]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - usr.sbin/ppp/slcompress.c
Replace various spelling with FALLTHROUGH which is lint()able
[FreeBSD/FreeBSD.git] / usr.sbin / ppp / slcompress.c
1 /*
2  * Routines to compress and uncompess tcp packets (for transmission
3  * over low speed serial lines.
4  *
5  * Copyright (c) 1989 Regents of the University of California.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms are permitted
9  * provided that the above copyright notice and this paragraph are
10  * duplicated in all such forms and that any documentation,
11  * advertising materials, and other materials related to such
12  * distribution and use acknowledge that the software was developed
13  * by the University of California, Berkeley.  The name of the
14  * University may not be used to endorse or promote products derived
15  * from this software without specific prior written permission.
16  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
18  * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
19  *
20  * $FreeBSD$
21  *
22  *      Van Jacobson (van@helios.ee.lbl.gov), Dec 31, 1989:
23  *      - Initial distribution.
24  */
25
26 #include <sys/param.h>
27 #include <netinet/in_systm.h>
28 #include <netinet/in.h>
29 #include <netinet/tcp.h>
30 #include <netinet/ip.h>
31 #include <sys/socket.h>
32 #include <sys/un.h>
33
34 #include <stdio.h>
35 #include <string.h>
36 #include <termios.h>
37
38 #include "layer.h"
39 #include "defs.h"
40 #include "command.h"
41 #include "mbuf.h"
42 #include "log.h"
43 #include "slcompress.h"
44 #include "descriptor.h"
45 #include "prompt.h"
46 #include "timer.h"
47 #include "fsm.h"
48 #include "throughput.h"
49 #include "iplist.h"
50 #include "lqr.h"
51 #include "hdlc.h"
52 #include "ncpaddr.h"
53 #include "ipcp.h"
54 #include "filter.h"
55 #include "lcp.h"
56 #include "ccp.h"
57 #include "link.h"
58 #include "mp.h"
59 #ifndef NORADIUS
60 #include "radius.h"
61 #endif
62 #include "ipv6cp.h"
63 #include "ncp.h"
64 #include "bundle.h"
65
66 void
67 sl_compress_init(struct slcompress *comp, int max_state)
68 {
69   register u_int i;
70   register struct cstate *tstate = comp->tstate;
71
72   memset(comp, '\0', sizeof *comp);
73   for (i = max_state; i > 0; --i) {
74     tstate[i].cs_id = i;
75     tstate[i].cs_next = &tstate[i - 1];
76   }
77   tstate[0].cs_next = &tstate[max_state];
78   tstate[0].cs_id = 0;
79   comp->last_cs = &tstate[0];
80   comp->last_recv = 255;
81   comp->last_xmit = 255;
82   comp->flags = SLF_TOSS;
83 }
84
85
86 /* ENCODE encodes a number that is known to be non-zero.  ENCODEZ
87  * checks for zero (since zero has to be encoded in the 32-bit, 3 byte
88  * form).
89  */
90 #define ENCODE(n) { \
91         if ((u_short)(n) >= 256) { \
92                 *cp++ = 0; \
93                 cp[1] = (n); \
94                 cp[0] = (n) >> 8; \
95                 cp += 2; \
96         } else { \
97                 *cp++ = (n); \
98         } \
99 }
100 #define ENCODEZ(n) { \
101         if ((u_short)(n) >= 256 || (u_short)(n) == 0) { \
102                 *cp++ = 0; \
103                 cp[1] = (n); \
104                 cp[0] = (n) >> 8; \
105                 cp += 2; \
106         } else { \
107                 *cp++ = (n); \
108         } \
109 }
110
111 #define DECODEL(f) { \
112         if (*cp == 0) {\
113                 (f) = htonl(ntohl(f) + ((cp[1] << 8) | cp[2])); \
114                 cp += 3; \
115         } else { \
116                 (f) = htonl(ntohl(f) + (u_int32_t)*cp++); \
117         } \
118 }
119
120 #define DECODES(f) { \
121         if (*cp == 0) {\
122                 (f) = htons(ntohs(f) + ((cp[1] << 8) | cp[2])); \
123                 cp += 3; \
124         } else { \
125                 (f) = htons(ntohs(f) + (u_int32_t)*cp++); \
126         } \
127 }
128
129 #define DECODEU(f) { \
130         if (*cp == 0) {\
131                 (f) = htons((cp[1] << 8) | cp[2]); \
132                 cp += 3; \
133         } else { \
134                 (f) = htons((u_int32_t)*cp++); \
135         } \
136 }
137
138
139 u_char
140 sl_compress_tcp(struct mbuf * m,
141                 struct ip * ip,
142                 struct slcompress *comp,
143                 struct slstat *slstat,
144                 int compress_cid)
145 {
146   register struct cstate *cs = comp->last_cs->cs_next;
147   register u_int hlen = ip->ip_hl;
148   register struct tcphdr *oth;
149   register struct tcphdr *th;
150   register u_int deltaS, deltaA;
151   register u_int changes = 0;
152   u_char new_seq[16];
153   register u_char *cp = new_seq;
154
155   /*
156    * Bail if this is an IP fragment or if the TCP packet isn't `compressible'
157    * (i.e., ACK isn't set or some other control bit is set).  (We assume that
158    * the caller has already made sure the packet is IP proto TCP).
