferred);
3088         mb_sec /= 1024 * 1024;
3089         mb_sec *= 1000000000;
3090         mb_sec /= total_ns;
3091         fprintf(stderr, "%.2Lf MB/sec\n", mb_sec);
3092 }
3093
3094 int
3095 camdd_rw(struct camdd_io_opts *io_opts, int num_io_opts, uint64_t max_io,
3096          int retry_count, int timeout)
3097 {
3098         struct cam_device *new_cam_dev = NULL;
3099         struct camdd_dev *devs[2];
3100         struct timespec start_time;
3101         pthread_t threads[2];
3102         int unit = 0;
3103         int error = 0;
3104         int i;
3105
3106         if (num_io_opts != 2) {
3107                 warnx("Must have one input and one output path");
3108                 error = 1;
3109                 goto bailout;
3110         }
3111
3112         bzero(devs, sizeof(devs));
3113
3114         for (i = 0; i < num_io_opts; i++) {
3115                 switch (io_opts[i].dev_type) {
3116                 case CAMDD_DEV_PASS: {
3117                         if (isdigit(io_opts[i].dev_name[0])) {
3118                                 camdd_argmask new_arglist = CAMDD_ARG_NONE;
3119                                 int bus = 0, target = 0, lun = 0;
3120                                 int rv;
3121
3122                                 /* device specified as bus:target[:lun] */
3123                                 rv = parse_btl(io_opts[i].dev_name, &bus,
3124                                     &target, &lun, &new_arglist);
3125                                 if (rv < 2) {
3126                                         warnx("numeric device specification "
3127                                              "must be either bus:target, or "
3128                                              "bus:target:lun");
3129                                         error = 1;
3130                                         goto bailout;
3131                                 }
3132                                 /* default to 0 if lun was not specified */
3133                                 if ((new_arglist & CAMDD_ARG_LUN) == 0) {
3134                                         lun = 0;
3135                                         new_arglist |= CAMDD_ARG_LUN;
3136                                 }
3137                                 new_cam_dev = cam_open_btl(bus, target, lun,
3138                                     O_RDWR, NULL);
3139                         } else {
3140                                 char name[30];
3141
3142                                 if (cam_get_device(io_opts[i].dev_name, name,
3143                                                    sizeof name, &unit) == -1) {
3144                                         warnx("%s", cam_errbuf);
3145                                         error = 1;
3146                                         goto bailout;
3147                                 }
3148                                 new_cam_dev = cam_open_spec_device(name, unit,
3149                                     O_RDWR, NULL);
3150                         }
3151
3152                         if (new_cam_dev == NULL) {
3153                                 warnx("%s", cam_errbuf);
3154                                 error = 1;
3155                                 goto bailout;
3156                         }
3157
3158                         devs[i] = camdd_probe_pass(new_cam_dev,
3159                             /*io_opts*/ &io_opts[i],
3160                             CAMDD_ARG_ERR_RECOVER, 
3161                             /*probe_retry_count*/ 3,
3162                             /*probe_timeout*/ 5000,
3163                             /*io_retry_count*/ retry_count,
3164                             /*io_timeout*/ timeout);
3165                         if (devs[i] == NULL) {
3166                                 warn("Unable to probe device %s%u",
3167                                      new_cam_dev->device_name,
3168                                      new_cam_dev->dev_unit_num);
3169                                 error = 1;
3170                                 goto bailout;
3171                         }
3172                         break;
3173                 }
3174                 case CAMDD_DEV_FILE: {
3175                         int fd = -1;
3176
3177                         if (io_opts[i].dev_name[0] == '-') {
3178                                 if (io_opts[i].write_dev != 0)
3179                                         fd = STDOUT_FILENO;
3180                                 else
3181                                         fd = STDIN_FILENO;
3182                         } else {
3183                                 if (io_opts[i].write_dev != 0) {
3184                                         fd = open(io_opts[i].dev_name,
3185                                             O_RDWR | O_CREAT, S_IWUSR |S_IRUSR);
3186                                 } else {
3187                                         fd = open(io_opts[i].dev_name,
