]> CyberLeo.Net >> Repos - FreeBSD/releng/10.2.git/blob - contrib/llvm/tools/clang/lib/CodeGen/CGBuiltin.cpp
- Copy stable/10@285827 to releng/10.2 in preparation for 10.2-RC1
[FreeBSD/releng/10.2.git] / contrib / llvm / tools / clang / lib / CodeGen / CGBuiltin.cpp
1 //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Builtin calls as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CodeGenFunction.h"
15 #include "CGObjCRuntime.h"
16 #include "CodeGenModule.h"
17 #include "TargetInfo.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/Decl.h"
20 #include "clang/Basic/TargetBuiltins.h"
21 #include "clang/Basic/TargetInfo.h"
22 #include "clang/CodeGen/CGFunctionInfo.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/Intrinsics.h"
25
26 using namespace clang;
27 using namespace CodeGen;
28 using namespace llvm;
29
30 /// getBuiltinLibFunction - Given a builtin id for a function like
31 /// "__builtin_fabsf", return a Function* for "fabsf".
32 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
33                                                   unsigned BuiltinID) {
34   assert(Context.BuiltinInfo.isLibFunction(BuiltinID));
35
36   // Get the name, skip over the __builtin_ prefix (if necessary).
37   StringRef Name;
38   GlobalDecl D(FD);
39
40   // If the builtin has been declared explicitly with an assembler label,
41   // use the mangled name. This differs from the plain label on platforms
42   // that prefix labels.
43   if (FD->hasAttr<AsmLabelAttr>())
44     Name = getMangledName(D);
45   else
46     Name = Context.BuiltinInfo.GetName(BuiltinID) + 10;
47
48   llvm::FunctionType *Ty =
49     cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
50
51   return GetOrCreateLLVMFunction(Name, Ty, D, /*ForVTable=*/false);
52 }
53
54 /// Emit the conversions required to turn the given value into an
55 /// integer of the given size.
56 static Value *EmitToInt(CodeGenFunction &CGF, llvm::Value *V,
57                         QualType T, llvm::IntegerType *IntType) {
58   V = CGF.EmitToMemory(V, T);
59
60   if (V->getType()->isPointerTy())
61     return CGF.Builder.CreatePtrToInt(V, IntType);
62
63   assert(V->getType() == IntType);
64   return V;
65 }
66
67 static Value *EmitFromInt(CodeGenFunction &CGF, llvm::Value *V,
68                           QualType T, llvm::Type *ResultType) {
69   V = CGF.EmitFromMemory(V, T);
70
71   if (ResultType->isPointerTy())
72     return CGF.Builder.CreateIntToPtr(V, ResultType);
73
74   assert(V->getType() == ResultType);
75   return V;
76 }
77
78 /// Utility to insert an atomic instruction based on Instrinsic::ID
79 /// and the expression node.
80 static RValue EmitBinaryAtomic(CodeGenFunction &CGF,
81                                llvm::AtomicRMWInst::BinOp Kind,
82                                const CallExpr *E) {
83   QualType T = E->getType();
84   assert(E->getArg(0)->getType()->isPointerType());
85   assert(CGF.getContext().hasSameUnqualifiedType(T,
86                                   E->getArg(0)->getType()->getPointeeType()));
87   assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
88
89   llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
90   unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
91
92   llvm::IntegerType *IntType =
93     llvm::IntegerType::get(CGF.getLLVMContext(),
94                            CGF.getContext().getTypeSize(T));
95   llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
96
97   llvm::Value *Args[2];
98   Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
99   Args[1] = CGF.EmitScalarExpr(E->getArg(1));
100   llvm::Type *ValueType = Args[1]->getType();
101   Args[1] = EmitToInt(CGF, Args[1], T, IntType);
102
103   llvm::Value *Result =
104       CGF.Builder.CreateAtomicRMW(Kind, Args[0], Args[1],
105                                   llvm::SequentiallyConsistent);
106   Result = EmitFromInt(CGF, Result, T, ValueType);
107   return RValue::get(Result);
108 }
109
110 /// Utility to insert an atomic instruction based Instrinsic::ID and
111 /// the expression node, where the return value is the result of the
112 /// operation.
113 static RValue EmitBinaryAtomicPost(CodeGenFunction &CGF,
114                                    llvm::AtomicRMWInst::BinOp Kind,
115                                    const CallExpr *E,
116                                    Instruction::BinaryOps Op) {
117   QualType T = E->getType();
118   assert(E->getArg(0)->getType()->isPointerType());
119   assert(CGF.getContext().hasSameUnqualifiedType(T,
120                                   E->getArg(0)->getType()->getPointeeType()));
121   assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
122
123   llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
124   unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
125
126   llvm::IntegerType *IntType =
127     llvm::IntegerType::get(CGF.getLLVMContext(),
128                            CGF.getContext().getTypeSize(T));
129   llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
130
131   llvm::Value *Args[2];
132   Args[1] = CGF.EmitScalarExpr(E->getArg(1));
133   llvm::Type *ValueType = Args[1]->getType();
134   Args[1] = EmitToInt(CGF, Args[1], T, IntType);
135   Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
136
137   llvm::Value *Result =
138       CGF.Builder.CreateAtomicRMW(Kind, Args[0], Args[1],
139                                   llvm::SequentiallyConsistent);
140   Result = CGF.Builder.CreateBinOp(Op, Result, Args[1]);
141   Result = EmitFromInt(CGF, Result, T, ValueType);
142   return RValue::get(Result);
143 }
144
145 /// EmitFAbs - Emit a call to fabs/fabsf/fabsl, depending on the type of ValTy,
146 /// which must be a scalar floating point type.
147 static Value *EmitFAbs(CodeGenFunction &CGF, Value *V, QualType ValTy) {
148   const BuiltinType *ValTyP = ValTy->getAs<BuiltinType>();
149   assert(ValTyP && "isn't scalar fp type!");
150
151   StringRef FnName;
152   switch (ValTyP->getKind()) {
153   default: llvm_unreachable("Isn't a scalar fp type!");
154   case BuiltinType::Float:      FnName = "fabsf"; break;
155   case BuiltinType::Double:     FnName = "fabs"; break;
156   case BuiltinType::LongDouble: FnName = "fabsl"; break;
157   }
158
159   // The prototype is something that takes and returns whatever V's type is.
160   llvm::FunctionType *FT = llvm::FunctionType::get(V->getType(), V->getType(),
161                                                    false);
162   llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction(FT, FnName);
163
164   return CGF.EmitNounwindRuntimeCall(Fn, V, "abs");
165 }
166
167 static RValue emitLibraryCall(CodeGenFunction &CGF, const FunctionDecl *Fn,
168                               const CallExpr *E, llvm::Value *calleeValue) {
169   return CGF.EmitCall(E->getCallee()->getType(), calleeValue, E->getLocStart(),
170                       ReturnValueSlot(), E->arg_begin(), E->arg_end(), Fn);
171 }
172
173 /// \brief Emit a call to llvm.{sadd,uadd,ssub,usub,smul,umul}.with.overflow.*
174 /// depending on IntrinsicID.
175 ///
176 /// \arg CGF The current codegen function.
177 /// \arg IntrinsicID The ID for the Intrinsic we wish to generate.
178 /// \arg X The first argument to the llvm.*.with.overflow.*.
179 /// \arg Y The second argument to the llvm.*.with.overflow.*.
180 /// \arg Carry The carry returned by the llvm.*.with.overflow.*.
181 /// \returns The result (i.e. sum/product) returned by the intrinsic.
182 static llvm::Value *EmitOverflowIntrinsic(CodeGenFunction &CGF,
183                                           const llvm::Intrinsic::ID IntrinsicID,
184                                           llvm::Value *X, llvm::Value *Y,
185                                           llvm::Value *&Carry) {
186   // Make sure we have integers of the same width.
187   assert(X->getType() == Y->getType() &&
188          "Arguments must be the same type. (Did you forget to make sure both "
189          "arguments have the same integer width?)");
190
191   llvm::Value *Callee = CGF.CGM.getIntrinsic(IntrinsicID, X->getType());
192   llvm::Value *Tmp = CGF.Builder.CreateCall2(Callee, X, Y);
193   Carry = CGF.Builder.CreateExtractValue(Tmp, 1);
194   return CGF.Builder.CreateExtractValue(Tmp, 0);
195 }
196
197 RValue CodeGenFunction::EmitBuiltinExpr(const FunctionDecl *FD,
198                                         unsigned BuiltinID, const CallExpr *E) {
199   // See if we can constant fold this builtin.  If so, don't emit it at all.
200   Expr::EvalResult Result;
201   if (E->EvaluateAsRValue(Result, CGM.getContext()) &&
202       !Result.hasSideEffects()) {
203     if (Result.Val.isInt())
204       return RValue::get(llvm::ConstantInt::get(getLLVMContext(),
205                                                 Result.Val.getInt()));
206     if (Result.Val.isFloat())
207       return RValue::get(llvm::ConstantFP::get(getLLVMContext(),
208                                                Result.Val.getFloat()));
209   }
210
211   switch (BuiltinID) {
212   default: break;  // Handle intrinsics and libm functions below.
213   case Builtin::BI__builtin___CFStringMakeConstantString:
214   case Builtin::BI__builtin___NSStringMakeConstantString:
215     return RValue::get(CGM.EmitConstantExpr(E, E->getType(), 0));
216   case Builtin::BI__builtin_stdarg_start:
217   case Builtin::BI__builtin_va_start:
218   case Builtin::BI__builtin_va_end: {
219     Value *ArgValue = EmitVAListRef(E->getArg(0));
220     llvm::Type *DestType = Int8PtrTy;
221     if (ArgValue->getType() != DestType)
222       ArgValue = Builder.CreateBitCast(ArgValue, DestType,
223                                        ArgValue->getName().data());
224
225     Intrinsic::ID inst = (BuiltinID == Builtin::BI__builtin_va_end) ?
226       Intrinsic::vaend : Intrinsic::vastart;
227     return RValue::get(Builder.CreateCall(CGM.getIntrinsic(inst), ArgValue));
228   }
229   case Builtin::BI__builtin_va_copy: {
230     Value *DstPtr = EmitVAListRef(E->getArg(0));
231     Value *SrcPtr = EmitVAListRef(E->getArg(1));
232
233     llvm::Type *Type = Int8PtrTy;
234
235     DstPtr = Builder.CreateBitCast(DstPtr, Type);
236     SrcPtr = Builder.CreateBitCast(SrcPtr, Type);
237     return RValue::get(Builder.CreateCall2(CGM.getIntrinsic(Intrinsic::vacopy),
238                                            DstPtr, SrcPtr));
239   }
240   case Builtin::BI__builtin_abs:
241   case Builtin::BI__builtin_labs:
242   case Builtin::BI__builtin_llabs: {
243     Value *ArgValue = EmitScalarExpr(E->getArg(0));
244
245     Value *NegOp = Builder.CreateNeg(ArgValue, "neg");
246     Value *CmpResult =
247     Builder.CreateICmpSGE(ArgValue,
248                           llvm::Constant::getNullValue(ArgValue->getType()),
249                                                             "abscond");
250     Value *Result =
251       Builder.CreateSelect(CmpResult, ArgValue, NegOp, "abs");
252
253     return RValue::get(Result);
254   }
255
256   case Builtin::BI__builtin_conj:
257   case Builtin::BI__builtin_conjf:
258   case Builtin::BI__builtin_conjl: {
259     ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
260     Value *Real = ComplexVal.first;
261     Value *Imag = ComplexVal.second;
262     Value *Zero =
263       Imag->getType()->isFPOrFPVectorTy()
264         ? llvm::ConstantFP::getZeroValueForNegation(Imag->getType())
265         : llvm::Constant::getNullValue(Imag->getType());
266
267     Imag = Builder.CreateFSub(Zero, Imag, "sub");
268     return RValue::getComplex(std::make_pair(Real, Imag));
269   }
270   case Builtin::BI__builtin_creal:
271   case Builtin::BI__builtin_crealf:
272   case Builtin::BI__builtin_creall:
273   case Builtin::BIcreal:
274   case Builtin::BIcrealf:
275   case Builtin::BIcreall: {
276     ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
277     return RValue::get(ComplexVal.first);
278   }
279
280   case Builtin::BI__builtin_cimag:
281   case Builtin::BI__builtin_cimagf:
282   case Builtin::BI__builtin_cimagl:
283   case Builtin::BIcimag:
284   case Builtin::BIcimagf:
285   case Builtin::BIcimagl: {
286     ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
287     return RValue::get(ComplexVal.second);
288   }
289
290   case Builtin::BI__builtin_ctzs:
291   case Builtin::BI__builtin_ctz:
292   case Builtin::BI__builtin_ctzl:
293   case Builtin::BI__builtin_ctzll: {
294     Value *ArgValue = EmitScalarExpr(E->getArg(0));
295
296     llvm::Type *ArgType = ArgValue->getType();
297     Value *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
298
299     llvm::Type *ResultType = ConvertType(E->getType());
300     Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
301     Value *Result = Builder.CreateCall2(F, ArgValue, ZeroUndef);
302     if (Result->getType() != ResultType)
303       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
304                                      "cast");
305     return RValue::get(Result);
306   }
307   case Builtin::BI__builtin_clzs:
308   case Builtin::BI__builtin_clz:
309   case Builtin::BI__builtin_clzl:
310   case Builtin::BI__builtin_clzll: {
311     Value *ArgValue = EmitScalarExpr(E->getArg(0));
312
313     llvm::Type *ArgType = ArgValue->getType();
314     Value *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
315
316     llvm::Type *ResultType = ConvertType(E->getType());
317     Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
318     Value *Result = Builder.CreateCall2(F, ArgValue, ZeroUndef);
319     if (Result->getType() != ResultType)
320       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
321                                      "cast");
322     return RValue::get(Result);
323   }
324   case Builtin::BI__builtin_ffs:
325   case Builtin::BI__builtin_ffsl:
326   case Builtin::BI__builtin_ffsll: {
327     // ffs(x) -> x ? cttz(x) + 1 : 0
328     Value *ArgValue = EmitScalarExpr(E->getArg(0));
329
330     llvm::Type *ArgType = ArgValue->getType();
331     Value *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
332
333     llvm::Type *ResultType = ConvertType(E->getType());
334     Value *Tmp = Builder.CreateAdd(Builder.CreateCall2(F, ArgValue,
335                                                        Builder.getTrue()),
336                                    llvm::ConstantInt::get(ArgType, 1));
337     Value *Zero = llvm::Constant::getNullValue(ArgType);
338     Value *IsZero = Builder.CreateICmpEQ(ArgValue, Zero, "iszero");
339     Value *Result = Builder.CreateSelect(IsZero, Zero, Tmp, "ffs");
340     if (Result->getType() != ResultType)
341       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
342                                      "cast");
343     return RValue::get(Result);
344   }
345   case Builtin::BI__builtin_parity:
346   case Builtin::BI__builtin_parityl:
347   case Builtin::BI__builtin_parityll: {
348     // parity(x) -> ctpop(x) & 1
349     Value *ArgValue = EmitScalarExpr(E->getArg(0));
350
351     llvm::Type *ArgType = ArgValue->getType();
352     Value *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
353
354     llvm::Type *ResultType = ConvertType(E->getType());
355     Value *Tmp = Builder.CreateCall(F, ArgValue);
356     Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1));
357     if (Result->getType() != ResultType)
358       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
359                                      "cast");
360     return RValue::get(Result);
361   }
362   case Builtin::BI__builtin_popcount:
363   case Builtin::BI__builtin_popcountl:
364   case Builtin::BI__builtin_popcountll: {
365     Value *ArgValue = EmitScalarExpr(E->getArg(0));
366
367     llvm::Type *ArgType = ArgValue->getType();
368     Value *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
369
370     llvm::Type *ResultType = ConvertType(E->getType());
371     Value *Result = Builder.CreateCall(F, ArgValue);
372     if (Result->getType() != ResultType)
373       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
374                                      "cast");
375     return RValue::get(Result);
376   }
377   case Builtin::BI__builtin_expect: {
378     Value *ArgValue = EmitScalarExpr(E->getArg(0));
379     llvm::Type *ArgType = ArgValue->getType();
380
381     Value *FnExpect = CGM.getIntrinsic(Intrinsic::expect, ArgType);
382     Value *ExpectedValue = EmitScalarExpr(E->getArg(1));
383
384     Value *Result = Builder.CreateCall2(FnExpect, ArgValue, ExpectedValue,
385                                         "expval");
386     return RValue::get(Result);
387   }
388   case Builtin::BI__builtin_bswap16:
389   case Builtin::BI__builtin_bswap32:
390   case Builtin::BI__builtin_bswap64: {
391     Value *ArgValue = EmitScalarExpr(E->getArg(0));
392     llvm::Type *ArgType = ArgValue->getType();
393     Value *F = CGM.getIntrinsic(Intrinsic::bswap, ArgType);
394     return RValue::get(Builder.CreateCall(F, ArgValue));
395   }
396   case Builtin::BI__builtin_object_size: {
397     // We rely on constant folding to deal with expressions with side effects.
398     assert(!E->getArg(0)->HasSideEffects(getContext()) &&
399            "should have been constant folded");
400
401     // We pass this builtin onto the optimizer so that it can
402     // figure out the object size in more complex cases.
403     llvm::Type *ResType = ConvertType(E->getType());
404
405     // LLVM only supports 0 and 2, make sure that we pass along that
406     // as a boolean.
407     Value *Ty = EmitScalarExpr(E->getArg(1));
408     ConstantInt *CI = dyn_cast<ConstantInt>(Ty);
409     assert(CI);
410     uint64_t val = CI->getZExtValue();
411     CI = ConstantInt::get(Builder.getInt1Ty(), (val & 0x2) >> 1);
412     // FIXME: Get right address space.
413     llvm::Type *Tys[] = { ResType, Builder.getInt8PtrTy(0) };
414     Value *F = CGM.getIntrinsic(Intrinsic::objectsize, Tys);
415     return RValue::get(Builder.CreateCall2(F, EmitScalarExpr(E->getArg(0)),CI));
416   }
417   case Builtin::BI__builtin_prefetch: {
418     Value *Locality, *RW, *Address = EmitScalarExpr(E->getArg(0));
419     // FIXME: Technically these constants should of type 'int', yes?
420     RW = (E->getNumArgs() > 1) ? EmitScalarExpr(E->getArg(1)) :
421       llvm::ConstantInt::get(Int32Ty, 0);
422     Locality = (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) :
423       llvm::ConstantInt::get(Int32Ty, 3);
424     Value *Data = llvm::ConstantInt::get(Int32Ty, 1);
425     Value *F = CGM.getIntrinsic(Intrinsic::prefetch);
426     return RValue::get(Builder.CreateCall4(F, Address, RW, Locality, Data));
427   }
428   case Builtin::BI__builtin_readcyclecounter: {
429     Value *F = CGM.getIntrinsic(Intrinsic::readcyclecounter);
430     return RValue::get(Builder.CreateCall(F));
431   }
432   case Builtin::BI__builtin_trap: {
433     Value *F = CGM.getIntrinsic(Intrinsic::trap);
434     return RValue::get(Builder.CreateCall(F));
435   }
436   case Builtin::BI__debugbreak: {
437     Value *F = CGM.getIntrinsic(Intrinsic::debugtrap);
438     return RValue::get(Builder.CreateCall(F));
439   }
440   case Builtin::BI__builtin_unreachable: {
441     if (SanOpts->Unreachable)
442       EmitCheck(Builder.getFalse(), "builtin_unreachable",
443                 EmitCheckSourceLocation(E->getExprLoc()),
444                 ArrayRef<llvm::Value *>(), CRK_Unrecoverable);
445     else
446       Builder.CreateUnreachable();
447
448     // We do need to preserve an insertion point.
449     EmitBlock(createBasicBlock("unreachable.cont"));
450
451     return RValue::get(0);
452   }
453
454   case Builtin::BI__builtin_powi:
455   case Builtin::BI__builtin_powif:
456   case Builtin::BI__builtin_powil: {
457     Value *Base = EmitScalarExpr(E->getArg(0));
458     Value *Exponent = EmitScalarExpr(E->getArg(1));
459     llvm::Type *ArgType = Base->getType();
460     Value *F = CGM.getIntrinsic(Intrinsic::powi, ArgType);
461     return RValue::get(Builder.CreateCall2(F, Base, Exponent));
462   }
463
464   case Builtin::BI__builtin_isgreater:
465   case Builtin::BI__builtin_isgreaterequal:
466   case Builtin::BI__builtin_isless:
467   case Builtin::BI__builtin_islessequal:
468   case Builtin::BI__builtin_islessgreater:
469   case Builtin::BI__builtin_isunordered: {
470     // Ordered comparisons: we know the arguments to these are matching scalar
471     // floating point values.
472     Value *LHS = EmitScalarExpr(E->getArg(0));
473     Value *RHS = EmitScalarExpr(E->getArg(1));
474
475     switch (BuiltinID) {
476     default: llvm_unreachable("Unknown ordered comparison");
477     case Builtin::BI__builtin_isgreater:
478       LHS = Builder.CreateFCmpOGT(LHS, RHS, "cmp");
479       break;
480     case Builtin::BI__builtin_isgreaterequal:
481       LHS = Builder.CreateFCmpOGE(LHS, RHS, "cmp");
482       break;
483     case Builtin::BI__builtin_isless:
484       LHS = Builder.CreateFCmpOLT(LHS, RHS, "cmp");
485       break;
486     case Builtin::BI__builtin_islessequal:
487       LHS = Builder.CreateFCmpOLE(LHS, RHS, "cmp");
488       break;
489     case Builtin::BI__builtin_islessgreater:
490       LHS = Builder.CreateFCmpONE(LHS, RHS, "cmp");
491       break;
492     case Builtin::BI__builtin_isunordered:
493       LHS = Builder.CreateFCmpUNO(LHS, RHS, "cmp");
494       break;
495     }
496     // ZExt bool to int type.
