]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - usr.sbin/nscd/nscd.c
This commit was generated by cvs2svn to compensate for changes in r162509,
[FreeBSD/FreeBSD.git] / usr.sbin / nscd / nscd.c
1 /*-
2  * Copyright (c) 2005 Michael Bushkov <bushman@rsu.ru>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in thereg
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  */
27
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30
31 #include <sys/types.h>
32 #include <sys/event.h>
33 #include <sys/socket.h>
34 #include <sys/time.h>
35 #include <sys/param.h>
36 #include <sys/un.h>
37 #include <assert.h>
38 #include <err.h>
39 #include <errno.h>
40 #include <fcntl.h>
41 #include <libutil.h>
42 #include <pthread.h>
43 #include <signal.h>
44 #include <stdio.h>
45 #include <stdlib.h>
46 #include <string.h>
47 #include <unistd.h>
48
49 #include "agents/passwd.h"
50 #include "agents/group.h"
51 #include "agents/services.h"
52 #include "cachedcli.h"
53 #include "cachelib.h"
54 #include "config.h"
55 #include "debug.h"
56 #include "log.h"
57 #include "parser.h"
58 #include "query.h"
59 #include "singletons.h"
60
61 #ifndef CONFIG_PATH
62 #define CONFIG_PATH "/etc/cached.conf"
63 #endif
64 #define DEFAULT_CONFIG_PATH     "cached.conf"
65
66 #define MAX_SOCKET_IO_SIZE      4096
67
68 struct processing_thread_args {
69         cache   the_cache;
70         struct configuration    *the_configuration;
71         struct runtime_env              *the_runtime_env;
72 };
73
74 static void accept_connection(struct kevent *, struct runtime_env *,
75         struct configuration *);
76 static void destroy_cache_(cache);
77 static void destroy_runtime_env(struct runtime_env *);
78 static cache init_cache_(struct configuration *);
79 static struct runtime_env *init_runtime_env(struct configuration *);
80 static void print_version_info(void);
81 static void processing_loop(cache, struct runtime_env *,
82         struct configuration *);
83 static void process_socket_event(struct kevent *, struct runtime_env *,
84         struct configuration *);
85 static void process_timer_event(struct kevent *, struct runtime_env *,
86         struct configuration *);
87 static void *processing_thread(void *);
88 static void usage(void);
89
90 void get_time_func(struct timeval *);
91
92 static void
93 print_version_info(void)
94 {
95         TRACE_IN(print_version_info);
96         printf("cached v0.2 (20 Oct 2005)\nwas developed during SoC 2005\n");
97         TRACE_OUT(print_version_info);
98 }
99
100 static void
101 usage(void)
102 {
103         fprintf(stderr,"usage: cached [-nstiId]\n");
104         exit(1);
105 }
106
107 static cache
108 init_cache_(struct configuration *config)
109 {
110         struct cache_params params;
111         cache retval;
112
113         struct configuration_entry *config_entry;
114         size_t  size, i;
115         int res;
116
117         TRACE_IN(init_cache_);
118
119         memset(&params, 0, sizeof(struct cache_params));
120         params.get_time_func = get_time_func;
121         retval = init_cache(&params);
122
123         size = configuration_get_entries_size(config);
124         for (i = 0; i < size; ++i) {
125                 config_entry = configuration_get_entry(config, i);
126                 /*
127                  * We should register common entries now - multipart entries
128                  * would be registered automatically during the queries.
