]> CyberLeo.Net >> Repos - FreeBSD/releng/10.2.git/blob - cddl/contrib/opensolaris/lib/libzpool/common/taskq.c
- Copy stable/10@285827 to releng/10.2 in preparation for 10.2-RC1
[FreeBSD/releng/10.2.git] / cddl / contrib / opensolaris / lib / libzpool / common / taskq.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /*
26  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
27  * Copyright 2012 Garrett D'Amore <garrett@damore.org>.  All rights reserved.
28  */
29
30 #include <sys/zfs_context.h>
31
32 int taskq_now;
33 taskq_t *system_taskq;
34
35 #define TASKQ_ACTIVE    0x00010000
36
37 struct taskq {
38         kmutex_t        tq_lock;
39         krwlock_t       tq_threadlock;
40         kcondvar_t      tq_dispatch_cv;
41         kcondvar_t      tq_wait_cv;
42         thread_t        *tq_threadlist;
43         int             tq_flags;
44         int             tq_active;
45         int             tq_nthreads;
46         int             tq_nalloc;
47         int             tq_minalloc;
48         int             tq_maxalloc;
49         kcondvar_t      tq_maxalloc_cv;
50         int             tq_maxalloc_wait;
51         taskq_ent_t     *tq_freelist;
52         taskq_ent_t     tq_task;
53 };
54
55 static taskq_ent_t *
56 task_alloc(taskq_t *tq, int tqflags)
57 {
58         taskq_ent_t *t;
59         int rv;
60
61 again:  if ((t = tq->tq_freelist) != NULL && tq->tq_nalloc >= tq->tq_minalloc) {
62                 tq->tq_freelist = t->tqent_next;
63         } else {
64                 if (tq->tq_nalloc >= tq->tq_maxalloc) {
65                         if (!(tqflags & KM_SLEEP))
66                                 return (NULL);
67
68                         /*
69                          * We don't want to exceed tq_maxalloc, but we can't
70                          * wait for other tasks to complete (and thus free up
71                          * task structures) without risking deadlock with
72                          * the caller.  So, we just delay for one second
73                          * to throttle the allocation rate. If we have tasks
74                          * complete before one second timeout expires then
75                          * taskq_ent_free will signal us and we will
76                          * immediately retry the allocation.
77                          */
78                         tq->tq_maxalloc_wait++;
79                         rv = cv_timedwait(&tq->tq_maxalloc_cv,
80                             &tq->tq_lock, ddi_get_lbolt() + hz);
81                         tq->tq_maxalloc_wait--;
82                         if (rv > 0)
83                                 goto again;             /* signaled */
84                 }
85                 mutex_exit(&tq->tq_lock);
86
87                 t = kmem_alloc(sizeof (taskq_ent_t), tqflags & KM_SLEEP);
88
89                 mutex_enter(&tq->tq_lock);
90                 if (t != NULL)
91                         tq->tq_nalloc++;
92         }
93         return (t);
94 }
95
96 static void
97 task_free(taskq_t *tq, taskq_ent_t *t)
98 {
99         if (tq->tq_nalloc <= tq->tq_minalloc) {
100                 t->tqent_next = tq->tq_freelist;
101                 tq->tq_freelist = t;
102         } else {
103                 tq->tq_nalloc--;
104                 mutex_exit(&tq->tq_lock);
105                 kmem_free(t, sizeof (taskq_ent_t));
106                 mutex_enter(&tq->tq_lock);
107         }
108
109         if (tq->tq_maxalloc_wait)
110                 cv_signal(&tq->tq_maxalloc_cv);
111 }
112
113 taskqid_t
114 taskq_dispatch(taskq_t *tq, task_func_t func, void *arg, uint_t tqflags)
115 {
116         taskq_ent_t *t;
117
118         if (taskq_now) {
119                 func(arg);
120                 return (1);
121         }
122
123         mutex_enter(&tq->tq_lock);
124         ASSERT(tq->tq_flags & TASKQ_ACTIVE);
125         if ((t = task_alloc(tq, tqflags)) == NULL) {
126                 mutex_exit(&tq->tq_lock);
127                 return (0);
128         }
129         if (tqflags & TQ_FRONT) {
130                 t->tqent_next = tq->tq_task.tqent_next;
131                 t->tqent_prev = &tq->tq_task;
132         } else {
133                 t->tqent_next = &tq->tq_task;
134                 t->tqent_prev = tq->tq_task.tqent_prev;
135         }
136         t->tqent_next->tqent_prev = t;
137         t->tqent_prev->tqent_next = t;
138         t->tqent_func = func;
139         t->tqent_arg = arg;
140         t->tqent_flags = 0;
141         cv_signal(&tq->tq_dispatch_cv);
142         mutex_exit(&tq->tq_lock);
143         return (1);
144 }
145
146 void
147 taskq_dispatch_ent(taskq_t *tq, task_func_t func, void *arg, uint_t flags,
148     taskq_ent_t *t)
149 {
150         ASSERT(func != NULL);
151         ASSERT(!(tq->tq_flags & TASKQ_DYNAMIC));
152
153         /*
154          * Mark it as a prealloc'd task.  This is important
155          * to ensure that we don't free it later.