497     return RValue::get(Builder.CreateZExt(LHS, ConvertType(E->getType())));
498   }
499   case Builtin::BI__builtin_isnan: {
500     Value *V = EmitScalarExpr(E->getArg(0));
501     V = Builder.CreateFCmpUNO(V, V, "cmp");
502     return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
503   }
504
505   case Builtin::BI__builtin_isinf: {
506     // isinf(x) --> fabs(x) == infinity
507     Value *V = EmitScalarExpr(E->getArg(0));
508     V = EmitFAbs(*this, V, E->getArg(0)->getType());
509
510     V = Builder.CreateFCmpOEQ(V, ConstantFP::getInfinity(V->getType()),"isinf");
511     return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
512   }
513
514   // TODO: BI__builtin_isinf_sign
515   //   isinf_sign(x) -> isinf(x) ? (signbit(x) ? -1 : 1) : 0
516
517   case Builtin::BI__builtin_isnormal: {
518     // isnormal(x) --> x == x && fabsf(x) < infinity && fabsf(x) >= float_min
519     Value *V = EmitScalarExpr(E->getArg(0));
520     Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq");
521
522     Value *Abs = EmitFAbs(*this, V, E->getArg(0)->getType());
523     Value *IsLessThanInf =
524       Builder.CreateFCmpULT(Abs, ConstantFP::getInfinity(V->getType()),"isinf");
525     APFloat Smallest = APFloat::getSmallestNormalized(
526                    getContext().getFloatTypeSemantics(E->getArg(0)->getType()));
527     Value *IsNormal =
528       Builder.CreateFCmpUGE(Abs, ConstantFP::get(V->getContext(), Smallest),
529                             "isnormal");
530     V = Builder.CreateAnd(Eq, IsLessThanInf, "and");
531     V = Builder.CreateAnd(V, IsNormal, "and");
532     return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
533   }
534
535   case Builtin::BI__builtin_isfinite: {
536     // isfinite(x) --> x == x && fabs(x) != infinity;
537     Value *V = EmitScalarExpr(E->getArg(0));
538     Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq");
539
540     Value *Abs = EmitFAbs(*this, V, E->getArg(0)->getType());
541     Value *IsNotInf =
542       Builder.CreateFCmpUNE(Abs, ConstantFP::getInfinity(V->getType()),"isinf");
543
544     V = Builder.CreateAnd(Eq, IsNotInf, "and");
545     return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
546   }
547
548   case Builtin::BI__builtin_fpclassify: {
549     Value *V = EmitScalarExpr(E->getArg(5));
550     llvm::Type *Ty = ConvertType(E->getArg(5)->getType());
551
552     // Create Result
553     BasicBlock *Begin = Builder.GetInsertBlock();
554     BasicBlock *End = createBasicBlock("fpclassify_end", this->CurFn);
555     Builder.SetInsertPoint(End);
556     PHINode *Result =
557       Builder.CreatePHI(ConvertType(E->getArg(0)->getType()), 4,
558                         "fpclassify_result");
559
560     // if (V==0) return FP_ZERO
561     Builder.SetInsertPoint(Begin);
562     Value *IsZero = Builder.CreateFCmpOEQ(V, Constant::getNullValue(Ty),
563                                           "iszero");
564     Value *ZeroLiteral = EmitScalarExpr(E->getArg(4));
565     BasicBlock *NotZero = createBasicBlock("fpclassify_not_zero", this->CurFn);
566     Builder.CreateCondBr(IsZero, End, NotZero);
567     Result->addIncoming(ZeroLiteral, Begin);
568
569     // if (V != V) return FP_NAN
570     Builder.SetInsertPoint(NotZero);
571     Value *IsNan = Builder.CreateFCmpUNO(V, V, "cmp");
572     Value *NanLiteral = EmitScalarExpr(E->getArg(0));
573     BasicBlock *NotNan = createBasicBlock("fpclassify_not_nan", this->CurFn);
574     Builder.CreateCondBr(IsNan, End, NotNan);
575     Result->addIncoming(NanLiteral, NotZero);
576
577     // if (fabs(V) == infinity) return FP_INFINITY
578     Builder.SetInsertPoint(NotNan);
579     Value *VAbs = EmitFAbs(*this, V, E->getArg(5)->getType());
580     Value *IsInf =
581       Builder.CreateFCmpOEQ(VAbs, ConstantFP::getInfinity(V->getType()),
582                             "isinf");
583     Value *InfLiteral = EmitScalarExpr(E->getArg(1));
584     BasicBlock *NotInf = createBasicBlock("fpclassify_not_inf", this->CurFn);
585     Builder.CreateCondBr(IsInf, End, NotInf);
586     Result->addIncoming(InfLiteral, NotNan);
587
588     // if (fabs(V) >= MIN_NORMAL) return FP_NORMAL else FP_SUBNORMAL
589     Builder.SetInsertPoint(NotInf);
590     APFloat Smallest = APFloat::getSmallestNormalized(
591         getContext().getFloatTypeSemantics(E->getArg(5)->getType()));
592     Value *IsNormal =
593       Builder.CreateFCmpUGE(VAbs, ConstantFP::get(V->getContext(), Smallest),
594                             "isnormal");
595     Value *NormalResult =
596       Builder.CreateSelect(IsNormal, EmitScalarExpr(E->getArg(2)),
597                            EmitScalarExpr(E->getArg(3)));
598     Builder.CreateBr(End);
599     Result->addIncoming(NormalResult, NotInf);
600
601     // return Result
602     Builder.SetInsertPoint(End);
603     return RValue::get(Result);
604   }
605
606   case Builtin::BIalloca:
607   case Builtin::BI_alloca:
608   case Builtin::BI__builtin_alloca: {
609     Value *Size = EmitScalarExpr(E->getArg(0));
610     return RValue::get(Builder.CreateAlloca(Builder.getInt8Ty(), Size));
611   }
612   case Builtin::BIbzero:
613   case Builtin::BI__builtin_bzero: {
614     std::pair<llvm::Value*, unsigned> Dest =
615         EmitPointerWithAlignment(E->getArg(0));
616     Value *SizeVal = EmitScalarExpr(E->getArg(1));
617     Builder.CreateMemSet(Dest.first, Builder.getInt8(0), SizeVal,
618                          Dest.second, false);
619     return RValue::get(Dest.first);
620   }
621   case Builtin::BImemcpy:
622   case Builtin::BI__builtin_memcpy: {
623     std::pair<llvm::Value*, unsigned> Dest =
624         EmitPointerWithAlignment(E->getArg(0));
625     std::pair<llvm::Value*, unsigned> Src =
626         EmitPointerWithAlignment(E->getArg(1));
627     Value *SizeVal = EmitScalarExpr(E->getArg(2));
628     unsigned Align = std::min(Dest.second, Src.second);
629     Builder.CreateMemCpy(Dest.first, Src.first, SizeVal, Align, false);
630     return RValue::get(Dest.first);
631   }
632
633   case Builtin::BI__builtin___memcpy_chk: {
634     // fold __builtin_memcpy_chk(x, y, cst1, cst2) to memcpy iff cst1<=cst2.
635     llvm::APSInt Size, DstSize;
636     if (!E->getArg(2)->EvaluateAsInt(Size, CGM.getContext()) ||
637         !E->getArg(3)->EvaluateAsInt(DstSize, CGM.getContext()))
638       break;
639     if (Size.ugt(DstSize))
640       break;
641     std::pair<llvm::Value*, unsigned> Dest =
642         EmitPointerWithAlignment(E->getArg(0));
643     std::pair<llvm::Value*, unsigned> Src =
644         EmitPointerWithAlignment(E->getArg(1));
645     Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
646     unsigned Align = std::min(Dest.second, Src.second);
647     Builder.CreateMemCpy(Dest.first, Src.first, SizeVal, Align, false);
648     return RValue::get(Dest.first);
649   }
650
651   case Builtin::BI__builtin_objc_memmove_collectable: {
652     Value *Address = EmitScalarExpr(E->getArg(0));
653     Value *SrcAddr = EmitScalarExpr(E->getArg(1));
654     Value *SizeVal = EmitScalarExpr(E->getArg(2));
655     CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this,
656                                                   Address, SrcAddr, SizeVal);
657     return RValue::get(Address);
658   }
659
660   case Builtin::BI__builtin___memmove_chk: {
661     // fold __builtin_memmove_chk(x, y, cst1, cst2) to memmove iff cst1<=cst2.
662     llvm::APSInt Size, DstSize;
663     if (!E->getArg(2)->EvaluateAsInt(Size, CGM.getContext()) ||
664         !E->getArg(3)->EvaluateAsInt(DstSize, CGM.getContext()))
665       break;
666     if (Size.ugt(DstSize))
667       break;
668     std::pair<llvm::Value*, unsigned> Dest =
669         EmitPointerWithAlignment(E->getArg(0));
670     std::pair<llvm::Value*, unsigned> Src =
671         EmitPointerWithAlignment(E->getArg(1));
672     Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
673     unsigned Align = std::min(Dest.second, Src.second);
674     Builder.CreateMemMove(Dest.first, Src.first, SizeVal, Align, false);
675     return RValue::get(Dest.first);
676   }
677
678   case Builtin::BImemmove:
679   case Builtin::BI__builtin_memmove: {
680     std::pair<llvm::Value*, unsigned> Dest =
681         EmitPointerWithAlignment(E->getArg(0));
682     std::pair<llvm::Value*, unsigned> Src =
683         EmitPointerWithAlignment(E->getArg(1));
684     Value *SizeVal = EmitScalarExpr(E->getArg(2));
685     unsigned Align = std::min(Dest.second, Src.second);
686     Builder.CreateMemMove(Dest.first, Src.first, SizeVal, Align, false);
687     return RValue::get(Dest.first);
688   }
689   case Builtin::BImemset:
690   case Builtin::BI__builtin_memset: {
691     std::pair<llvm::Value*, unsigned> Dest =
692         EmitPointerWithAlignment(E->getArg(0));
693     Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
694                                          Builder.getInt8Ty());
695     Value *SizeVal = EmitScalarExpr(E->getArg(2));
696     Builder.CreateMemSet(Dest.first, ByteVal, SizeVal, Dest.second, false);
697     return RValue::get(Dest.first);
698   }
699   case Builtin::BI__builtin___memset_chk: {
700     // fold __builtin_memset_chk(x, y, cst1, cst2) to memset iff cst1<=cst2.
701     llvm::APSInt Size, DstSize;
702     if (!E->getArg(2)->EvaluateAsInt(Size, CGM.getContext()) ||
703         !E->getArg(3)->EvaluateAsInt(DstSize, CGM.getContext()))
704       break;
705     if (Size.ugt(DstSize))
706       break;
707     std::pair<llvm::Value*, unsigned> Dest =
708         EmitPointerWithAlignment(E->getArg(0));
709     Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
710                                          Builder.getInt8Ty());
711     Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
712     Builder.CreateMemSet(Dest.first, ByteVal, SizeVal, Dest.second, false);
713     return RValue::get(Dest.first);
714   }
715   case Builtin::BI__builtin_dwarf_cfa: {
716     // The offset in bytes from the first argument to the CFA.
717     //
718     // Why on earth is this in the frontend?  Is there any reason at
719     // all that the backend can't reasonably determine this while
720     // lowering llvm.eh.dwarf.cfa()?
721     //
722     // TODO: If there's a satisfactory reason, add a target hook for
723     // this instead of hard-coding 0, which is correct for most targets.
724     int32_t Offset = 0;
725
726     Value *F = CGM.getIntrinsic(Intrinsic::eh_dwarf_cfa);
727     return RValue::get(Builder.CreateCall(F,
728                                       llvm::ConstantInt::get(Int32Ty, Offset)));
729   }
730   case Builtin::BI__builtin_return_address: {
731     Value *Depth = EmitScalarExpr(E->getArg(0));
732     Depth = Builder.CreateIntCast(Depth, Int32Ty, false);
733     Value *F = CGM.getIntrinsic(Intrinsic::returnaddress);
734     return RValue::get(Builder.CreateCall(F, Depth));
735   }
736   case Builtin::BI__builtin_frame_address: {
737     Value *Depth = EmitScalarExpr(E->getArg(0));
738     Depth = Builder.CreateIntCast(Depth, Int32Ty, false);
739     Value *F = CGM.getIntrinsic(Intrinsic::frameaddress);
740     return RValue::get(Builder.CreateCall(F, Depth));
741   }
742   case Builtin::BI__builtin_extract_return_addr: {
743     Value *Address = EmitScalarExpr(E->getArg(0));
744     Value *Result = getTargetHooks().decodeReturnAddress(*this, Address);
745     return RValue::get(Result);
746   }
747   case Builtin::BI__builtin_frob_return_addr: {
748     Value *Address = EmitScalarExpr(E->getArg(0));
749     Value *Result = getTargetHooks().encodeReturnAddress(*this, Address);
750     return RValue::get(Result);
751   }
752   case Builtin::BI__builtin_dwarf_sp_column: {
753     llvm::IntegerType *Ty
754       = cast<llvm::IntegerType>(ConvertType(E->getType()));
755     int Column = getTargetHooks().getDwarfEHStackPointer(CGM);
756     if (Column == -1) {
757       CGM.ErrorUnsupported(E, "__builtin_dwarf_sp_column");
758       return RValue::get(llvm::UndefValue::get(Ty));
759     }
760     return RValue::get(llvm::ConstantInt::get(Ty, Column, true));
761   }
762   case Builtin::BI__builtin_init_dwarf_reg_size_table: {
763     Value *Address = EmitScalarExpr(E->getArg(0));
764     if (getTargetHooks().initDwarfEHRegSizeTable(*this, Address))
765       CGM.ErrorUnsupported(E, "__builtin_init_dwarf_reg_size_table");
766     return RValue::get(llvm::UndefValue::get(ConvertType(E->getType())));
767   }
768   case Builtin::BI__builtin_eh_return: {
769     Value *Int = EmitScalarExpr(E->getArg(0));
770     Value *Ptr = EmitScalarExpr(E->getArg(1));
771
772     llvm::IntegerType *IntTy = cast<llvm::IntegerType>(Int->getType());
773     assert((IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) &&
774            "LLVM's __builtin_eh_return only supports 32- and 64-bit variants");
775     Value *F = CGM.getIntrinsic(IntTy->getBitWidth() == 32
776                                   ? Intrinsic::eh_return_i32
777                                   : Intrinsic::eh_return_i64);
778     Builder.CreateCall2(F, Int, Ptr);
779     Builder.CreateUnreachable();
780
781     // We do need to preserve an insertion point.
782     EmitBlock(createBasicBlock("builtin_eh_return.cont"));
783
784     return RValue::get(0);
785   }
786   case Builtin::BI__builtin_unwind_init: {
787     Value *F = CGM.getIntrinsic(Intrinsic::eh_unwind_init);
788     return RValue::get(Builder.CreateCall(F));
789   }
790   case Builtin::BI__builtin_extend_pointer: {
791     // Extends a pointer to the size of an _Unwind_Word, which is
792     // uint64_t on all platforms.  Generally this gets poked into a
793     // register and eventually used as an address, so if the
794     // addressing registers are wider than pointers and the platform
795     // doesn't implicitly ignore high-order bits when doing
796     // addressing, we need to make sure we zext / sext based on
797     // the platform's expectations.
798     //
799     // See: http://gcc.gnu.org/ml/gcc-bugs/2002-02/msg00237.html
800
801     // Cast the pointer to intptr_t.
802     Value *Ptr = EmitScalarExpr(E->getArg(0));
803     Value *Result = Builder.CreatePtrToInt(Ptr, IntPtrTy, "extend.cast");
804
805     // If that's 64 bits, we're done.
806     if (IntPtrTy->getBitWidth() == 64)
807       return RValue::get(Result);
808
809     // Otherwise, ask the codegen data what to do.
810     if (getTargetHooks().extendPointerWithSExt())
811       return RValue::get(Builder.CreateSExt(Result, Int64Ty, "extend.sext"));
812     else
813       return RValue::get(Builder.CreateZExt(Result, Int64Ty, "extend.zext"));
814   }
815   case Builtin::BI__builtin_setjmp: {
816     // Buffer is a void**.
817     Value *Buf = EmitScalarExpr(E->getArg(0));
818
819     // Store the frame pointer to the setjmp buffer.
820     Value *FrameAddr =
821       Builder.CreateCall(CGM.getIntrinsic(Intrinsic::frameaddress),
822                          ConstantInt::get(Int32Ty, 0));
823     Builder.CreateStore(FrameAddr, Buf);
824
825     // Store the stack pointer to the setjmp buffer.
826     Value *StackAddr =
827       Builder.CreateCall(CGM.getIntrinsic(Intrinsic::stacksave));
828     Value *StackSaveSlot =
829       Builder.CreateGEP(Buf, ConstantInt::get(Int32Ty, 2));
830     Builder.CreateStore(StackAddr, StackSaveSlot);
831
832     // Call LLVM's EH setjmp, which is lightweight.
833     Value *F = CGM.getIntrinsic(Intrinsic::eh_sjlj_setjmp);
834     Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
835     return RValue::get(Builder.CreateCall(F, Buf));
836   }
837   case Builtin::BI__builtin_longjmp: {
838     Value *Buf = EmitScalarExpr(E->getArg(0));
839     Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
840
841     // Call LLVM's EH longjmp, which is lightweight.
842     Builder.CreateCall(CGM.getIntrinsic(Intrinsic::eh_sjlj_longjmp), Buf);
843
844     // longjmp doesn't return; mark this as unreachable.
845     Builder.CreateUnreachable();
846
847     // We do need to preserve an insertion point.
848     EmitBlock(createBasicBlock("longjmp.cont"));
849
850     return RValue::get(0);
851   }
852   case Builtin::BI__sync_fetch_and_add:
853   case Builtin::BI__sync_fetch_and_sub:
854   case Builtin::BI__sync_fetch_and_or:
855   case Builtin::BI__sync_fetch_and_and:
856   case Builtin::BI__sync_fetch_and_xor:
857   case Builtin::BI__sync_add_and_fetch:
858   case Builtin::BI__sync_sub_and_fetch:
859   case Builtin::BI__sync_and_and_fetch:
860   case Builtin::BI__sync_or_and_fetch:
861   case Builtin::BI__sync_xor_and_fetch:
862   case Builtin::BI__sync_val_compare_and_swap:
863   case Builtin::BI__sync_bool_compare_and_swap:
864   case Builtin::BI__sync_lock_test_and_set:
865   case Builtin::BI__sync_lock_release:
866   case Builtin::BI__sync_swap:
867     llvm_unreachable("Shouldn't make it through sema");
868   case Builtin::BI__sync_fetch_and_add_1:
869   case Builtin::BI__sync_fetch_and_add_2:
870   case Builtin::BI__sync_fetch_and_add_4:
871   case Builtin::BI__sync_fetch_and_add_8:
872   case Builtin::BI__sync_fetch_and_add_16:
873     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Add, E);
874   case Builtin::BI__sync_fetch_and_sub_1:
875   case Builtin::BI__sync_fetch_and_sub_2:
876   case Builtin::BI__sync_fetch_and_sub_4:
877   case Builtin::BI__sync_fetch_and_sub_8:
878   case Builtin::BI__sync_fetch_and_sub_16:
879     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Sub, E);
880   case Builtin::BI__sync_fetch_and_or_1:
881   case Builtin::BI__sync_fetch_and_or_2:
882   case Builtin::BI__sync_fetch_and_or_4:
883   case Builtin::BI__sync_fetch_and_or_8:
884   case Builtin::BI__sync_fetch_and_or_16:
885     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Or, E);
886   case Builtin::BI__sync_fetch_and_and_1:
887   case Builtin::BI__sync_fetch_and_and_2:
888   case Builtin::BI__sync_fetch_and_and_4:
889   case Builtin::BI__sync_fetch_and_and_8:
890   case Builtin::BI__sync_fetch_and_and_16:
891     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::And, E);
892   case Builtin::BI__sync_fetch_and_xor_1:
893   case Builtin::BI__sync_fetch_and_xor_2:
894   case Builtin::BI__sync_fetch_and_xor_4:
895   case Builtin::BI__sync_fetch_and_xor_8:
896   case Builtin::BI__sync_fetch_and_xor_16:
897     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xor, E);
898
899   // Clang extensions: not overloaded yet.
900   case Builtin::BI__sync_fetch_and_min:
901     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Min, E);
902   case Builtin::BI__sync_fetch_and_max:
903     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Max, E);
904   case Builtin::BI__sync_fetch_and_umin:
905     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMin, E);
906   case Builtin::BI__sync_fetch_and_umax:
907     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMax, E);
908
909   case Builtin::BI__sync_add_and_fetch_1:
910   case Builtin::BI__sync_add_and_fetch_2:
911   case Builtin::BI__sync_add_and_fetch_4:
912   case Builtin::BI__sync_add_and_fetch_8:
913   case Builtin::BI__sync_add_and_fetch_16:
914     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Add, E,
915                                 llvm::Instruction::Add);
916   case Builtin::BI__sync_sub_and_fetch_1:
917   case Builtin::BI__sync_sub_and_fetch_2:
918   case Builtin::BI__sync_sub_and_fetch_4:
919   case Builtin::BI__sync_sub_and_fetch_8:
920   case Builtin::BI__sync_sub_and_fetch_16:
921     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Sub, E,
922                                 llvm::Instruction::Sub);
923   case Builtin::BI__sync_and_and_fetch_1:
924   case Builtin::BI__sync_and_and_fetch_2:
925   case Builtin::BI__sync_and_and_fetch_4:
926   case Builtin::BI__sync_and_and_fetch_8:
927   case Builtin::BI__sync_and_and_fetch_16:
928     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::And, E,
929                                 llvm::Instruction::And);
930   case Builtin::BI__sync_or_and_fetch_1:
931   case Builtin::BI__sync_or_and_fetch_2:
932   case Builtin::BI__sync_or_and_fetch_4:
933   case Builtin::BI__sync_or_and_fetch_8:
934   case Builtin::BI__sync_or_and_fetch_16:
935     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Or, E,
936                                 llvm::Instruction::Or);
937   case Builtin::BI__sync_xor_and_fetch_1:
938   case Builtin::BI__sync_xor_and_fetch_2:
939   case Builtin::BI__sync_xor_and_fetch_4:
940   case Builtin::BI__sync_xor_and_fetch_8:
941   case Builtin::BI__sync_xor_and_fetch_16:
942     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Xor, E,
943                                 llvm::Instruction::Xor);
944
945   case Builtin::BI__sync_val_compare_and_swap_1:
946   case Builtin::BI__sync_val_compare_and_swap_2:
947   case Builtin::BI__sync_val_compare_and_swap_4:
948   case Builtin::BI__sync_val_compare_and_swap_8:
949   case Builtin::BI__sync_val_compare_and_swap_16: {
950     QualType T = E->getType();
951     llvm::Value *DestPtr = EmitScalarExpr(E->getArg(0));
952     unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
953
954     llvm::IntegerType *IntType =
955       llvm::IntegerType::get(getLLVMContext(),
956                              getContext().getTypeSize(T));
957     llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
958
959     Value *Args[3];
960     Args[0] = Builder.CreateBitCast(DestPtr, IntPtrType);
961     Args[1] = EmitScalarExpr(E->getArg(1));
962     llvm::Type *ValueType = Args[1]->getType();
963     Args[1] = EmitToInt(*this, Args[1], T, IntType);
964     Args[2] = EmitToInt(*this, EmitScalarExpr(E->getArg(2)), T, IntType);
965
966     Value *Result = Builder.CreateAtomicCmpXchg(Args[0], Args[1], Args[2],
967                                                 llvm::SequentiallyConsistent);
968     Result = EmitFromInt(*this, Result, T, ValueType);
969     return RValue::get(Result);
970   }
971
972   case Builtin::BI__sync_bool_compare_and_swap_1:
973   case Builtin::BI__sync_bool_compare_and_swap_2:
974   case Builtin::BI__sync_bool_compare_and_swap_4:
975   case Builtin::BI__sync_bool_compare_and_swap_8:
976   case Builtin::BI__sync_bool_compare_and_swap_16: {
977     QualType T = E->getArg(1)->getType();
978     llvm::Value *DestPtr = EmitScalarExpr(E->getArg(0));
979     unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
980
981     llvm::IntegerType *IntType =
982       llvm::IntegerType::get(getLLVMContext(),
983                              getContext().getTypeSize(T));
984     llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
985
986     Value *Args[3];
987     Args[0] = Builder.CreateBitCast(DestPtr, IntPtrType);
988     Args[1] = EmitToInt(*this, EmitScalarExpr(E->getArg(1)), T, IntType);
989     Args[2] = EmitToInt(*this, EmitScalarExpr(E->getArg(2)), T, IntType);
990
991     Value *OldVal = Args[1];
992     Value *PrevVal = Builder.CreateAtomicCmpXchg(Args[0], Args[1], Args[2],
993                                                  llvm::SequentiallyConsistent);
994     Value *Result = Builder.CreateICmpEQ(PrevVal, OldVal);
995     // zext bool to int.
