]> CyberLeo.Net >> Repos - FreeBSD/releng/8.2.git/blob - usr.sbin/pmcstat/pmcpl_calltree.c
MFC r217226:
[FreeBSD/releng/8.2.git] / usr.sbin / pmcstat / pmcpl_calltree.c
1 /*-
2  * Copyright (c) 2009, Fabien Thomas
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26
27 /*
28  * Process hwpmc(4) samples as calltree.
29  *
30  * Output file format compatible with Kcachegrind (kdesdk).
31  * Handle top mode with a sorted tree display.
32  */
33
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36
37 #include <sys/param.h>
38 #include <sys/endian.h>
39 #include <sys/queue.h>
40
41 #include <assert.h>
42 #include <curses.h>
43 #include <ctype.h>
44 #include <err.h>
45 #include <errno.h>
46 #include <fcntl.h>
47 #include <pmc.h>
48 #include <pmclog.h>
49 #include <sysexits.h>
50 #include <stdint.h>
51 #include <stdio.h>
52 #include <stdlib.h>
53 #include <string.h>
54 #include <unistd.h>
55 #include <sysexits.h>
56
57 #include "pmcstat.h"
58 #include "pmcstat_log.h"
59 #include "pmcstat_top.h"
60 #include "pmcpl_calltree.h"
61
62 #define PMCPL_CT_GROWSIZE       4
63
64 static pmcstat_interned_string pmcpl_ct_prevfn;
65
66 static int pmcstat_skiplink = 0;
67
68 struct pmcpl_ct_node;
69
70 /* Get the sample value for PMC a. */
71 #define PMCPL_CT_SAMPLE(a, b) \
72         ((a) < (b)->npmcs ? (b)->sb[a] : 0)
73
74 /* Get the sample value in percent related to rsamples. */
75 #define PMCPL_CT_SAMPLEP(a, b) \
76         (PMCPL_CT_SAMPLE(a, b) * 100.0 / rsamples->sb[a])
77
78 struct pmcpl_ct_sample {
79         int             npmcs;          /* Max pmc index available. */
80         unsigned        *sb;            /* Sample buffer for 0..npmcs. */
81 };
82
83 struct pmcpl_ct_arc {
84         struct pmcpl_ct_sample  pcta_samples;
85         struct pmcpl_ct_sample  pcta_callid;
86         unsigned                pcta_call;
87         struct pmcpl_ct_node    *pcta_child;
88 };
89
90 struct pmcpl_ct_instr {
91         uintfptr_t              pctf_func;
92         struct pmcpl_ct_sample  pctf_samples;
93 };
94
95 /*
96  * Each calltree node is tracked by a pmcpl_ct_node struct.
97  */
98 struct pmcpl_ct_node {
99 #define PMCPL_PCT_TAG   0x00000001      /* Loop detection. */
100         uint32_t                pct_flags;
101         struct pmcstat_image    *pct_image;
102         uintfptr_t              pct_func;
103         struct pmcpl_ct_sample  pct_samples;
104
105         int                     pct_narc;
106         int                     pct_arc_c;
107         struct pmcpl_ct_arc     *pct_arc;
108
109         /* TODO: optimize for large number of items. */
110         int                     pct_ninstr;
111         int                     pct_instr_c;
112         struct pmcpl_ct_instr   *pct_instr;
113 };
114
115 struct pmcpl_ct_node_hash {
116         struct pmcpl_ct_node  *pch_ctnode;
117         LIST_ENTRY(pmcpl_ct_node_hash) pch_next;
118 };
119
120 struct pmcpl_ct_sample pmcpl_ct_callid;
121
122 #define PMCPL_CT_MAXCOL         PMC_CALLCHAIN_DEPTH_MAX 
123 #define PMCPL_CT_MAXLINE        1024    /* TODO: dynamic. */
124
125 struct pmcpl_ct_line {
126         unsigned        ln_sum;
127         unsigned        ln_index;
128 };
129
130 struct pmcpl_ct_line    pmcpl_ct_topmax[PMCPL_CT_MAXLINE+1];
131 struct pmcpl_ct_node    *pmcpl_ct_topscreen[PMCPL_CT_MAXCOL+1][PMCPL_CT_MAXLINE+1];
132
133 /*
134  * All nodes indexed by function/image name are placed in a hash table.
135  */
136 static LIST_HEAD(,pmcpl_ct_node_hash) pmcpl_ct_node_hash[PMCSTAT_NHASH];
137
138 /*
139  * Root node for the graph.
140  */
141 static struct pmcpl_ct_node *pmcpl_ct_root;
142
143 /*
144  * Prototypes
145  */
146
147 /*
148  * Initialize a samples.
149  */
150
151 static void
152 pmcpl_ct_samples_init(struct pmcpl_ct_sample *samples)
153 {
154
155         samples->npmcs = 0;
156         samples->sb = NULL;
157 }
158
159 /*
160  * Free a samples.