129                  */
130                 res = register_cache_entry(retval, (struct cache_entry_params *)
131                         &config_entry->positive_cache_params);
132                 config_entry->positive_cache_entry = find_cache_entry(retval,
133                         config_entry->positive_cache_params.entry_name);
134                 assert(config_entry->positive_cache_entry !=
135                         INVALID_CACHE_ENTRY);
136
137                 res = register_cache_entry(retval, (struct cache_entry_params *)
138                         &config_entry->negative_cache_params);
139                 config_entry->negative_cache_entry = find_cache_entry(retval,
140                         config_entry->negative_cache_params.entry_name);
141                 assert(config_entry->negative_cache_entry !=
142                         INVALID_CACHE_ENTRY);
143         }
144
145         LOG_MSG_2("cache", "cache was successfully initialized");
146         TRACE_OUT(init_cache_);
147         return (retval);
148 }
149
150 static void
151 destroy_cache_(cache the_cache)
152 {
153         TRACE_IN(destroy_cache_);
154         destroy_cache(the_cache);
155         TRACE_OUT(destroy_cache_);
156 }
157
158 /*
159  * Socket and kqueues are prepared here. We have one global queue for both
160  * socket and timers events.
161  */
162 static struct runtime_env *
163 init_runtime_env(struct configuration *config)
164 {
165         int serv_addr_len;
166         struct sockaddr_un serv_addr;
167
168         struct kevent eventlist;
169         struct timespec timeout;
170
171         struct runtime_env *retval;
172
173         TRACE_IN(init_runtime_env);
174         retval = (struct runtime_env *)malloc(sizeof(struct runtime_env));
175         assert(retval != NULL);
176         memset(retval, 0, sizeof(struct runtime_env));
177
178         retval->sockfd = socket(PF_LOCAL, SOCK_STREAM, 0);
179
180         if (config->force_unlink == 1)
181                 unlink(config->socket_path);
182
183         memset(&serv_addr, 0, sizeof(struct sockaddr_un));
184         serv_addr.sun_family = PF_LOCAL;
185         strncpy(serv_addr.sun_path, config->socket_path,
186                 sizeof(serv_addr.sun_path));
187         serv_addr_len = sizeof(serv_addr.sun_family) +
188                 strlen(serv_addr.sun_path) + 1;
189
190         if (bind(retval->sockfd, (struct sockaddr *)&serv_addr,
191                 serv_addr_len) == -1) {
192                 close(retval->sockfd);
193                 free(retval);
194
195                 LOG_ERR_2("runtime environment", "can't bind socket to path: "
196                         "%s", config->socket_path);
197                 TRACE_OUT(init_runtime_env);
198                 return (NULL);
199         }
200         LOG_MSG_2("runtime environment", "using socket %s",
201                 config->socket_path);
202
203         /*
204          * Here we're marking socket as non-blocking and setting its backlog
205          * to the maximum value
206          */
207         chmod(config->socket_path, config->socket_mode);
208         listen(retval->sockfd, -1);
209         fcntl(retval->sockfd, F_SETFL, O_NONBLOCK);
210
211         retval->queue = kqueue();
212         assert(retval->queue != -1);
213
214         EV_SET(&eventlist, retval->sockfd, EVFILT_READ, EV_ADD | EV_ONESHOT,
215                 0, 0, 0);
216         memset(&timeout, 0, sizeof(struct timespec));
217         kevent(retval->queue, &eventlist, 1, NULL, 0, &timeout);
218
219         LOG_MSG_2("runtime environment", "successfully initialized");
220         TRACE_OUT(init_runtime_env);
221         return (retval);
222 }
223
224 static void
225 destroy_runtime_env(struct runtime_env *env)
226 {
227         TRACE_IN(destroy_runtime_env);
228         close(env->queue);
