]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob
3d8bd30
[FreeBSD/FreeBSD.git] /
1 /*-
2  * Copyright (c) 1998-2003 Poul-Henning Kamp
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29
30 #include "opt_compat.h"
31 #include "opt_clock.h"
32
33 #include <sys/param.h>
34 #include <sys/bus.h>
35 #include <sys/cpu.h>
36 #include <sys/limits.h>
37 #include <sys/malloc.h>
38 #include <sys/systm.h>
39 #include <sys/sysctl.h>
40 #include <sys/time.h>
41 #include <sys/timetc.h>
42 #include <sys/kernel.h>
43 #include <sys/power.h>
44 #include <sys/smp.h>
45 #include <sys/vdso.h>
46 #include <machine/clock.h>
47 #include <machine/cputypes.h>
48 #include <machine/md_var.h>
49 #include <machine/specialreg.h>
50
51 #include "cpufreq_if.h"
52
53 uint64_t        tsc_freq;
54 int             tsc_is_invariant;
55 int             tsc_perf_stat;
56
57 static eventhandler_tag tsc_levels_tag, tsc_pre_tag, tsc_post_tag;
58
59 SYSCTL_INT(_kern_timecounter, OID_AUTO, invariant_tsc, CTLFLAG_RDTUN,
60     &tsc_is_invariant, 0, "Indicates whether the TSC is P-state invariant");
61 TUNABLE_INT("kern.timecounter.invariant_tsc", &tsc_is_invariant);
62
63 #ifdef SMP
64 static int      smp_tsc;
65 SYSCTL_INT(_kern_timecounter, OID_AUTO, smp_tsc, CTLFLAG_RDTUN, &smp_tsc, 0,
66     "Indicates whether the TSC is safe to use in SMP mode");
67 TUNABLE_INT("kern.timecounter.smp_tsc", &smp_tsc);
68 #endif
69
70 static int      tsc_disabled;
71 SYSCTL_INT(_machdep, OID_AUTO, disable_tsc, CTLFLAG_RDTUN, &tsc_disabled, 0,
72     "Disable x86 Time Stamp Counter");
73 TUNABLE_INT("machdep.disable_tsc", &tsc_disabled);
74
75 static int      tsc_skip_calibration;
76 SYSCTL_INT(_machdep, OID_AUTO, disable_tsc_calibration, CTLFLAG_RDTUN,
77     &tsc_skip_calibration, 0, "Disable TSC frequency calibration");
78 TUNABLE_INT("machdep.disable_tsc_calibration", &tsc_skip_calibration);
79
80 static void tsc_freq_changed(void *arg, const struct cf_level *level,
81     int status);
82 static void tsc_freq_changing(void *arg, const struct cf_level *level,
83     int *status);
84 static unsigned tsc_get_timecount(struct timecounter *tc);
85 static inline unsigned tsc_get_timecount_low(struct timecounter *tc);
86 static unsigned tsc_get_timecount_lfence(struct timecounter *tc);
87 static unsigned tsc_get_timecount_low_lfence(struct timecounter *tc);
88 static unsigned tsc_get_timecount_mfence(struct timecounter *tc);
89 static unsigned tsc_get_timecount_low_mfence(struct timecounter *tc);
90 static void tsc_levels_changed(void *arg, int unit);
91
92 static struct timecounter tsc_timecounter = {
93         tsc_get_timecount,      /* get_timecount */
94         0,                      /* no poll_pps */
95         ~0u,                    /* counter_mask */
96         0,                      /* frequency */
97         "TSC",                  /* name */
98         800,                    /* quality (adjusted in code) */
99 };
100
101 #define VMW_HVMAGIC             0x564d5868
102 #define VMW_HVPORT              0x5658
103 #define VMW_HVCMD_GETVERSION    10
104 #define VMW_HVCMD_GETHZ         45
105
106 static __inline void
107 vmware_hvcall(u_int cmd, u_int *p)
108 {
109
110         __asm __volatile("inl %w3, %0"
111         : "=a" (p[0]), "=b" (p[1]), "=c" (p[2]), "=d" (p[3])
112         : "0" (VMW_HVMAGIC), "1" (UINT_MAX), "2" (cmd), "3" (VMW_HVPORT)
113         : "memory");
114 }
115
116 static int
117 tsc_freq_vmware(void)
118 {
119         char hv_sig[13];
120         u_int regs[4];
121         char *p;
122         u_int hv_high;
123         int i;
124
125         /*
126          * [RFC] CPUID usage for interaction between Hypervisors and Linux.