161  */
162
163 static void
164 pmcpl_ct_samples_free(struct pmcpl_ct_sample *samples)
165 {
166
167         samples->npmcs = 0;
168         free(samples->sb);
169         samples->sb = NULL;
170 }
171
172 /*
173  * Grow a sample block to store pmcstat_npmcs PMCs.
174  */
175
176 static void
177 pmcpl_ct_samples_grow(struct pmcpl_ct_sample *samples)
178 {
179         int npmcs;
180
181         /* Enough storage. */
182         if (pmcstat_npmcs <= samples->npmcs)
183                 return;
184
185         npmcs = samples->npmcs +
186             max(pmcstat_npmcs - samples->npmcs, PMCPL_CT_GROWSIZE);
187         samples->sb = realloc(samples->sb, npmcs * sizeof(unsigned));
188         if (samples->sb == NULL)
189                 errx(EX_SOFTWARE, "ERROR: out of memory");
190         bzero((char *)samples->sb + samples->npmcs * sizeof(unsigned),
191             (npmcs - samples->npmcs) * sizeof(unsigned));
192         samples->npmcs = npmcs;
193 }
194
195 /*
196  * Compute the sum of all root arcs.
197  */
198
199 static void
200 pmcpl_ct_samples_root(struct pmcpl_ct_sample *samples)
201 {
202         int i, pmcin;
203
204         pmcpl_ct_samples_init(samples);
205         pmcpl_ct_samples_grow(samples);
206
207         for (i = 0; i < pmcpl_ct_root->pct_narc; i++)
208                 for (pmcin = 0; pmcin < pmcstat_npmcs; pmcin++)
209                         samples->sb[pmcin] += PMCPL_CT_SAMPLE(pmcin,
210                             &pmcpl_ct_root->pct_arc[i].pcta_samples);
211 }
212
213 /*
214  * Grow the arc table.
215  */
216
217 static void
218 pmcpl_ct_arc_grow(int cursize, int *maxsize, struct pmcpl_ct_arc **items)
219 {
220         int nmaxsize;
221
222         if (cursize < *maxsize)
223                 return;
224
225         nmaxsize = *maxsize + max(cursize + 1 - *maxsize, PMCPL_CT_GROWSIZE);
226         *items = realloc(*items, nmaxsize * sizeof(struct pmcpl_ct_arc));
227         if (*items == NULL)
228                 errx(EX_SOFTWARE, "ERROR: out of memory");
229         bzero((char *)*items + *maxsize * sizeof(struct pmcpl_ct_arc),
230             (nmaxsize - *maxsize) * sizeof(struct pmcpl_ct_arc));
231         *maxsize = nmaxsize;
232 }
233
234 /*
235  * Grow the instr table.
236  */
237
238 static void
239 pmcpl_ct_instr_grow(int cursize, int *maxsize, struct pmcpl_ct_instr **items)
240 {
241         int nmaxsize;
242
243         if (cursize < *maxsize)
244                 return;
245
246         nmaxsize = *maxsize + max(cursize + 1 - *maxsize, PMCPL_CT_GROWSIZE);
247         *items = realloc(*items, nmaxsize * sizeof(struct pmcpl_ct_instr));
248         if (*items == NULL)
249                 errx(EX_SOFTWARE, "ERROR: out of memory");
250         bzero((char *)*items + *maxsize * sizeof(struct pmcpl_ct_instr),
251             (nmaxsize - *maxsize) * sizeof(struct pmcpl_ct_instr));
252         *maxsize = nmaxsize;
253 }
254
255 /*
256  * Add a new instruction sample to given node.
257  */
258
259 static void
260 pmcpl_ct_instr_add(struct pmcpl_ct_node *ct, int pmcin, uintfptr_t pc)
261 {
262         int i;
263         struct pmcpl_ct_instr *in;
264
265         for (i = 0; i<ct->pct_ninstr; i++) {
266                 if (ct->pct_instr[i].pctf_func == pc) {
267                         in = &ct->pct_instr[i];
268                         pmcpl_ct_samples_grow(&in->pctf_samples);
269                         in->pctf_samples.sb[pmcin]++;
270                         return;
271                 }
272         }
273
274         pmcpl_ct_instr_grow(ct->pct_ninstr, &ct->pct_instr_c, &ct->pct_instr);
275         in = &ct->pct_instr[ct->pct_ninstr];
276         in->pctf_func = pc;
277         pmcpl_ct_samples_init(&in->pctf_samples);
278         pmcpl_ct_samples_grow(&in->pctf_samples);
279         in->pctf_samples.sb[pmcin] = 1;
280         ct->pct_ninstr++;
281 }
282
283 /*
284  * Allocate a new node.