229         close(env->sockfd);
230         free(env);
231         TRACE_OUT(destroy_runtime_env);
232 }
233
234 static void
235 accept_connection(struct kevent *event_data, struct runtime_env *env,
236         struct configuration *config)
237 {
238         struct kevent   eventlist[2];
239         struct timespec timeout;
240         struct query_state      *qstate;
241
242         int     fd;
243         int     res;
244
245         uid_t   euid;
246         gid_t   egid;
247
248         TRACE_IN(accept_connection);
249         fd = accept(event_data->ident, NULL, NULL);
250         if (fd == -1) {
251                 LOG_ERR_2("accept_connection", "error %d during accept()",
252                     errno);
253                 TRACE_OUT(accept_connection);
254                 return;
255         }
256
257         if (getpeereid(fd, &euid, &egid) != 0) {
258                 LOG_ERR_2("accept_connection", "error %d during getpeereid()",
259                         errno);
260                 TRACE_OUT(accept_connection);
261                 return;
262         }
263
264         qstate = init_query_state(fd, sizeof(int), euid, egid);
265         if (qstate == NULL) {
266                 LOG_ERR_2("accept_connection", "can't init query_state");
267                 TRACE_OUT(accept_connection);
268                 return;
269         }
270
271         memset(&timeout, 0, sizeof(struct timespec));
272         EV_SET(&eventlist[0], fd, EVFILT_TIMER, EV_ADD | EV_ONESHOT,
273                 0, qstate->timeout.tv_sec * 1000, qstate);
274         EV_SET(&eventlist[1], fd, EVFILT_READ, EV_ADD | EV_ONESHOT,
275                 NOTE_LOWAT, qstate->kevent_watermark, qstate);
276         res = kevent(env->queue, eventlist, 2, NULL, 0, &timeout);
277         if (res < 0)
278                 LOG_ERR_2("accept_connection", "kevent error");
279
280         TRACE_OUT(accept_connection);
281 }
282
283 static void
284 process_socket_event(struct kevent *event_data, struct runtime_env *env,
285         struct configuration *config)
286 {
287         struct kevent   eventlist[2];
288         struct timeval  query_timeout;
289         struct timespec kevent_timeout;
290         int     nevents;
291         int     eof_res, res;
292         ssize_t io_res;
293         struct query_state *qstate;
294
295         TRACE_IN(process_socket_event);
296         eof_res = event_data->flags & EV_EOF ? 1 : 0;
297         res = 0;
298
299         memset(&kevent_timeout, 0, sizeof(struct timespec));
300         EV_SET(&eventlist[0], event_data->ident, EVFILT_TIMER, EV_DELETE,
301                 0, 0, NULL);
302         nevents = kevent(env->queue, eventlist, 1, NULL, 0, &kevent_timeout);
303         if (nevents == -1) {
304                 if (errno == ENOENT) {
305                         /* the timer is already handling this event */
306                         TRACE_OUT(process_socket_event);
307                         return;
308                 } else {
309                         /* some other error happened */
310                         LOG_ERR_2("process_socket_event", "kevent error, errno"
311                                 " is %d", errno);
312                         TRACE_OUT(process_socket_event);
313                         return;
314                 }
315         }
316         qstate = (struct query_state *)event_data->udata;
317
318         /*
319          * If the buffer that is to be send/received is too large,
320          * we send it implicitly, by using query_io_buffer_read and
321          * query_io_buffer_write functions in the query_state. These functions
322          * use the temporary buffer, which is later send/received in parts.
323          * The code below implements buffer splitting/mergind for send/receive
324          * operations. It also does the actual socket IO operations.