127          * http://lkml.org/lkml/2008/10/1/246
128          *
129          * KB1009458: Mechanisms to determine if software is running in
130          * a VMware virtual machine
131          * http://kb.vmware.com/kb/1009458
132          */
133         hv_high = 0;
134         if ((cpu_feature2 & CPUID2_HV) != 0) {
135                 do_cpuid(0x40000000, regs);
136                 hv_high = regs[0];
137                 for (i = 1, p = hv_sig; i < 4; i++, p += sizeof(regs) / 4)
138                         memcpy(p, &regs[i], sizeof(regs[i]));
139                 *p = '\0';
140                 if (bootverbose) {
141                         /*
142                          * HV vendor    ID string
143                          * ------------+--------------
144                          * KVM          "KVMKVMKVM"
145                          * Microsoft    "Microsoft Hv"
146                          * VMware       "VMwareVMware"
147                          * Xen          "XenVMMXenVMM"
148                          */
149                         printf("Hypervisor: Origin = \"%s\"\n", hv_sig);
150                 }
151                 if (strncmp(hv_sig, "VMwareVMware", 12) != 0)
152                         return (0);
153         } else {
154                 p = getenv("smbios.system.serial");
155                 if (p == NULL)
156                         return (0);
157                 if (strncmp(p, "VMware-", 7) != 0 &&
158                     strncmp(p, "VMW", 3) != 0) {
159                         freeenv(p);
160                         return (0);
161                 }
162                 freeenv(p);
163                 vmware_hvcall(VMW_HVCMD_GETVERSION, regs);
164                 if (regs[1] != VMW_HVMAGIC)
165                         return (0);
166         }
167         if (hv_high >= 0x40000010) {
168                 do_cpuid(0x40000010, regs);
169                 tsc_freq = regs[0] * 1000;
170         } else {
171                 vmware_hvcall(VMW_HVCMD_GETHZ, regs);
172                 if (regs[1] != UINT_MAX)
173                         tsc_freq = regs[0] | ((uint64_t)regs[1] << 32);
174         }
175         tsc_is_invariant = 1;
176         return (1);
177 }
178
179 static void
180 tsc_freq_intel(void)
181 {
182         char brand[48];
183         u_int regs[4];
184         uint64_t freq;
185         char *p;
186         u_int i;
187
188         /*
189          * Intel Processor Identification and the CPUID Instruction
190          * Application Note 485.
191          * http://www.intel.com/assets/pdf/appnote/241618.pdf
192          */
193         if (cpu_exthigh >= 0x80000004) {
194                 p = brand;
195                 for (i = 0x80000002; i < 0x80000005; i++) {
196                         do_cpuid(i, regs);
197                         memcpy(p, regs, sizeof(regs));
198                         p += sizeof(regs);
199                 }
200                 p = NULL;
201                 for (i = 0; i < sizeof(brand) - 1; i++)
202                         if (brand[i] == 'H' && brand[i + 1] == 'z')
203                                 p = brand + i;
204                 if (p != NULL) {
205                         p -= 5;
206                         switch (p[4]) {
207                         case 'M':
208                                 i = 1;
209                                 break;
210                         case 'G':
211                                 i = 1000;
212                                 break;
213                         case 'T':
214                                 i = 1000000;
215                                 break;
216                         default:
217                                 return;
218                         }
219 #define C2D(c)  ((c) - '0')
220                         if (p[1] == '.') {
221                                 freq = C2D(p[0]) * 1000;
222                                 freq += C2D(p[2]) * 100;
223                                 freq += C2D(p[3]) * 10;
224                                 freq *= i * 1000;
225                         } else {
226                                 freq = C2D(p[0]) * 1000;
227                                 freq += C2D(p[1]) * 100;
228                                 freq += C2D(p[2]) * 10;
229                                 freq += C2D(p[3]);
230                                 freq *= i * 1000000;
231                         }
232 #undef C2D
233                         tsc_freq = freq;
234                 }
235         }
236 }
237
238 static void
239 probe_tsc_freq(void)
240 {
241         u_int regs[4];
242         uint64_t tsc1, tsc2;
243
244         if (cpu_high >= 6) {
245                 do_cpuid(6, regs);
246                 if ((regs[2] & CPUID_PERF_STAT) != 0) {
247                         /*
248                          * XXX Some emulators expose host CPUID without actual
249                          * support for these MSRs.  We must test whether they
250                          * really work.
