]> CyberLeo.Net >> Repos - FreeBSD/releng/10.2.git/blob - contrib/apr/atomic/unix/mutex.c
- Copy stable/10@285827 to releng/10.2 in preparation for 10.2-RC1
[FreeBSD/releng/10.2.git] / contrib / apr / atomic / unix / mutex.c
1 /* Licensed to the Apache Software Foundation (ASF) under one or more
2  * contributor license agreements.  See the NOTICE file distributed with
3  * this work for additional information regarding copyright ownership.
4  * The ASF licenses this file to You under the Apache License, Version 2.0
5  * (the "License"); you may not use this file except in compliance with
6  * the License.  You may obtain a copy of the License at
7  *
8  *     http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16
17 #include "apr_arch_atomic.h"
18
19 #ifdef USE_ATOMICS_GENERIC
20
21 #include <stdlib.h>
22
23 #if APR_HAS_THREADS
24 #   define DECLARE_MUTEX_LOCKED(name, mem)  \
25         apr_thread_mutex_t *name = mutex_hash(mem)
26 #   define MUTEX_UNLOCK(name)                                   \
27         do {                                                    \
28             if (apr_thread_mutex_unlock(name) != APR_SUCCESS)   \
29                 abort();                                        \
30         } while (0)
31 #else
32 #   define DECLARE_MUTEX_LOCKED(name, mem)
33 #   define MUTEX_UNLOCK(name)
34 #   warning Be warned: using stubs for all atomic operations
35 #endif
36
37 #if APR_HAS_THREADS
38
39 static apr_thread_mutex_t **hash_mutex;
40
41 #define NUM_ATOMIC_HASH 7
42 /* shift by 2 to get rid of alignment issues */
43 #define ATOMIC_HASH(x) (unsigned int)(((unsigned long)(x)>>2)%(unsigned int)NUM_ATOMIC_HASH)
44
45 static apr_status_t atomic_cleanup(void *data)
46 {
47     if (hash_mutex == data)
48         hash_mutex = NULL;
49
50     return APR_SUCCESS;
51 }
52
53 APR_DECLARE(apr_status_t) apr_atomic_init(apr_pool_t *p)
54 {
55     int i;
56     apr_status_t rv;
57
58     if (hash_mutex != NULL)
59         return APR_SUCCESS;
60
61     hash_mutex = apr_palloc(p, sizeof(apr_thread_mutex_t*) * NUM_ATOMIC_HASH);
62     apr_pool_cleanup_register(p, hash_mutex, atomic_cleanup,
63                               apr_pool_cleanup_null);
64
65     for (i = 0; i < NUM_ATOMIC_HASH; i++) {
66         rv = apr_thread_mutex_create(&(hash_mutex[i]),
67                                      APR_THREAD_MUTEX_DEFAULT, p);
68         if (rv != APR_SUCCESS) {
69            return rv;
70         }
71     }
72
73     return APR_SUCCESS;
74 }
75
76 static APR_INLINE apr_thread_mutex_t *mutex_hash(volatile apr_uint32_t *mem)
77 {
78     apr_thread_mutex_t *mutex = hash_mutex[ATOMIC_HASH(mem)];
79
80     if (apr_thread_mutex_lock(mutex) != APR_SUCCESS) {
81         abort();
82     }
83
84     return mutex;
85 }
86
87 #else
88
89 APR_DECLARE(apr_status_t) apr_atomic_init(apr_pool_t *p)
90 {
91     return APR_SUCCESS;
92 }
93
94 #endif /* APR_HAS_THREADS */
95
96 APR_DECLARE(apr_uint32_t) apr_atomic_read32(volatile apr_uint32_t *mem)
97 {
98     return *mem;
99 }
100
101 APR_DECLARE(void) apr_atomic_set32(volatile apr_uint32_t *mem, apr_uint32_t val)
102 {
103     DECLARE_MUTEX_LOCKED(mutex, mem);
104
105     *mem = val;
106
107     MUTEX_UNLOCK(mutex);
108 }
109
110 APR_DECLARE(apr_uint32_t) apr_atomic_add32(volatile apr_uint32_t *mem, apr_uint32_t val)
111 {
112     apr_uint32_t old_value;
113     DECLARE_MUTEX_LOCKED(mutex, mem);
114
115     old_value = *mem;
116     *mem += val;
117
118     MUTEX_UNLOCK(mutex);
119
120     return old_value;
121 }
122
123 APR_DECLARE(void) apr_atomic_sub32(volatile apr_uint32_t *mem, apr_uint32_t val)
124 {
125     DECLARE_MUTEX_LOCKED(mutex, mem);
126     *mem -= val;
127     MUTEX_UNLOCK(mutex);
128 }
129
130 APR_DECLARE(apr_uint32_t) apr_atomic_inc32(volatile apr_uint32_t *mem)
131 {
132     return apr_atomic_add32(mem, 1);
133 }
134
135 APR_DECLARE(int) apr_atomic_dec32(volatile apr_uint32_t *mem)
136 {
137     apr_uint32_t new;
138     DECLARE_MUTEX_LOCKED(mutex, mem);
139
140     (*mem)--;
141     new = *mem;
142
143     MUTEX_UNLOCK(mutex);
144
145     return new;
146 }
147
148 APR_DECLARE(apr_uint32_t) apr_atomic_cas32(volatile apr_uint32_t *mem, apr_uint32_t with,
149                               apr_uint32_t cmp)
150 {
151     apr_uint32_t prev;
152     DECLARE_MUTEX_LOCKED(mutex, mem);
153
154     prev = *mem;
155     if (prev == cmp) {
156         *mem = with;
157     }
158
159     MUTEX_UNLOCK(mutex);
160
161     return prev;
162 }
163
164 APR_DECLARE(apr_uint32_t) apr_atomic_xchg32(volatile apr_uint32_t *mem, apr_uint32_t val)
165 {
166     apr_uint32_t prev;
167     DECLARE_MUTEX_LOCKED(mutex, mem);
168
169     prev = *mem;
170     *mem = val;
171
172     MUTEX_UNLOCK(mutex);
173
174     return prev;
175 }
176
177 APR_DECLARE(void*) apr_atomic_casptr(volatile void **mem, void *with, const void *cmp)
178 {
179     void *prev;
180     DECLARE_MUTEX_LOCKED(mutex, *mem);
181
182     prev = *(void **)mem;
183     if (prev == cmp) {
184         *mem = with;
185     }
186
187     MUTEX_UNLOCK(mutex);
188
189     return prev;
190 }
191
192 APR_DECLARE(void*) apr_atomic_xchgptr(volatile void **mem, void *with)
193 {
194     void *prev;
195     DECLARE_MUTEX_LOCKED(mutex, *mem);
196
197     prev = *(void **)mem;
198     *mem = with;
199
200     MUTEX_UNLOCK(mutex);
201
202     return prev;
203 }
204
205 #endif /* USE_ATOMICS_GENERIC */