325          */
326         if (((qstate->use_alternate_io == 0) &&
327                 (qstate->kevent_watermark <= event_data->data)) ||
328                 ((qstate->use_alternate_io != 0) &&
329                 (qstate->io_buffer_watermark <= event_data->data))) {
330                 if (qstate->use_alternate_io != 0) {
331                         switch (qstate->io_buffer_filter) {
332                         case EVFILT_READ:
333                                 io_res = query_socket_read(qstate,
334                                         qstate->io_buffer_p,
335                                         qstate->io_buffer_watermark);
336                                 if (io_res < 0) {
337                                         qstate->use_alternate_io = 0;
338                                         qstate->process_func = NULL;
339                                 } else {
340                                         qstate->io_buffer_p += io_res;
341                                         if (qstate->io_buffer_p ==
342                                                 qstate->io_buffer +
343                                                 qstate->io_buffer_size) {
344                                                 qstate->io_buffer_p =
345                                                     qstate->io_buffer;
346                                                 qstate->use_alternate_io = 0;
347                                         }
348                                 }
349                         break;
350                         default:
351                         break;
352                         }
353                 }
354
355                 if (qstate->use_alternate_io == 0) {
356                         do {
357                                 res = qstate->process_func(qstate);
358                         } while ((qstate->kevent_watermark == 0) &&
359                                         (qstate->process_func != NULL) &&
360                                         (res == 0));
361
362                         if (res != 0)
363                                 qstate->process_func = NULL;
364                 }
365
366                 if ((qstate->use_alternate_io != 0) &&
367                         (qstate->io_buffer_filter == EVFILT_WRITE)) {
368                         io_res = query_socket_write(qstate, qstate->io_buffer_p,
369                                 qstate->io_buffer_watermark);
370                         if (io_res < 0) {
371                                 qstate->use_alternate_io = 0;
372                                 qstate->process_func = NULL;
373                         } else
374                                 qstate->io_buffer_p += io_res;
375                 }
376         } else {
377                 /* assuming that socket was closed */
378                 qstate->process_func = NULL;
379                 qstate->use_alternate_io = 0;
380         }
381
382         if (((qstate->process_func == NULL) &&
383                 (qstate->use_alternate_io == 0)) ||
384                 (eof_res != 0) || (res != 0)) {
385                 destroy_query_state(qstate);
386                 close(event_data->ident);
387                 TRACE_OUT(process_socket_event);
388                 return;
389         }
390
391         /* updating the query_state lifetime variable */
392         get_time_func(&query_timeout);
393         query_timeout.tv_usec = 0;
394         query_timeout.tv_sec -= qstate->creation_time.tv_sec;
395         if (query_timeout.tv_sec > qstate->timeout.tv_sec)
396                 query_timeout.tv_sec = 0;
397         else
398                 query_timeout.tv_sec = qstate->timeout.tv_sec -
399                         query_timeout.tv_sec;
400
401         if ((qstate->use_alternate_io != 0) && (qstate->io_buffer_p ==
402                 qstate->io_buffer + qstate->io_buffer_size))
403                 qstate->use_alternate_io = 0;
404
405         if (qstate->use_alternate_io == 0) {
406                 /*
407                  * If we must send/receive the large block of data,
408                  * we should prepare the query_state's io_XXX fields.
409                  * We should also substitute its write_func and read_func
410                  * with the query_io_buffer_write and query_io_buffer_read,
411                  * which will allow us to implicitly send/receive this large
412                  * buffer later (in the subsequent calls to the
413                  * process_socket_event).
414                  */
415                 if (qstate->kevent_watermark > MAX_SOCKET_IO_SIZE) {
416                         if (qstate->io_buffer != NULL)
417                                 free(qstate->io_buffer);
418
419                         qstate->io_buffer = (char *)malloc(
420                                 qstate->kevent_watermark);
421                         assert(qstate->io_buffer != NULL);
422                         memset(qstate->io_buffer, 0, qstate->kevent_watermark);
423
424                         qstate->io_buffer_p = qstate->io_buffer;
425                         qstate->io_buffer_size = qstate->kevent_watermark;
426                         qstate->io_buffer_filter = qstate->kevent_filter;
427
428                         qstate->write_func = query_io_buffer_write;
429                         qstate->read_func = query_io_buffer_read;
430
431                         if (qstate->kevent_filter == EVFILT_READ)