159    */
160   if ((ip->ip_off & htons(0x3fff)) || m->m_len < 40) {
161     log_Printf(LogDEBUG, "??? 1 ip_off = %x, m_len = %lu\n",
162               ip->ip_off, (unsigned long)m->m_len);
163     log_DumpBp(LogDEBUG, "", m);
164     return (TYPE_IP);
165   }
166   th = (struct tcphdr *) & ((int *) ip)[hlen];
167   if ((th->th_flags & (TH_SYN | TH_FIN | TH_RST | TH_ACK)) != TH_ACK) {
168     log_Printf(LogDEBUG, "??? 2 th_flags = %x\n", th->th_flags);
169     log_DumpBp(LogDEBUG, "", m);
170     return (TYPE_IP);
171   }
172
173   /*
174    * Packet is compressible -- we're going to send either a COMPRESSED_TCP or
175    * UNCOMPRESSED_TCP packet.  Either way we need to locate (or create) the
176    * connection state.  Special case the most recently used connection since
177    * it's most likely to be used again & we don't have to do any reordering
178    * if it's used.
179    */
180   slstat->sls_packets++;
181   if (ip->ip_src.s_addr != cs->cs_ip.ip_src.s_addr ||
182       ip->ip_dst.s_addr != cs->cs_ip.ip_dst.s_addr ||
183       *(int *) th != ((int *) &cs->cs_ip)[cs->cs_ip.ip_hl]) {
184
185     /*
186      * Wasn't the first -- search for it.
187      *
188      * States are kept in a circularly linked list with last_cs pointing to the
189      * end of the list.  The list is kept in lru order by moving a state to
190      * the head of the list whenever it is referenced.  Since the list is
191      * short and, empirically, the connection we want is almost always near
192      * the front, we locate states via linear search.  If we don't find a
193      * state for the datagram, the oldest state is (re-)used.
194      */
195     register struct cstate *lcs;
196     register struct cstate *lastcs = comp->last_cs;
197
198     do {
199       lcs = cs;
200       cs = cs->cs_next;
201       slstat->sls_searches++;
202       if (ip->ip_src.s_addr == cs->cs_ip.ip_src.s_addr
203           && ip->ip_dst.s_addr == cs->cs_ip.ip_dst.s_addr
204           && *(int *) th == ((int *) &cs->cs_ip)[cs->cs_ip.ip_hl])
205         goto found;
206     } while (cs != lastcs);
207
208     /*
209      * Didn't find it -- re-use oldest cstate.  Send an uncompressed packet
210      * that tells the other side what connection number we're using for this
211      * conversation. Note that since the state list is circular, the oldest
212      * state points to the newest and we only need to set last_cs to update
213      * the lru linkage.
214      */
215     slstat->sls_misses++;
216       comp->last_cs = lcs;
217 #define THOFFSET(th)    (th->th_off)
218     hlen += th->th_off;
219     hlen <<= 2;
220     if (hlen > m->m_len)
221       return (TYPE_IP);
222     goto uncompressed;
223
224 found:
225
226     /*
227      * Found it -- move to the front on the connection list.
228      */
229     if (cs == lastcs)
230       comp->last_cs = lcs;
231     else {
232       lcs->cs_next = cs->cs_next;
233       cs->cs_next = lastcs->cs_next;
234       lastcs->cs_next = cs;
235     }
236   }
237
238   /*
239    * Make sure that only what we expect to change changed. The first line of
240    * the `if' checks the IP protocol version, header length & type of
241    * service.  The 2nd line checks the "Don't fragment" bit. The 3rd line
242    * checks the time-to-live and protocol (the protocol check is unnecessary
243    * but costless).  The 4th line checks the TCP header length.  The 5th line
244    * checks IP options, if any.  The 6th line checks TCP options, if any.  If
245    * any of these things are different between the previous & current
246    * datagram, we send the current datagram `uncompressed'.