285  */
286
287 static struct pmcpl_ct_node *
288 pmcpl_ct_node_allocate(struct pmcstat_image *image, uintfptr_t pc)
289 {
290         struct pmcpl_ct_node *ct;
291
292         if ((ct = malloc(sizeof(*ct))) == NULL)
293                 err(EX_OSERR, "ERROR: Cannot allocate callgraph node");
294
295         ct->pct_flags   = 0;
296         ct->pct_image   = image;
297         ct->pct_func    = pc;
298
299         pmcpl_ct_samples_init(&ct->pct_samples);
300
301         ct->pct_narc    = 0;
302         ct->pct_arc_c   = 0;
303         ct->pct_arc     = NULL;
304
305         ct->pct_ninstr  = 0;
306         ct->pct_instr_c = 0;
307         ct->pct_instr   = NULL;
308
309         return (ct);
310 }
311
312 /*
313  * Free a node.
314  */
315
316 static void
317 pmcpl_ct_node_free(struct pmcpl_ct_node *ct)
318 {
319         int i;
320
321         for (i = 0; i < ct->pct_narc; i++) {
322                 pmcpl_ct_samples_free(&ct->pct_arc[i].pcta_samples);
323                 pmcpl_ct_samples_free(&ct->pct_arc[i].pcta_callid);
324         }
325
326         pmcpl_ct_samples_free(&ct->pct_samples);
327         free(ct->pct_arc);
328         free(ct->pct_instr);
329         free(ct);
330 }
331
332 /*
333  * Clear the graph tag on each node.
334  */
335 static void
336 pmcpl_ct_node_cleartag(void)
337 {
338         int i;
339         struct pmcpl_ct_node_hash *pch;
340
341         for (i = 0; i < PMCSTAT_NHASH; i++)
342                 LIST_FOREACH(pch, &pmcpl_ct_node_hash[i], pch_next)
343                         pch->pch_ctnode->pct_flags &= ~PMCPL_PCT_TAG;
344
345         pmcpl_ct_root->pct_flags &= ~PMCPL_PCT_TAG;
346 }
347
348 /*
349  * Print the callchain line by line with maximum cost at top.
350  */ 
351
352 static int
353 pmcpl_ct_node_dumptop(int pmcin, struct pmcpl_ct_node *ct,
354     struct pmcpl_ct_sample *rsamples, int x, int *y)
355 {
356         int i, terminal;
357         struct pmcpl_ct_arc *arc;
358
359         if (ct->pct_flags & PMCPL_PCT_TAG)
360                 return 0;
361
362         ct->pct_flags |= PMCPL_PCT_TAG;
363
364         if (x >= PMCPL_CT_MAXCOL) {
365                 pmcpl_ct_topscreen[x][*y] = NULL;
366                 return 1;
367         }
368         pmcpl_ct_topscreen[x][*y] = ct;
369
370         /*
371          * Check if this is a terminal node.
372          * We need to check that some samples exist
373          * for at least one arc for that PMC.
374          */
375         terminal = 1;
376         for (i = 0; i < ct->pct_narc; i++) {
377                 arc = &ct->pct_arc[i];
378                 if (PMCPL_CT_SAMPLE(pmcin,
379                     &arc->pcta_samples) != 0 &&
380                     PMCPL_CT_SAMPLEP(pmcin,
381                     &arc->pcta_samples) > pmcstat_threshold &&
382                     (arc->pcta_child->pct_flags & PMCPL_PCT_TAG) == 0) {
383                         terminal = 0;
384                         break;
385                 }
386         }
387
388         if (ct->pct_narc == 0 || terminal) {
389                 pmcpl_ct_topscreen[x+1][*y] = NULL;
390                 if (*y >= PMCPL_CT_MAXLINE)
391                         return 1;
392                 *y = *y + 1;
393                 for (i=0; i < x; i++)
394                         pmcpl_ct_topscreen[i][*y] =
395                             pmcpl_ct_topscreen[i][*y - 1];
396                 return 0;
397         }
398
399         for (i = 0; i < ct->pct_narc; i++) {
400                 if (PMCPL_CT_SAMPLE(pmcin,
401                     &ct->pct_arc[i].pcta_samples) == 0)
402                         continue;
403                 if (PMCPL_CT_SAMPLEP(pmcin,
404                     &ct->pct_arc[i].pcta_samples) > pmcstat_threshold) {
405                         if (pmcpl_ct_node_dumptop(pmcin,
406                                 ct->pct_arc[i].pcta_child,
407                                 rsamples, x+1, y))
408                                 return 1;
409                 }
410         }
411
412         return 0;
413 }
414
415 /*
416  * Compare two top line by sum.
417  */
418 static int
419 pmcpl_ct_line_compare(const void *a, const void *b)
420 {
421         const struct pmcpl_ct_line *ct1, *ct2;
422
423         ct1 = (const struct pmcpl_ct_line *) a;
424         ct2 = (const struct pmcpl_ct_line *) b;
425
426         /* Sort in reverse order */
427         if (ct1->ln_sum < ct2->ln_sum)
428                 return (1);
429         if (ct1->ln_sum > ct2->ln_sum)
430                 return (-1);
431         return (0);
432 }
433
434 /*
435  * Format and display given PMC index.