996     Result = Builder.CreateZExt(Result, ConvertType(E->getType()));
997     return RValue::get(Result);
998   }
999
1000   case Builtin::BI__sync_swap_1:
1001   case Builtin::BI__sync_swap_2:
1002   case Builtin::BI__sync_swap_4:
1003   case Builtin::BI__sync_swap_8:
1004   case Builtin::BI__sync_swap_16:
1005     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
1006
1007   case Builtin::BI__sync_lock_test_and_set_1:
1008   case Builtin::BI__sync_lock_test_and_set_2:
1009   case Builtin::BI__sync_lock_test_and_set_4:
1010   case Builtin::BI__sync_lock_test_and_set_8:
1011   case Builtin::BI__sync_lock_test_and_set_16:
1012     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
1013
1014   case Builtin::BI__sync_lock_release_1:
1015   case Builtin::BI__sync_lock_release_2:
1016   case Builtin::BI__sync_lock_release_4:
1017   case Builtin::BI__sync_lock_release_8:
1018   case Builtin::BI__sync_lock_release_16: {
1019     Value *Ptr = EmitScalarExpr(E->getArg(0));
1020     QualType ElTy = E->getArg(0)->getType()->getPointeeType();
1021     CharUnits StoreSize = getContext().getTypeSizeInChars(ElTy);
1022     llvm::Type *ITy = llvm::IntegerType::get(getLLVMContext(),
1023                                              StoreSize.getQuantity() * 8);
1024     Ptr = Builder.CreateBitCast(Ptr, ITy->getPointerTo());
1025     llvm::StoreInst *Store =
1026       Builder.CreateStore(llvm::Constant::getNullValue(ITy), Ptr);
1027     Store->setAlignment(StoreSize.getQuantity());
1028     Store->setAtomic(llvm::Release);
1029     return RValue::get(0);
1030   }
1031
1032   case Builtin::BI__sync_synchronize: {
1033     // We assume this is supposed to correspond to a C++0x-style
1034     // sequentially-consistent fence (i.e. this is only usable for
1035     // synchonization, not device I/O or anything like that). This intrinsic
1036     // is really badly designed in the sense that in theory, there isn't
1037     // any way to safely use it... but in practice, it mostly works
1038     // to use it with non-atomic loads and stores to get acquire/release
1039     // semantics.
1040     Builder.CreateFence(llvm::SequentiallyConsistent);
1041     return RValue::get(0);
1042   }
1043
1044   case Builtin::BI__c11_atomic_is_lock_free:
1045   case Builtin::BI__atomic_is_lock_free: {
1046     // Call "bool __atomic_is_lock_free(size_t size, void *ptr)". For the
1047     // __c11 builtin, ptr is 0 (indicating a properly-aligned object), since
1048     // _Atomic(T) is always properly-aligned.
1049     const char *LibCallName = "__atomic_is_lock_free";
1050     CallArgList Args;
1051     Args.add(RValue::get(EmitScalarExpr(E->getArg(0))),
1052              getContext().getSizeType());
1053     if (BuiltinID == Builtin::BI__atomic_is_lock_free)
1054       Args.add(RValue::get(EmitScalarExpr(E->getArg(1))),
1055                getContext().VoidPtrTy);
1056     else
1057       Args.add(RValue::get(llvm::Constant::getNullValue(VoidPtrTy)),
1058                getContext().VoidPtrTy);
1059     const CGFunctionInfo &FuncInfo =
1060         CGM.getTypes().arrangeFreeFunctionCall(E->getType(), Args,
1061                                                FunctionType::ExtInfo(),
1062                                                RequiredArgs::All);
1063     llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo);
1064     llvm::Constant *Func = CGM.CreateRuntimeFunction(FTy, LibCallName);
1065     return EmitCall(FuncInfo, Func, ReturnValueSlot(), Args);
1066   }
1067
1068   case Builtin::BI__atomic_test_and_set: {
1069     // Look at the argument type to determine whether this is a volatile
1070     // operation. The parameter type is always volatile.
1071     QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
1072     bool Volatile =
1073         PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
1074
1075     Value *Ptr = EmitScalarExpr(E->getArg(0));
1076     unsigned AddrSpace = Ptr->getType()->getPointerAddressSpace();
1077     Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace));
1078     Value *NewVal = Builder.getInt8(1);
1079     Value *Order = EmitScalarExpr(E->getArg(1));
1080     if (isa<llvm::ConstantInt>(Order)) {
1081       int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
1082       AtomicRMWInst *Result = 0;
1083       switch (ord) {
1084       case 0:  // memory_order_relaxed
1085       default: // invalid order
1086         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
1087                                          Ptr, NewVal,
1088                                          llvm::Monotonic);
1089         break;
1090       case 1:  // memory_order_consume
1091       case 2:  // memory_order_acquire
1092         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
1093                                          Ptr, NewVal,
1094                                          llvm::Acquire);
1095         break;
1096       case 3:  // memory_order_release
1097         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
1098                                          Ptr, NewVal,
1099                                          llvm::Release);
1100         break;
1101       case 4:  // memory_order_acq_rel
1102         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
1103                                          Ptr, NewVal,
1104                                          llvm::AcquireRelease);
1105         break;
1106       case 5:  // memory_order_seq_cst
1107         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
1108                                          Ptr, NewVal,
1109                                          llvm::SequentiallyConsistent);
1110         break;
1111       }
1112       Result->setVolatile(Volatile);
1113       return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
1114     }
1115
1116     llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
1117
1118     llvm::BasicBlock *BBs[5] = {
1119       createBasicBlock("monotonic", CurFn),
1120       createBasicBlock("acquire", CurFn),
1121       createBasicBlock("release", CurFn),
1122       createBasicBlock("acqrel", CurFn),
1123       createBasicBlock("seqcst", CurFn)
1124     };
1125     llvm::AtomicOrdering Orders[5] = {
1126       llvm::Monotonic, llvm::Acquire, llvm::Release,
1127       llvm::AcquireRelease, llvm::SequentiallyConsistent
1128     };
1129
1130     Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
1131     llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
1132
1133     Builder.SetInsertPoint(ContBB);
1134     PHINode *Result = Builder.CreatePHI(Int8Ty, 5, "was_set");
1135
1136     for (unsigned i = 0; i < 5; ++i) {
1137       Builder.SetInsertPoint(BBs[i]);
1138       AtomicRMWInst *RMW = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
1139                                                    Ptr, NewVal, Orders[i]);
1140       RMW->setVolatile(Volatile);
1141       Result->addIncoming(RMW, BBs[i]);
1142       Builder.CreateBr(ContBB);
1143     }
1144
1145     SI->addCase(Builder.getInt32(0), BBs[0]);
1146     SI->addCase(Builder.getInt32(1), BBs[1]);
1147     SI->addCase(Builder.getInt32(2), BBs[1]);
1148     SI->addCase(Builder.getInt32(3), BBs[2]);
1149     SI->addCase(Builder.getInt32(4), BBs[3]);
1150     SI->addCase(Builder.getInt32(5), BBs[4]);
1151
1152     Builder.SetInsertPoint(ContBB);
1153     return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
1154   }
1155
1156   case Builtin::BI__atomic_clear: {
1157     QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
1158     bool Volatile =
1159         PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
1160
1161     Value *Ptr = EmitScalarExpr(E->getArg(0));
1162     unsigned AddrSpace = Ptr->getType()->getPointerAddressSpace();
1163     Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace));
1164     Value *NewVal = Builder.getInt8(0);
1165     Value *Order = EmitScalarExpr(E->getArg(1));
1166     if (isa<llvm::ConstantInt>(Order)) {
1167       int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
1168       StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
1169       Store->setAlignment(1);
1170       switch (ord) {
1171       case 0:  // memory_order_relaxed
1172       default: // invalid order
1173         Store->setOrdering(llvm::Monotonic);
1174         break;
1175       case 3:  // memory_order_release
1176         Store->setOrdering(llvm::Release);
1177         break;
1178       case 5:  // memory_order_seq_cst
1179         Store->setOrdering(llvm::SequentiallyConsistent);
1180         break;
1181       }
1182       return RValue::get(0);
1183     }
1184
1185     llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
1186
1187     llvm::BasicBlock *BBs[3] = {
1188       createBasicBlock("monotonic", CurFn),
1189       createBasicBlock("release", CurFn),
1190       createBasicBlock("seqcst", CurFn)
1191     };
1192     llvm::AtomicOrdering Orders[3] = {
1193       llvm::Monotonic, llvm::Release, llvm::SequentiallyConsistent
1194     };
1195
1196     Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
1197     llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
1198
1199     for (unsigned i = 0; i < 3; ++i) {
1200       Builder.SetInsertPoint(BBs[i]);
1201       StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
1202       Store->setAlignment(1);
1203       Store->setOrdering(Orders[i]);
1204       Builder.CreateBr(ContBB);
1205     }
1206
1207     SI->addCase(Builder.getInt32(0), BBs[0]);
1208     SI->addCase(Builder.getInt32(3), BBs[1]);
1209     SI->addCase(Builder.getInt32(5), BBs[2]);
1210
1211     Builder.SetInsertPoint(ContBB);
1212     return RValue::get(0);
1213   }
1214
1215   case Builtin::BI__atomic_thread_fence:
1216   case Builtin::BI__atomic_signal_fence:
1217   case Builtin::BI__c11_atomic_thread_fence:
1218   case Builtin::BI__c11_atomic_signal_fence: {
1219     llvm::SynchronizationScope Scope;
1220     if (BuiltinID == Builtin::BI__atomic_signal_fence ||
1221         BuiltinID == Builtin::BI__c11_atomic_signal_fence)
1222       Scope = llvm::SingleThread;
1223     else
1224       Scope = llvm::CrossThread;
1225     Value *Order = EmitScalarExpr(E->getArg(0));
1226     if (isa<llvm::ConstantInt>(Order)) {
1227       int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
1228       switch (ord) {
1229       case 0:  // memory_order_relaxed
1230       default: // invalid order
1231         break;
1232       case 1:  // memory_order_consume
1233       case 2:  // memory_order_acquire
1234         Builder.CreateFence(llvm::Acquire, Scope);
1235         break;
1236       case 3:  // memory_order_release
1237         Builder.CreateFence(llvm::Release, Scope);
1238         break;
1239       case 4:  // memory_order_acq_rel
1240         Builder.CreateFence(llvm::AcquireRelease, Scope);
1241         break;
1242       case 5:  // memory_order_seq_cst
1243         Builder.CreateFence(llvm::SequentiallyConsistent, Scope);
1244         break;
1245       }
1246       return RValue::get(0);
1247     }
1248
1249     llvm::BasicBlock *AcquireBB, *ReleaseBB, *AcqRelBB, *SeqCstBB;
1250     AcquireBB = createBasicBlock("acquire", CurFn);
1251     ReleaseBB = createBasicBlock("release", CurFn);
1252     AcqRelBB = createBasicBlock("acqrel", CurFn);
1253     SeqCstBB = createBasicBlock("seqcst", CurFn);
1254     llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
1255
1256     Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
1257     llvm::SwitchInst *SI = Builder.CreateSwitch(Order, ContBB);
1258
1259     Builder.SetInsertPoint(AcquireBB);
1260     Builder.CreateFence(llvm::Acquire, Scope);
1261     Builder.CreateBr(ContBB);
1262     SI->addCase(Builder.getInt32(1), AcquireBB);
1263     SI->addCase(Builder.getInt32(2), AcquireBB);
1264
1265     Builder.SetInsertPoint(ReleaseBB);
1266     Builder.CreateFence(llvm::Release, Scope);
1267     Builder.CreateBr(ContBB);
1268     SI->addCase(Builder.getInt32(3), ReleaseBB);
1269
1270     Builder.SetInsertPoint(AcqRelBB);
1271     Builder.CreateFence(llvm::AcquireRelease, Scope);
1272     Builder.CreateBr(ContBB);
1273     SI->addCase(Builder.getInt32(4), AcqRelBB);
1274
1275     Builder.SetInsertPoint(SeqCstBB);
1276     Builder.CreateFence(llvm::SequentiallyConsistent, Scope);
1277     Builder.CreateBr(ContBB);
1278     SI->addCase(Builder.getInt32(5), SeqCstBB);
1279
1280     Builder.SetInsertPoint(ContBB);
1281     return RValue::get(0);
1282   }
1283
1284     // Library functions with special handling.
1285   case Builtin::BIsqrt:
1286   case Builtin::BIsqrtf:
1287   case Builtin::BIsqrtl: {
1288     // Transform a call to sqrt* into a @llvm.sqrt.* intrinsic call, but only
1289     // in finite- or unsafe-math mode (the intrinsic has different semantics
1290     // for handling negative numbers compared to the library function, so
1291     // -fmath-errno=0 is not enough).
1292     if (!FD->hasAttr<ConstAttr>())
1293       break;
1294     if (!(CGM.getCodeGenOpts().UnsafeFPMath ||
1295           CGM.getCodeGenOpts().NoNaNsFPMath))
1296       break;
1297     Value *Arg0 = EmitScalarExpr(E->getArg(0));
1298     llvm::Type *ArgType = Arg0->getType();
1299     Value *F = CGM.getIntrinsic(Intrinsic::sqrt, ArgType);
1300     return RValue::get(Builder.CreateCall(F, Arg0));
1301   }
1302
1303   case Builtin::BIpow:
1304   case Builtin::BIpowf:
1305   case Builtin::BIpowl: {
1306     // Transform a call to pow* into a @llvm.pow.* intrinsic call.
1307     if (!FD->hasAttr<ConstAttr>())
1308       break;
1309     Value *Base = EmitScalarExpr(E->getArg(0));
1310     Value *Exponent = EmitScalarExpr(E->getArg(1));
1311     llvm::Type *ArgType = Base->getType();
1312     Value *F = CGM.getIntrinsic(Intrinsic::pow, ArgType);
1313     return RValue::get(Builder.CreateCall2(F, Base, Exponent));
1314     break;
1315   }
1316
1317   case Builtin::BIfma:
1318   case Builtin::BIfmaf:
1319   case Builtin::BIfmal:
1320   case Builtin::BI__builtin_fma:
1321   case Builtin::BI__builtin_fmaf:
1322   case Builtin::BI__builtin_fmal: {
1323     // Rewrite fma to intrinsic.
1324     Value *FirstArg = EmitScalarExpr(E->getArg(0));
1325     llvm::Type *ArgType = FirstArg->getType();
1326     Value *F = CGM.getIntrinsic(Intrinsic::fma, ArgType);
1327     return RValue::get(Builder.CreateCall3(F, FirstArg,
1328                                               EmitScalarExpr(E->getArg(1)),
1329                                               EmitScalarExpr(E->getArg(2))));
1330   }
1331
1332   case Builtin::BI__builtin_signbit:
1333   case Builtin::BI__builtin_signbitf:
1334   case Builtin::BI__builtin_signbitl: {
1335     LLVMContext &C = CGM.getLLVMContext();
1336
1337     Value *Arg = EmitScalarExpr(E->getArg(0));
1338     llvm::Type *ArgTy = Arg->getType();
1339     if (ArgTy->isPPC_FP128Ty())
1340       break; // FIXME: I'm not sure what the right implementation is here.
1341     int ArgWidth = ArgTy->getPrimitiveSizeInBits();
1342     llvm::Type *ArgIntTy = llvm::IntegerType::get(C, ArgWidth);
1343     Value *BCArg = Builder.CreateBitCast(Arg, ArgIntTy);
1344     Value *ZeroCmp = llvm::Constant::getNullValue(ArgIntTy);
1345     Value *Result = Builder.CreateICmpSLT(BCArg, ZeroCmp);
1346     return RValue::get(Builder.CreateZExt(Result, ConvertType(E->getType())));
1347   }
1348   case Builtin::BI__builtin_annotation: {
1349     llvm::Value *AnnVal = EmitScalarExpr(E->getArg(0));
1350     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::annotation,
1351                                       AnnVal->getType());
1352
1353     // Get the annotation string, go through casts. Sema requires this to be a
1354     // non-wide string literal, potentially casted, so the cast<> is safe.
1355     const Expr *AnnotationStrExpr = E->getArg(1)->IgnoreParenCasts();
1356     StringRef Str = cast<StringLiteral>(AnnotationStrExpr)->getString();
1357     return RValue::get(EmitAnnotationCall(F, AnnVal, Str, E->getExprLoc()));
1358   }
1359   case Builtin::BI__builtin_addcb:
1360   case Builtin::BI__builtin_addcs:
1361   case Builtin::BI__builtin_addc:
1362   case Builtin::BI__builtin_addcl:
1363   case Builtin::BI__builtin_addcll:
1364   case Builtin::BI__builtin_subcb:
1365   case Builtin::BI__builtin_subcs:
1366   case Builtin::BI__builtin_subc:
1367   case Builtin::BI__builtin_subcl:
1368   case Builtin::BI__builtin_subcll: {
1369
1370     // We translate all of these builtins from expressions of the form:
1371     //   int x = ..., y = ..., carryin = ..., carryout, result;
1372     //   result = __builtin_addc(x, y, carryin, &carryout);
1373     //
1374     // to LLVM IR of the form:
1375     //
1376     //   %tmp1 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %x, i32 %y)
1377     //   %tmpsum1 = extractvalue {i32, i1} %tmp1, 0
1378     //   %carry1 = extractvalue {i32, i1} %tmp1, 1
1379     //   %tmp2 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %tmpsum1,
1380     //                                                       i32 %carryin)
1381     //   %result = extractvalue {i32, i1} %tmp2, 0
1382     //   %carry2 = extractvalue {i32, i1} %tmp2, 1
1383     //   %tmp3 = or i1 %carry1, %carry2
1384     //   %tmp4 = zext i1 %tmp3 to i32
1385     //   store i32 %tmp4, i32* %carryout
1386
1387     // Scalarize our inputs.
1388     llvm::Value *X = EmitScalarExpr(E->getArg(0));
1389     llvm::Value *Y = EmitScalarExpr(E->getArg(1));
1390     llvm::Value *Carryin = EmitScalarExpr(E->getArg(2));
1391     std::pair<llvm::Value*, unsigned> CarryOutPtr =
1392       EmitPointerWithAlignment(E->getArg(3));
1393
1394     // Decide if we are lowering to a uadd.with.overflow or usub.with.overflow.
1395     llvm::Intrinsic::ID IntrinsicId;
1396     switch (BuiltinID) {
1397     default: llvm_unreachable("Unknown multiprecision builtin id.");
1398     case Builtin::BI__builtin_addcb:
1399     case Builtin::BI__builtin_addcs:
1400     case Builtin::BI__builtin_addc:
1401     case Builtin::BI__builtin_addcl:
1402     case Builtin::BI__builtin_addcll:
1403       IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
1404       break;
1405     case Builtin::BI__builtin_subcb:
1406     case Builtin::BI__builtin_subcs:
1407     case Builtin::BI__builtin_subc:
1408     case Builtin::BI__builtin_subcl:
1409     case Builtin::BI__builtin_subcll:
1410       IntrinsicId = llvm::Intrinsic::usub_with_overflow;
1411       break;
1412     }
1413
1414     // Construct our resulting LLVM IR expression.
1415     llvm::Value *Carry1;
1416     llvm::Value *Sum1 = EmitOverflowIntrinsic(*this, IntrinsicId,
1417                                               X, Y, Carry1);
1418     llvm::Value *Carry2;
1419     llvm::Value *Sum2 = EmitOverflowIntrinsic(*this, IntrinsicId,
1420                                               Sum1, Carryin, Carry2);
1421     llvm::Value *CarryOut = Builder.CreateZExt(Builder.CreateOr(Carry1, Carry2),
1422                                                X->getType());
1423     llvm::StoreInst *CarryOutStore = Builder.CreateStore(CarryOut,
1424                                                          CarryOutPtr.first);
1425     CarryOutStore->setAlignment(CarryOutPtr.second);
1426     return RValue::get(Sum2);
1427   }
1428   case Builtin::BI__builtin_uadd_overflow:
1429   case Builtin::BI__builtin_uaddl_overflow:
1430   case Builtin::BI__builtin_uaddll_overflow:
1431   case Builtin::BI__builtin_usub_overflow:
1432   case Builtin::BI__builtin_usubl_overflow:
1433   case Builtin::BI__builtin_usubll_overflow:
1434   case Builtin::BI__builtin_umul_overflow:
1435   case Builtin::BI__builtin_umull_overflow:
1436   case Builtin::BI__builtin_umulll_overflow:
1437   case Builtin::BI__builtin_sadd_overflow:
1438   case Builtin::BI__builtin_saddl_overflow:
1439   case Builtin::BI__builtin_saddll_overflow:
1440   case Builtin::BI__builtin_ssub_overflow:
1441   case Builtin::BI__builtin_ssubl_overflow:
1442   case Builtin::BI__builtin_ssubll_overflow:
1443   case Builtin::BI__builtin_smul_overflow:
1444   case Builtin::BI__builtin_smull_overflow:
1445   case Builtin::BI__builtin_smulll_overflow: {
1446
1447     // We translate all of these builtins directly to the relevant llvm IR node.
1448
1449     // Scalarize our inputs.
1450     llvm::Value *X = EmitScalarExpr(E->getArg(0));
1451     llvm::Value *Y = EmitScalarExpr(E->getArg(1));
1452     std::pair<llvm::Value *, unsigned> SumOutPtr =
1453       EmitPointerWithAlignment(E->getArg(2));
1454
1455     // Decide which of the overflow intrinsics we are lowering to:
1456     llvm::Intrinsic::ID IntrinsicId;
1457     switch (BuiltinID) {
1458     default: llvm_unreachable("Unknown security overflow builtin id.");
1459     case Builtin::BI__builtin_uadd_overflow:
1460     case Builtin::BI__builtin_uaddl_overflow:
1461     case Builtin::BI__builtin_uaddll_overflow:
1462       IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
1463       break;
1464     case Builtin::BI__builtin_usub_overflow:
1465     case Builtin::BI__builtin_usubl_overflow:
1466     case Builtin::BI__builtin_usubll_overflow:
1467       IntrinsicId = llvm::Intrinsic::usub_with_overflow;
1468       break;
1469     case Builtin::BI__builtin_umul_overflow:
1470     case Builtin::BI__builtin_umull_overflow:
1471     case Builtin::BI__builtin_umulll_overflow:
1472       IntrinsicId = llvm::Intrinsic::umul_with_overflow;
1473       break;
1474     case Builtin::BI__builtin_sadd_overflow:
1475     case Builtin::BI__builtin_saddl_overflow:
1476     case Builtin::BI__builtin_saddll_overflow:
1477       IntrinsicId = llvm::Intrinsic::sadd_with_overflow;
1478       break;
1479     case Builtin::BI__builtin_ssub_overflow:
1480     case Builtin::BI__builtin_ssubl_overflow:
1481     case Builtin::BI__builtin_ssubll_overflow:
1482       IntrinsicId = llvm::Intrinsic::ssub_with_overflow;
1483       break;
1484     case Builtin::BI__builtin_smul_overflow:
1485     case Builtin::BI__builtin_smull_overflow:
1486     case Builtin::BI__builtin_smulll_overflow:
1487       IntrinsicId = llvm::Intrinsic::smul_with_overflow;
1488       break;
1489     }
1490
1491     
1492     llvm::Value *Carry;
1493     llvm::Value *Sum = EmitOverflowIntrinsic(*this, IntrinsicId, X, Y, Carry);
1494     llvm::StoreInst *SumOutStore = Builder.CreateStore(Sum, SumOutPtr.first);
1495     SumOutStore->setAlignment(SumOutPtr.second);
1496
1497     return RValue::get(Carry);
1498   }
1499   case Builtin::BI__builtin_addressof:
1500     return RValue::get(EmitLValue(E->getArg(0)).getAddress());
1501   case Builtin::BI__noop:
1502     return RValue::get(0);
1503   }
1504
1505   // If this is an alias for a lib function (e.g. __builtin_sin), emit
1506   // the call using the normal call path, but using the unmangled
1507   // version of the function name.
1508   if (getContext().BuiltinInfo.isLibFunction(BuiltinID))
1509     return emitLibraryCall(*this, FD, E,
1510                            CGM.getBuiltinLibFunction(FD, BuiltinID));
1511
1512   // If this is a predefined lib function (e.g. malloc), emit the call
1513   // using exactly the normal call path.
1514   if (getContext().BuiltinInfo.isPredefinedLibFunction(BuiltinID))
1515     return emitLibraryCall(*this, FD, E, EmitScalarExpr(E->getCallee()));
1516
1517   // See if we have a target specific intrinsic.
1518   const char *Name = getContext().BuiltinInfo.GetName(BuiltinID);
1519   Intrinsic::ID IntrinsicID = Intrinsic::not_intrinsic;
1520   if (const char *Prefix =
1521       llvm::Triple::getArchTypePrefix(getTarget().getTriple().getArch()))
1522     IntrinsicID = Intrinsic::getIntrinsicForGCCBuiltin(Prefix, Name);
1523
1524   if (IntrinsicID != Intrinsic::not_intrinsic) {
1525     SmallVector<Value*, 16> Args;
1526
1527     // Find out if any arguments are required to be integer constant
1528     // expressions.