247    */
248   oth = (struct tcphdr *) & ((int *) &cs->cs_ip)[hlen];
249   deltaS = hlen;
250   hlen += th->th_off;
251   hlen <<= 2;
252   if (hlen > m->m_len)
253     return (TYPE_IP);
254
255   if (((u_short *) ip)[0] != ((u_short *) & cs->cs_ip)[0] ||
256       ((u_short *) ip)[3] != ((u_short *) & cs->cs_ip)[3] ||
257       ((u_short *) ip)[4] != ((u_short *) & cs->cs_ip)[4] ||
258       THOFFSET(th) != THOFFSET(oth) ||
259       (deltaS > 5 &&
260        memcmp(ip + 1, &cs->cs_ip + 1, (deltaS - 5) << 2)) ||
261       (THOFFSET(th) > 5 &&
262        memcmp(th + 1, oth + 1, (THOFFSET(th) - 5) << 2))) {
263     goto uncompressed;
264   }
265
266   /*
267    * Figure out which of the changing fields changed.  The receiver expects
268    * changes in the order: urgent, window, ack, seq (the order minimizes the
269    * number of temporaries needed in this section of code).
270    */
271   if (th->th_flags & TH_URG) {
272     deltaS = ntohs(th->th_urp);
273     ENCODEZ(deltaS);
274     changes |= NEW_U;
275   } else if (th->th_urp != oth->th_urp) {
276
277     /*
278      * argh! URG not set but urp changed -- a sensible implementation should
279      * never do this but RFC793 doesn't prohibit the change so we have to
280      * deal with it.
281      */
282     goto uncompressed;
283   }
284   deltaS = (u_short) (ntohs(th->th_win) - ntohs(oth->th_win));
285   if (deltaS) {
286     ENCODE(deltaS);
287     changes |= NEW_W;
288   }
289   deltaA = ntohl(th->th_ack) - ntohl(oth->th_ack);
290   if (deltaA) {
291     if (deltaA > 0xffff) {
292       goto uncompressed;
293     }
294     ENCODE(deltaA);
295     changes |= NEW_A;
296   }
297   deltaS = ntohl(th->th_seq) - ntohl(oth->th_seq);
298   if (deltaS) {
299     if (deltaS > 0xffff) {
300       goto uncompressed;
301     }
302     ENCODE(deltaS);
303     changes |= NEW_S;
304   }
305   switch (changes) {
306
307   case 0:
308
309     /*
310      * Nothing changed. If this packet contains data and the last one didn't,
311      * this is probably a data packet following an ack (normal on an
312      * interactive connection) and we send it compressed.  Otherwise it's
313      * probably a retransmit, retransmitted ack or window probe.  Send it
314      * uncompressed in case the other side missed the compressed version.
315      */
316     if (ip->ip_len != cs->cs_ip.ip_len &&
317         ntohs(cs->cs_ip.ip_len) == hlen)
318       break;
319
320     /* FALLTHROUGH */
321
322   case SPECIAL_I:
323   case SPECIAL_D:
324
325     /*
326      * actual changes match one of our special case encodings -- send packet
327      * uncompressed.
328      */
329     goto uncompressed;
330
331   case NEW_S | NEW_A:
332     if (deltaS == deltaA &&
333         deltaS == ntohs(cs->cs_ip.ip_len) - hlen) {
334       /* special case for echoed terminal traffic */
335       changes = SPECIAL_I;
336       cp = new_seq;
337     }
338     break;
339
340   case NEW_S:
341     if (deltaS == ntohs(cs->cs_ip.ip_len) - hlen) {
342       /* special case for data xfer */
343       changes = SPECIAL_D;
344       cp = new_seq;
345     }
346     break;
347   }
348
349   deltaS = ntohs(ip->ip_id) - ntohs(cs->cs_ip.ip_id);
350   if (deltaS != 1) {
351     ENCODEZ(deltaS);
352     changes |= NEW_I;
353   }
354   if (th->th_flags & TH_PUSH)
355     changes |= TCP_PUSH_BIT;
356
357   /*
358    * Grab the cksum before we overwrite it below.  Then update our state with
359    * this packet's header.