251                          */
252                         wrmsr(MSR_MPERF, 0);
253                         wrmsr(MSR_APERF, 0);
254                         DELAY(10);
255                         if (rdmsr(MSR_MPERF) > 0 && rdmsr(MSR_APERF) > 0)
256                                 tsc_perf_stat = 1;
257                 }
258         }
259
260         if (tsc_freq_vmware())
261                 return;
262
263         switch (cpu_vendor_id) {
264         case CPU_VENDOR_AMD:
265                 if ((amd_pminfo & AMDPM_TSC_INVARIANT) != 0 ||
266                     (vm_guest == VM_GUEST_NO &&
267                     CPUID_TO_FAMILY(cpu_id) >= 0x10))
268                         tsc_is_invariant = 1;
269                 if (cpu_feature & CPUID_SSE2) {
270                         tsc_timecounter.tc_get_timecount =
271                             tsc_get_timecount_mfence;
272                 }
273                 break;
274         case CPU_VENDOR_INTEL:
275                 if ((amd_pminfo & AMDPM_TSC_INVARIANT) != 0 ||
276                     (vm_guest == VM_GUEST_NO &&
277                     ((CPUID_TO_FAMILY(cpu_id) == 0x6 &&
278                     CPUID_TO_MODEL(cpu_id) >= 0xe) ||
279                     (CPUID_TO_FAMILY(cpu_id) == 0xf &&
280                     CPUID_TO_MODEL(cpu_id) >= 0x3))))
281                         tsc_is_invariant = 1;
282                 if (cpu_feature & CPUID_SSE2) {
283                         tsc_timecounter.tc_get_timecount =
284                             tsc_get_timecount_lfence;
285                 }
286                 break;
287         case CPU_VENDOR_CENTAUR:
288                 if (vm_guest == VM_GUEST_NO &&
289                     CPUID_TO_FAMILY(cpu_id) == 0x6 &&
290                     CPUID_TO_MODEL(cpu_id) >= 0xf &&
291                     (rdmsr(0x1203) & 0x100000000ULL) == 0)
292                         tsc_is_invariant = 1;
293                 if (cpu_feature & CPUID_SSE2) {
294                         tsc_timecounter.tc_get_timecount =
295                             tsc_get_timecount_lfence;
296                 }
297                 break;
298         }
299
300         if (tsc_skip_calibration) {
301                 if (cpu_vendor_id == CPU_VENDOR_INTEL)
302                         tsc_freq_intel();
303                 return;
304         }
305
306         if (bootverbose)
307                 printf("Calibrating TSC clock ... ");
308         tsc1 = rdtsc();
309         DELAY(1000000);
310         tsc2 = rdtsc();
311         tsc_freq = tsc2 - tsc1;
312         if (bootverbose)
313                 printf("TSC clock: %ju Hz\n", (intmax_t)tsc_freq);
314 }
315
316 void
317 init_TSC(void)
318 {
319
320         if ((cpu_feature & CPUID_TSC) == 0 || tsc_disabled)
321                 return;
322
323         probe_tsc_freq();
324
325         /*
326          * Inform CPU accounting about our boot-time clock rate.  This will
327          * be updated if someone loads a cpufreq driver after boot that
328          * discovers a new max frequency.
329          */
330         if (tsc_freq != 0)
331                 set_cputicker(rdtsc, tsc_freq, !tsc_is_invariant);
332
333         if (tsc_is_invariant)
334                 return;
335
336         /* Register to find out about changes in CPU frequency. */
337         tsc_pre_tag = EVENTHANDLER_REGISTER(cpufreq_pre_change,
338             tsc_freq_changing, NULL, EVENTHANDLER_PRI_FIRST);
339         tsc_post_tag = EVENTHANDLER_REGISTER(cpufreq_post_change,
340             tsc_freq_changed, NULL, EVENTHANDLER_PRI_FIRST);
341         tsc_levels_tag = EVENTHANDLER_REGISTER(cpufreq_levels_changed,
342             tsc_levels_changed, NULL, EVENTHANDLER_PRI_ANY);
343 }
344
345 #ifdef SMP
346
347 /*
348  * RDTSC is not a serializing instruction, and does not drain
349  * instruction stream, so we need to drain the stream before executing
350  * it.  It could be fixed by use of RDTSCP, except the instruction is
351  * not available everywhere.