1529     unsigned ICEArguments = 0;
1530     ASTContext::GetBuiltinTypeError Error;
1531     getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
1532     assert(Error == ASTContext::GE_None && "Should not codegen an error");
1533
1534     Function *F = CGM.getIntrinsic(IntrinsicID);
1535     llvm::FunctionType *FTy = F->getFunctionType();
1536
1537     for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
1538       Value *ArgValue;
1539       // If this is a normal argument, just emit it as a scalar.
1540       if ((ICEArguments & (1 << i)) == 0) {
1541         ArgValue = EmitScalarExpr(E->getArg(i));
1542       } else {
1543         // If this is required to be a constant, constant fold it so that we
1544         // know that the generated intrinsic gets a ConstantInt.
1545         llvm::APSInt Result;
1546         bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result,getContext());
1547         assert(IsConst && "Constant arg isn't actually constant?");
1548         (void)IsConst;
1549         ArgValue = llvm::ConstantInt::get(getLLVMContext(), Result);
1550       }
1551
1552       // If the intrinsic arg type is different from the builtin arg type
1553       // we need to do a bit cast.
1554       llvm::Type *PTy = FTy->getParamType(i);
1555       if (PTy != ArgValue->getType()) {
1556         assert(PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) &&
1557                "Must be able to losslessly bit cast to param");
1558         ArgValue = Builder.CreateBitCast(ArgValue, PTy);
1559       }
1560
1561       Args.push_back(ArgValue);
1562     }
1563
1564     Value *V = Builder.CreateCall(F, Args);
1565     QualType BuiltinRetType = E->getType();
1566
1567     llvm::Type *RetTy = VoidTy;
1568     if (!BuiltinRetType->isVoidType())
1569       RetTy = ConvertType(BuiltinRetType);
1570
1571     if (RetTy != V->getType()) {
1572       assert(V->getType()->canLosslesslyBitCastTo(RetTy) &&
1573              "Must be able to losslessly bit cast result type");
1574       V = Builder.CreateBitCast(V, RetTy);
1575     }
1576
1577     return RValue::get(V);
1578   }
1579
1580   // See if we have a target specific builtin that needs to be lowered.
1581   if (Value *V = EmitTargetBuiltinExpr(BuiltinID, E))
1582     return RValue::get(V);
1583
1584   ErrorUnsupported(E, "builtin function");
1585
1586   // Unknown builtin, for now just dump it out and return undef.
1587   return GetUndefRValue(E->getType());
1588 }
1589
1590 Value *CodeGenFunction::EmitTargetBuiltinExpr(unsigned BuiltinID,
1591                                               const CallExpr *E) {
1592   switch (getTarget().getTriple().getArch()) {
1593   case llvm::Triple::aarch64:
1594     return EmitAArch64BuiltinExpr(BuiltinID, E);
1595   case llvm::Triple::arm:
1596   case llvm::Triple::thumb:
1597     return EmitARMBuiltinExpr(BuiltinID, E);
1598   case llvm::Triple::x86:
1599   case llvm::Triple::x86_64:
1600     return EmitX86BuiltinExpr(BuiltinID, E);
1601   case llvm::Triple::ppc:
1602   case llvm::Triple::ppc64:
1603   case llvm::Triple::ppc64le:
1604     return EmitPPCBuiltinExpr(BuiltinID, E);
1605   default:
1606     return 0;
1607   }
1608 }
1609
1610 static llvm::VectorType *GetNeonType(CodeGenFunction *CGF,
1611                                      NeonTypeFlags TypeFlags,
1612                                      bool V1Ty=false) {
1613   int IsQuad = TypeFlags.isQuad();
1614   switch (TypeFlags.getEltType()) {
1615   case NeonTypeFlags::Int8:
1616   case NeonTypeFlags::Poly8:
1617     return llvm::VectorType::get(CGF->Int8Ty, V1Ty ? 1 : (8 << IsQuad));
1618   case NeonTypeFlags::Int16:
1619   case NeonTypeFlags::Poly16:
1620   case NeonTypeFlags::Float16:
1621     return llvm::VectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
1622   case NeonTypeFlags::Int32:
1623     return llvm::VectorType::get(CGF->Int32Ty, V1Ty ? 1 : (2 << IsQuad));
1624   case NeonTypeFlags::Int64:
1625   case NeonTypeFlags::Poly64:
1626     return llvm::VectorType::get(CGF->Int64Ty, V1Ty ? 1 : (1 << IsQuad));
1627   case NeonTypeFlags::Float32:
1628     return llvm::VectorType::get(CGF->FloatTy, V1Ty ? 1 : (2 << IsQuad));
1629   case NeonTypeFlags::Float64:
1630     return llvm::VectorType::get(CGF->DoubleTy, V1Ty ? 1 : (1 << IsQuad));
1631   }
1632   llvm_unreachable("Unknown vector element type!");
1633 }
1634
1635 Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C) {
1636   unsigned nElts = cast<llvm::VectorType>(V->getType())->getNumElements();
1637   Value* SV = llvm::ConstantVector::getSplat(nElts, C);
1638   return Builder.CreateShuffleVector(V, V, SV, "lane");
1639 }
1640
1641 Value *CodeGenFunction::EmitNeonCall(Function *F, SmallVectorImpl<Value*> &Ops,
1642                                      const char *name,
1643                                      unsigned shift, bool rightshift) {
1644   unsigned j = 0;
1645   for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
1646        ai != ae; ++ai, ++j)
1647     if (shift > 0 && shift == j)
1648       Ops[j] = EmitNeonShiftVector(Ops[j], ai->getType(), rightshift);
1649     else
1650       Ops[j] = Builder.CreateBitCast(Ops[j], ai->getType(), name);
1651
1652   return Builder.CreateCall(F, Ops, name);
1653 }
1654
1655 Value *CodeGenFunction::EmitNeonShiftVector(Value *V, llvm::Type *Ty,
1656                                             bool neg) {
1657   int SV = cast<ConstantInt>(V)->getSExtValue();
1658
1659   llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
1660   llvm::Constant *C = ConstantInt::get(VTy->getElementType(), neg ? -SV : SV);
1661   return llvm::ConstantVector::getSplat(VTy->getNumElements(), C);
1662 }
1663
1664 // \brief Right-shift a vector by a constant.
1665 Value *CodeGenFunction::EmitNeonRShiftImm(Value *Vec, Value *Shift,
1666                                           llvm::Type *Ty, bool usgn,
1667                                           const char *name) {
1668   llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
1669
1670   int ShiftAmt = cast<ConstantInt>(Shift)->getSExtValue();
1671   int EltSize = VTy->getScalarSizeInBits();
1672
1673   Vec = Builder.CreateBitCast(Vec, Ty);
1674
1675   // lshr/ashr are undefined when the shift amount is equal to the vector
1676   // element size.
1677   if (ShiftAmt == EltSize) {
1678     if (usgn) {
1679       // Right-shifting an unsigned value by its size yields 0.
1680       llvm::Constant *Zero = ConstantInt::get(VTy->getElementType(), 0);
1681       return llvm::ConstantVector::getSplat(VTy->getNumElements(), Zero);
1682     } else {
1683       // Right-shifting a signed value by its size is equivalent
1684       // to a shift of size-1.
1685       --ShiftAmt;
1686       Shift = ConstantInt::get(VTy->getElementType(), ShiftAmt);
1687     }
1688   }
1689
1690   Shift = EmitNeonShiftVector(Shift, Ty, false);
1691   if (usgn)
1692     return Builder.CreateLShr(Vec, Shift, name);
1693   else
1694     return Builder.CreateAShr(Vec, Shift, name);
1695 }
1696
1697 /// GetPointeeAlignment - Given an expression with a pointer type, find the
1698 /// alignment of the type referenced by the pointer.  Skip over implicit
1699 /// casts.
1700 std::pair<llvm::Value*, unsigned>
1701 CodeGenFunction::EmitPointerWithAlignment(const Expr *Addr) {
1702   assert(Addr->getType()->isPointerType());
1703   Addr = Addr->IgnoreParens();
1704   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Addr)) {
1705     if ((ICE->getCastKind() == CK_BitCast || ICE->getCastKind() == CK_NoOp) &&
1706         ICE->getSubExpr()->getType()->isPointerType()) {
1707       std::pair<llvm::Value*, unsigned> Ptr =
1708           EmitPointerWithAlignment(ICE->getSubExpr());
1709       Ptr.first = Builder.CreateBitCast(Ptr.first,
1710                                         ConvertType(Addr->getType()));
1711       return Ptr;
1712     } else if (ICE->getCastKind() == CK_ArrayToPointerDecay) {
1713       LValue LV = EmitLValue(ICE->getSubExpr());
1714       unsigned Align = LV.getAlignment().getQuantity();
1715       if (!Align) {
1716         // FIXME: Once LValues are fixed to always set alignment,
1717         // zap this code.
1718         QualType PtTy = ICE->getSubExpr()->getType();
1719         if (!PtTy->isIncompleteType())
1720           Align = getContext().getTypeAlignInChars(PtTy).getQuantity();
1721         else
1722           Align = 1;
1723       }
1724       return std::make_pair(LV.getAddress(), Align);
1725     }
1726   }
1727   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(Addr)) {
1728     if (UO->getOpcode() == UO_AddrOf) {
1729       LValue LV = EmitLValue(UO->getSubExpr());
1730       unsigned Align = LV.getAlignment().getQuantity();
1731       if (!Align) {
1732         // FIXME: Once LValues are fixed to always set alignment,
1733         // zap this code.
1734         QualType PtTy = UO->getSubExpr()->getType();
1735         if (!PtTy->isIncompleteType())
1736           Align = getContext().getTypeAlignInChars(PtTy).getQuantity();
1737         else
1738           Align = 1;
1739       }
1740       return std::make_pair(LV.getAddress(), Align);
1741     }
1742   }
1743
1744   unsigned Align = 1;
1745   QualType PtTy = Addr->getType()->getPointeeType();
1746   if (!PtTy->isIncompleteType())
1747     Align = getContext().getTypeAlignInChars(PtTy).getQuantity();
1748
1749   return std::make_pair(EmitScalarExpr(Addr), Align);
1750 }
1751
1752 static Value *EmitAArch64ScalarBuiltinExpr(CodeGenFunction &CGF,
1753                                            unsigned BuiltinID,
1754                                            const CallExpr *E) {
1755   unsigned int Int = 0;
1756   // Scalar result generated across vectors
1757   bool AcrossVec = false;
1758   // Extend element of one-element vector
1759   bool ExtendEle = false;
1760   bool OverloadInt = false;
1761   bool OverloadCmpInt = false;
1762   bool IsFpCmpZInt = false;
1763   bool OverloadCvtInt = false;
1764   bool OverloadWideInt = false;
1765   bool OverloadNarrowInt = false;
1766   const char *s = NULL;
1767
1768   SmallVector<Value *, 4> Ops;
1769   for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
1770     Ops.push_back(CGF.EmitScalarExpr(E->getArg(i)));
1771   }
1772
1773   // AArch64 scalar builtins are not overloaded, they do not have an extra
1774   // argument that specifies the vector type, need to handle each case.
1775   switch (BuiltinID) {
1776   default: break;
1777   case AArch64::BI__builtin_neon_vdups_lane_f32:
1778   case AArch64::BI__builtin_neon_vdupd_lane_f64:
1779   case AArch64::BI__builtin_neon_vdups_laneq_f32:
1780   case AArch64::BI__builtin_neon_vdupd_laneq_f64: {
1781     return CGF.Builder.CreateExtractElement(Ops[0], Ops[1], "vdup_lane");
1782   }
1783   case AArch64::BI__builtin_neon_vdupb_lane_i8:
1784   case AArch64::BI__builtin_neon_vduph_lane_i16:
1785   case AArch64::BI__builtin_neon_vdups_lane_i32:
1786   case AArch64::BI__builtin_neon_vdupd_lane_i64:
1787   case AArch64::BI__builtin_neon_vdupb_laneq_i8:
1788   case AArch64::BI__builtin_neon_vduph_laneq_i16:
1789   case AArch64::BI__builtin_neon_vdups_laneq_i32:
1790   case AArch64::BI__builtin_neon_vdupd_laneq_i64: {
1791     // The backend treats Neon scalar types as v1ix types
1792     // So we want to dup lane from any vector to v1ix vector
1793     // with shufflevector
1794     s = "vdup_lane";
1795     Value* SV = llvm::ConstantVector::getSplat(1, cast<ConstantInt>(Ops[1]));
1796     Value *Result = CGF.Builder.CreateShuffleVector(Ops[0], Ops[0], SV, s);
1797     llvm::Type *Ty = CGF.ConvertType(E->getCallReturnType());
1798     // AArch64 intrinsic one-element vector type cast to
1799     // scalar type expected by the builtin
1800     return CGF.Builder.CreateBitCast(Result, Ty, s);
1801   }
1802   case AArch64::BI__builtin_neon_vqdmlalh_lane_s16 :
1803   case AArch64::BI__builtin_neon_vqdmlalh_laneq_s16 :
1804   case AArch64::BI__builtin_neon_vqdmlals_lane_s32 :
1805   case AArch64::BI__builtin_neon_vqdmlals_laneq_s32 :
1806   case AArch64::BI__builtin_neon_vqdmlslh_lane_s16 :
1807   case AArch64::BI__builtin_neon_vqdmlslh_laneq_s16 :
1808   case AArch64::BI__builtin_neon_vqdmlsls_lane_s32 :
1809   case AArch64::BI__builtin_neon_vqdmlsls_laneq_s32 : {
1810     Int = Intrinsic::arm_neon_vqadds;
1811     if (BuiltinID == AArch64::BI__builtin_neon_vqdmlslh_lane_s16 ||
1812         BuiltinID == AArch64::BI__builtin_neon_vqdmlslh_laneq_s16 ||
1813         BuiltinID == AArch64::BI__builtin_neon_vqdmlsls_lane_s32 ||
1814         BuiltinID == AArch64::BI__builtin_neon_vqdmlsls_laneq_s32) {
1815       Int = Intrinsic::arm_neon_vqsubs;
1816     }
1817     // create vqdmull call with b * c[i]
1818     llvm::Type *Ty = CGF.ConvertType(E->getArg(1)->getType());
1819     llvm::VectorType *OpVTy = llvm::VectorType::get(Ty, 1);
1820     Ty = CGF.ConvertType(E->getArg(0)->getType());
1821     llvm::VectorType *ResVTy = llvm::VectorType::get(Ty, 1);
1822     Value *F = CGF.CGM.getIntrinsic(Intrinsic::arm_neon_vqdmull, ResVTy);
1823     Value *V = UndefValue::get(OpVTy);
1824     llvm::Constant *CI = ConstantInt::get(CGF.Int32Ty, 0);
1825     SmallVector<Value *, 2> MulOps;
1826     MulOps.push_back(Ops[1]);
1827     MulOps.push_back(Ops[2]);
1828     MulOps[0] = CGF.Builder.CreateInsertElement(V, MulOps[0], CI);
1829     MulOps[1] = CGF.Builder.CreateExtractElement(MulOps[1], Ops[3], "extract");
1830     MulOps[1] = CGF.Builder.CreateInsertElement(V, MulOps[1], CI);
1831     Value *MulRes = CGF.Builder.CreateCall2(F, MulOps[0], MulOps[1]);
1832     // create vqadds call with a +/- vqdmull result
1833     F = CGF.CGM.getIntrinsic(Int, ResVTy);
1834     SmallVector<Value *, 2> AddOps;
1835     AddOps.push_back(Ops[0]);
1836     AddOps.push_back(MulRes);
1837     V = UndefValue::get(ResVTy);
1838     AddOps[0] = CGF.Builder.CreateInsertElement(V, AddOps[0], CI);
1839     Value *AddRes = CGF.Builder.CreateCall2(F, AddOps[0], AddOps[1]);
1840     return CGF.Builder.CreateBitCast(AddRes, Ty);
1841   }
1842   case AArch64::BI__builtin_neon_vfmas_lane_f32:
1843   case AArch64::BI__builtin_neon_vfmas_laneq_f32:
1844   case AArch64::BI__builtin_neon_vfmad_lane_f64:
1845   case AArch64::BI__builtin_neon_vfmad_laneq_f64: {
1846     llvm::Type *Ty = CGF.ConvertType(E->getCallReturnType());
1847     Value *F = CGF.CGM.getIntrinsic(Intrinsic::fma, Ty);
1848     Ops[2] = CGF.Builder.CreateExtractElement(Ops[2], Ops[3], "extract");
1849     return CGF.Builder.CreateCall3(F, Ops[1], Ops[2], Ops[0]);
1850   }
1851   // Scalar Floating-point Multiply Extended
1852   case AArch64::BI__builtin_neon_vmulxs_f32:
1853   case AArch64::BI__builtin_neon_vmulxd_f64: {
1854     Int = Intrinsic::aarch64_neon_vmulx;
1855     llvm::Type *Ty = CGF.ConvertType(E->getCallReturnType());
1856     return CGF.EmitNeonCall(CGF.CGM.getIntrinsic(Int, Ty), Ops, "vmulx");
1857   }
1858   case AArch64::BI__builtin_neon_vmul_n_f64: {
1859     // v1f64 vmul_n_f64  should be mapped to Neon scalar mul lane
1860     llvm::Type *VTy = GetNeonType(&CGF,
1861       NeonTypeFlags(NeonTypeFlags::Float64, false, false));
1862     Ops[0] = CGF.Builder.CreateBitCast(Ops[0], VTy);
1863     llvm::Value *Idx = llvm::ConstantInt::get(CGF.Int32Ty, 0);
1864     Ops[0] = CGF.Builder.CreateExtractElement(Ops[0], Idx, "extract");
1865     Value *Result = CGF.Builder.CreateFMul(Ops[0], Ops[1]);
1866     return CGF.Builder.CreateBitCast(Result, VTy);
1867   }
1868   case AArch64::BI__builtin_neon_vget_lane_i8:
1869   case AArch64::BI__builtin_neon_vget_lane_i16:
1870   case AArch64::BI__builtin_neon_vget_lane_i32:
1871   case AArch64::BI__builtin_neon_vget_lane_i64:
1872   case AArch64::BI__builtin_neon_vget_lane_f32:
1873   case AArch64::BI__builtin_neon_vget_lane_f64:
1874   case AArch64::BI__builtin_neon_vgetq_lane_i8:
1875   case AArch64::BI__builtin_neon_vgetq_lane_i16:
1876   case AArch64::BI__builtin_neon_vgetq_lane_i32:
1877   case AArch64::BI__builtin_neon_vgetq_lane_i64:
1878   case AArch64::BI__builtin_neon_vgetq_lane_f32:
1879   case AArch64::BI__builtin_neon_vgetq_lane_f64:
1880     return CGF.EmitARMBuiltinExpr(ARM::BI__builtin_neon_vget_lane_i8, E);
1881   case AArch64::BI__builtin_neon_vset_lane_i8:
1882   case AArch64::BI__builtin_neon_vset_lane_i16:
1883   case AArch64::BI__builtin_neon_vset_lane_i32:
1884   case AArch64::BI__builtin_neon_vset_lane_i64:
1885   case AArch64::BI__builtin_neon_vset_lane_f32:
1886   case AArch64::BI__builtin_neon_vset_lane_f64:
1887   case AArch64::BI__builtin_neon_vsetq_lane_i8:
1888   case AArch64::BI__builtin_neon_vsetq_lane_i16:
1889   case AArch64::BI__builtin_neon_vsetq_lane_i32:
1890   case AArch64::BI__builtin_neon_vsetq_lane_i64:
1891   case AArch64::BI__builtin_neon_vsetq_lane_f32:
1892   case AArch64::BI__builtin_neon_vsetq_lane_f64:
1893     return CGF.EmitARMBuiltinExpr(ARM::BI__builtin_neon_vset_lane_i8, E);
1894   // Crypto
1895   case AArch64::BI__builtin_neon_vsha1h_u32:
1896     Int = Intrinsic::arm_neon_sha1h;
1897     s = "sha1h"; OverloadInt = true; break;
1898   case AArch64::BI__builtin_neon_vsha1cq_u32:
1899     Int = Intrinsic::aarch64_neon_sha1c;
1900     s = "sha1c"; break;
1901   case AArch64::BI__builtin_neon_vsha1pq_u32:
1902     Int = Intrinsic::aarch64_neon_sha1p;
1903     s = "sha1p"; break;
1904   case AArch64::BI__builtin_neon_vsha1mq_u32:
1905     Int = Intrinsic::aarch64_neon_sha1m;
1906     s = "sha1m"; break;
1907   // Scalar Add
1908   case AArch64::BI__builtin_neon_vaddd_s64:
1909     Int = Intrinsic::aarch64_neon_vaddds;
1910     s = "vaddds"; break;
1911   case AArch64::BI__builtin_neon_vaddd_u64:
1912     Int = Intrinsic::aarch64_neon_vadddu;
1913     s = "vadddu"; break;
1914   // Scalar Sub
1915   case AArch64::BI__builtin_neon_vsubd_s64:
1916     Int = Intrinsic::aarch64_neon_vsubds;
1917     s = "vsubds"; break;
1918   case AArch64::BI__builtin_neon_vsubd_u64:
1919     Int = Intrinsic::aarch64_neon_vsubdu;
1920     s = "vsubdu"; break;
1921   // Scalar Saturating Add
1922   case AArch64::BI__builtin_neon_vqaddb_s8:
1923   case AArch64::BI__builtin_neon_vqaddh_s16:
1924   case AArch64::BI__builtin_neon_vqadds_s32:
1925   case AArch64::BI__builtin_neon_vqaddd_s64:
1926     Int = Intrinsic::arm_neon_vqadds;
1927     s = "vqadds"; OverloadInt = true; break;
1928   case AArch64::BI__builtin_neon_vqaddb_u8:
1929   case AArch64::BI__builtin_neon_vqaddh_u16:
1930   case AArch64::BI__builtin_neon_vqadds_u32:
1931   case AArch64::BI__builtin_neon_vqaddd_u64:
1932     Int = Intrinsic::arm_neon_vqaddu;
1933     s = "vqaddu"; OverloadInt = true; break;
1934   // Scalar Saturating Sub
1935   case AArch64::BI__builtin_neon_vqsubb_s8:
1936   case AArch64::BI__builtin_neon_vqsubh_s16:
1937   case AArch64::BI__builtin_neon_vqsubs_s32:
1938   case AArch64::BI__builtin_neon_vqsubd_s64:
1939     Int = Intrinsic::arm_neon_vqsubs;
1940     s = "vqsubs"; OverloadInt = true; break;
1941   case AArch64::BI__builtin_neon_vqsubb_u8:
1942   case AArch64::BI__builtin_neon_vqsubh_u16:
1943   case AArch64::BI__builtin_neon_vqsubs_u32:
1944   case AArch64::BI__builtin_neon_vqsubd_u64:
1945     Int = Intrinsic::arm_neon_vqsubu;
1946     s = "vqsubu"; OverloadInt = true; break;
1947   // Scalar Shift Left
1948   case AArch64::BI__builtin_neon_vshld_s64:
1949     Int = Intrinsic::aarch64_neon_vshlds;
1950     s = "vshlds"; break;
1951   case AArch64::BI__builtin_neon_vshld_u64:
1952     Int = Intrinsic::aarch64_neon_vshldu;
1953     s = "vshldu"; break;
1954   // Scalar Saturating Shift Left
1955   case AArch64::BI__builtin_neon_vqshlb_s8:
1956   case AArch64::BI__builtin_neon_vqshlh_s16:
1957   case AArch64::BI__builtin_neon_vqshls_s32:
1958   case AArch64::BI__builtin_neon_vqshld_s64:
1959     Int = Intrinsic::aarch64_neon_vqshls;
1960     s = "vqshls"; OverloadInt = true; break;
1961   case AArch64::BI__builtin_neon_vqshlb_u8:
1962   case AArch64::BI__builtin_neon_vqshlh_u16:
1963   case AArch64::BI__builtin_neon_vqshls_u32:
1964   case AArch64::BI__builtin_neon_vqshld_u64:
1965     Int = Intrinsic::aarch64_neon_vqshlu;
1966     s = "vqshlu"; OverloadInt = true; break;
1967   // Scalar Rouding Shift Left
1968   case AArch64::BI__builtin_neon_vrshld_s64:
1969     Int = Intrinsic::aarch64_neon_vrshlds;
1970     s = "vrshlds"; break;
1971   case AArch64::BI__builtin_neon_vrshld_u64:
1972     Int = Intrinsic::aarch64_neon_vrshldu;
1973     s = "vrshldu"; break;
1974   // Scalar Saturating Rouding Shift Left
1975   case AArch64::BI__builtin_neon_vqrshlb_s8:
1976   case AArch64::BI__builtin_neon_vqrshlh_s16:
1977   case AArch64::BI__builtin_neon_vqrshls_s32:
1978   case AArch64::BI__builtin_neon_vqrshld_s64:
1979     Int = Intrinsic::aarch64_neon_vqrshls;
1980     s = "vqrshls"; OverloadInt = true; break;
1981   case AArch64::BI__builtin_neon_vqrshlb_u8:
1982   case AArch64::BI__builtin_neon_vqrshlh_u16:
1983   case AArch64::BI__builtin_neon_vqrshls_u32:
1984   case AArch64::BI__builtin_neon_vqrshld_u64:
1985     Int = Intrinsic::aarch64_neon_vqrshlu;
1986     s = "vqrshlu"; OverloadInt = true; break;
1987   // Scalar Reduce Pairwise Add
1988   case AArch64::BI__builtin_neon_vpaddd_s64:
1989   case AArch64::BI__builtin_neon_vpaddd_u64:
1990     Int = Intrinsic::aarch64_neon_vpadd; s = "vpadd";
1991     break;
1992   case AArch64::BI__builtin_neon_vpadds_f32:
1993     Int = Intrinsic::aarch64_neon_vpfadd; s = "vpfadd";
1994     break;
1995   case AArch64::BI__builtin_neon_vpaddd_f64:
1996     Int = Intrinsic::aarch64_neon_vpfaddq; s = "vpfaddq";
1997     break;
1998   // Scalar Reduce Pairwise Floating Point Max
1999   case AArch64::BI__builtin_neon_vpmaxs_f32:
2000     Int = Intrinsic::aarch64_neon_vpmax; s = "vpmax";
2001     break;
2002   case AArch64::BI__builtin_neon_vpmaxqd_f64:
2003     Int = Intrinsic::aarch64_neon_vpmaxq; s = "vpmaxq";
2004     break;
2005   // Scalar Reduce Pairwise Floating Point Min
2006   case AArch64::BI__builtin_neon_vpmins_f32:
2007     Int = Intrinsic::aarch64_neon_vpmin; s = "vpmin";
2008     break;
2009   case AArch64::BI__builtin_neon_vpminqd_f64:
2010     Int = Intrinsic::aarch64_neon_vpminq; s = "vpminq";
2011     break;
2012   // Scalar Reduce Pairwise Floating Point Maxnm
2013   case AArch64::BI__builtin_neon_vpmaxnms_f32:
2014     Int = Intrinsic::aarch64_neon_vpfmaxnm; s = "vpfmaxnm";
2015     break;
2016   case AArch64::BI__builtin_neon_vpmaxnmqd_f64:
2017     Int = Intrinsic::aarch64_neon_vpfmaxnmq; s = "vpfmaxnmq";
2018     break;
2019   // Scalar Reduce Pairwise Floating Point Minnm
2020   case AArch64::BI__builtin_neon_vpminnms_f32:
2021     Int = Intrinsic::aarch64_neon_vpfminnm; s = "vpfminnm";
2022     break;
2023   case AArch64::BI__builtin_neon_vpminnmqd_f64:
2024     Int = Intrinsic::aarch64_neon_vpfminnmq; s = "vpfminnmq";
2025     break;
2026   // The followings are intrinsics with scalar results generated AcrossVec vectors
2027   case AArch64::BI__builtin_neon_vaddlv_s8:
2028   case AArch64::BI__builtin_neon_vaddlv_s16:
2029   case AArch64::BI__builtin_neon_vaddlvq_s8:
2030   case AArch64::BI__builtin_neon_vaddlvq_s16:
2031   case AArch64::BI__builtin_neon_vaddlvq_s32:
2032     Int = Intrinsic::aarch64_neon_saddlv;
2033     AcrossVec = true; ExtendEle = true; s = "saddlv"; break;
2034   case AArch64::BI__builtin_neon_vaddlv_u8:
2035   case AArch64::BI__builtin_neon_vaddlv_u16:
2036   case AArch64::BI__builtin_neon_vaddlvq_u8:
2037   case AArch64::BI__builtin_neon_vaddlvq_u16:
2038   case AArch64::BI__builtin_neon_vaddlvq_u32:
2039     Int = Intrinsic::aarch64_neon_uaddlv;
2040     AcrossVec = true; ExtendEle = true; s = "uaddlv"; break;
2041   case AArch64::BI__builtin_neon_vmaxv_s8:
2042   case AArch64::BI__builtin_neon_vmaxv_s16:
2043   case AArch64::BI__builtin_neon_vmaxvq_s8:
2044   case AArch64::BI__builtin_neon_vmaxvq_s16:
2045   case AArch64::BI__builtin_neon_vmaxvq_s32:
2046     Int = Intrinsic::aarch64_neon_smaxv;
2047     AcrossVec = true; ExtendEle = false; s = "smaxv"; break;
2048   case AArch64::BI__builtin_neon_vmaxv_u8:
2049   case AArch64::BI__builtin_neon_vmaxv_u16:
2050   case AArch64::BI__builtin_neon_vmaxvq_u8:
2051   case AArch64::BI__builtin_neon_vmaxvq_u16:
2052   case AArch64::BI__builtin_neon_vmaxvq_u32:
2053     Int = Intrinsic::aarch64_neon_umaxv;
2054     AcrossVec = true; ExtendEle = false; s = "umaxv"; break;
2055   case AArch64::BI__builtin_neon_vminv_s8:
2056   case AArch64::BI__builtin_neon_vminv_s16:
2057   case AArch64::BI__builtin_neon_vminvq_s8:
2058   case AArch64::BI__builtin_neon_vminvq_s16:
2059   case AArch64::BI__builtin_neon_vminvq_s32:
2060     Int = Intrinsic::aarch64_neon_sminv;
2061     AcrossVec = true; ExtendEle = false; s = "sminv"; break;
2062   case AArch64::BI__builtin_neon_vminv_u8:
2063   case AArch64::BI__builtin_neon_vminv_u16:
2064   case AArch64::BI__builtin_neon_vminvq_u8:
2065   case AArch64::BI__builtin_neon_vminvq_u16:
2066   case AArch64::BI__builtin_neon_vminvq_u32:
2067     Int = Intrinsic::aarch64_neon_uminv;
2068     AcrossVec = true; ExtendEle = false; s = "uminv"; break;
2069   case AArch64::BI__builtin_neon_vaddv_s8:
2070   case AArch64::BI__builtin_neon_vaddv_s16:
2071   case AArch64::BI__builtin_neon_vaddvq_s8:
2072   case AArch64::BI__builtin_neon_vaddvq_s16:
2073   case AArch64::BI__builtin_neon_vaddvq_s32:
2074   case AArch64::BI__builtin_neon_vaddvq_s64:
2075   case AArch64::BI__builtin_neon_vaddv_u8:
2076   case AArch64::BI__builtin_neon_vaddv_u16:
2077   case AArch64::BI__builtin_neon_vaddvq_u8:
2078   case AArch64::BI__builtin_neon_vaddvq_u16:
2079   case AArch64::BI__builtin_neon_vaddvq_u32:
2080   case AArch64::BI__builtin_neon_vaddvq_u64:
2081   case AArch64::BI__builtin_neon_vaddv_f32:
2082   case AArch64::BI__builtin_neon_vaddvq_f32:
2083   case AArch64::BI__builtin_neon_vaddvq_f64:
2084     Int = Intrinsic::aarch64_neon_vaddv;
2085     AcrossVec = true; ExtendEle = false; s = "vaddv"; break;      
2086   case AArch64::BI__builtin_neon_vmaxv_f32:
2087   case AArch64::BI__builtin_neon_vmaxvq_f32:
2088   case AArch64::BI__builtin_neon_vmaxvq_f64:
2089     Int = Intrinsic::aarch64_neon_vmaxv;
2090     AcrossVec = true; ExtendEle = false; s = "vmaxv"; break;
2091   case AArch64::BI__builtin_neon_vminv_f32:
2092   case AArch64::BI__builtin_neon_vminvq_f32:
2093   case AArch64::BI__builtin_neon_vminvq_f64:
2094     Int = Intrinsic::aarch64_neon_vminv;
2095     AcrossVec = true; ExtendEle = false; s = "vminv"; break;
2096   case AArch64::BI__builtin_neon_vmaxnmv_f32:
2097   case AArch64::BI__builtin_neon_vmaxnmvq_f32:
2098   case AArch64::BI__builtin_neon_vmaxnmvq_f64:
2099     Int = Intrinsic::aarch64_neon_vmaxnmv;
2100     AcrossVec = true; ExtendEle = false; s = "vmaxnmv"; break;
2101   case AArch64::BI__builtin_neon_vminnmv_f32:
2102   case AArch64::BI__builtin_neon_vminnmvq_f32:
2103   case AArch64::BI__builtin_neon_vminnmvq_f64:
2104     Int = Intrinsic::aarch64_neon_vminnmv;
2105     AcrossVec = true; ExtendEle = false; s = "vminnmv"; break;
2106   // Scalar Integer Saturating Doubling Multiply Half High
2107   case AArch64::BI__builtin_neon_vqdmulhh_s16:
2108   case AArch64::BI__builtin_neon_vqdmulhs_s32:
2109     Int = Intrinsic::arm_neon_vqdmulh;
2110     s = "vqdmulh"; OverloadInt = true; break;
2111   // Scalar Integer Saturating Rounding Doubling Multiply Half High
2112   case AArch64::BI__builtin_neon_vqrdmulhh_s16:
2113   case AArch64::BI__builtin_neon_vqrdmulhs_s32:
2114     Int = Intrinsic::arm_neon_vqrdmulh;
2115     s = "vqrdmulh"; OverloadInt = true; break;
2116   // Scalar Floating-point Reciprocal Step and
2117   case AArch64::BI__builtin_neon_vrecpss_f32:
2118   case AArch64::BI__builtin_neon_vrecpsd_f64:
2119     Int = Intrinsic::arm_neon_vrecps;
2120     s = "vrecps"; OverloadInt = true; break;
2121   // Scalar Floating-point Reciprocal Square Root Step
2122   case AArch64::BI__builtin_neon_vrsqrtss_f32:
2123   case AArch64::BI__builtin_neon_vrsqrtsd_f64:
2124     Int = Intrinsic::arm_neon_vrsqrts;
2125     s = "vrsqrts"; OverloadInt = true; break;
2126   // Scalar Signed Integer Convert To Floating-point
2127   case AArch64::BI__builtin_neon_vcvts_f32_s32:
2128     Int = Intrinsic::aarch64_neon_vcvtf32_s32,
2129     s = "vcvtf"; OverloadInt = false; break;
2130   case AArch64::BI__builtin_neon_vcvtd_f64_s64:
2131     Int = Intrinsic::aarch64_neon_vcvtf64_s64,
2132     s = "vcvtf"; OverloadInt = false; break;
2133   // Scalar Unsigned Integer Convert To Floating-point
2134   case AArch64::BI__builtin_neon_vcvts_f32_u32:
2135     Int = Intrinsic::aarch64_neon_vcvtf32_u32,
2136     s = "vcvtf"; OverloadInt = false; break;
2137   case AArch64::BI__builtin_neon_vcvtd_f64_u64:
2138     Int = Intrinsic::aarch64_neon_vcvtf64_u64,
2139     s = "vcvtf"; OverloadInt = false; break;
2140   // Scalar Floating-point Converts
2141   case AArch64::BI__builtin_neon_vcvtxd_f32_f64:
2142     Int = Intrinsic::aarch64_neon_fcvtxn;
2143     s = "vcvtxn"; OverloadCvtInt = true; break;
2144   case AArch64::BI__builtin_neon_vcvtas_s32_f32:
2145   case AArch64::BI__builtin_neon_vcvtad_s64_f64:
2146     Int = Intrinsic::aarch64_neon_fcvtas;
2147     s = "vcvtas"; OverloadCvtInt = true; break;
2148   case AArch64::BI__builtin_neon_vcvtas_u32_f32:
2149   case AArch64::BI__builtin_neon_vcvtad_u64_f64:
2150     Int = Intrinsic::aarch64_neon_fcvtau;
2151     s = "vcvtau"; OverloadCvtInt = true; break;
2152   case AArch64::BI__builtin_neon_vcvtms_s32_f32:
2153   case AArch64::BI__builtin_neon_vcvtmd_s64_f64:
2154     Int = Intrinsic::aarch64_neon_fcvtms;
2155     s = "vcvtms"; OverloadCvtInt = true; break;
2156   case AArch64::BI__builtin_neon_vcvtms_u32_f32:
2157   case AArch64::BI__builtin_neon_vcvtmd_u64_f64:
2158     Int = Intrinsic::aarch64_neon_fcvtmu;
2159     s = "vcvtmu"; OverloadCvtInt = true; break;
2160   case AArch64::BI__builtin_neon_vcvtns_s32_f32:
2161   case AArch64::BI__builtin_neon_vcvtnd_s64_f64:
2162     Int = Intrinsic::aarch64_neon_fcvtns;
2163     s = "vcvtns"; OverloadCvtInt = true; break;
2164   case AArch64::BI__builtin_neon_vcvtns_u32_f32:
2165   case AArch64::BI__builtin_neon_vcvtnd_u64_f64:
2166     Int = Intrinsic::aarch64_neon_fcvtnu;
2167     s = "vcvtnu"; OverloadCvtInt = true; break;
2168   case AArch64::BI__builtin_neon_vcvtps_s32_f32:
2169   case AArch64::BI__builtin_neon_vcvtpd_s64_f64:
2170     Int = Intrinsic::aarch64_neon_fcvtps;
2171     s = "vcvtps"; OverloadCvtInt = true; break;
2172   case AArch64::BI__builtin_neon_vcvtps_u32_f32:
2173   case AArch64::BI__builtin_neon_vcvtpd_u64_f64:
2174     Int = Intrinsic::aarch64_neon_fcvtpu;
2175     s = "vcvtpu"; OverloadCvtInt = true; break;
2176   case AArch64::BI__builtin_neon_vcvts_s32_f32:
2177   case AArch64::BI__builtin_neon_vcvtd_s64_f64:
2178     Int = Intrinsic::aarch64_neon_fcvtzs;
2179     s = "vcvtzs"; OverloadCvtInt = true; break;
2180   case AArch64::BI__builtin_neon_vcvts_u32_f32:
2181   case AArch64::BI__builtin_neon_vcvtd_u64_f64:
2182     Int = Intrinsic::aarch64_neon_fcvtzu;
2183     s = "vcvtzu"; OverloadCvtInt = true; break;
2184   // Scalar Floating-point Reciprocal Estimate
2185   case AArch64::BI__builtin_neon_vrecpes_f32:
2186   case AArch64::BI__builtin_neon_vrecped_f64:
2187     Int = Intrinsic::arm_neon_vrecpe;
2188     s = "vrecpe"; OverloadInt = true; break;
2189   // Scalar Floating-point Reciprocal Exponent
2190   case AArch64::BI__builtin_neon_vrecpxs_f32:
2191   case AArch64::BI__builtin_neon_vrecpxd_f64:
2192     Int = Intrinsic::aarch64_neon_vrecpx;
2193     s = "vrecpx"; OverloadInt = true; break;
2194   // Scalar Floating-point Reciprocal Square Root Estimate
2195   case AArch64::BI__builtin_neon_vrsqrtes_f32:
2196   case AArch64::BI__builtin_neon_vrsqrted_f64:
2197     Int = Intrinsic::arm_neon_vrsqrte;
2198     s = "vrsqrte"; OverloadInt = true; break;
2199   // Scalar Compare Equal
2200   case AArch64::BI__builtin_neon_vceqd_s64:
2201   case AArch64::BI__builtin_neon_vceqd_u64:
2202     Int = Intrinsic::aarch64_neon_vceq; s = "vceq";
2203     OverloadCmpInt = true; break;
2204   // Scalar Compare Equal To Zero
2205   case AArch64::BI__builtin_neon_vceqzd_s64:
2206   case AArch64::BI__builtin_neon_vceqzd_u64:
2207     Int = Intrinsic::aarch64_neon_vceq; s = "vceq";
2208     // Add implicit zero operand.
2209     Ops.push_back(llvm::Constant::getNullValue(Ops[0]->getType()));
2210     OverloadCmpInt = true; break;
2211   // Scalar Compare Greater Than or Equal
2212   case AArch64::BI__builtin_neon_vcged_s64:
2213     Int = Intrinsic::aarch64_neon_vcge; s = "vcge";
2214     OverloadCmpInt = true; break;
2215   case AArch64::BI__builtin_neon_vcged_u64:
2216     Int = Intrinsic::aarch64_neon_vchs; s = "vcge";
2217     OverloadCmpInt = true; break;
2218   // Scalar Compare Greater Than or Equal To Zero
2219   case AArch64::BI__builtin_neon_vcgezd_s64:
2220     Int = Intrinsic::aarch64_neon_vcge; s = "vcge";
2221     // Add implicit zero operand.
2222     Ops.push_back(llvm::Constant::getNullValue(Ops[0]->getType()));
2223     OverloadCmpInt = true; break;
2224   // Scalar Compare Greater Than
2225   case AArch64::BI__builtin_neon_vcgtd_s64:
2226     Int = Intrinsic::aarch64_neon_vcgt; s = "vcgt";
2227     OverloadCmpInt = true; break;
2228   case AArch64::BI__builtin_neon_vcgtd_u64:
2229     Int = Intrinsic::aarch64_neon_vchi; s = "vcgt";
2230     OverloadCmpInt = true; break;
2231   // Scalar Compare Greater Than Zero
2232   case AArch64::BI__builtin_neon_vcgtzd_s64:
2233     Int = Intrinsic::aarch64_neon_vcgt; s = "vcgt";
2234     // Add implicit zero operand.
2235     Ops.push_back(llvm::Constant::getNullValue(Ops[0]->getType()));
2236     OverloadCmpInt = true; break;
2237   // Scalar Compare Less Than or Equal
2238   case AArch64::BI__builtin_neon_vcled_s64:
2239     Int = Intrinsic::aarch64_neon_vcge; s = "vcge";
2240     OverloadCmpInt = true; std::swap(Ops[0], Ops[1]); break;
2241   case AArch64::BI__builtin_neon_vcled_u64:
2242     Int = Intrinsic::aarch64_neon_vchs; s = "vchs";
2243     OverloadCmpInt = true; std::swap(Ops[0], Ops[1]); break;
2244   // Scalar Compare Less Than or Equal To Zero
2245   case AArch64::BI__builtin_neon_vclezd_s64:
2246     Int = Intrinsic::aarch64_neon_vclez; s = "vcle";
2247     // Add implicit zero operand.
2248     Ops.push_back(llvm::Constant::getNullValue(Ops[0]->getType()));
2249     OverloadCmpInt = true; break;
2250   // Scalar Compare Less Than
2251   case AArch64::BI__builtin_neon_vcltd_s64:
2252     Int = Intrinsic::aarch64_neon_vcgt; s = "vcgt";
2253     OverloadCmpInt = true; std::swap(Ops[0], Ops[1]); break;
2254   case AArch64::BI__builtin_neon_vcltd_u64:
2255     Int = Intrinsic::aarch64_neon_vchi; s = "vchi";
2256     OverloadCmpInt = true; std::swap(Ops[0], Ops[1]); break;
2257   // Scalar Compare Less Than Zero
2258   case AArch64::BI__builtin_neon_vcltzd_s64:
2259     Int = Intrinsic::aarch64_neon_vcltz; s = "vclt";
2260     // Add implicit zero operand.
2261     Ops.push_back(llvm::Constant::getNullValue(Ops[0]->getType()));
2262     OverloadCmpInt = true; break;
2263   // Scalar Floating-point Compare Equal
2264   case AArch64::BI__builtin_neon_vceqs_f32:
2265   case AArch64::BI__builtin_neon_vceqd_f64:
2266     Int = Intrinsic::aarch64_neon_vceq; s = "vceq";
2267     OverloadCmpInt = true; break;
2268   // Scalar Floating-point Compare Equal To Zero
2269   case AArch64::BI__builtin_neon_vceqzs_f32:
2270   case AArch64::BI__builtin_neon_vceqzd_f64:
2271     Int = Intrinsic::aarch64_neon_vceq; s = "vceq";
2272     // Add implicit zero operand.
2273     Ops.push_back(llvm::Constant::getNullValue(CGF.FloatTy));
2274     IsFpCmpZInt = true;
2275     OverloadCmpInt = true; break;
2276   // Scalar Floating-point Compare Greater Than Or Equal
2277   case AArch64::BI__builtin_neon_vcges_f32:
2278   case AArch64::BI__builtin_neon_vcged_f64:
2279     Int = Intrinsic::aarch64_neon_vcge; s = "vcge";
2280     OverloadCmpInt = true; break;
2281   // Scalar Floating-point Compare Greater Than Or Equal To Zero
2282   case AArch64::BI__builtin_neon_vcgezs_f32:
2283   case AArch64::BI__builtin_neon_vcgezd_f64:
2284     Int = Intrinsic::aarch64_neon_vcge; s = "vcge";
2285     // Add implicit zero operand.
2286     Ops.push_back(llvm::Constant::getNullValue(CGF.FloatTy));
2287     IsFpCmpZInt = true;
2288     OverloadCmpInt = true; break;
2289   // Scalar Floating-point Compare Greather Than
2290   case AArch64::BI__builtin_neon_vcgts_f32:
2291   case AArch64::BI__builtin_neon_vcgtd_f64:
2292     Int = Intrinsic::aarch64_neon_vcgt; s = "vcgt";
2293     OverloadCmpInt = true; break;
2294   // Scalar Floating-point Compare Greather Than Zero
2295   case AArch64::BI__builtin_neon_vcgtzs_f32:
2296   case AArch64::BI__builtin_neon_vcgtzd_f64:
2297     Int = Intrinsic::aarch64_neon_vcgt; s = "vcgt";
2298     // Add implicit zero operand.
2299     Ops.push_back(llvm::Constant::getNullValue(CGF.FloatTy));
2300     IsFpCmpZInt = true;
2301     OverloadCmpInt = true; break;
2302   // Scalar Floating-point Compare Less Than or Equal
2303   case AArch64::BI__builtin_neon_vcles_f32:
2304   case AArch64::BI__builtin_neon_vcled_f64:
2305     Int = Intrinsic::aarch64_neon_vcge; s = "vcge";
2306     OverloadCmpInt = true; break;
2307   // Scalar Floating-point Compare Less Than Or Equal To Zero
2308   case AArch64::BI__builtin_neon_vclezs_f32:
2309   case AArch64::BI__builtin_neon_vclezd_f64:
2310     Int = Intrinsic::aarch64_neon_vclez; s = "vcle";
2311     // Add implicit zero operand.
2312     Ops.push_back(llvm::Constant::getNullValue(CGF.FloatTy));
2313     IsFpCmpZInt = true;
2314     OverloadCmpInt = true; break;
2315   // Scalar Floating-point Compare Less Than Zero
2316   case AArch64::BI__builtin_neon_vclts_f32:
2317   case AArch64::BI__builtin_neon_vcltd_f64:
2318     Int = Intrinsic::aarch64_neon_vcgt; s = "vcgt";
2319     OverloadCmpInt = true; std::swap(Ops[0], Ops[1]); break;
2320   // Scalar Floating-point Compare Less Than Zero
2321   case AArch64::BI__builtin_neon_vcltzs_f32:
2322   case AArch64::BI__builtin_neon_vcltzd_f64:
2323     Int = Intrinsic::aarch64_neon_vcltz; s = "vclt";
2324     // Add implicit zero operand.