432                                 qstate->use_alternate_io = 1;
433
434                         qstate->io_buffer_watermark = MAX_SOCKET_IO_SIZE;
435                         EV_SET(&eventlist[1], event_data->ident,
436                                 qstate->kevent_filter, EV_ADD | EV_ONESHOT,
437                                 NOTE_LOWAT, MAX_SOCKET_IO_SIZE, qstate);
438                 } else {
439                         EV_SET(&eventlist[1], event_data->ident,
440                                 qstate->kevent_filter, EV_ADD | EV_ONESHOT,
441                                 NOTE_LOWAT, qstate->kevent_watermark, qstate);
442                 }
443         } else {
444                 if (qstate->io_buffer + qstate->io_buffer_size -
445                         qstate->io_buffer_p <
446                         MAX_SOCKET_IO_SIZE) {
447                         qstate->io_buffer_watermark = qstate->io_buffer +
448                                 qstate->io_buffer_size - qstate->io_buffer_p;
449                         EV_SET(&eventlist[1], event_data->ident,
450                                 qstate->io_buffer_filter,
451                                 EV_ADD | EV_ONESHOT, NOTE_LOWAT,
452                                 qstate->io_buffer_watermark,
453                                 qstate);
454                 } else {
455                         qstate->io_buffer_watermark = MAX_SOCKET_IO_SIZE;
456                         EV_SET(&eventlist[1], event_data->ident,
457                                 qstate->io_buffer_filter, EV_ADD | EV_ONESHOT,
458                                 NOTE_LOWAT, MAX_SOCKET_IO_SIZE, qstate);
459                 }
460         }
461         EV_SET(&eventlist[0], event_data->ident, EVFILT_TIMER,
462                 EV_ADD | EV_ONESHOT, 0, query_timeout.tv_sec * 1000, qstate);
463         kevent(env->queue, eventlist, 2, NULL, 0, &kevent_timeout);
464
465         TRACE_OUT(process_socket_event);
466 }
467
468 /*
469  * This routine is called if timer event has been signaled in the kqueue. It
470  * just closes the socket and destroys the query_state.
471  */
472 static void
473 process_timer_event(struct kevent *event_data, struct runtime_env *env,
474         struct configuration *config)
475 {
476         struct query_state      *qstate;
477
478         TRACE_IN(process_timer_event);
479         qstate = (struct query_state *)event_data->udata;
480         destroy_query_state(qstate);
481         close(event_data->ident);
482         TRACE_OUT(process_timer_event);
483 }
484
485 /*
486  * Processing loop is the basic processing routine, that forms a body of each
487  * procssing thread
488  */
489 static void
490 processing_loop(cache the_cache, struct runtime_env *env,
491         struct configuration *config)
492 {
493         struct timespec timeout;
494         const int eventlist_size = 1;
495         struct kevent eventlist[eventlist_size];
496         int nevents, i;
497
498         TRACE_MSG("=> processing_loop");
499         memset(&timeout, 0, sizeof(struct timespec));
500         memset(&eventlist, 0, sizeof(struct kevent) * eventlist_size);
501
502         for (;;) {
503                 nevents = kevent(env->queue, NULL, 0, eventlist,
504                         eventlist_size, NULL);
505                 /*
506                  * we can only receive 1 event on success
507                  */
508                 if (nevents == 1) {
509                         struct kevent *event_data;
510                         event_data = &eventlist[0];
511
512                         if (event_data->ident == env->sockfd) {
513                                 for (i = 0; i < event_data->data; ++i)
514                                     accept_connection(event_data, env, config);
515
516                                 EV_SET(eventlist, s_runtime_env->sockfd,
517                                     EVFILT_READ, EV_ADD | EV_ONESHOT,
518                                     0, 0, 0);
519                                 memset(&timeout, 0,
520                                     sizeof(struct timespec));
521                                 kevent(s_runtime_env->queue, eventlist,
522                                     1, NULL, 0, &timeout);
523
524                         } else {
525                                 switch (event_data->filter) {
526                                 case EVFILT_READ:
527                                 case EVFILT_WRITE:
528                                         process_socket_event(event_data,
529                                                 env, config);
530                                         break;
531                                 case EVFILT_TIMER:
532                                         process_timer_event(event_data,
533                                                 env, config);
534                                         break;
535                                 default:
536                                         break;
537                                 }
538                         }
539                 } else {
540                         /* this branch shouldn't be currently executed */
541                 }
542         }
543
544         TRACE_MSG("<= processing_loop");
545 }
546
547 /*
548  * Wrapper above the processing loop function. It sets the thread signal mask
549  * to avoid SIGPIPE signals (which can happen if the client works incorrectly).