360    */
361   deltaA = ntohs(th->th_sum);
362   memcpy(&cs->cs_ip, ip, hlen);
363
364   /*
365    * We want to use the original packet as our compressed packet. (cp -
366    * new_seq) is the number of bytes we need for compressed sequence numbers.
367    * In addition we need one byte for the change mask, one for the connection
368    * id and two for the tcp checksum. So, (cp - new_seq) + 4 bytes of header
369    * are needed.  hlen is how many bytes of the original packet to toss so
370    * subtract the two to get the new packet size.
371    */
372   deltaS = cp - new_seq;
373   cp = (u_char *) ip;
374
375   /*
376    * Since fastq traffic can jump ahead of the background traffic, we don't
377    * know what order packets will go on the line.  In this case, we always
378    * send a "new" connection id so the receiver state stays synchronized.
379    */
380   if (comp->last_xmit == cs->cs_id && compress_cid) {
381     hlen -= deltaS + 3;
382     cp += hlen;
383     *cp++ = changes;
384   } else {
385     comp->last_xmit = cs->cs_id;
386     hlen -= deltaS + 4;
387     cp += hlen;
388     *cp++ = changes | NEW_C;
389     *cp++ = cs->cs_id;
390   }
391   m->m_len -= hlen;
392   m->m_offset += hlen;
393   *cp++ = deltaA >> 8;
394   *cp++ = deltaA;
395   memcpy(cp, new_seq, deltaS);
396   slstat->sls_compressed++;
397   return (TYPE_COMPRESSED_TCP);
398
399   /*
400    * Update connection state cs & send uncompressed packet ('uncompressed'
401    * means a regular ip/tcp packet but with the 'conversation id' we hope to
402    * use on future compressed packets in the protocol field).
403    */
404 uncompressed:
405   memcpy(&cs->cs_ip, ip, hlen);
406   ip->ip_p = cs->cs_id;
407   comp->last_xmit = cs->cs_id;
408   return (TYPE_UNCOMPRESSED_TCP);
409 }
410
411
412 int
413 sl_uncompress_tcp(u_char ** bufp, int len, u_int type, struct slcompress *comp,
414                   struct slstat *slstat, int max_state)
415 {
416   register u_char *cp;
417   register u_int hlen, changes;
418   register struct tcphdr *th;
419   register struct cstate *cs;
420   register struct ip *ip;
421   u_short *bp;
422
423   switch (type) {
424
425   case TYPE_UNCOMPRESSED_TCP:
426     ip = (struct ip *) * bufp;
427     if (ip->ip_p > max_state)
428       goto bad;
429     cs = &comp->rstate[comp->last_recv = ip->ip_p];
430     comp->flags &= ~SLF_TOSS;
431     ip->ip_p = IPPROTO_TCP;
432
433     /*
434      * Calculate the size of the TCP/IP header and make sure that we don't
435      * overflow the space we have available for it.
436      */
437     hlen = ip->ip_hl << 2;
438     if (hlen + sizeof(struct tcphdr) > len)
439       goto bad;
440     th = (struct tcphdr *) & ((char *) ip)[hlen];
441     hlen += THOFFSET(th) << 2;
442     if (hlen > MAX_HDR)
443       goto bad;
444     memcpy(&cs->cs_ip, ip, hlen);
445     cs->cs_hlen = hlen;
446     slstat->sls_uncompressedin++;
447     return (len);
448
449   default:
450     goto bad;
451
452   case TYPE_COMPRESSED_TCP:
453     break;
454   }
455
456   /* We've got a compressed packet. */
457   slstat->sls_compressedin++;
458   cp = *bufp;
459   changes = *cp++;
460   log_Printf(LogDEBUG, "compressed: changes = %02x\n", changes);
461
462   if (changes & NEW_C) {
463     /*
464      * Make sure the state index is in range, then grab the state. If we have
465      * a good state index, clear the 'discard' flag.
466      */
467     if (*cp > max_state || comp->last_recv == 255)
468       goto bad;
469
470     comp->flags &= ~SLF_TOSS;
471     comp->last_recv = *cp++;
472   } else {
473     /*
474      * this packet has an implicit state index.  If we've had a line error
475      * since the last time we got an explicit state index, we have to toss
476      * the packet.