436  */
437
438 static void
439 pmcpl_ct_node_printtop(struct pmcpl_ct_sample *rsamples, int pmcin, int maxy)
440 {
441 #undef  TS
442 #undef  TSI
443 #define TS(x, y)        (pmcpl_ct_topscreen[x][y])
444 #define TSI(x, y)       (pmcpl_ct_topscreen[x][pmcpl_ct_topmax[y].ln_index])
445
446         int v_attrs, ns_len, vs_len, is_len, width, indentwidth, x, y;
447         float v;
448         char ns[30], vs[10], is[20];
449         struct pmcpl_ct_node *ct;
450         struct pmcstat_symbol *sym;
451         const char *space = " ";
452
453         /*
454          * Sort by line cost.
455          */
456         for (y = 0; ; y++) {
457                 ct = TS(1, y);
458                 if (ct == NULL)
459                         break;
460
461                 pmcpl_ct_topmax[y].ln_sum = 0;
462                 pmcpl_ct_topmax[y].ln_index = y;
463                 for (x = 1; TS(x, y) != NULL; x++) {
464                         pmcpl_ct_topmax[y].ln_sum +=
465                             PMCPL_CT_SAMPLE(pmcin, &TS(x, y)->pct_samples);
466                 }
467         }
468         qsort(pmcpl_ct_topmax, y, sizeof(pmcpl_ct_topmax[0]),
469             pmcpl_ct_line_compare);
470         pmcpl_ct_topmax[y].ln_index = y;
471
472         for (y = 0; y < maxy; y++) {
473                 ct = TSI(1, y);
474                 if (ct == NULL)
475                         break;
476
477                 if (y > 0)
478                         PMCSTAT_PRINTW("\n");
479
480                 /* Output sum. */
481                 v = pmcpl_ct_topmax[y].ln_sum * 100.0 /
482                     rsamples->sb[pmcin];
483                 snprintf(vs, sizeof(vs), "%.1f", v);
484                 v_attrs = PMCSTAT_ATTRPERCENT(v);
485                 PMCSTAT_ATTRON(v_attrs);
486                 PMCSTAT_PRINTW("%5.5s ", vs);
487                 PMCSTAT_ATTROFF(v_attrs);
488
489                 width = indentwidth = 5 + 1;
490
491                 for (x = 1; (ct = TSI(x, y)) != NULL; x++) {
492
493                         vs[0] = '\0'; vs_len = 0;
494                         is[0] = '\0'; is_len = 0;
495
496                         /* Format value. */
497                         v = PMCPL_CT_SAMPLEP(pmcin, &ct->pct_samples);
498                         if (v > pmcstat_threshold)
499                                 vs_len  = snprintf(vs, sizeof(vs),
500                                     "(%.1f%%)", v);
501                         v_attrs = PMCSTAT_ATTRPERCENT(v);
502
503                         if (pmcstat_skiplink && v <= pmcstat_threshold) {
504                                 strlcpy(ns, ".", sizeof(ns));
505                                 ns_len = 1;
506                         } else {
507                         sym = pmcstat_symbol_search(ct->pct_image, ct->pct_func);
508                         if (sym != NULL) {
509                                 ns_len = snprintf(ns, sizeof(ns), "%s",
510                                     pmcstat_string_unintern(sym->ps_name));
511                         } else
512                                 ns_len = snprintf(ns, sizeof(ns), "%p",
513                                     (void *)ct->pct_func);
514
515                         /* Format image. */
516                         if (x == 1 ||
517                             TSI(x-1, y)->pct_image != ct->pct_image)
518                                 is_len = snprintf(is, sizeof(is), "@%s",
519                                     pmcstat_string_unintern(ct->pct_image->pi_name));
520
521                         /* Check for line wrap. */
522                         width += ns_len + is_len + vs_len + 1;
523                         }
524                         if (width >= pmcstat_displaywidth) {
525                                 maxy--;
526                                 if (y >= maxy)
527                                         break;
528                                 PMCSTAT_PRINTW("\n%*s", indentwidth, space);
529                                 width = indentwidth + ns_len + is_len + vs_len;
530                         }
531
532                         PMCSTAT_ATTRON(v_attrs);
533                         PMCSTAT_PRINTW("%s%s%s ", ns, is, vs);
534                         PMCSTAT_ATTROFF(v_attrs);
535                 }
536         }
537 }
538
539 /*
540  * Output top mode snapshot.