550  */
551 static void *
552 processing_thread(void *data)
553 {
554         struct processing_thread_args   *args;
555         sigset_t new;
556
557         TRACE_MSG("=> processing_thread");
558         args = (struct processing_thread_args *)data;
559
560         sigemptyset(&new);
561         sigaddset(&new, SIGPIPE);
562         if (pthread_sigmask(SIG_BLOCK, &new, NULL) != 0)
563                 LOG_ERR_1("processing thread",
564                         "thread can't block the SIGPIPE signal");
565
566         processing_loop(args->the_cache, args->the_runtime_env,
567                 args->the_configuration);
568         free(args);
569         TRACE_MSG("<= processing_thread");
570
571         return (NULL);
572 }
573
574 void
575 get_time_func(struct timeval *time)
576 {
577         struct timespec res;
578         memset(&res, 0, sizeof(struct timespec));
579         clock_gettime(CLOCK_MONOTONIC, &res);
580
581         time->tv_sec = res.tv_sec;
582         time->tv_usec = 0;
583 }
584
585 /*
586  * The idea of _nss_cache_cycle_prevention_function is that nsdispatch will
587  * search for this symbol in the executable. This symbol is the attribute of
588  * the caching daemon. So, if it exists, nsdispatch won't try to connect to
589  * the caching daemon and will just ignore the 'cache' source in the
590  * nsswitch.conf. This method helps to avoid cycles and organize
591  * self-performing requests.
592  */
593 void
594 _nss_cache_cycle_prevention_function(void)
595 {
596 }
597
598 int
599 main(int argc, char *argv[])
600 {
601         struct processing_thread_args *thread_args;
602         pthread_t *threads;
603
604         struct pidfh *pidfile;
605         pid_t pid;
606
607         char const *config_file;
608         char const *error_str;
609         int error_line;
610         int i, res;
611
612         int trace_mode_enabled;
613         int force_single_threaded;
614         int do_not_daemonize;
615         int clear_user_cache_entries, clear_all_cache_entries;
616         char *user_config_entry_name, *global_config_entry_name;
617         int show_statistics;
618         int daemon_mode, interactive_mode;
619
620
621         /* by default all debug messages are omitted */
622         TRACE_OFF();
623
624         /* startup output */
625         print_version_info();
626
627         /* parsing command line arguments */
628         trace_mode_enabled = 0;
629         force_single_threaded = 0;
630         do_not_daemonize = 0;
631         clear_user_cache_entries = 0;
632         clear_all_cache_entries = 0;
633         show_statistics = 0;
634         user_config_entry_name = NULL;
635         global_config_entry_name = NULL;
636         while ((res = getopt(argc, argv, "nstdi:I:")) != -1) {
637                 switch (res) {
638                 case 'n':
639                         do_not_daemonize = 1;
640                         break;
641                 case 's':
642                         force_single_threaded = 1;
643                         break;
644                 case 't':
645                         trace_mode_enabled = 1;
646                         break;
647                 case 'i':
648                         clear_user_cache_entries = 1;
649                         if (optarg != NULL)
650                                 if (strcmp(optarg, "all") != 0)
651                                         user_config_entry_name = strdup(optarg);
652                         break;
653                 case 'I':
654                         clear_all_cache_entries = 1;
655                         if (optarg != NULL)
656                                 if (strcmp(optarg, "all") != 0)
657                                         global_config_entry_name =
658                                                 strdup(optarg);
659                         break;
660                 case 'd':
661                         show_statistics = 1;
662                         break;
663                 case '?':
664                 default:
665                         usage();
666                         /* NOT REACHED */
667                 }
668         }
669
670         daemon_mode = do_not_daemonize | force_single_threaded |
671                 trace_mode_enabled;
672         interactive_mode = clear_user_cache_entries | clear_all_cache_entries |
673                 show_statistics;
674
675         if ((daemon_mode != 0) && (interactive_mode != 0)) {