156          */
157         t->tqent_flags |= TQENT_FLAG_PREALLOC;
158         /*
159          * Enqueue the task to the underlying queue.
160          */
161         mutex_enter(&tq->tq_lock);
162
163         if (flags & TQ_FRONT) {
164                 t->tqent_next = tq->tq_task.tqent_next;
165                 t->tqent_prev = &tq->tq_task;
166         } else {
167                 t->tqent_next = &tq->tq_task;
168                 t->tqent_prev = tq->tq_task.tqent_prev;
169         }
170         t->tqent_next->tqent_prev = t;
171         t->tqent_prev->tqent_next = t;
172         t->tqent_func = func;
173         t->tqent_arg = arg;
174         cv_signal(&tq->tq_dispatch_cv);
175         mutex_exit(&tq->tq_lock);
176 }
177
178 void
179 taskq_wait(taskq_t *tq)
180 {
181         mutex_enter(&tq->tq_lock);
182         while (tq->tq_task.tqent_next != &tq->tq_task || tq->tq_active != 0)
183                 cv_wait(&tq->tq_wait_cv, &tq->tq_lock);
184         mutex_exit(&tq->tq_lock);
185 }
186
187 static void *
188 taskq_thread(void *arg)
189 {
190         taskq_t *tq = arg;
191         taskq_ent_t *t;
192         boolean_t prealloc;
193
194         mutex_enter(&tq->tq_lock);
195         while (tq->tq_flags & TASKQ_ACTIVE) {
196                 if ((t = tq->tq_task.tqent_next) == &tq->tq_task) {
197                         if (--tq->tq_active == 0)
198                                 cv_broadcast(&tq->tq_wait_cv);
199                         cv_wait(&tq->tq_dispatch_cv, &tq->tq_lock);
200                         tq->tq_active++;
201                         continue;
202                 }
203                 t->tqent_prev->tqent_next = t->tqent_next;
204                 t->tqent_next->tqent_prev = t->tqent_prev;
205                 t->tqent_next = NULL;
206                 t->tqent_prev = NULL;
207                 prealloc = t->tqent_flags & TQENT_FLAG_PREALLOC;
208                 mutex_exit(&tq->tq_lock);
209
210                 rw_enter(&tq->tq_threadlock, RW_READER);
211                 t->tqent_func(t->tqent_arg);
212                 rw_exit(&tq->tq_threadlock);
213
214                 mutex_enter(&tq->tq_lock);
215                 if (!prealloc)
216                         task_free(tq, t);
217         }
218         tq->tq_nthreads--;
219         cv_broadcast(&tq->tq_wait_cv);
220         mutex_exit(&tq->tq_lock);
221         return (NULL);
222 }
223
224 /*ARGSUSED*/
225 taskq_t *
226 taskq_create(const char *name, int nthreads, pri_t pri,
227         int minalloc, int maxalloc, uint_t flags)
228 {
229         taskq_t *tq = kmem_zalloc(sizeof (taskq_t), KM_SLEEP);
230         int t;
231
232         if (flags & TASKQ_THREADS_CPU_PCT) {
233                 int pct;
234                 ASSERT3S(nthreads, >=, 0);
235                 ASSERT3S(nthreads, <=, 100);
236                 pct = MIN(nthreads, 100);
237                 pct = MAX(pct, 0);
238
239                 nthreads = (sysconf(_SC_NPROCESSORS_ONLN) * pct) / 100;
240                 nthreads = MAX(nthreads, 1);    /* need at least 1 thread */