2325     Ops.push_back(llvm::Constant::getNullValue(CGF.FloatTy));
2326     IsFpCmpZInt = true;
2327     OverloadCmpInt = true; break;
2328   // Scalar Floating-point Absolute Compare Greater Than Or Equal
2329   case AArch64::BI__builtin_neon_vcages_f32:
2330   case AArch64::BI__builtin_neon_vcaged_f64:
2331     Int = Intrinsic::aarch64_neon_vcage; s = "vcage";
2332     OverloadCmpInt = true; break;
2333   // Scalar Floating-point Absolute Compare Greater Than
2334   case AArch64::BI__builtin_neon_vcagts_f32:
2335   case AArch64::BI__builtin_neon_vcagtd_f64:
2336     Int = Intrinsic::aarch64_neon_vcagt; s = "vcagt";
2337     OverloadCmpInt = true; break;
2338   // Scalar Floating-point Absolute Compare Less Than Or Equal
2339   case AArch64::BI__builtin_neon_vcales_f32:
2340   case AArch64::BI__builtin_neon_vcaled_f64:
2341     Int = Intrinsic::aarch64_neon_vcage; s = "vcage";
2342     OverloadCmpInt = true; std::swap(Ops[0], Ops[1]); break;
2343   // Scalar Floating-point Absolute Compare Less Than
2344   case AArch64::BI__builtin_neon_vcalts_f32:
2345   case AArch64::BI__builtin_neon_vcaltd_f64:
2346     Int = Intrinsic::aarch64_neon_vcagt; s = "vcalt";
2347     OverloadCmpInt = true; std::swap(Ops[0], Ops[1]); break;
2348   // Scalar Compare Bitwise Test Bits
2349   case AArch64::BI__builtin_neon_vtstd_s64:
2350   case AArch64::BI__builtin_neon_vtstd_u64:
2351     Int = Intrinsic::aarch64_neon_vtstd; s = "vtst";
2352     OverloadCmpInt = true; break;
2353   // Scalar Absolute Value
2354   case AArch64::BI__builtin_neon_vabsd_s64:
2355     Int = Intrinsic::aarch64_neon_vabs;
2356     s = "vabs"; OverloadInt = false; break;
2357   // Scalar Absolute Difference
2358   case AArch64::BI__builtin_neon_vabds_f32:
2359   case AArch64::BI__builtin_neon_vabdd_f64:
2360     Int = Intrinsic::aarch64_neon_vabd;
2361     s = "vabd"; OverloadInt = true; break;
2362   // Scalar Signed Saturating Absolute Value
2363   case AArch64::BI__builtin_neon_vqabsb_s8:
2364   case AArch64::BI__builtin_neon_vqabsh_s16:
2365   case AArch64::BI__builtin_neon_vqabss_s32:
2366   case AArch64::BI__builtin_neon_vqabsd_s64:
2367     Int = Intrinsic::arm_neon_vqabs;
2368     s = "vqabs"; OverloadInt = true; break;
2369   // Scalar Negate
2370   case AArch64::BI__builtin_neon_vnegd_s64:
2371     Int = Intrinsic::aarch64_neon_vneg;
2372     s = "vneg"; OverloadInt = false; break;
2373   // Scalar Signed Saturating Negate
2374   case AArch64::BI__builtin_neon_vqnegb_s8:
2375   case AArch64::BI__builtin_neon_vqnegh_s16:
2376   case AArch64::BI__builtin_neon_vqnegs_s32:
2377   case AArch64::BI__builtin_neon_vqnegd_s64:
2378     Int = Intrinsic::arm_neon_vqneg;
2379     s = "vqneg"; OverloadInt = true; break;
2380   // Scalar Signed Saturating Accumulated of Unsigned Value
2381   case AArch64::BI__builtin_neon_vuqaddb_s8:
2382   case AArch64::BI__builtin_neon_vuqaddh_s16:
2383   case AArch64::BI__builtin_neon_vuqadds_s32:
2384   case AArch64::BI__builtin_neon_vuqaddd_s64:
2385     Int = Intrinsic::aarch64_neon_vuqadd;
2386     s = "vuqadd"; OverloadInt = true; break;
2387   // Scalar Unsigned Saturating Accumulated of Signed Value
2388   case AArch64::BI__builtin_neon_vsqaddb_u8:
2389   case AArch64::BI__builtin_neon_vsqaddh_u16:
2390   case AArch64::BI__builtin_neon_vsqadds_u32:
2391   case AArch64::BI__builtin_neon_vsqaddd_u64:
2392     Int = Intrinsic::aarch64_neon_vsqadd;
2393     s = "vsqadd"; OverloadInt = true; break;
2394   // Signed Saturating Doubling Multiply-Add Long
2395   case AArch64::BI__builtin_neon_vqdmlalh_s16:
2396   case AArch64::BI__builtin_neon_vqdmlals_s32:
2397     Int = Intrinsic::aarch64_neon_vqdmlal;
2398     s = "vqdmlal"; OverloadWideInt = true; break;
2399   // Signed Saturating Doubling Multiply-Subtract Long
2400   case AArch64::BI__builtin_neon_vqdmlslh_s16:
2401   case AArch64::BI__builtin_neon_vqdmlsls_s32:
2402     Int = Intrinsic::aarch64_neon_vqdmlsl;
2403     s = "vqdmlsl"; OverloadWideInt = true; break;
2404   // Signed Saturating Doubling Multiply Long
2405   case AArch64::BI__builtin_neon_vqdmullh_s16:
2406   case AArch64::BI__builtin_neon_vqdmulls_s32:
2407     Int = Intrinsic::arm_neon_vqdmull;
2408     s = "vqdmull"; OverloadWideInt = true; break;
2409   // Scalar Signed Saturating Extract Unsigned Narrow
2410   case AArch64::BI__builtin_neon_vqmovunh_s16:
2411   case AArch64::BI__builtin_neon_vqmovuns_s32:
2412   case AArch64::BI__builtin_neon_vqmovund_s64:
2413     Int = Intrinsic::arm_neon_vqmovnsu;
2414     s = "vqmovun"; OverloadNarrowInt = true; break;
2415   // Scalar Signed Saturating Extract Narrow
2416   case AArch64::BI__builtin_neon_vqmovnh_s16:
2417   case AArch64::BI__builtin_neon_vqmovns_s32:
2418   case AArch64::BI__builtin_neon_vqmovnd_s64:
2419     Int = Intrinsic::arm_neon_vqmovns;
2420     s = "vqmovn"; OverloadNarrowInt = true; break;
2421   // Scalar Unsigned Saturating Extract Narrow
2422   case AArch64::BI__builtin_neon_vqmovnh_u16:
2423   case AArch64::BI__builtin_neon_vqmovns_u32:
2424   case AArch64::BI__builtin_neon_vqmovnd_u64:
2425     Int = Intrinsic::arm_neon_vqmovnu;
2426     s = "vqmovn"; OverloadNarrowInt = true; break;
2427   // Scalar Signed Shift Right (Immediate)
2428   case AArch64::BI__builtin_neon_vshrd_n_s64:
2429     Int = Intrinsic::aarch64_neon_vshrds_n;
2430     s = "vsshr"; OverloadInt = false; break;
2431   // Scalar Unsigned Shift Right (Immediate)
2432   case AArch64::BI__builtin_neon_vshrd_n_u64:
2433     Int = Intrinsic::aarch64_neon_vshrdu_n;
2434     s = "vushr"; OverloadInt = false; break;
2435   // Scalar Signed Rounding Shift Right (Immediate)
2436   case AArch64::BI__builtin_neon_vrshrd_n_s64:
2437     Int = Intrinsic::aarch64_neon_vsrshr;
2438     s = "vsrshr"; OverloadInt = true; break;
2439   // Scalar Unsigned Rounding Shift Right (Immediate)
2440   case AArch64::BI__builtin_neon_vrshrd_n_u64:
2441     Int = Intrinsic::aarch64_neon_vurshr;
2442     s = "vurshr"; OverloadInt = true; break;
2443   // Scalar Signed Shift Right and Accumulate (Immediate)
2444   case AArch64::BI__builtin_neon_vsrad_n_s64:
2445     Int = Intrinsic::aarch64_neon_vsrads_n;
2446     s = "vssra"; OverloadInt = false; break;
2447   // Scalar Unsigned Shift Right and Accumulate (Immediate)
2448   case AArch64::BI__builtin_neon_vsrad_n_u64:
2449     Int = Intrinsic::aarch64_neon_vsradu_n;
2450     s = "vusra"; OverloadInt = false; break;
2451   // Scalar Signed Rounding Shift Right and Accumulate (Immediate)
2452   case AArch64::BI__builtin_neon_vrsrad_n_s64:
2453     Int = Intrinsic::aarch64_neon_vrsrads_n;
2454     s = "vsrsra"; OverloadInt = false; break;
2455   // Scalar Unsigned Rounding Shift Right and Accumulate (Immediate)
2456   case AArch64::BI__builtin_neon_vrsrad_n_u64:
2457     Int = Intrinsic::aarch64_neon_vrsradu_n;
2458     s = "vursra"; OverloadInt = false; break;
2459   // Scalar Signed/Unsigned Shift Left (Immediate)
2460   case AArch64::BI__builtin_neon_vshld_n_s64:
2461   case AArch64::BI__builtin_neon_vshld_n_u64:
2462     Int = Intrinsic::aarch64_neon_vshld_n;
2463     s = "vshl"; OverloadInt = false; break;
2464   // Signed Saturating Shift Left (Immediate)
2465   case AArch64::BI__builtin_neon_vqshlb_n_s8:
2466   case AArch64::BI__builtin_neon_vqshlh_n_s16:
2467   case AArch64::BI__builtin_neon_vqshls_n_s32:
2468   case AArch64::BI__builtin_neon_vqshld_n_s64:
2469     Int = Intrinsic::aarch64_neon_vqshls_n;
2470     s = "vsqshl"; OverloadInt = true; break;
2471   // Unsigned Saturating Shift Left (Immediate)
2472   case AArch64::BI__builtin_neon_vqshlb_n_u8:
2473   case AArch64::BI__builtin_neon_vqshlh_n_u16:
2474   case AArch64::BI__builtin_neon_vqshls_n_u32:
2475   case AArch64::BI__builtin_neon_vqshld_n_u64:
2476     Int = Intrinsic::aarch64_neon_vqshlu_n;
2477     s = "vuqshl"; OverloadInt = true; break;
2478   // Signed Saturating Shift Left Unsigned (Immediate)
2479   case AArch64::BI__builtin_neon_vqshlub_n_s8:
2480   case AArch64::BI__builtin_neon_vqshluh_n_s16:
2481   case AArch64::BI__builtin_neon_vqshlus_n_s32:
2482   case AArch64::BI__builtin_neon_vqshlud_n_s64:
2483     Int = Intrinsic::aarch64_neon_vsqshlu;
2484     s = "vsqshlu"; OverloadInt = true; break;
2485   // Shift Right And Insert (Immediate)
2486   case AArch64::BI__builtin_neon_vsrid_n_s64:
2487   case AArch64::BI__builtin_neon_vsrid_n_u64:
2488     Int = Intrinsic::aarch64_neon_vsri;
2489     s = "vsri"; OverloadInt = true; break;
2490   // Shift Left And Insert (Immediate)
2491   case AArch64::BI__builtin_neon_vslid_n_s64:
2492   case AArch64::BI__builtin_neon_vslid_n_u64:
2493     Int = Intrinsic::aarch64_neon_vsli;
2494     s = "vsli"; OverloadInt = true; break;
2495   // Signed Saturating Shift Right Narrow (Immediate)
2496   case AArch64::BI__builtin_neon_vqshrnh_n_s16:
2497   case AArch64::BI__builtin_neon_vqshrns_n_s32:
2498   case AArch64::BI__builtin_neon_vqshrnd_n_s64:
2499     Int = Intrinsic::aarch64_neon_vsqshrn;
2500     s = "vsqshrn"; OverloadInt = true; break;
2501   // Unsigned Saturating Shift Right Narrow (Immediate)
2502   case AArch64::BI__builtin_neon_vqshrnh_n_u16:
2503   case AArch64::BI__builtin_neon_vqshrns_n_u32:
2504   case AArch64::BI__builtin_neon_vqshrnd_n_u64:
2505     Int = Intrinsic::aarch64_neon_vuqshrn;
2506     s = "vuqshrn"; OverloadInt = true; break;
2507   // Signed Saturating Rounded Shift Right Narrow (Immediate)
2508   case AArch64::BI__builtin_neon_vqrshrnh_n_s16:
2509   case AArch64::BI__builtin_neon_vqrshrns_n_s32:
2510   case AArch64::BI__builtin_neon_vqrshrnd_n_s64:
2511     Int = Intrinsic::aarch64_neon_vsqrshrn;
2512     s = "vsqrshrn"; OverloadInt = true; break;
2513   // Unsigned Saturating Rounded Shift Right Narrow (Immediate)
2514   case AArch64::BI__builtin_neon_vqrshrnh_n_u16:
2515   case AArch64::BI__builtin_neon_vqrshrns_n_u32:
2516   case AArch64::BI__builtin_neon_vqrshrnd_n_u64:
2517     Int = Intrinsic::aarch64_neon_vuqrshrn;
2518     s = "vuqrshrn"; OverloadInt = true; break;
2519   // Signed Saturating Shift Right Unsigned Narrow (Immediate)
2520   case AArch64::BI__builtin_neon_vqshrunh_n_s16:
2521   case AArch64::BI__builtin_neon_vqshruns_n_s32:
2522   case AArch64::BI__builtin_neon_vqshrund_n_s64:
2523     Int = Intrinsic::aarch64_neon_vsqshrun;
2524     s = "vsqshrun"; OverloadInt = true; break;
2525   // Signed Saturating Rounded Shift Right Unsigned Narrow (Immediate)
2526   case AArch64::BI__builtin_neon_vqrshrunh_n_s16:
2527   case AArch64::BI__builtin_neon_vqrshruns_n_s32:
2528   case AArch64::BI__builtin_neon_vqrshrund_n_s64:
2529     Int = Intrinsic::aarch64_neon_vsqrshrun;
2530     s = "vsqrshrun"; OverloadInt = true; break;
2531   // Scalar Signed Fixed-point Convert To Floating-Point (Immediate)
2532   case AArch64::BI__builtin_neon_vcvts_n_f32_s32:
2533     Int = Intrinsic::aarch64_neon_vcvtf32_n_s32;
2534     s = "vcvtf"; OverloadInt = false; break;
2535   case AArch64::BI__builtin_neon_vcvtd_n_f64_s64:
2536     Int = Intrinsic::aarch64_neon_vcvtf64_n_s64;
2537     s = "vcvtf"; OverloadInt = false; break;
2538   // Scalar Unsigned Fixed-point Convert To Floating-Point (Immediate)
2539   case AArch64::BI__builtin_neon_vcvts_n_f32_u32:
2540     Int = Intrinsic::aarch64_neon_vcvtf32_n_u32;
2541     s = "vcvtf"; OverloadInt = false; break;
2542   case AArch64::BI__builtin_neon_vcvtd_n_f64_u64:
2543     Int = Intrinsic::aarch64_neon_vcvtf64_n_u64;
2544     s = "vcvtf"; OverloadInt = false; break;
2545   // Scalar Floating-point Convert To Signed Fixed-point (Immediate)
2546   case AArch64::BI__builtin_neon_vcvts_n_s32_f32:
2547     Int = Intrinsic::aarch64_neon_vcvts_n_s32_f32;
2548     s = "fcvtzs"; OverloadInt = false; break;
2549   case AArch64::BI__builtin_neon_vcvtd_n_s64_f64:
2550     Int = Intrinsic::aarch64_neon_vcvtd_n_s64_f64;
2551     s = "fcvtzs"; OverloadInt = false; break;
2552   // Scalar Floating-point Convert To Unsigned Fixed-point (Immediate)
2553   case AArch64::BI__builtin_neon_vcvts_n_u32_f32:
2554     Int = Intrinsic::aarch64_neon_vcvts_n_u32_f32;
2555     s = "fcvtzu"; OverloadInt = false; break;
2556   case AArch64::BI__builtin_neon_vcvtd_n_u64_f64:
2557     Int = Intrinsic::aarch64_neon_vcvtd_n_u64_f64;
2558     s = "fcvtzu"; OverloadInt = false; break;
2559   }
2560
2561   if (!Int)
2562     return 0;
2563
2564   // AArch64 scalar builtin that returns scalar type
2565   // and should be mapped to AArch64 intrinsic that returns
2566   // one-element vector type.
2567   Function *F = 0;
2568   if (AcrossVec) {
2569     // Gen arg type
2570     const Expr *Arg = E->getArg(E->getNumArgs()-1);
2571     llvm::Type *Ty = CGF.ConvertType(Arg->getType());
2572     llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
2573     llvm::Type *ETy = VTy->getElementType();
2574     llvm::VectorType *RTy = llvm::VectorType::get(ETy, 1);
2575   
2576     if (ExtendEle) {
2577       assert(!ETy->isFloatingPointTy());
2578       RTy = llvm::VectorType::getExtendedElementVectorType(RTy);
2579     }
2580
2581     llvm::Type *Tys[2] = {RTy, VTy};
2582     F = CGF.CGM.getIntrinsic(Int, Tys);
2583     assert(E->getNumArgs() == 1);
2584   } else if (OverloadInt) {
2585     // Determine the type of this overloaded AArch64 intrinsic
2586     llvm::Type *Ty = CGF.ConvertType(E->getCallReturnType());
2587     llvm::VectorType *VTy = llvm::VectorType::get(Ty, 1);
2588     assert(VTy);
2589
2590     F = CGF.CGM.getIntrinsic(Int, VTy);
2591   } else if (OverloadWideInt || OverloadNarrowInt) {
2592     // Determine the type of this overloaded AArch64 intrinsic
2593     const Expr *Arg = E->getArg(E->getNumArgs()-1);
2594     llvm::Type *Ty = CGF.ConvertType(Arg->getType());
2595     llvm::VectorType *VTy = llvm::VectorType::get(Ty, 1);
2596     llvm::VectorType *RTy = OverloadWideInt ? 
2597       llvm::VectorType::getExtendedElementVectorType(VTy) :
2598       llvm::VectorType::getTruncatedElementVectorType(VTy);
2599     F = CGF.CGM.getIntrinsic(Int, RTy);
2600   } else if (OverloadCmpInt) {
2601     // Determine the types of this overloaded AArch64 intrinsic
2602     SmallVector<llvm::Type *, 3> Tys;
2603     const Expr *Arg = E->getArg(E->getNumArgs()-1);
2604     llvm::Type *Ty = CGF.ConvertType(E->getCallReturnType());
2605     llvm::VectorType *VTy = llvm::VectorType::get(Ty, 1);
2606     Tys.push_back(VTy);
2607     Ty = CGF.ConvertType(Arg->getType());
2608     VTy = llvm::VectorType::get(Ty, 1);
2609     Tys.push_back(VTy);
2610     if(IsFpCmpZInt)
2611       VTy = llvm::VectorType::get(CGF.FloatTy, 1);
2612     Tys.push_back(VTy);
2613
2614     F = CGF.CGM.getIntrinsic(Int, Tys);
2615   } else if (OverloadCvtInt) {
2616     // Determine the types of this overloaded AArch64 intrinsic
2617     SmallVector<llvm::Type *, 2> Tys;
2618     const Expr *Arg = E->getArg(E->getNumArgs()-1);
2619     llvm::Type *Ty = CGF.ConvertType(E->getCallReturnType());
2620     llvm::VectorType *VTy = llvm::VectorType::get(Ty, 1);
2621     Tys.push_back(VTy);
2622     Ty = CGF.ConvertType(Arg->getType());
2623     VTy = llvm::VectorType::get(Ty, 1);
2624     Tys.push_back(VTy);
2625
2626     F = CGF.CGM.getIntrinsic(Int, Tys);
2627   } else
2628     F = CGF.CGM.getIntrinsic(Int);
2629
2630   Value *Result = CGF.EmitNeonCall(F, Ops, s);
2631   llvm::Type *ResultType = CGF.ConvertType(E->getType());
2632   // AArch64 intrinsic one-element vector type cast to
2633   // scalar type expected by the builtin
2634   return CGF.Builder.CreateBitCast(Result, ResultType, s);
2635 }
2636
2637 Value *CodeGenFunction::EmitAArch64CompareBuiltinExpr(
2638     Value *Op, llvm::Type *Ty, const CmpInst::Predicate Fp,
2639     const CmpInst::Predicate Ip, const Twine &Name) {
2640   llvm::Type *OTy = ((llvm::User *)Op)->getOperand(0)->getType();
2641   if (OTy->isPointerTy())
2642     OTy = Ty;
2643   Op = Builder.CreateBitCast(Op, OTy);
2644   if (((llvm::VectorType *)OTy)->getElementType()->isFloatingPointTy()) {
2645     Op = Builder.CreateFCmp(Fp, Op, ConstantAggregateZero::get(OTy));
2646   } else {
2647     Op = Builder.CreateICmp(Ip, Op, ConstantAggregateZero::get(OTy));
2648   }
2649   return Builder.CreateZExt(Op, Ty, Name);
2650 }
2651
2652 static Value *packTBLDVectorList(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
2653                                  Value *ExtOp, Value *IndexOp,
2654                                  llvm::Type *ResTy, unsigned IntID,
2655                                  const char *Name) {
2656   SmallVector<Value *, 2> TblOps;
2657   if (ExtOp)
2658     TblOps.push_back(ExtOp);
2659
2660   // Build a vector containing sequential number like (0, 1, 2, ..., 15)  
2661   SmallVector<Constant*, 16> Indices;
2662   llvm::VectorType *TblTy = cast<llvm::VectorType>(Ops[0]->getType());
2663   for (unsigned i = 0, e = TblTy->getNumElements(); i != e; ++i) {
2664     Indices.push_back(ConstantInt::get(CGF.Int32Ty, 2*i));
2665     Indices.push_back(ConstantInt::get(CGF.Int32Ty, 2*i+1));
2666   }
2667   Value *SV = llvm::ConstantVector::get(Indices);
2668
2669   int PairPos = 0, End = Ops.size() - 1;
2670   while (PairPos < End) {
2671     TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos],
2672                                                      Ops[PairPos+1], SV, Name));
2673     PairPos += 2;
2674   }
2675
2676   // If there's an odd number of 64-bit lookup table, fill the high 64-bit
2677   // of the 128-bit lookup table with zero.