541  */
542
543 void
544 pmcpl_ct_topdisplay(void)
545 {
546         int y;
547         struct pmcpl_ct_sample r, *rsamples;
548
549         rsamples = &r;
550         pmcpl_ct_samples_root(rsamples);
551
552         pmcpl_ct_node_cleartag();
553
554         PMCSTAT_PRINTW("%5.5s %s\n", "%SAMP", "CALLTREE");
555
556         y = 0;
557         if (pmcpl_ct_node_dumptop(pmcstat_pmcinfilter,
558             pmcpl_ct_root, rsamples, 0, &y))
559                 PMCSTAT_PRINTW("...\n");
560         pmcpl_ct_topscreen[1][y] = NULL;
561
562         pmcpl_ct_node_printtop(rsamples,
563             pmcstat_pmcinfilter, pmcstat_displayheight - 2);
564
565         pmcpl_ct_samples_free(rsamples);
566 }
567
568 /*
569  * Handle top mode keypress.
570  */
571
572 int
573 pmcpl_ct_topkeypress(int c, WINDOW *w)
574 {
575
576         switch (c) {
577         case 'f':
578                 pmcstat_skiplink = !pmcstat_skiplink;
579                 wprintw(w, "skip empty link %s", pmcstat_skiplink ? "on" : "off");
580                 break;
581         }
582
583         return 0;
584 }
585
586 /*
587  * Look for a callgraph node associated with pmc `pmcid' in the global
588  * hash table that corresponds to the given `pc' value in the process map
589  * `ppm'.
590  */
591
592 static struct pmcpl_ct_node *
593 pmcpl_ct_node_hash_lookup_pc(struct pmcpl_ct_node *parent,
594     struct pmcstat_pcmap *ppm, uintfptr_t pc, int pmcin)
595 {
596         struct pmcstat_symbol *sym;
597         struct pmcstat_image *image;
598         struct pmcpl_ct_node *ct;
599         struct pmcpl_ct_node_hash *h;
600         struct pmcpl_ct_arc *arc;
601         uintfptr_t loadaddress;
602         int i;
603         unsigned int hash;
604
605         assert(parent != NULL);
606
607         image = ppm->ppm_image;
608
609         loadaddress = ppm->ppm_lowpc + image->pi_vaddr - image->pi_start;
610         pc -= loadaddress;      /* Convert to an offset in the image. */
611
612         /*
613          * Try determine the function at this offset.  If we can't
614          * find a function round leave the `pc' value alone.
615          */
616         if ((sym = pmcstat_symbol_search(image, pc)) != NULL)
617                 pc = sym->ps_start;
618         else
619                 pmcstat_stats.ps_samples_unknown_function++;
620
621         for (hash = i = 0; i < (int)sizeof(uintfptr_t); i++)
622                 hash += (pc >> i) & 0xFF;
623
624         hash &= PMCSTAT_HASH_MASK;
625
626         ct = NULL;
627         LIST_FOREACH(h, &pmcpl_ct_node_hash[hash], pch_next) {
628                 ct = h->pch_ctnode;
629
630                 assert(ct != NULL);
631
632                 if (ct->pct_image == image && ct->pct_func == pc) {
633                         /*
634                          * Find related arc in parent node and
635                          * increment the sample count.
636                          */
637                         for (i = 0; i < parent->pct_narc; i++) {
638                                 if (parent->pct_arc[i].pcta_child == ct) {
639                                         arc = &parent->pct_arc[i];
640                                         pmcpl_ct_samples_grow(&arc->pcta_samples);
641                                         arc->pcta_samples.sb[pmcin]++;
642                                         /* Estimate call count. */
643                                         pmcpl_ct_samples_grow(&arc->pcta_callid);
644                                         if (pmcpl_ct_callid.sb[pmcin] -
645                                             arc->pcta_callid.sb[pmcin] > 1)
646                                                 arc->pcta_call++;
647                                         arc->pcta_callid.sb[pmcin] =
648                                             pmcpl_ct_callid.sb[pmcin];
649                                         return (ct);
650                                 }
651                         }
652
653                         /*
654                          * No arc found for us, add ourself to the parent.
655                          */
656                         pmcpl_ct_arc_grow(parent->pct_narc,
657                             &parent->pct_arc_c, &parent->pct_arc);
658                         arc = &parent->pct_arc[parent->pct_narc];
659                         pmcpl_ct_samples_grow(&arc->pcta_samples);
660                         arc->pcta_samples.sb[pmcin] = 1;
661                         arc->pcta_call = 1;
662                         pmcpl_ct_samples_grow(&arc->pcta_callid);
663                         arc->pcta_callid.sb[pmcin] = pmcpl_ct_callid.sb[pmcin];
664                         arc->pcta_child = ct;
665                         parent->pct_narc++;
666                         return (ct);
667                 }
668         }
669
670         /*
671          * We haven't seen this (pmcid, pc) tuple yet, so allocate a
672          * new callgraph node and a new hash table entry for it.