676                 LOG_ERR_1("main", "daemon mode and interactive_mode arguments "
677                         "can't be used together");
678                 usage();
679         }
680
681         if (interactive_mode != 0) {
682                 FILE *pidfin = fopen(DEFAULT_PIDFILE_PATH, "r");
683                 char pidbuf[256];
684
685                 struct cached_connection_params connection_params;
686                 cached_connection connection;
687
688                 int result;
689
690                 if (pidfin == NULL)
691                         errx(EXIT_FAILURE, "There is no daemon running.");
692
693                 memset(pidbuf, 0, sizeof(pidbuf));
694                 fread(pidbuf, sizeof(pidbuf) - 1, 1, pidfin);
695                 fclose(pidfin);
696
697                 if (ferror(pidfin) != 0)
698                         errx(EXIT_FAILURE, "Can't read from pidfile.");
699
700                 if (sscanf(pidbuf, "%d", &pid) != 1)
701                         errx(EXIT_FAILURE, "Invalid pidfile.");
702                 LOG_MSG_1("main", "daemon PID is %d", pid);
703
704
705                 memset(&connection_params, 0,
706                         sizeof(struct cached_connection_params));
707                 connection_params.socket_path = DEFAULT_SOCKET_PATH;
708                 connection = open_cached_connection__(&connection_params);
709                 if (connection == INVALID_CACHED_CONNECTION)
710                         errx(EXIT_FAILURE, "Can't connect to the daemon.");
711
712                 if (clear_user_cache_entries != 0) {
713                         result = cached_transform__(connection,
714                                 user_config_entry_name, TT_USER);
715                         if (result != 0)
716                                 LOG_MSG_1("main",
717                                         "user cache transformation failed");
718                         else
719                                 LOG_MSG_1("main",
720                                         "user cache_transformation "
721                                         "succeeded");
722                 }
723
724                 if (clear_all_cache_entries != 0) {
725                         if (geteuid() != 0)
726                                 errx(EXIT_FAILURE, "Only root can initiate "
727                                         "global cache transformation.");
728
729                         result = cached_transform__(connection,
730                                 global_config_entry_name, TT_ALL);
731                         if (result != 0)
732                                 LOG_MSG_1("main",
733                                         "global cache transformation "
734                                         "failed");
735                         else
736                                 LOG_MSG_1("main",
737                                         "global cache transformation "
738                                         "succeeded");
739                 }
740
741                 close_cached_connection__(connection);
742
743                 free(user_config_entry_name);
744                 free(global_config_entry_name);
745                 return (EXIT_SUCCESS);
746         }
747
748         pidfile = pidfile_open(DEFAULT_PIDFILE_PATH, 0644, &pid);
749         if (pidfile == NULL) {
750                 if (errno == EEXIST)
751                         errx(EXIT_FAILURE, "Daemon already running, pid: %d.",
752                                 pid);
753                 warn("Cannot open or create pidfile");
754         }
755
756         if (trace_mode_enabled == 1)
757                 TRACE_ON();
758
759         /* blocking the main thread from receiving SIGPIPE signal */
760         sigblock(sigmask(SIGPIPE));
761
762         /* daemonization */
763         if (do_not_daemonize == 0) {
764                 res = daemon(0, trace_mode_enabled == 0 ? 0 : 1);
765                 if (res != 0) {
766                         LOG_ERR_1("main", "can't daemonize myself: %s",
767                                 strerror(errno));
768                         pidfile_remove(pidfile);
769                         goto fin;
770                 } else
771                         LOG_MSG_1("main", "successfully daemonized");
772         }
773
774         pidfile_write(pidfile);
775
776         s_agent_table = init_agent_table();
777         register_agent(s_agent_table, init_passwd_agent());
778         register_agent(s_agent_table, init_passwd_mp_agent());