2678   if (PairPos == End) {
2679     Value *ZeroTbl = ConstantAggregateZero::get(TblTy);
2680     TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos],
2681                                                      ZeroTbl, SV, Name));
2682   }
2683
2684   TblTy = llvm::VectorType::get(TblTy->getElementType(),
2685                                 2*TblTy->getNumElements());
2686   llvm::Type *Tys[2] = { ResTy, TblTy };
2687
2688   Function *TblF;
2689   TblOps.push_back(IndexOp);
2690   TblF = CGF.CGM.getIntrinsic(IntID, Tys);
2691   
2692   return CGF.EmitNeonCall(TblF, TblOps, Name);
2693 }
2694
2695 static Value *EmitAArch64TblBuiltinExpr(CodeGenFunction &CGF,
2696                                         unsigned BuiltinID,
2697                                         const CallExpr *E) {
2698   unsigned int Int = 0;
2699   const char *s = NULL;
2700
2701   unsigned TblPos;
2702   switch (BuiltinID) {
2703   default:
2704     return 0;
2705   case AArch64::BI__builtin_neon_vtbl1_v:
2706   case AArch64::BI__builtin_neon_vqtbl1_v:
2707   case AArch64::BI__builtin_neon_vqtbl1q_v:
2708   case AArch64::BI__builtin_neon_vtbl2_v:
2709   case AArch64::BI__builtin_neon_vqtbl2_v:
2710   case AArch64::BI__builtin_neon_vqtbl2q_v:
2711   case AArch64::BI__builtin_neon_vtbl3_v:
2712   case AArch64::BI__builtin_neon_vqtbl3_v:
2713   case AArch64::BI__builtin_neon_vqtbl3q_v:
2714   case AArch64::BI__builtin_neon_vtbl4_v:
2715   case AArch64::BI__builtin_neon_vqtbl4_v:
2716   case AArch64::BI__builtin_neon_vqtbl4q_v:
2717     TblPos = 0;
2718     break;
2719   case AArch64::BI__builtin_neon_vtbx1_v:
2720   case AArch64::BI__builtin_neon_vqtbx1_v:
2721   case AArch64::BI__builtin_neon_vqtbx1q_v:
2722   case AArch64::BI__builtin_neon_vtbx2_v:
2723   case AArch64::BI__builtin_neon_vqtbx2_v:
2724   case AArch64::BI__builtin_neon_vqtbx2q_v:
2725   case AArch64::BI__builtin_neon_vtbx3_v:
2726   case AArch64::BI__builtin_neon_vqtbx3_v:
2727   case AArch64::BI__builtin_neon_vqtbx3q_v:
2728   case AArch64::BI__builtin_neon_vtbx4_v:
2729   case AArch64::BI__builtin_neon_vqtbx4_v:
2730   case AArch64::BI__builtin_neon_vqtbx4q_v:
2731     TblPos = 1;
2732     break;
2733   }
2734
2735   assert(E->getNumArgs() >= 3);
2736
2737   // Get the last argument, which specifies the vector type.
2738   llvm::APSInt Result;
2739   const Expr *Arg = E->getArg(E->getNumArgs() - 1);
2740   if (!Arg->isIntegerConstantExpr(Result, CGF.getContext()))
2741     return 0;
2742
2743   // Determine the type of this overloaded NEON intrinsic.
2744   NeonTypeFlags Type(Result.getZExtValue());
2745   llvm::VectorType *VTy = GetNeonType(&CGF, Type);
2746   llvm::Type *Ty = VTy;
2747   if (!Ty)
2748     return 0;
2749
2750   SmallVector<Value *, 4> Ops;
2751   for (unsigned i = 0, e = E->getNumArgs() - 1; i != e; i++) {
2752     Ops.push_back(CGF.EmitScalarExpr(E->getArg(i)));
2753   }
2754
2755   Arg = E->getArg(TblPos);
2756   llvm::Type *TblTy = CGF.ConvertType(Arg->getType());
2757   llvm::VectorType *VTblTy = cast<llvm::VectorType>(TblTy);
2758   llvm::Type *Tys[2] = { Ty, VTblTy };
2759   unsigned nElts = VTy->getNumElements();  
2760
2761   // AArch64 scalar builtins are not overloaded, they do not have an extra
2762   // argument that specifies the vector type, need to handle each case.
2763   SmallVector<Value *, 2> TblOps;
2764   switch (BuiltinID) {
2765   case AArch64::BI__builtin_neon_vtbl1_v: {
2766     TblOps.push_back(Ops[0]);
2767     return packTBLDVectorList(CGF, TblOps, 0, Ops[1], Ty,
2768                               Intrinsic::aarch64_neon_vtbl1, "vtbl1");
2769   }
2770   case AArch64::BI__builtin_neon_vtbl2_v: {
2771     TblOps.push_back(Ops[0]);
2772     TblOps.push_back(Ops[1]);
2773     return packTBLDVectorList(CGF, TblOps, 0, Ops[2], Ty,
2774                               Intrinsic::aarch64_neon_vtbl1, "vtbl1");
2775   }
2776   case AArch64::BI__builtin_neon_vtbl3_v: {
2777     TblOps.push_back(Ops[0]);
2778     TblOps.push_back(Ops[1]);
2779     TblOps.push_back(Ops[2]);
2780     return packTBLDVectorList(CGF, TblOps, 0, Ops[3], Ty,
2781                               Intrinsic::aarch64_neon_vtbl2, "vtbl2");
2782   }
2783   case AArch64::BI__builtin_neon_vtbl4_v: {
2784     TblOps.push_back(Ops[0]);
2785     TblOps.push_back(Ops[1]);
2786     TblOps.push_back(Ops[2]);
2787     TblOps.push_back(Ops[3]);
2788     return packTBLDVectorList(CGF, TblOps, 0, Ops[4], Ty,
2789                               Intrinsic::aarch64_neon_vtbl2, "vtbl2");
2790   }
2791   case AArch64::BI__builtin_neon_vtbx1_v: {
2792     TblOps.push_back(Ops[1]);
2793     Value *TblRes = packTBLDVectorList(CGF, TblOps, 0, Ops[2], Ty,
2794                                     Intrinsic::aarch64_neon_vtbl1, "vtbl1");
2795
2796     llvm::Constant *Eight = ConstantInt::get(VTy->getElementType(), 8);
2797     Value* EightV = llvm::ConstantVector::getSplat(nElts, Eight);
2798     Value *CmpRes = CGF.Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[2], EightV);
2799     CmpRes = CGF.Builder.CreateSExt(CmpRes, Ty);
2800
2801     SmallVector<Value *, 4> BslOps;
2802     BslOps.push_back(CmpRes);
2803     BslOps.push_back(Ops[0]);
2804     BslOps.push_back(TblRes);
2805     Function *BslF = CGF.CGM.getIntrinsic(Intrinsic::arm_neon_vbsl, Ty);
2806     return CGF.EmitNeonCall(BslF, BslOps, "vbsl");
2807   }
2808   case AArch64::BI__builtin_neon_vtbx2_v: {
2809     TblOps.push_back(Ops[1]);
2810     TblOps.push_back(Ops[2]);
2811     return packTBLDVectorList(CGF, TblOps, Ops[0], Ops[3], Ty,
2812                               Intrinsic::aarch64_neon_vtbx1, "vtbx1");
2813   }
2814   case AArch64::BI__builtin_neon_vtbx3_v: {
2815     TblOps.push_back(Ops[1]);
2816     TblOps.push_back(Ops[2]);
2817     TblOps.push_back(Ops[3]);
2818     Value *TblRes = packTBLDVectorList(CGF, TblOps, 0, Ops[4], Ty,
2819                                        Intrinsic::aarch64_neon_vtbl2, "vtbl2");
2820
2821     llvm::Constant *TwentyFour = ConstantInt::get(VTy->getElementType(), 24);
2822     Value* TwentyFourV = llvm::ConstantVector::getSplat(nElts, TwentyFour);
2823     Value *CmpRes = CGF.Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[4],
2824                                            TwentyFourV);
2825     CmpRes = CGF.Builder.CreateSExt(CmpRes, Ty);
2826   
2827     SmallVector<Value *, 4> BslOps;
2828     BslOps.push_back(CmpRes);
2829     BslOps.push_back(Ops[0]);
2830     BslOps.push_back(TblRes);
2831     Function *BslF = CGF.CGM.getIntrinsic(Intrinsic::arm_neon_vbsl, Ty);
2832     return CGF.EmitNeonCall(BslF, BslOps, "vbsl");
2833   }
2834   case AArch64::BI__builtin_neon_vtbx4_v: {
2835     TblOps.push_back(Ops[1]);
2836     TblOps.push_back(Ops[2]);
2837     TblOps.push_back(Ops[3]);
2838     TblOps.push_back(Ops[4]);
2839     return packTBLDVectorList(CGF, TblOps, Ops[0], Ops[5], Ty,
2840                               Intrinsic::aarch64_neon_vtbx2, "vtbx2");
2841   }
2842   case AArch64::BI__builtin_neon_vqtbl1_v:
2843   case AArch64::BI__builtin_neon_vqtbl1q_v:
2844     Int = Intrinsic::aarch64_neon_vtbl1; s = "vtbl1"; break;
2845   case AArch64::BI__builtin_neon_vqtbl2_v:
2846   case AArch64::BI__builtin_neon_vqtbl2q_v: {
2847     Int = Intrinsic::aarch64_neon_vtbl2; s = "vtbl2"; break;
2848   case AArch64::BI__builtin_neon_vqtbl3_v:
2849   case AArch64::BI__builtin_neon_vqtbl3q_v:
2850     Int = Intrinsic::aarch64_neon_vtbl3; s = "vtbl3"; break;
2851   case AArch64::BI__builtin_neon_vqtbl4_v:
2852   case AArch64::BI__builtin_neon_vqtbl4q_v:
2853     Int = Intrinsic::aarch64_neon_vtbl4; s = "vtbl4"; break;
2854   case AArch64::BI__builtin_neon_vqtbx1_v:
2855   case AArch64::BI__builtin_neon_vqtbx1q_v:
2856     Int = Intrinsic::aarch64_neon_vtbx1; s = "vtbx1"; break;
2857   case AArch64::BI__builtin_neon_vqtbx2_v:
2858   case AArch64::BI__builtin_neon_vqtbx2q_v:
2859     Int = Intrinsic::aarch64_neon_vtbx2; s = "vtbx2"; break;
2860   case AArch64::BI__builtin_neon_vqtbx3_v:
2861   case AArch64::BI__builtin_neon_vqtbx3q_v:
2862     Int = Intrinsic::aarch64_neon_vtbx3; s = "vtbx3"; break;
2863   case AArch64::BI__builtin_neon_vqtbx4_v:
2864   case AArch64::BI__builtin_neon_vqtbx4q_v:
2865     Int = Intrinsic::aarch64_neon_vtbx4; s = "vtbx4"; break;
2866   }
2867   }
2868
2869   if (!Int)
2870     return 0;
2871
2872   Function *F = CGF.CGM.getIntrinsic(Int, Tys);
2873   return CGF.EmitNeonCall(F, Ops, s);
2874 }
2875
2876 Value *CodeGenFunction::EmitAArch64BuiltinExpr(unsigned BuiltinID,
2877                                                const CallExpr *E) {
2878   // Process AArch64 scalar builtins
2879   if (Value *Result = EmitAArch64ScalarBuiltinExpr(*this, BuiltinID, E))
2880     return Result;
2881
2882   // Process AArch64 table lookup builtins
2883   if (Value *Result = EmitAArch64TblBuiltinExpr(*this, BuiltinID, E))
2884     return Result;
2885
2886   if (BuiltinID == AArch64::BI__clear_cache) {
2887     assert(E->getNumArgs() == 2 &&
2888            "Variadic __clear_cache slipped through on AArch64");
2889
2890     const FunctionDecl *FD = E->getDirectCallee();
2891     SmallVector<Value *, 2> Ops;
2892     for (unsigned i = 0; i < E->getNumArgs(); i++)
2893       Ops.push_back(EmitScalarExpr(E->getArg(i)));
2894     llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
2895     llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
2896     StringRef Name = FD->getName();
2897     return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
2898   }
2899
2900   SmallVector<Value *, 4> Ops;
2901   llvm::Value *Align = 0; // Alignment for load/store
2902   for (unsigned i = 0, e = E->getNumArgs() - 1; i != e; i++) {
2903     if (i == 0) {
2904       switch (BuiltinID) {
2905       case AArch64::BI__builtin_neon_vst1_x2_v:
2906       case AArch64::BI__builtin_neon_vst1q_x2_v:
2907       case AArch64::BI__builtin_neon_vst1_x3_v:
2908       case AArch64::BI__builtin_neon_vst1q_x3_v:
2909       case AArch64::BI__builtin_neon_vst1_x4_v:
2910       case AArch64::BI__builtin_neon_vst1q_x4_v:
2911       // Handle ld1/st1 lane in this function a little different from ARM.
2912       case AArch64::BI__builtin_neon_vld1_lane_v:
2913       case AArch64::BI__builtin_neon_vld1q_lane_v:
2914       case AArch64::BI__builtin_neon_vst1_lane_v:
2915       case AArch64::BI__builtin_neon_vst1q_lane_v:
2916         // Get the alignment for the argument in addition to the value;
2917         // we'll use it later.
2918         std::pair<llvm::Value *, unsigned> Src =
2919             EmitPointerWithAlignment(E->getArg(0));
2920         Ops.push_back(Src.first);
2921         Align = Builder.getInt32(Src.second);
2922         continue;
2923       }
2924     }
2925     if (i == 1) {
2926       switch (BuiltinID) {
2927       case AArch64::BI__builtin_neon_vld1_x2_v:
2928       case AArch64::BI__builtin_neon_vld1q_x2_v:
2929       case AArch64::BI__builtin_neon_vld1_x3_v:
2930       case AArch64::BI__builtin_neon_vld1q_x3_v:
2931       case AArch64::BI__builtin_neon_vld1_x4_v:
2932       case AArch64::BI__builtin_neon_vld1q_x4_v:
2933       // Handle ld1/st1 dup lane in this function a little different from ARM.
2934       case AArch64::BI__builtin_neon_vld2_dup_v:
2935       case AArch64::BI__builtin_neon_vld2q_dup_v:
2936       case AArch64::BI__builtin_neon_vld3_dup_v:
2937       case AArch64::BI__builtin_neon_vld3q_dup_v:
2938       case AArch64::BI__builtin_neon_vld4_dup_v:
2939       case AArch64::BI__builtin_neon_vld4q_dup_v:
2940       case AArch64::BI__builtin_neon_vld2_lane_v:
2941       case AArch64::BI__builtin_neon_vld2q_lane_v:
2942         // Get the alignment for the argument in addition to the value;
2943         // we'll use it later.
2944         std::pair<llvm::Value *, unsigned> Src =
2945             EmitPointerWithAlignment(E->getArg(1));
2946         Ops.push_back(Src.first);
2947         Align = Builder.getInt32(Src.second);
2948         continue;
2949       }
2950     }
2951     Ops.push_back(EmitScalarExpr(E->getArg(i)));
2952   }
2953
2954   // Get the last argument, which specifies the vector type.
2955   llvm::APSInt Result;
2956   const Expr *Arg = E->getArg(E->getNumArgs() - 1);
2957   if (!Arg->isIntegerConstantExpr(Result, getContext()))
2958     return 0;
2959
2960   // Determine the type of this overloaded NEON intrinsic.
2961   NeonTypeFlags Type(Result.getZExtValue());
2962   bool usgn = Type.isUnsigned();
2963   bool quad = Type.isQuad();
2964
2965   llvm::VectorType *VTy = GetNeonType(this, Type);
2966   llvm::Type *Ty = VTy;
2967   if (!Ty)
2968     return 0;
2969
2970   unsigned Int;
2971   switch (BuiltinID) {
2972   default:
2973     return 0;
2974
2975   // AArch64 builtins mapping to legacy ARM v7 builtins.
2976   // FIXME: the mapped builtins listed correspond to what has been tested
2977   // in aarch64-neon-intrinsics.c so far.
2978   case AArch64::BI__builtin_neon_vuzp_v:
2979     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vuzp_v, E);
2980   case AArch64::BI__builtin_neon_vuzpq_v:
2981     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vuzpq_v, E);
2982   case AArch64::BI__builtin_neon_vzip_v:
2983     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vzip_v, E);
2984   case AArch64::BI__builtin_neon_vzipq_v:
2985     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vzipq_v, E);
2986   case AArch64::BI__builtin_neon_vtrn_v:
2987     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vtrn_v, E);
2988   case AArch64::BI__builtin_neon_vtrnq_v:
2989     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vtrnq_v, E);
2990   case AArch64::BI__builtin_neon_vext_v:
2991     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vext_v, E);
2992   case AArch64::BI__builtin_neon_vextq_v:
2993     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vextq_v, E);
2994   case AArch64::BI__builtin_neon_vmul_v:
2995     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vmul_v, E);
2996   case AArch64::BI__builtin_neon_vmulq_v:
2997     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vmulq_v, E);
2998   case AArch64::BI__builtin_neon_vabd_v:
2999     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vabd_v, E);
3000   case AArch64::BI__builtin_neon_vabdq_v:
3001     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vabdq_v, E);
3002   case AArch64::BI__builtin_neon_vfma_v:
3003     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vfma_v, E);
3004   case AArch64::BI__builtin_neon_vfmaq_v:
3005     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vfmaq_v, E);
3006   case AArch64::BI__builtin_neon_vbsl_v:
3007     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vbsl_v, E);
3008   case AArch64::BI__builtin_neon_vbslq_v:
3009     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vbslq_v, E);
3010   case AArch64::BI__builtin_neon_vrsqrts_v:
3011     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vrsqrts_v, E);
3012   case AArch64::BI__builtin_neon_vrsqrtsq_v:
3013     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vrsqrtsq_v, E);
3014   case AArch64::BI__builtin_neon_vrecps_v:
3015     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vrecps_v, E);
3016   case AArch64::BI__builtin_neon_vrecpsq_v:
3017     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vrecpsq_v, E);
3018   case AArch64::BI__builtin_neon_vcale_v:
3019     if (VTy->getVectorNumElements() == 1) {
3020       std::swap(Ops[0], Ops[1]);
3021     } else {
3022       return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vcale_v, E);
3023     }
3024   case AArch64::BI__builtin_neon_vcage_v:
3025     if (VTy->getVectorNumElements() == 1) {
3026       // Determine the types of this overloaded AArch64 intrinsic
3027       SmallVector<llvm::Type *, 3> Tys;
3028       Tys.push_back(VTy);
3029       VTy = llvm::VectorType::get(DoubleTy, 1);
3030       Tys.push_back(VTy);
3031       Tys.push_back(VTy);
3032       Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_vcage, Tys);
3033       return EmitNeonCall(F, Ops, "vcage");
3034     }
3035     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vcage_v, E);
3036   case AArch64::BI__builtin_neon_vcaleq_v:
3037     std::swap(Ops[0], Ops[1]);
3038   case AArch64::BI__builtin_neon_vcageq_v: {
3039     Function *F;
3040     if (VTy->getElementType()->isIntegerTy(64))
3041       F = CGM.getIntrinsic(Intrinsic::aarch64_neon_vacgeq);
3042     else
3043       F = CGM.getIntrinsic(Intrinsic::arm_neon_vacgeq);
3044     return EmitNeonCall(F, Ops, "vcage");
3045   }
3046   case AArch64::BI__builtin_neon_vcalt_v:
3047     if (VTy->getVectorNumElements() == 1) {
3048       std::swap(Ops[0], Ops[1]);
3049     } else {
3050       return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vcalt_v, E);
3051     }
3052   case AArch64::BI__builtin_neon_vcagt_v:
3053     if (VTy->getVectorNumElements() == 1) {
3054       // Determine the types of this overloaded AArch64 intrinsic
3055       SmallVector<llvm::Type *, 3> Tys;
3056       Tys.push_back(VTy);
3057       VTy = llvm::VectorType::get(DoubleTy, 1);
3058       Tys.push_back(VTy);
3059       Tys.push_back(VTy);
3060       Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_vcagt, Tys);
3061       return EmitNeonCall(F, Ops, "vcagt");
3062     }
3063     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vcagt_v, E);
3064   case AArch64::BI__builtin_neon_vcaltq_v:
3065     std::swap(Ops[0], Ops[1]);
3066   case AArch64::BI__builtin_neon_vcagtq_v: {
3067     Function *F;
3068     if (VTy->getElementType()->isIntegerTy(64))
3069       F = CGM.getIntrinsic(Intrinsic::aarch64_neon_vacgtq);
3070     else
3071       F = CGM.getIntrinsic(Intrinsic::arm_neon_vacgtq);
3072     return EmitNeonCall(F, Ops, "vcagt");
3073   }
3074   case AArch64::BI__builtin_neon_vtst_v:
3075     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vtst_v, E);
3076   case AArch64::BI__builtin_neon_vtstq_v:
3077     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vtstq_v, E);
3078   case AArch64::BI__builtin_neon_vhadd_v:
3079     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vhadd_v, E);
3080   case AArch64::BI__builtin_neon_vhaddq_v:
3081     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vhaddq_v, E);
3082   case AArch64::BI__builtin_neon_vhsub_v:
3083     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vhsub_v, E);
3084   case AArch64::BI__builtin_neon_vhsubq_v:
3085     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vhsubq_v, E);
3086   case AArch64::BI__builtin_neon_vrhadd_v:
3087     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vrhadd_v, E);
3088   case AArch64::BI__builtin_neon_vrhaddq_v:
3089     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vrhaddq_v, E);
3090   case AArch64::BI__builtin_neon_vqadd_v:
3091     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqadd_v, E);
3092   case AArch64::BI__builtin_neon_vqaddq_v:
3093     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqaddq_v, E);
3094   case AArch64::BI__builtin_neon_vqsub_v:
3095     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqsub_v, E);
3096   case AArch64::BI__builtin_neon_vqsubq_v:
3097     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqsubq_v, E);
3098   case AArch64::BI__builtin_neon_vshl_v:
3099     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vshl_v, E);
3100   case AArch64::BI__builtin_neon_vshlq_v:
3101     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vshlq_v, E);
3102   case AArch64::BI__builtin_neon_vqshl_v:
3103     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqshl_v, E);
3104   case AArch64::BI__builtin_neon_vqshlq_v:
3105     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqshlq_v, E);
3106   case AArch64::BI__builtin_neon_vrshl_v:
3107     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vrshl_v, E);
3108   case AArch64::BI__builtin_neon_vrshlq_v:
3109     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vrshlq_v, E);
3110   case AArch64::BI__builtin_neon_vqrshl_v:
3111     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqrshl_v, E);
3112   case AArch64::BI__builtin_neon_vqrshlq_v:
3113     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqrshlq_v, E);
3114   case AArch64::BI__builtin_neon_vaddhn_v:
3115     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vaddhn_v, E);
3116   case AArch64::BI__builtin_neon_vraddhn_v:
3117     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vraddhn_v, E);
3118   case AArch64::BI__builtin_neon_vsubhn_v:
3119     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vsubhn_v, E);
3120   case AArch64::BI__builtin_neon_vrsubhn_v:
3121     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vrsubhn_v, E);
3122   case AArch64::BI__builtin_neon_vmull_v:
3123     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vmull_v, E);
3124   case AArch64::BI__builtin_neon_vqdmull_v:
3125     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqdmull_v, E);
3126   case AArch64::BI__builtin_neon_vqdmlal_v:
3127     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqdmlal_v, E);
3128   case AArch64::BI__builtin_neon_vqdmlsl_v:
3129     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqdmlsl_v, E);
3130   case AArch64::BI__builtin_neon_vmax_v:
3131     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vmax_v, E);
3132   case AArch64::BI__builtin_neon_vmaxq_v:
3133     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vmaxq_v, E);
3134   case AArch64::BI__builtin_neon_vmin_v:
3135     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vmin_v, E);
3136   case AArch64::BI__builtin_neon_vminq_v:
3137     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vminq_v, E);
3138   case AArch64::BI__builtin_neon_vpmax_v:
3139     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vpmax_v, E);
3140   case AArch64::BI__builtin_neon_vpmin_v:
3141     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vpmin_v, E);
3142   case AArch64::BI__builtin_neon_vpadd_v:
3143     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vpadd_v, E);
3144   case AArch64::BI__builtin_neon_vqdmulh_v:
3145     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqdmulh_v, E);
3146   case AArch64::BI__builtin_neon_vqdmulhq_v:
3147     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqdmulhq_v, E);
3148   case AArch64::BI__builtin_neon_vqrdmulh_v:
3149     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqrdmulh_v, E);
3150   case AArch64::BI__builtin_neon_vqrdmulhq_v:
3151     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqrdmulhq_v, E);
3152
3153   // Shift by immediate
3154   case AArch64::BI__builtin_neon_vshr_n_v:
3155     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vshr_n_v, E);
3156   case AArch64::BI__builtin_neon_vshrq_n_v:
3157     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vshrq_n_v, E);
3158   case AArch64::BI__builtin_neon_vrshr_n_v:
3159   case AArch64::BI__builtin_neon_vrshrq_n_v:
3160     Int = usgn ? Intrinsic::aarch64_neon_vurshr
3161                : Intrinsic::aarch64_neon_vsrshr;
3162     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshr_n");
3163   case AArch64::BI__builtin_neon_vsra_n_v:
3164     if (VTy->getElementType()->isIntegerTy(64)) {
3165       Int = usgn ? Intrinsic::aarch64_neon_vsradu_n
3166                  : Intrinsic::aarch64_neon_vsrads_n;
3167       return EmitNeonCall(CGM.getIntrinsic(Int), Ops, "vsra_n");
3168     }
3169     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vsra_n_v, E);
3170   case AArch64::BI__builtin_neon_vsraq_n_v:
3171     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vsraq_n_v, E);