3188                                             O_RDONLY);
3189                                 }
3190                         }
3191                         if (fd == -1) {
3192                                 warn("error opening file %s",
3193                                     io_opts[i].dev_name);
3194                                 error = 1;
3195                                 goto bailout;
3196                         }
3197
3198                         devs[i] = camdd_probe_file(fd, &io_opts[i],
3199                             retry_count, timeout);
3200                         if (devs[i] == NULL) {
3201                                 error = 1;
3202                                 goto bailout;
3203                         }
3204
3205                         break;
3206                 }
3207                 default:
3208                         warnx("Unknown device type %d (%s)",
3209                             io_opts[i].dev_type, io_opts[i].dev_name);
3210                         error = 1;
3211                         goto bailout;
3212                         break; /*NOTREACHED */
3213                 }
3214
3215                 devs[i]->write_dev = io_opts[i].write_dev;
3216
3217                 devs[i]->start_offset_bytes = io_opts[i].offset;
3218
3219                 if (max_io != 0) {
3220                         devs[i]->sector_io_limit =
3221                             (devs[i]->start_offset_bytes /
3222                             devs[i]->sector_size) +
3223                             (max_io / devs[i]->sector_size) - 1;
3224                 }
3225
3226                 devs[i]->next_io_pos_bytes = devs[i]->start_offset_bytes;
3227                 devs[i]->next_completion_pos_bytes =devs[i]->start_offset_bytes;
3228         }
3229
3230         devs[0]->peer_dev = devs[1];
3231         devs[1]->peer_dev = devs[0];
3232         devs[0]->next_peer_pos_bytes = devs[0]->peer_dev->next_io_pos_bytes;
3233         devs[1]->next_peer_pos_bytes = devs[1]->peer_dev->next_io_pos_bytes;
3234
3235         sem_init(&camdd_sem, /*pshared*/ 0, 0);
3236
3237         signal(SIGINFO, camdd_sig_handler);
3238         signal(SIGINT, camdd_sig_handler);
3239
3240         error = clock_gettime(CLOCK_MONOTONIC_PRECISE, &start_time);
3241         if (error != 0) {
3242                 warn("Unable to get start time");
3243                 goto bailout;
3244         }
3245
3246         for (i = 0; i < num_io_opts; i++) {
3247                 error = pthread_create(&threads[i], NULL, camdd_worker,
3248                                        (void *)devs[i]);
3249                 if (error != 0) {
3250                         warnc(error, "pthread_create() failed");
3251                         goto bailout;
3252                 }
3253         }
3254
3255         for (;;) {
3256                 if ((sem_wait(&camdd_sem) == -1)
3257                  || (need_exit != 0)) {
3258                         struct kevent ke;
3259
3260                         for (i = 0; i < num_io_opts; i++) {
3261                                 EV_SET(&ke, (uintptr_t)&devs[i]->work_queue,
3262                                     EVFILT_USER, 0, NOTE_TRIGGER, 0, NULL);
3263
3264                                 devs[i]->flags |= CAMDD_DEV_FLAG_EOF;
3265
3266                                 error = kevent(devs[i]->kq, &ke, 1, NULL, 0,
3267                                                 NULL);
3268                                 if (error == -1)
3269                                         warn("%s: unable to wake up thread",
3270                                             __func__);
3271                                 error = 0;
3272                         }
3273                         break;
3274                 } else if (need_status != 0) {
3275                         camdd_print_status(devs[0], devs[1], &start_time);
3276                         need_status = 0;
3277                 }
3278         } 
3279         for (i = 0; i < num_io_opts; i++) {
3280                 pthread_join(threads[i], NULL);
3281         }
3282
3283         camdd_print_status(devs[0], devs[1], &start_time);
3284
3285 bailout:
3286
3287         for (i = 0; i < num_io_opts; i++)
3288                 camdd_free_dev(devs[i]);
3289
3290         return (error + error_exit);
3291 }
3292
3293 void
3294 usage(void)
3295 {
3296         fprintf(stderr,
3297 "usage:  camdd <-i|-o pass=pass0,bs=1M,offset=1M,depth=4>\n"
3298 "              <-i|-o file=/tmp/file,bs=512K,offset=1M>\n"
3299 "              <-i|-o file=/dev/da0,bs=512K,offset=1M>\n"
3300 "              <-i|-o file=/dev/nsa0,bs=512K>\n"
3301 "              [-C retry_count][-E][-m max_io_amt][-t timeout_secs][-v][-h]\n"
3302 "Option description\n"
3303 "-i <arg=val>  Specify input device/file and parameters\n"
3304 "-o <arg=val>  Specify output device/file and parameters\n"
3305 "Input and Output parameters\n"
3306 "pass=name     Specify a pass(4) device like pass0 or /dev/pass0\n"