673          */
674         ct = pmcpl_ct_node_allocate(image, pc);
675         if ((h = malloc(sizeof(*h))) == NULL)
676                 err(EX_OSERR, "ERROR: Could not allocate callgraph node");
677
678         h->pch_ctnode = ct;
679         LIST_INSERT_HEAD(&pmcpl_ct_node_hash[hash], h, pch_next);
680
681         pmcpl_ct_arc_grow(parent->pct_narc,
682             &parent->pct_arc_c, &parent->pct_arc);
683         arc = &parent->pct_arc[parent->pct_narc];
684         pmcpl_ct_samples_grow(&arc->pcta_samples);
685         arc->pcta_samples.sb[pmcin] = 1;
686         arc->pcta_call = 1;
687         pmcpl_ct_samples_grow(&arc->pcta_callid);
688         arc->pcta_callid.sb[pmcin] = pmcpl_ct_callid.sb[pmcin];
689         arc->pcta_child = ct;
690         parent->pct_narc++;
691         return (ct);
692 }
693
694 /*
695  * Record a callchain.
696  */
697
698 void
699 pmcpl_ct_process(struct pmcstat_process *pp, struct pmcstat_pmcrecord *pmcr,
700     uint32_t nsamples, uintfptr_t *cc, int usermode, uint32_t cpu)
701 {
702         int n, pmcin;
703         struct pmcstat_pcmap *ppm[PMC_CALLCHAIN_DEPTH_MAX];
704         struct pmcstat_process *km;
705         struct pmcpl_ct_node *parent, *child;
706
707         (void) cpu;
708
709         assert(nsamples>0 && nsamples<=PMC_CALLCHAIN_DEPTH_MAX);
710
711         /* Get the PMC index. */
712         pmcin = pmcr->pr_pmcin;
713
714         /*
715          * Validate mapping for the callchain.
716          * Go from bottom to first invalid entry.
717          */
718         km = pmcstat_kernproc;
719         for (n = 0; n < (int)nsamples; n++) {
720                 ppm[n] = pmcstat_process_find_map(usermode ?
721                     pp : km, cc[n]);
722                 if (ppm[n] == NULL) {
723                         /* Detect full frame capture (kernel + user). */
724                         if (!usermode) {
725                                 ppm[n] = pmcstat_process_find_map(pp, cc[n]);
726                                 if (ppm[n] != NULL)
727                                         km = pp;
728                         }
729                 }
730                 if (ppm[n] == NULL)
731                         break;
732         }
733         if (n-- == 0) {
734                 pmcstat_stats.ps_callchain_dubious_frames++;
735                 pmcr->pr_dubious_frames++;
736                 return;
737         }
738
739         /* Increase the call generation counter. */
740         pmcpl_ct_samples_grow(&pmcpl_ct_callid);
741         pmcpl_ct_callid.sb[pmcin]++;
742
743         /*
744          * Iterate remaining addresses.
745          */
746         for (parent = pmcpl_ct_root, child = NULL; n >= 0; n--) {
747                 child = pmcpl_ct_node_hash_lookup_pc(parent, ppm[n], cc[n],
748                     pmcin);
749                 if (child == NULL) {
750                         pmcstat_stats.ps_callchain_dubious_frames++;
751                         continue;
752                 }
753                 parent = child;
754         }
755
756         /*
757          * Increment the sample count for this PMC.
758          */
759         if (child != NULL) {
760                 pmcpl_ct_samples_grow(&child->pct_samples);
761                 child->pct_samples.sb[pmcin]++;
762
763                 /* Update per instruction sample if required. */
764                 if (args.pa_ctdumpinstr)
765                         pmcpl_ct_instr_add(child, pmcin, cc[0] -
766                             (ppm[0]->ppm_lowpc + ppm[0]->ppm_image->pi_vaddr -
767                              ppm[0]->ppm_image->pi_start));
768         }
769 }
770
771 /*
772  * Print node self cost.
773  */
774
775 static void
776 pmcpl_ct_node_printself(struct pmcpl_ct_node *ct)
777 {
778         int i, j, line;
779         uintptr_t addr;
780         struct pmcstat_symbol *sym;
781         char sourcefile[PATH_MAX];
782         char funcname[PATH_MAX];
783
784         /*
785          * Object binary.
786          */
787 #ifdef PMCPL_CT_OPTIMIZEFN
788         if (pmcpl_ct_prevfn != ct->pct_image->pi_fullpath) {
789 #endif
790                 pmcpl_ct_prevfn = ct->pct_image->pi_fullpath;
791                 fprintf(args.pa_graphfile, "ob=%s\n",
792                     pmcstat_string_unintern(pmcpl_ct_prevfn));
793 #ifdef PMCPL_CT_OPTIMIZEFN
794         }
795 #endif
796
797         /*
798          * Function name.