352  *
353  * Use CPUID for draining in the boot-time SMP constistency test.  The
354  * timecounters use MFENCE for AMD CPUs, and LFENCE for others (Intel
355  * and VIA) when SSE2 is present, and nothing on older machines which
356  * also do not issue RDTSC prematurely.  There, testing for SSE2 and
357  * vendor is too cumbersome, and we learn about TSC presence from
358  * CPUID.
359  *
360  * Do not use do_cpuid(), since we do not need CPUID results, which
361  * have to be written into memory with do_cpuid().
362  */
363 #define TSC_READ(x)                                                     \
364 static void                                                             \
365 tsc_read_##x(void *arg)                                                 \
366 {                                                                       \
367         uint32_t *tsc = arg;                                            \
368         u_int cpu = PCPU_GET(cpuid);                                    \
369                                                                         \
370         __asm __volatile("cpuid" : : : "eax", "ebx", "ecx", "edx");     \
371         tsc[cpu * 3 + x] = rdtsc32();                                   \
372 }
373 TSC_READ(0)
374 TSC_READ(1)
375 TSC_READ(2)
376 #undef TSC_READ
377
378 #define N       1000
379
380 static void
381 comp_smp_tsc(void *arg)
382 {
383         uint32_t *tsc;
384         int32_t d1, d2;
385         u_int cpu = PCPU_GET(cpuid);
386         u_int i, j, size;
387
388         size = (mp_maxid + 1) * 3;
389         for (i = 0, tsc = arg; i < N; i++, tsc += size)
390                 CPU_FOREACH(j) {
391                         if (j == cpu)
392                                 continue;
393                         d1 = tsc[cpu * 3 + 1] - tsc[j * 3];
394                         d2 = tsc[cpu * 3 + 2] - tsc[j * 3 + 1];
395                         if (d1 <= 0 || d2 <= 0) {
396                                 smp_tsc = 0;
397                                 return;
398                         }
399                 }
400 }
401
402 static int
403 test_smp_tsc(void)
404 {
405         uint32_t *data, *tsc;
406         u_int i, size;
407
408         if (!smp_tsc && !tsc_is_invariant)
409                 return (-100);
410         size = (mp_maxid + 1) * 3;
411         data = malloc(sizeof(*data) * size * N, M_TEMP, M_WAITOK);
412         for (i = 0, tsc = data; i < N; i++, tsc += size)
413                 smp_rendezvous(tsc_read_0, tsc_read_1, tsc_read_2, tsc);
414         smp_tsc = 1;    /* XXX */
415         smp_rendezvous(smp_no_rendevous_barrier, comp_smp_tsc,
416             smp_no_rendevous_barrier, data);
417         free(data, M_TEMP);
418         if (bootverbose)
419                 printf("SMP: %sed TSC synchronization test\n",
420                     smp_tsc ? "pass" : "fail");
421         if (smp_tsc && tsc_is_invariant) {
422                 switch (cpu_vendor_id) {
423                 case CPU_VENDOR_AMD:
424                         /*
425                          * Starting with Family 15h processors, TSC clock
426                          * source is in the north bridge.  Check whether
427                          * we have a single-socket/multi-core platform.
428                          * XXX Need more work for complex cases.
429                          */
430                         if (CPUID_TO_FAMILY(cpu_id) < 0x15 ||
431                             (amd_feature2 & AMDID2_CMP) == 0 ||
432                             smp_cpus > (cpu_procinfo2 & AMDID_CMP_CORES) + 1)
433                                 break;
434                         return (1000);
435                 case CPU_VENDOR_INTEL:
436                         /*
437                          * XXX Assume Intel platforms have synchronized TSCs.
438                          */
439                         return (1000);
440                 }
441                 return (800);
442         }
443         return (-100);
444 }
445
446 #undef N
447
448 #endif /* SMP */
449
450 static void
451 init_TSC_tc(void)
452 {
453         uint64_t max_freq;
454         int shift;
455
456         if ((cpu_feature & CPUID_TSC) == 0 || tsc_disabled)
457                 return;
458
459         /*
460          * Limit timecounter frequency to fit in an int and prevent it from
461          * overflowing too fast.
462          */
463         max_freq = UINT_MAX;
464
465         /*
466          * We can not use the TSC if we support APM.  Precise timekeeping
467          * on an APM'ed machine is at best a fools pursuit, since 
468          * any and all of the time spent in various SMM code can't 
469          * be reliably accounted for.  Reading the RTC is your only
470          * source of reliable time info.  The i8254 loses too, of course,
471          * but we need to have some kind of time...