3307 "file=name     Specify a file or device, /tmp/foo, /dev/da0, /dev/null\n"
3308 "              or - for stdin/stdout\n"
3309 "bs=blocksize  Specify blocksize in bytes, or using K, M, G, etc. suffix\n"
3310 "offset=len    Specify starting offset in bytes or using K, M, G suffix\n"
3311 "              NOTE: offset cannot be specified on tapes, pipes, stdin/out\n"
3312 "depth=N       Specify a numeric queue depth.  This only applies to pass(4)\n"
3313 "mcs=N         Specify a minimum cmd size for pass(4) read/write commands\n"
3314 "Optional arguments\n"
3315 "-C retry_cnt  Specify a retry count for pass(4) devices\n"
3316 "-E            Enable CAM error recovery for pass(4) devices\n"
3317 "-m max_io     Specify the maximum amount to be transferred in bytes or\n"
3318 "              using K, G, M, etc. suffixes\n"
3319 "-t timeout    Specify the I/O timeout to use with pass(4) devices\n"
3320 "-v            Enable verbose error recovery\n"
3321 "-h            Print this message\n");
3322 }
3323
3324
3325 int
3326 camdd_parse_io_opts(char *args, int is_write, struct camdd_io_opts *io_opts)
3327 {
3328         char *tmpstr, *tmpstr2;
3329         char *orig_tmpstr = NULL;
3330         int retval = 0;
3331
3332         io_opts->write_dev = is_write;
3333
3334         tmpstr = strdup(args);
3335         if (tmpstr == NULL) {
3336                 warn("strdup failed");
3337                 retval = 1;
3338                 goto bailout;
3339         }
3340         orig_tmpstr = tmpstr;
3341         while ((tmpstr2 = strsep(&tmpstr, ",")) != NULL) {
3342                 char *name, *value;
3343
3344                 /*
3345                  * If the user creates an empty parameter by putting in two
3346                  * commas, skip over it and look for the next field.
3347                  */
3348                 if (*tmpstr2 == '\0')
3349                         continue;
3350
3351                 name = strsep(&tmpstr2, "=");
3352                 if (*name == '\0') {
3353                         warnx("Got empty I/O parameter name");
3354                         retval = 1;
3355                         goto bailout;
3356                 }
3357                 value = strsep(&tmpstr2, "=");
3358                 if ((value == NULL)
3359                  || (*value == '\0')) {
3360                         warnx("Empty I/O parameter value for %s", name);
3361                         retval = 1;
3362                         goto bailout;
3363                 }
3364                 if (strncasecmp(name, "file", 4) == 0) {
3365                         io_opts->dev_type = CAMDD_DEV_FILE;
3366                         io_opts->dev_name = strdup(value);
3367                         if (io_opts->dev_name == NULL) {
3368                                 warn("Error allocating memory");
3369                                 retval = 1;
3370                                 goto bailout;
3371                         }
3372                 } else if (strncasecmp(name, "pass", 4) == 0) {
3373                         io_opts->dev_type = CAMDD_DEV_PASS;
3374                         io_opts->dev_name = strdup(value);
3375                         if (io_opts->dev_name == NULL) {
3376                                 warn("Error allocating memory");
3377                                 retval = 1;
3378                                 goto bailout;
3379                         }
3380                 } else if ((strncasecmp(name, "bs", 2) == 0)
3381                         || (strncasecmp(name, "blocksize", 9) == 0)) {
3382                         retval = expand_number(value, &io_opts->blocksize);
3383                         if (retval == -1) {
3384                                 warn("expand_number(3) failed on %s=%s", name,
3385                                     value);
3386                                 retval = 1;
3387                                 goto bailout;
3388                         }
3389                 } else if (strncasecmp(name, "depth", 5) == 0) {
3390                         char *endptr;
3391
3392                         io_opts->queue_depth = strtoull(value, &endptr, 0);
3393                         if (*endptr != '\0') {
3394                                 warnx("invalid queue depth %s", value);
3395                                 retval = 1;
3396                                 goto bailout;
3397                         }
3398                 } else if (strncasecmp(name, "mcs", 3) == 0) {
3399                         char *endptr;
3400
3401                         io_opts->min_cmd_size = strtol(value, &endptr, 0);
3402                         if ((*endptr != '\0')
3403                          || ((io_opts->min_cmd_size > 16)
3404                           || (io_opts->min_cmd_size < 0))) {
3405                                 warnx("invalid minimum cmd size %s", value);
3406                                 retval = 1;