799          */
800         if (pmcstat_image_addr2line(ct->pct_image, ct->pct_func,
801             sourcefile, sizeof(sourcefile), &line,
802             funcname, sizeof(funcname))) {
803                 fprintf(args.pa_graphfile, "fn=%s\n",
804                     funcname);
805         } else {
806                 sym = pmcstat_symbol_search(ct->pct_image, ct->pct_func);
807                 if (sym != NULL)
808                         fprintf(args.pa_graphfile, "fn=%s\n",
809                             pmcstat_string_unintern(sym->ps_name));
810                 else
811                         fprintf(args.pa_graphfile, "fn=%p\n",
812                             (void *)(ct->pct_image->pi_vaddr + ct->pct_func));
813         }
814
815         /*
816          * Self cost.
817          */
818         if (ct->pct_ninstr > 0) {
819                 for (i = 0; i < ct->pct_ninstr; i++) {
820                         addr = ct->pct_image->pi_vaddr +
821                             ct->pct_instr[i].pctf_func;
822                         line = 0;
823                         if (pmcstat_image_addr2line(ct->pct_image, addr,
824                             sourcefile, sizeof(sourcefile), &line,
825                             funcname, sizeof(funcname)))
826                                 fprintf(args.pa_graphfile, "fl=%s\n", sourcefile);
827                         fprintf(args.pa_graphfile, "%p %u", (void *)addr, line);
828                         for (j = 0; j<pmcstat_npmcs; j++)
829                                 fprintf(args.pa_graphfile, " %u",
830                                     PMCPL_CT_SAMPLE(j,
831                                     &ct->pct_instr[i].pctf_samples));
832                         fprintf(args.pa_graphfile, "\n");
833                 }
834         } else {
835                 addr = ct->pct_image->pi_vaddr + ct->pct_func;
836                 line = 0;
837                 if (pmcstat_image_addr2line(ct->pct_image, addr,
838                     sourcefile, sizeof(sourcefile), &line,
839                     funcname, sizeof(funcname)))
840                         fprintf(args.pa_graphfile, "fl=%s\n", sourcefile);
841                 fprintf(args.pa_graphfile, "* *");
842                 for (i = 0; i<pmcstat_npmcs ; i++)
843                         fprintf(args.pa_graphfile, " %u",
844                             PMCPL_CT_SAMPLE(i, &ct->pct_samples));
845                 fprintf(args.pa_graphfile, "\n");
846         }
847 }
848
849 /*
850  * Print node child cost.
851  */
852
853 static void
854 pmcpl_ct_node_printchild(struct pmcpl_ct_node *ct)
855 {
856         int i, j, line;
857         uintptr_t addr;
858         struct pmcstat_symbol *sym;
859         struct pmcpl_ct_node *child;
860         char sourcefile[PATH_MAX];
861         char funcname[PATH_MAX];
862
863         /*
864          * Child cost.
865          * TODO: attach child cost to the real position in the funtion.
866          * TODO: cfn=<fn> / call <ncall> addr(<fn>) / addr(call <fn>) <arccost>
867          */
868         for (i=0 ; i<ct->pct_narc; i++) {
869                 child = ct->pct_arc[i].pcta_child;
870
871                 /* Object binary. */
872 #ifdef PMCPL_CT_OPTIMIZEFN
873                 if (pmcpl_ct_prevfn != child->pct_image->pi_fullpath) {
874 #endif
875                         pmcpl_ct_prevfn = child->pct_image->pi_fullpath;
876                         fprintf(args.pa_graphfile, "cob=%s\n",
877                             pmcstat_string_unintern(pmcpl_ct_prevfn));
878 #if PMCPL_CT_OPTIMIZEFN
879                 }
880 #endif
881                 /* Child function name. */
882                 addr = child->pct_image->pi_vaddr + child->pct_func;
883                 /* Child function source file. */
884                 if (pmcstat_image_addr2line(child->pct_image, addr,
885                     sourcefile, sizeof(sourcefile), &line,
886                     funcname, sizeof(funcname))) {
887                         fprintf(args.pa_graphfile, "cfn=%s\n", funcname);
888                         fprintf(args.pa_graphfile, "cfl=%s\n", sourcefile);
889                 } else {
890                         sym = pmcstat_symbol_search(child->pct_image,
891                             child->pct_func);
892                         if (sym != NULL)
893                                 fprintf(args.pa_graphfile, "cfn=%s\n",
894                                     pmcstat_string_unintern(sym->ps_name));
895                         else
896                                 fprintf(args.pa_graphfile, "cfn=%p\n", (void *)addr);
897                 }
898
899                 /* Child function address, line and call count. */
900                 fprintf(args.pa_graphfile, "calls=%u %p %u\n",
901                     ct->pct_arc[i].pcta_call, (void *)addr, line);
902
903                 if (ct->pct_image != NULL) {
904                         /* Call address, line, sample. */
905                         addr = ct->pct_image->pi_vaddr + ct->pct_func;
906                         line = 0;
907                         if (pmcstat_image_addr2line(ct->pct_image, addr, sourcefile,
908                             sizeof(sourcefile), &line,
909                             funcname, sizeof(funcname)))
910                                 fprintf(args.pa_graphfile, "%p %u", (void *)addr, line);
911                         else
912                                 fprintf(args.pa_graphfile, "* *");
913                 }
914                 else
915                         fprintf(args.pa_graphfile, "* *");
916                 for (j = 0; j<pmcstat_npmcs; j++)
917                         fprintf(args.pa_graphfile, " %u",
918                             PMCPL_CT_SAMPLE(j, &ct->pct_arc[i].pcta_samples));
919                 fprintf(args.pa_graphfile, "\n");
920         }
921 }
922
923 /*
924  * Clean the PMC name for Kcachegrind formula
925  */
926
927 static void
928 pmcpl_ct_fixup_pmcname(char *s)
929 {
930         char *p;
931
932         for (p = s; *p; p++)
933                 if (!isalnum(*p))
934                         *p = '_';
935 }
936
937 /*
938  * Print a calltree (KCachegrind) for all PMCs.