241         } else {
242                 ASSERT3S(nthreads, >=, 1);
243         }
244
245         rw_init(&tq->tq_threadlock, NULL, RW_DEFAULT, NULL);
246         mutex_init(&tq->tq_lock, NULL, MUTEX_DEFAULT, NULL);
247         cv_init(&tq->tq_dispatch_cv, NULL, CV_DEFAULT, NULL);
248         cv_init(&tq->tq_wait_cv, NULL, CV_DEFAULT, NULL);
249         cv_init(&tq->tq_maxalloc_cv, NULL, CV_DEFAULT, NULL);
250         tq->tq_flags = flags | TASKQ_ACTIVE;
251         tq->tq_active = nthreads;
252         tq->tq_nthreads = nthreads;
253         tq->tq_minalloc = minalloc;
254         tq->tq_maxalloc = maxalloc;
255         tq->tq_task.tqent_next = &tq->tq_task;
256         tq->tq_task.tqent_prev = &tq->tq_task;
257         tq->tq_threadlist = kmem_alloc(nthreads * sizeof (thread_t), KM_SLEEP);
258
259         if (flags & TASKQ_PREPOPULATE) {
260                 mutex_enter(&tq->tq_lock);
261                 while (minalloc-- > 0)
262                         task_free(tq, task_alloc(tq, KM_SLEEP));
263                 mutex_exit(&tq->tq_lock);
264         }
265
266         for (t = 0; t < nthreads; t++)
267                 (void) thr_create(0, 0, taskq_thread,
268                     tq, THR_BOUND, &tq->tq_threadlist[t]);
269
270         return (tq);
271 }
272
273 void
274 taskq_destroy(taskq_t *tq)
275 {
276         int t;
277         int nthreads = tq->tq_nthreads;
278
279         taskq_wait(tq);
280
281         mutex_enter(&tq->tq_lock);
282
283         tq->tq_flags &= ~TASKQ_ACTIVE;
284         cv_broadcast(&tq->tq_dispatch_cv);
285
286         while (tq->tq_nthreads != 0)
287                 cv_wait(&tq->tq_wait_cv, &tq->tq_lock);
288
289         tq->tq_minalloc = 0;
290         while (tq->tq_nalloc != 0) {
291                 ASSERT(tq->tq_freelist != NULL);
292                 task_free(tq, task_alloc(tq, KM_SLEEP));
293         }
294
295         mutex_exit(&tq->tq_lock);
296
297         for (t = 0; t < nthreads; t++)
298                 (void) thr_join(tq->tq_threadlist[t], NULL, NULL);
299
300         kmem_free(tq->tq_threadlist, nthreads * sizeof (thread_t));
301
302         rw_destroy(&tq->tq_threadlock);
303         mutex_destroy(&tq->tq_lock);
304         cv_destroy(&tq->tq_dispatch_cv);
305         cv_destroy(&tq->tq_wait_cv);
306         cv_destroy(&tq->tq_maxalloc_cv);
307
308         kmem_free(tq, sizeof (taskq_t));
309 }
310
311 int
312 taskq_member(taskq_t *tq, void *t)
313 {
314         int i;
315
316         if (taskq_now)
317                 return (1);
318
319         for (i = 0; i < tq->tq_nthreads; i++)
320                 if (tq->tq_threadlist[i] == (thread_t)(uintptr_t)t)
321                         return (1);
322
323         return (0);
324 }
325
326 void
327 system_taskq_init(void)
328 {
329         system_taskq = taskq_create("system_taskq", 64, minclsyspri, 4, 512,
330             TASKQ_DYNAMIC | TASKQ_PREPOPULATE);
331 }
332
333 void
334 system_taskq_fini(void)
335 {
336         taskq_destroy(system_taskq);
337         system_taskq = NULL; /* defensive */
338 }