3407                                 goto bailout;
3408                         }
3409                 } else if (strncasecmp(name, "offset", 6) == 0) {
3410                         retval = expand_number(value, &io_opts->offset);
3411                         if (retval == -1) {
3412                                 warn("expand_number(3) failed on %s=%s", name,
3413                                     value);
3414                                 retval = 1;
3415                                 goto bailout;
3416                         }
3417                 } else if (strncasecmp(name, "debug", 5) == 0) {
3418                         char *endptr;
3419
3420                         io_opts->debug = strtoull(value, &endptr, 0);
3421                         if (*endptr != '\0') {
3422                                 warnx("invalid debug level %s", value);
3423                                 retval = 1;
3424                                 goto bailout;
3425                         }
3426                 } else {
3427                         warnx("Unrecognized parameter %s=%s", name, value);
3428                 }
3429         }
3430 bailout:
3431         free(orig_tmpstr);
3432
3433         return (retval);
3434 }
3435
3436 int
3437 main(int argc, char **argv)
3438 {
3439         int c;
3440         camdd_argmask arglist = CAMDD_ARG_NONE;
3441         int timeout = 0, retry_count = 1;
3442         int error = 0;
3443         uint64_t max_io = 0;
3444         struct camdd_io_opts *opt_list = NULL;
3445
3446         if (argc == 1) {
3447                 usage();
3448                 exit(1);
3449         }
3450
3451         opt_list = calloc(2, sizeof(struct camdd_io_opts));
3452         if (opt_list == NULL) {
3453                 warn("Unable to allocate option list");
3454                 error = 1;
3455                 goto bailout;
3456         }
3457
3458         while ((c = getopt(argc, argv, "C:Ehi:m:o:t:v")) != -1){
3459                 switch (c) {
3460                 case 'C':
3461                         retry_count = strtol(optarg, NULL, 0);
3462                         if (retry_count < 0)
3463                                 errx(1, "retry count %d is < 0",
3464                                      retry_count);
3465                         arglist |= CAMDD_ARG_RETRIES;
3466                         break;
3467                 case 'E':
3468                         arglist |= CAMDD_ARG_ERR_RECOVER;
3469                         break;
3470                 case 'i':
3471                 case 'o':
3472                         if (((c == 'i')
3473                           && (opt_list[0].dev_type != CAMDD_DEV_NONE))
3474                          || ((c == 'o')
3475                           && (opt_list[1].dev_type != CAMDD_DEV_NONE))) {
3476                                 errx(1, "Only one input and output path "
3477                                     "allowed");
3478                         }
3479                         error = camdd_parse_io_opts(optarg, (c == 'o') ? 1 : 0,
3480                             (c == 'o') ? &opt_list[1] : &opt_list[0]);
3481                         if (error != 0)
3482                                 goto bailout;
3483                         break;
3484                 case 'm':
3485                         error = expand_number(optarg, &max_io);
3486                         if (error == -1) {
3487                                 warn("invalid maximum I/O amount %s", optarg);
3488                                 error = 1;
3489                                 goto bailout;
3490                         }
3491                         break;
3492                 case 't':
3493                         timeout = strtol(optarg, NULL, 0);
3494                         if (timeout < 0)
3495                                 errx(1, "invalid timeout %d", timeout);
3496                         /* Convert the timeout from seconds to ms */
3497                         timeout *= 1000;
3498                         arglist |= CAMDD_ARG_TIMEOUT;
3499                         break;
3500                 case 'v':
3501                         arglist |= CAMDD_ARG_VERBOSE;
3502                         break;
3503                 case 'h':
3504                 default:
3505                         usage();
3506                         exit(1);
3507                         break; /*NOTREACHED*/
3508                 }
3509         }
3510
3511         if ((opt_list[0].dev_type == CAMDD_DEV_NONE)
3512          || (opt_list[1].dev_type == CAMDD_DEV_NONE))
3513                 errx(1, "Must specify both -i and -o");
3514
3515         /*
3516          * Set the timeout if the user hasn't specified one.
3517          */
3518         if (timeout == 0)
3519                 timeout = CAMDD_PASS_RW_TIMEOUT;
3520
3521         error = camdd_rw(opt_list, 2, max_io, retry_count, timeout);
3522
3523 bailout:
3524         free(opt_list);
3525
3526         exit(error);
3527 }