472          * We don't know at this point whether APM is going to be used
473          * or not, nor when it might be activated.  Play it safe.
474          */
475         if (power_pm_get_type() == POWER_PM_TYPE_APM) {
476                 tsc_timecounter.tc_quality = -1000;
477                 if (bootverbose)
478                         printf("TSC timecounter disabled: APM enabled.\n");
479                 goto init;
480         }
481
482         /*
483          * We cannot use the TSC if it stops incrementing in deep sleep.
484          * Currently only Intel CPUs are known for this problem unless
485          * the invariant TSC bit is set.
486          */
487         if (cpu_can_deep_sleep && cpu_vendor_id == CPU_VENDOR_INTEL &&
488             (amd_pminfo & AMDPM_TSC_INVARIANT) == 0) {
489                 tsc_timecounter.tc_quality = -1000;
490                 tsc_timecounter.tc_flags |= TC_FLAGS_C3STOP;
491                 if (bootverbose)
492                         printf("TSC timecounter disabled: C3 enabled.\n");
493                 goto init;
494         }
495
496 #ifdef SMP
497         /*
498          * We can not use the TSC in SMP mode unless the TSCs on all CPUs are
499          * synchronized.  If the user is sure that the system has synchronized
500          * TSCs, set kern.timecounter.smp_tsc tunable to a non-zero value.
501          * We also limit the frequency even lower to avoid "temporal anomalies"
502          * as much as possible.  The TSC seems unreliable in virtualized SMP
503          * environments, so it is set to a negative quality in those cases.
504          */
505         if (smp_cpus > 1) {
506                 if (vm_guest != 0) {
507                         tsc_timecounter.tc_quality = -100;
508                 } else {
509                         tsc_timecounter.tc_quality = test_smp_tsc();
510                         max_freq >>= 8;
511                 }
512         } else
513 #endif
514         if (tsc_is_invariant)
515                 tsc_timecounter.tc_quality = 1000;
516
517 init:
518         for (shift = 0; shift < 31 && (tsc_freq >> shift) > max_freq; shift++)
519                 ;
520         if (shift > 0) {
521                 if (cpu_feature & CPUID_SSE2) {
522                         if (cpu_vendor_id == CPU_VENDOR_AMD) {
523                                 tsc_timecounter.tc_get_timecount =
524                                     tsc_get_timecount_low_mfence;
525                         } else {
526                                 tsc_timecounter.tc_get_timecount =
527                                     tsc_get_timecount_low_lfence;
528                         }
529                 } else
530                         tsc_timecounter.tc_get_timecount = tsc_get_timecount_low;
531                 tsc_timecounter.tc_name = "TSC-low";
532                 if (bootverbose)
533                         printf("TSC timecounter discards lower %d bit(s)\n",
534                             shift);
535         }
536         if (tsc_freq != 0) {
537                 tsc_timecounter.tc_frequency = tsc_freq >> shift;
538                 tsc_timecounter.tc_priv = (void *)(intptr_t)shift;
539                 tc_init(&tsc_timecounter);
540         }
541 }
542 SYSINIT(tsc_tc, SI_SUB_SMP, SI_ORDER_ANY, init_TSC_tc, NULL);
543
544 /*
545  * When cpufreq levels change, find out about the (new) max frequency.  We
546  * use this to update CPU accounting in case it got a lower estimate at boot.
547  */
548 static void
549 tsc_levels_changed(void *arg, int unit)
550 {
551         device_t cf_dev;
552         struct cf_level *levels;
553         int count, error;
554         uint64_t max_freq;
555
556         /* Only use values from the first CPU, assuming all are equal. */
557         if (unit != 0)
558                 return;
559
560         /* Find the appropriate cpufreq device instance. */
561         cf_dev = devclass_get_device(devclass_find("cpufreq"), unit);
562         if (cf_dev == NULL) {
563                 printf("tsc_levels_changed() called but no cpufreq device?\n");
564                 return;
565         }
566
567         /* Get settings from the device and find the max frequency. */
568         count = 64;
569         levels = malloc(count * sizeof(*levels), M_TEMP, M_NOWAIT);
570         if (levels == NULL)
571                 return;
572         error = CPUFREQ_LEVELS(cf_dev, levels, &count);
573         if (error == 0 && count != 0) {
574                 max_freq = (uint64_t)levels[0].total_set.freq * 1000000;
575                 set_cputicker(rdtsc, max_freq, 1);
576         } else
577                 printf("tsc_levels_changed: no max freq found\n");
578         free(levels, M_TEMP);
579 }
580
581 /*
582  * If the TSC timecounter is in use, veto the pending change.  It may be
583  * possible in the future to handle a dynamically-changing timecounter rate.