779         register_agent(s_agent_table, init_group_agent());
780         register_agent(s_agent_table, init_group_mp_agent());
781         register_agent(s_agent_table, init_services_agent());
782         register_agent(s_agent_table, init_services_mp_agent());
783         LOG_MSG_1("main", "request agents registered successfully");
784
785         /*
786          * Hosts agent can't work properly until we have access to the
787          * appropriate dtab structures, which are used in nsdispatch
788          * calls
789          *
790          register_agent(s_agent_table, init_hosts_agent());
791         */
792
793         /* configuration initialization */
794         s_configuration = init_configuration();
795         fill_configuration_defaults(s_configuration);
796
797         error_str = NULL;
798         error_line = 0;
799         config_file = CONFIG_PATH;
800
801         res = parse_config_file(s_configuration, config_file, &error_str,
802                 &error_line);
803         if ((res != 0) && (error_str == NULL)) {
804                 config_file = DEFAULT_CONFIG_PATH;
805                 res = parse_config_file(s_configuration, config_file,
806                         &error_str, &error_line);
807         }
808
809         if (res != 0) {
810                 if (error_str != NULL) {
811                 LOG_ERR_1("main", "error in configuration file(%s, %d): %s\n",
812                         config_file, error_line, error_str);
813                 } else {
814                 LOG_ERR_1("main", "no configuration file found "
815                         "- was looking for %s and %s",
816                         CONFIG_PATH, DEFAULT_CONFIG_PATH);
817                 }
818                 destroy_configuration(s_configuration);
819                 return (-1);
820         }
821
822         if (force_single_threaded == 1)
823                 s_configuration->threads_num = 1;
824
825         /* cache initialization */
826         s_cache = init_cache_(s_configuration);
827         if (s_cache == NULL) {
828                 LOG_ERR_1("main", "can't initialize the cache");
829                 destroy_configuration(s_configuration);
830                 return (-1);
831         }
832
833         /* runtime environment initialization */
834         s_runtime_env = init_runtime_env(s_configuration);
835         if (s_runtime_env == NULL) {
836                 LOG_ERR_1("main", "can't initialize the runtime environment");
837                 destroy_configuration(s_configuration);
838                 destroy_cache_(s_cache);
839                 return (-1);
840         }
841
842         if (s_configuration->threads_num > 1) {
843                 threads = (pthread_t *)malloc(sizeof(pthread_t) *
844                         s_configuration->threads_num);
845                 memset(threads, 0, sizeof(pthread_t) *
846                         s_configuration->threads_num);
847                 for (i = 0; i < s_configuration->threads_num; ++i) {
848                         thread_args = (struct processing_thread_args *)malloc(
849                                 sizeof(struct processing_thread_args));
850                         thread_args->the_cache = s_cache;
851                         thread_args->the_runtime_env = s_runtime_env;
852                         thread_args->the_configuration = s_configuration;
853
854                         LOG_MSG_1("main", "thread #%d was successfully created",
855                                 i);
856                         pthread_create(&threads[i], NULL, processing_thread,
857                                 thread_args);
858
859                         thread_args = NULL;
860                 }
861
862                 for (i = 0; i < s_configuration->threads_num; ++i)
863                         pthread_join(threads[i], NULL);
864         } else {
865                 LOG_MSG_1("main", "working in single-threaded mode");
866                 processing_loop(s_cache, s_runtime_env, s_configuration);
867         }
868
869 fin:
870         /* runtime environment destruction */
871         destroy_runtime_env(s_runtime_env);
872
873         /* cache destruction */
874         destroy_cache_(s_cache);
875
876         /* configuration destruction */
877         destroy_configuration(s_configuration);
878
879         /* agents table destruction */
880         destroy_agent_table(s_agent_table);
881
882         pidfile_remove(pidfile);
883         return (EXIT_SUCCESS);
884 }