939  */
940
941 static void
942 pmcpl_ct_print(void)
943 {
944         int n, i;
945         struct pmcpl_ct_node_hash *pch;
946         struct pmcpl_ct_sample rsamples;
947         char name[40];
948
949         pmcpl_ct_samples_root(&rsamples);
950         pmcpl_ct_prevfn = NULL;
951
952         fprintf(args.pa_graphfile,
953                 "version: 1\n"
954                 "creator: pmcstat\n"
955                 "positions: instr line\n"
956                 "events:");
957         for (i=0; i<pmcstat_npmcs; i++) {
958                 snprintf(name, sizeof(name), "%s_%d",
959                     pmcstat_pmcindex_to_name(i), i);
960                 pmcpl_ct_fixup_pmcname(name);
961                 fprintf(args.pa_graphfile, " %s", name);
962         }
963         fprintf(args.pa_graphfile, "\nsummary:");
964         for (i=0; i<pmcstat_npmcs ; i++)
965                 fprintf(args.pa_graphfile, " %u",
966                     PMCPL_CT_SAMPLE(i, &rsamples));
967         fprintf(args.pa_graphfile, "\n\n");
968
969         /*
970          * Fake root node
971          */
972         fprintf(args.pa_graphfile, "ob=FreeBSD\n");
973         fprintf(args.pa_graphfile, "fn=ROOT\n");
974         fprintf(args.pa_graphfile, "* *");
975         for (i = 0; i<pmcstat_npmcs ; i++)
976                 fprintf(args.pa_graphfile, " 0");
977         fprintf(args.pa_graphfile, "\n");
978         pmcpl_ct_node_printchild(pmcpl_ct_root);
979
980         for (n = 0; n < PMCSTAT_NHASH; n++)
981                 LIST_FOREACH(pch, &pmcpl_ct_node_hash[n], pch_next) {
982                         pmcpl_ct_node_printself(pch->pch_ctnode);
983                         pmcpl_ct_node_printchild(pch->pch_ctnode);
984         }
985
986         pmcpl_ct_samples_free(&rsamples);
987 }
988
989 int
990 pmcpl_ct_configure(char *opt)
991 {
992
993         if (strncmp(opt, "skiplink=", 9) == 0) {
994                 pmcstat_skiplink = atoi(opt+9);
995         } else
996                 return (0);
997
998         return (1);
999 }
1000
1001 int
1002 pmcpl_ct_init(void)
1003 {
1004         int i;
1005
1006         pmcpl_ct_prevfn = NULL;
1007         pmcpl_ct_root = pmcpl_ct_node_allocate(NULL, 0);
1008
1009         for (i = 0; i < PMCSTAT_NHASH; i++)
1010                 LIST_INIT(&pmcpl_ct_node_hash[i]);
1011
1012         pmcpl_ct_samples_init(&pmcpl_ct_callid);
1013
1014         return (0);
1015 }
1016
1017 void
1018 pmcpl_ct_shutdown(FILE *mf)
1019 {
1020         int i;
1021         struct pmcpl_ct_node_hash *pch, *pchtmp;
1022
1023         (void) mf;
1024
1025         if (args.pa_flags & FLAG_DO_CALLGRAPHS)
1026                 pmcpl_ct_print();
1027
1028         /*
1029          * Free memory.
1030          */
1031
1032         for (i = 0; i < PMCSTAT_NHASH; i++) {
1033                 LIST_FOREACH_SAFE(pch, &pmcpl_ct_node_hash[i], pch_next,
1034                     pchtmp) {
1035                         pmcpl_ct_node_free(pch->pch_ctnode);
1036                         free(pch);
1037                 }
1038         }
1039
1040         pmcpl_ct_node_free(pmcpl_ct_root);
1041         pmcpl_ct_root = NULL;
1042
1043         pmcpl_ct_samples_free(&pmcpl_ct_callid);
1044 }
1045