584  */
585 static void
586 tsc_freq_changing(void *arg, const struct cf_level *level, int *status)
587 {
588
589         if (*status != 0 || timecounter != &tsc_timecounter)
590                 return;
591
592         printf("timecounter TSC must not be in use when "
593             "changing frequencies; change denied\n");
594         *status = EBUSY;
595 }
596
597 /* Update TSC freq with the value indicated by the caller. */
598 static void
599 tsc_freq_changed(void *arg, const struct cf_level *level, int status)
600 {
601         uint64_t freq;
602
603         /* If there was an error during the transition, don't do anything. */
604         if (tsc_disabled || status != 0)
605                 return;
606
607         /* Total setting for this level gives the new frequency in MHz. */
608         freq = (uint64_t)level->total_set.freq * 1000000;
609         atomic_store_rel_64(&tsc_freq, freq);
610         tsc_timecounter.tc_frequency =
611             freq >> (int)(intptr_t)tsc_timecounter.tc_priv;
612 }
613
614 static int
615 sysctl_machdep_tsc_freq(SYSCTL_HANDLER_ARGS)
616 {
617         int error;
618         uint64_t freq;
619
620         freq = atomic_load_acq_64(&tsc_freq);
621         if (freq == 0)
622                 return (EOPNOTSUPP);
623         error = sysctl_handle_64(oidp, &freq, 0, req);
624         if (error == 0 && req->newptr != NULL) {
625                 atomic_store_rel_64(&tsc_freq, freq);
626                 atomic_store_rel_64(&tsc_timecounter.tc_frequency,
627                     freq >> (int)(intptr_t)tsc_timecounter.tc_priv);
628         }
629         return (error);
630 }
631
632 SYSCTL_PROC(_machdep, OID_AUTO, tsc_freq, CTLTYPE_U64 | CTLFLAG_RW,
633     0, 0, sysctl_machdep_tsc_freq, "QU", "Time Stamp Counter frequency");
634
635 static u_int
636 tsc_get_timecount(struct timecounter *tc __unused)
637 {
638
639         return (rdtsc32());
640 }
641
642 static inline u_int
643 tsc_get_timecount_low(struct timecounter *tc)
644 {
645         uint32_t rv;
646
647         __asm __volatile("rdtsc; shrd %%cl, %%edx, %0"
648             : "=a" (rv) : "c" ((int)(intptr_t)tc->tc_priv) : "edx");
649         return (rv);
650 }
651
652 static u_int
653 tsc_get_timecount_lfence(struct timecounter *tc __unused)
654 {
655
656         lfence();
657         return (rdtsc32());
658 }
659
660 static u_int
661 tsc_get_timecount_low_lfence(struct timecounter *tc)
662 {
663
664         lfence();
665         return (tsc_get_timecount_low(tc));
666 }
667
668 static u_int
669 tsc_get_timecount_mfence(struct timecounter *tc __unused)
670 {
671
672         mfence();
673         return (rdtsc32());
674 }
675
676 static u_int
677 tsc_get_timecount_low_mfence(struct timecounter *tc)
678 {
679
680         mfence();
681         return (tsc_get_timecount_low(tc));
682 }
683
684 uint32_t
685 cpu_fill_vdso_timehands(struct vdso_timehands *vdso_th)
686 {
687
688         vdso_th->th_x86_shift = (int)(intptr_t)timecounter->tc_priv;
689         bzero(vdso_th->th_res, sizeof(vdso_th->th_res));
690         return (timecounter == &tsc_timecounter);
691 }
692
693 #ifdef COMPAT_FREEBSD32
694 uint32_t
695 cpu_fill_vdso_timehands32(struct vdso_timehands32 *vdso_th32)
696 {
697
698         vdso_th32->th_x86_shift = (int)(intptr_t)timecounter->tc_priv;
699         bzero(vdso_th32->th_res, sizeof(vdso_th32->th_res));
700         return (timecounter == &tsc_timecounter);
701 }
702 #endif