477      */
478     if (comp->flags & SLF_TOSS) {
479       slstat->sls_tossed++;
480       return (0);
481     }
482   }
483   cs = &comp->rstate[comp->last_recv];
484   hlen = cs->cs_ip.ip_hl << 2;
485   th = (struct tcphdr *) & ((u_char *) & cs->cs_ip)[hlen];
486   th->th_sum = htons((*cp << 8) | cp[1]);
487   cp += 2;
488   if (changes & TCP_PUSH_BIT)
489     th->th_flags |= TH_PUSH;
490   else
491     th->th_flags &= ~TH_PUSH;
492
493   switch (changes & SPECIALS_MASK) {
494   case SPECIAL_I:
495     {
496       register u_int i = ntohs(cs->cs_ip.ip_len) - cs->cs_hlen;
497
498       th->th_ack = htonl(ntohl(th->th_ack) + i);
499       th->th_seq = htonl(ntohl(th->th_seq) + i);
500     }
501     break;
502
503   case SPECIAL_D:
504     th->th_seq = htonl(ntohl(th->th_seq) + ntohs(cs->cs_ip.ip_len)
505                        - cs->cs_hlen);
506     break;
507
508   default:
509     if (changes & NEW_U) {
510       th->th_flags |= TH_URG;
511       DECODEU(th->th_urp)
512     } else
513       th->th_flags &= ~TH_URG;
514     if (changes & NEW_W)
515       DECODES(th->th_win)
516         if (changes & NEW_A)
517         DECODEL(th->th_ack)
518           if (changes & NEW_S) {
519           log_Printf(LogDEBUG, "NEW_S: %02x, %02x, %02x\n",
520                     *cp, cp[1], cp[2]);
521           DECODEL(th->th_seq)
522         }
523     break;
524   }
525   if (changes & NEW_I) {
526     DECODES(cs->cs_ip.ip_id)
527   } else
528     cs->cs_ip.ip_id = htons(ntohs(cs->cs_ip.ip_id) + 1);
529
530   log_Printf(LogDEBUG, "Uncompress: id = %04x, seq = %08lx\n",
531             cs->cs_ip.ip_id, (u_long)ntohl(th->th_seq));
532
533   /*
534    * At this point, cp points to the first byte of data in the packet.
535    * Back up cp by the tcp/ip header length to make room for the
536    * reconstructed header (we assume the packet we were handed has enough
537    * space to prepend 128 bytes of header).  Adjust the length to account
538    * for the new header & fill in the IP total length.
539    */
540   len -= (cp - *bufp);
541   if (len < 0)
542     /*
543      * we must have dropped some characters (crc should detect this but the
544      * old slip framing won't)
545      */
546     goto bad;
547
548   *bufp = cp - cs->cs_hlen;
549   len += cs->cs_hlen;
550   cs->cs_ip.ip_len = htons(len);
551
552   /* recompute the ip header checksum */
553   cs->cs_ip.ip_sum = 0;
554   bp = (u_short *)&cs->cs_ip;
555   for (changes = 0; hlen > 0; hlen -= 2)
556     changes += *bp++;
557   changes = (changes & 0xffff) + (changes >> 16);
558   changes = (changes & 0xffff) + (changes >> 16);
559   cs->cs_ip.ip_sum = ~changes;
560
561   /* And copy the result into our buffer */
562   memcpy(*bufp, &cs->cs_ip, cs->cs_hlen);
563
564   return (len);
565 bad:
566   comp->flags |= SLF_TOSS;
567   slstat->sls_errorin++;
568   return (0);
569 }
570
571 int
572 sl_Show(struct cmdargs const *arg)
573 {
574   prompt_Printf(arg->prompt, "VJ compression statistics:\n");
575   prompt_Printf(arg->prompt, "  Out:  %d (compress) / %d (total)",
576                 arg->bundle->ncp.ipcp.vj.slstat.sls_compressed,
577                 arg->bundle->ncp.ipcp.vj.slstat.sls_packets);
578   prompt_Printf(arg->prompt, "  %d (miss) / %d (search)\n",
579                 arg->bundle->ncp.ipcp.vj.slstat.sls_misses,
580                 arg->bundle->ncp.ipcp.vj.slstat.sls_searches);
581   prompt_Printf(arg->prompt, "  In:  %d (compress), %d (uncompress)",
582                 arg->bundle->ncp.ipcp.vj.slstat.sls_compressedin,
583                 arg->bundle->ncp.ipcp.vj.slstat.sls_uncompressedin);
584   prompt_Printf(arg->prompt, "  %d (error),  %d (tossed)\n",
585                 arg->bundle->ncp.ipcp.vj.slstat.sls_errorin,
586                 arg->bundle->ncp.ipcp.vj.slstat.sls_tossed);
587   return 0;
588 }