3172   case AArch64::BI__builtin_neon_vrsra_n_v:
3173     if (VTy->getElementType()->isIntegerTy(64)) {
3174       Int = usgn ? Intrinsic::aarch64_neon_vrsradu_n
3175                  : Intrinsic::aarch64_neon_vrsrads_n;
3176       return EmitNeonCall(CGM.getIntrinsic(Int), Ops, "vrsra_n");
3177     }
3178     // fall through
3179   case AArch64::BI__builtin_neon_vrsraq_n_v: {
3180     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
3181     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
3182     Int = usgn ? Intrinsic::aarch64_neon_vurshr
3183                : Intrinsic::aarch64_neon_vsrshr;
3184     Ops[1] = Builder.CreateCall2(CGM.getIntrinsic(Int, Ty), Ops[1], Ops[2]);
3185     return Builder.CreateAdd(Ops[0], Ops[1], "vrsra_n");
3186   }
3187   case AArch64::BI__builtin_neon_vshl_n_v:
3188     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vshl_n_v, E);
3189   case AArch64::BI__builtin_neon_vshlq_n_v:
3190     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vshlq_n_v, E);
3191   case AArch64::BI__builtin_neon_vqshl_n_v:
3192     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqshl_n_v, E);
3193   case AArch64::BI__builtin_neon_vqshlq_n_v:
3194     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqshlq_n_v, E);
3195   case AArch64::BI__builtin_neon_vqshlu_n_v:
3196   case AArch64::BI__builtin_neon_vqshluq_n_v:
3197     Int = Intrinsic::aarch64_neon_vsqshlu;
3198     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshlu_n");
3199   case AArch64::BI__builtin_neon_vsri_n_v:
3200   case AArch64::BI__builtin_neon_vsriq_n_v:
3201     Int = Intrinsic::aarch64_neon_vsri;
3202     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsri_n");
3203   case AArch64::BI__builtin_neon_vsli_n_v:
3204   case AArch64::BI__builtin_neon_vsliq_n_v:
3205     Int = Intrinsic::aarch64_neon_vsli;
3206     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsli_n");
3207   case AArch64::BI__builtin_neon_vshll_n_v: {
3208     llvm::Type *SrcTy = llvm::VectorType::getTruncatedElementVectorType(VTy);
3209     Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
3210     if (usgn)
3211       Ops[0] = Builder.CreateZExt(Ops[0], VTy);
3212     else
3213       Ops[0] = Builder.CreateSExt(Ops[0], VTy);
3214     Ops[1] = EmitNeonShiftVector(Ops[1], VTy, false);
3215     return Builder.CreateShl(Ops[0], Ops[1], "vshll_n");
3216   }
3217   case AArch64::BI__builtin_neon_vshrn_n_v: {
3218     llvm::Type *SrcTy = llvm::VectorType::getExtendedElementVectorType(VTy);
3219     Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
3220     Ops[1] = EmitNeonShiftVector(Ops[1], SrcTy, false);
3221     if (usgn)
3222       Ops[0] = Builder.CreateLShr(Ops[0], Ops[1]);
3223     else
3224       Ops[0] = Builder.CreateAShr(Ops[0], Ops[1]);
3225     return Builder.CreateTrunc(Ops[0], Ty, "vshrn_n");
3226   }
3227   case AArch64::BI__builtin_neon_vqshrun_n_v:
3228     Int = Intrinsic::aarch64_neon_vsqshrun;
3229     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrun_n");
3230   case AArch64::BI__builtin_neon_vrshrn_n_v:
3231     Int = Intrinsic::aarch64_neon_vrshrn;
3232     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshrn_n");
3233   case AArch64::BI__builtin_neon_vqrshrun_n_v:
3234     Int = Intrinsic::aarch64_neon_vsqrshrun;
3235     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrun_n");
3236   case AArch64::BI__builtin_neon_vqshrn_n_v:
3237     Int = usgn ? Intrinsic::aarch64_neon_vuqshrn
3238                : Intrinsic::aarch64_neon_vsqshrn;
3239     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n");
3240   case AArch64::BI__builtin_neon_vqrshrn_n_v:
3241     Int = usgn ? Intrinsic::aarch64_neon_vuqrshrn
3242                : Intrinsic::aarch64_neon_vsqrshrn;
3243     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n");
3244
3245   // Convert
3246   case AArch64::BI__builtin_neon_vmovl_v:
3247     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vmovl_v, E);
3248   case AArch64::BI__builtin_neon_vcvt_n_f32_v:
3249     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vcvt_n_f32_v, E);
3250   case AArch64::BI__builtin_neon_vcvtq_n_f32_v:
3251     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vcvtq_n_f32_v, E);
3252   case AArch64::BI__builtin_neon_vcvt_n_f64_v:
3253   case AArch64::BI__builtin_neon_vcvtq_n_f64_v: {
3254     llvm::Type *FloatTy =
3255         GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, quad));
3256     llvm::Type *Tys[2] = { FloatTy, Ty };
3257     Int = usgn ? Intrinsic::arm_neon_vcvtfxu2fp
3258                : Intrinsic::arm_neon_vcvtfxs2fp;
3259     Function *F = CGM.getIntrinsic(Int, Tys);
3260     return EmitNeonCall(F, Ops, "vcvt_n");
3261   }
3262   case AArch64::BI__builtin_neon_vcvt_n_s32_v:
3263     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vcvt_n_s32_v, E);
3264   case AArch64::BI__builtin_neon_vcvtq_n_s32_v:
3265     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vcvtq_n_s32_v, E);
3266   case AArch64::BI__builtin_neon_vcvt_n_u32_v:
3267     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vcvt_n_u32_v, E);
3268   case AArch64::BI__builtin_neon_vcvtq_n_u32_v:
3269     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vcvtq_n_u32_v, E);
3270   case AArch64::BI__builtin_neon_vcvt_n_s64_v:
3271   case AArch64::BI__builtin_neon_vcvt_n_u64_v:
3272   case AArch64::BI__builtin_neon_vcvtq_n_s64_v:
3273   case AArch64::BI__builtin_neon_vcvtq_n_u64_v: {
3274     llvm::Type *FloatTy =
3275         GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, quad));
3276     llvm::Type *Tys[2] = { Ty, FloatTy };
3277     Int = usgn ? Intrinsic::arm_neon_vcvtfp2fxu
3278                : Intrinsic::arm_neon_vcvtfp2fxs;
3279     Function *F = CGM.getIntrinsic(Int, Tys);
3280     return EmitNeonCall(F, Ops, "vcvt_n");
3281   }
3282
3283   // Load/Store
3284   case AArch64::BI__builtin_neon_vld1_v:
3285     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vld1_v, E);
3286   case AArch64::BI__builtin_neon_vld1q_v:
3287     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vld1q_v, E);
3288   case AArch64::BI__builtin_neon_vld2_v:
3289     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vld2_v, E);
3290   case AArch64::BI__builtin_neon_vld2q_v:
3291     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vld2q_v, E);
3292   case AArch64::BI__builtin_neon_vld3_v:
3293     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vld3_v, E);
3294   case AArch64::BI__builtin_neon_vld3q_v:
3295     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vld3q_v, E);
3296   case AArch64::BI__builtin_neon_vld4_v:
3297     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vld4_v, E);
3298   case AArch64::BI__builtin_neon_vld4q_v:
3299     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vld4q_v, E);
3300   case AArch64::BI__builtin_neon_vst1_v:
3301     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vst1_v, E);
3302   case AArch64::BI__builtin_neon_vst1q_v:
3303     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vst1q_v, E);
3304   case AArch64::BI__builtin_neon_vst2_v:
3305     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vst2_v, E);
3306   case AArch64::BI__builtin_neon_vst2q_v:
3307     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vst2q_v, E);
3308   case AArch64::BI__builtin_neon_vst3_v:
3309     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vst3_v, E);
3310   case AArch64::BI__builtin_neon_vst3q_v:
3311     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vst3q_v, E);
3312   case AArch64::BI__builtin_neon_vst4_v:
3313     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vst4_v, E);
3314   case AArch64::BI__builtin_neon_vst4q_v:
3315     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vst4q_v, E);
3316   case AArch64::BI__builtin_neon_vld1_x2_v:
3317   case AArch64::BI__builtin_neon_vld1q_x2_v:
3318   case AArch64::BI__builtin_neon_vld1_x3_v:
3319   case AArch64::BI__builtin_neon_vld1q_x3_v:
3320   case AArch64::BI__builtin_neon_vld1_x4_v:
3321   case AArch64::BI__builtin_neon_vld1q_x4_v: {
3322     unsigned Int;
3323     switch (BuiltinID) {
3324     case AArch64::BI__builtin_neon_vld1_x2_v:
3325     case AArch64::BI__builtin_neon_vld1q_x2_v:
3326       Int = Intrinsic::aarch64_neon_vld1x2;
3327       break;
3328     case AArch64::BI__builtin_neon_vld1_x3_v:
3329     case AArch64::BI__builtin_neon_vld1q_x3_v:
3330       Int = Intrinsic::aarch64_neon_vld1x3;
3331       break;
3332     case AArch64::BI__builtin_neon_vld1_x4_v:
3333     case AArch64::BI__builtin_neon_vld1q_x4_v:
3334       Int = Intrinsic::aarch64_neon_vld1x4;
3335       break;
3336     }
3337     Function *F = CGM.getIntrinsic(Int, Ty);
3338     Ops[1] = Builder.CreateCall2(F, Ops[1], Align, "vld1xN");
3339     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
3340     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
3341     return Builder.CreateStore(Ops[1], Ops[0]);
3342   }
3343   case AArch64::BI__builtin_neon_vst1_x2_v:
3344   case AArch64::BI__builtin_neon_vst1q_x2_v:
3345   case AArch64::BI__builtin_neon_vst1_x3_v:
3346   case AArch64::BI__builtin_neon_vst1q_x3_v:
3347   case AArch64::BI__builtin_neon_vst1_x4_v:
3348   case AArch64::BI__builtin_neon_vst1q_x4_v: {
3349     Ops.push_back(Align);
3350     unsigned Int;
3351     switch (BuiltinID) {
3352     case AArch64::BI__builtin_neon_vst1_x2_v:
3353     case AArch64::BI__builtin_neon_vst1q_x2_v:
3354       Int = Intrinsic::aarch64_neon_vst1x2;
3355       break;
3356     case AArch64::BI__builtin_neon_vst1_x3_v:
3357     case AArch64::BI__builtin_neon_vst1q_x3_v:
3358       Int = Intrinsic::aarch64_neon_vst1x3;
3359       break;
3360     case AArch64::BI__builtin_neon_vst1_x4_v:
3361     case AArch64::BI__builtin_neon_vst1q_x4_v:
3362       Int = Intrinsic::aarch64_neon_vst1x4;
3363       break;
3364     }
3365     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "");
3366   }
3367   case AArch64::BI__builtin_neon_vld1_lane_v:
3368   case AArch64::BI__builtin_neon_vld1q_lane_v: {
3369     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
3370     Ty = llvm::PointerType::getUnqual(VTy->getElementType());
3371     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
3372     LoadInst *Ld = Builder.CreateLoad(Ops[0]);
3373     Ld->setAlignment(cast<ConstantInt>(Align)->getZExtValue());
3374     return Builder.CreateInsertElement(Ops[1], Ld, Ops[2], "vld1_lane");
3375   }
3376   case AArch64::BI__builtin_neon_vld2_lane_v:
3377     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vld2q_lane_v, E);
3378   case AArch64::BI__builtin_neon_vld2q_lane_v:
3379     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vld2q_lane_v, E);
3380   case AArch64::BI__builtin_neon_vld3_lane_v:
3381     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vld3_lane_v, E);
3382   case AArch64::BI__builtin_neon_vld3q_lane_v:
3383     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vld3q_lane_v, E);
3384   case AArch64::BI__builtin_neon_vld4_lane_v:
3385     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vld4_lane_v, E);
3386   case AArch64::BI__builtin_neon_vld4q_lane_v:
3387     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vld4q_lane_v, E);
3388   case AArch64::BI__builtin_neon_vst1_lane_v:
3389   case AArch64::BI__builtin_neon_vst1q_lane_v: {
3390     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
3391     Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
3392     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
3393     StoreInst *St =
3394         Builder.CreateStore(Ops[1], Builder.CreateBitCast(Ops[0], Ty));
3395     St->setAlignment(cast<ConstantInt>(Align)->getZExtValue());
3396     return St;
3397   }
3398   case AArch64::BI__builtin_neon_vst2_lane_v:
3399     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vst2_lane_v, E);
3400   case AArch64::BI__builtin_neon_vst2q_lane_v:
3401     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vst2q_lane_v, E);
3402   case AArch64::BI__builtin_neon_vst3_lane_v:
3403     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vst3_lane_v, E);
3404   case AArch64::BI__builtin_neon_vst3q_lane_v:
3405     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vst3q_lane_v, E);
3406   case AArch64::BI__builtin_neon_vst4_lane_v:
3407     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vst4_lane_v, E);
3408   case AArch64::BI__builtin_neon_vst4q_lane_v:
3409     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vst4q_lane_v, E);
3410   case AArch64::BI__builtin_neon_vld1_dup_v:
3411     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vld1_dup_v, E);
3412   case AArch64::BI__builtin_neon_vld1q_dup_v:
3413     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vld1q_dup_v, E);
3414   case AArch64::BI__builtin_neon_vld2_dup_v:
3415   case AArch64::BI__builtin_neon_vld2q_dup_v:
3416   case AArch64::BI__builtin_neon_vld3_dup_v:
3417   case AArch64::BI__builtin_neon_vld3q_dup_v:
3418   case AArch64::BI__builtin_neon_vld4_dup_v:
3419   case AArch64::BI__builtin_neon_vld4q_dup_v: {
3420     // Handle 64-bit x 1 elements as a special-case.  There is no "dup" needed.
3421     if (VTy->getElementType()->getPrimitiveSizeInBits() == 64 &&
3422         VTy->getNumElements() == 1) {
3423       switch (BuiltinID) {
3424       case AArch64::BI__builtin_neon_vld2_dup_v:
3425         Int = Intrinsic::arm_neon_vld2;
3426         break;
3427       case AArch64::BI__builtin_neon_vld3_dup_v:
3428         Int = Intrinsic::arm_neon_vld3;
3429         break;
3430       case AArch64::BI__builtin_neon_vld4_dup_v:
3431         Int = Intrinsic::arm_neon_vld4;
3432         break;
3433       default:
3434         llvm_unreachable("unknown vld_dup intrinsic?");
3435       }
3436       Function *F = CGM.getIntrinsic(Int, Ty);
3437       Ops[1] = Builder.CreateCall2(F, Ops[1], Align, "vld_dup");
3438       Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
3439       Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
3440       return Builder.CreateStore(Ops[1], Ops[0]);
3441     }
3442     switch (BuiltinID) {
3443     case AArch64::BI__builtin_neon_vld2_dup_v:
3444     case AArch64::BI__builtin_neon_vld2q_dup_v:
3445       Int = Intrinsic::arm_neon_vld2lane;
3446       break;
3447     case AArch64::BI__builtin_neon_vld3_dup_v:
3448     case AArch64::BI__builtin_neon_vld3q_dup_v:
3449       Int = Intrinsic::arm_neon_vld3lane;
3450       break;
3451     case AArch64::BI__builtin_neon_vld4_dup_v:
3452     case AArch64::BI__builtin_neon_vld4q_dup_v:
3453       Int = Intrinsic::arm_neon_vld4lane;
3454       break;
3455     }
3456     Function *F = CGM.getIntrinsic(Int, Ty);
3457     llvm::StructType *STy = cast<llvm::StructType>(F->getReturnType());
3458
3459     SmallVector<Value *, 6> Args;
3460     Args.push_back(Ops[1]);
3461     Args.append(STy->getNumElements(), UndefValue::get(Ty));
3462
3463     llvm::Constant *CI = ConstantInt::get(Int32Ty, 0);
3464     Args.push_back(CI);
3465     Args.push_back(Align);
3466
3467     Ops[1] = Builder.CreateCall(F, Args, "vld_dup");
3468     // splat lane 0 to all elts in each vector of the result.
3469     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
3470       Value *Val = Builder.CreateExtractValue(Ops[1], i);
3471       Value *Elt = Builder.CreateBitCast(Val, Ty);
3472       Elt = EmitNeonSplat(Elt, CI);
3473       Elt = Builder.CreateBitCast(Elt, Val->getType());
3474       Ops[1] = Builder.CreateInsertValue(Ops[1], Elt, i);
3475     }
3476     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
3477     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
3478     return Builder.CreateStore(Ops[1], Ops[0]);
3479   }
3480
3481   // Crypto
3482   case AArch64::BI__builtin_neon_vaeseq_v:
3483     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_aese, Ty),
3484                         Ops, "aese");
3485   case AArch64::BI__builtin_neon_vaesdq_v:
3486     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_aesd, Ty),
3487                         Ops, "aesd");
3488   case AArch64::BI__builtin_neon_vaesmcq_v:
3489     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_aesmc, Ty),
3490                         Ops, "aesmc");
3491   case AArch64::BI__builtin_neon_vaesimcq_v:
3492     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_aesimc, Ty),
3493                         Ops, "aesimc");
3494   case AArch64::BI__builtin_neon_vsha1su1q_v:
3495     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1su1, Ty),
3496                         Ops, "sha1su1");
3497   case AArch64::BI__builtin_neon_vsha256su0q_v:
3498     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha256su0, Ty),
3499                         Ops, "sha256su0");
3500   case AArch64::BI__builtin_neon_vsha1su0q_v:
3501     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1su0, Ty),
3502                         Ops, "sha1su0");
3503   case AArch64::BI__builtin_neon_vsha256hq_v:
3504     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha256h, Ty),
3505                         Ops, "sha256h");
3506   case AArch64::BI__builtin_neon_vsha256h2q_v:
3507     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha256h2, Ty),
3508                         Ops, "sha256h2");
3509   case AArch64::BI__builtin_neon_vsha256su1q_v:
3510     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha256su1, Ty),
3511                         Ops, "sha256su1");
3512   case AArch64::BI__builtin_neon_vmul_lane_v:
3513   case AArch64::BI__builtin_neon_vmul_laneq_v: {
3514     // v1f64 vmul_lane should be mapped to Neon scalar mul lane
3515     bool Quad = false;
3516     if (BuiltinID == AArch64::BI__builtin_neon_vmul_laneq_v)
3517       Quad = true;
3518     Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
3519     llvm::Type *VTy = GetNeonType(this,
3520       NeonTypeFlags(NeonTypeFlags::Float64, false, Quad));
3521     Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
3522     Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract");
3523     Value *Result = Builder.CreateFMul(Ops[0], Ops[1]);
3524     return Builder.CreateBitCast(Result, Ty);
3525   }
3526
3527   // AArch64-only builtins
3528   case AArch64::BI__builtin_neon_vfmaq_laneq_v: {
3529     Value *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
3530     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
3531     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
3532
3533     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
3534     Ops[2] = EmitNeonSplat(Ops[2], cast<ConstantInt>(Ops[3]));
3535     return Builder.CreateCall3(F, Ops[2], Ops[1], Ops[0]);
3536   }
3537   case AArch64::BI__builtin_neon_vfmaq_lane_v: {
3538     Value *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
3539     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
3540     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
3541
3542     llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
3543     llvm::Type *STy = llvm::VectorType::get(VTy->getElementType(),
3544                                             VTy->getNumElements() / 2);
3545     Ops[2] = Builder.CreateBitCast(Ops[2], STy);
3546     Value* SV = llvm::ConstantVector::getSplat(VTy->getNumElements(),
3547                                                cast<ConstantInt>(Ops[3]));
3548     Ops[2] = Builder.CreateShuffleVector(Ops[2], Ops[2], SV, "lane");
3549
3550     return Builder.CreateCall3(F, Ops[2], Ops[1], Ops[0]);
3551   }
3552   case AArch64::BI__builtin_neon_vfma_lane_v: {
3553     llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
3554     // v1f64 fma should be mapped to Neon scalar f64 fma
3555     if (VTy && VTy->getElementType() == DoubleTy) {
3556       Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
3557       Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy);
3558       llvm::Type *VTy = GetNeonType(this,
3559         NeonTypeFlags(NeonTypeFlags::Float64, false, false));
3560       Ops[2] = Builder.CreateBitCast(Ops[2], VTy);
3561       Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract");
3562       Value *F = CGM.getIntrinsic(Intrinsic::fma, DoubleTy);
3563       Value *Result = Builder.CreateCall3(F, Ops[1], Ops[2], Ops[0]);
3564       return Builder.CreateBitCast(Result, Ty);
3565     }
3566     Value *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
3567     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
3568     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
3569
3570     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
3571     Ops[2] = EmitNeonSplat(Ops[2], cast<ConstantInt>(Ops[3]));
3572     return Builder.CreateCall3(F, Ops[2], Ops[1], Ops[0]);
3573   }
3574   case AArch64::BI__builtin_neon_vfma_laneq_v: {
3575     llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
3576     // v1f64 fma should be mapped to Neon scalar f64 fma
3577     if (VTy && VTy->getElementType() == DoubleTy) {
3578       Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
3579       Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy);
3580       llvm::Type *VTy = GetNeonType(this,
3581         NeonTypeFlags(NeonTypeFlags::Float64, false, true));
3582       Ops[2] = Builder.CreateBitCast(Ops[2], VTy);
3583       Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract");
3584       Value *F = CGM.getIntrinsic(Intrinsic::fma, DoubleTy);
3585       Value *Result = Builder.CreateCall3(F, Ops[1], Ops[2], Ops[0]);
3586       return Builder.CreateBitCast(Result, Ty);
3587     }
3588     Value *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
3589     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
3590     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
3591
3592     llvm::Type *STy = llvm::VectorType::get(VTy->getElementType(),
3593                                             VTy->getNumElements() * 2);
3594     Ops[2] = Builder.CreateBitCast(Ops[2], STy);
3595     Value* SV = llvm::ConstantVector::getSplat(VTy->getNumElements(),
3596                                                cast<ConstantInt>(Ops[3]));
3597     Ops[2] = Builder.CreateShuffleVector(Ops[2], Ops[2], SV, "lane");
3598
3599     return Builder.CreateCall3(F, Ops[2], Ops[1], Ops[0]);
3600   }
3601   case AArch64::BI__builtin_neon_vfms_v:
3602   case AArch64::BI__builtin_neon_vfmsq_v: {
3603     Value *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
3604     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
3605     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
3606     Ops[1] = Builder.CreateFNeg(Ops[1]);
3607     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
3608
3609     // LLVM's fma intrinsic puts the accumulator in the last position, but the
3610     // AArch64 intrinsic has it first.
3611     return Builder.CreateCall3(F, Ops[1], Ops[2], Ops[0]);
3612   }
3613   case AArch64::BI__builtin_neon_vmaxnm_v:
3614   case AArch64::BI__builtin_neon_vmaxnmq_v: {
3615     Int = Intrinsic::aarch64_neon_vmaxnm;
3616     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmaxnm");
3617   }
3618   case AArch64::BI__builtin_neon_vminnm_v:
3619   case AArch64::BI__builtin_neon_vminnmq_v: {
3620     Int = Intrinsic::aarch64_neon_vminnm;
3621     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vminnm");
3622   }
3623   case AArch64::BI__builtin_neon_vpmaxnm_v:
3624   case AArch64::BI__builtin_neon_vpmaxnmq_v: {
3625     Int = Intrinsic::aarch64_neon_vpmaxnm;
3626     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmaxnm");
3627   }
3628   case AArch64::BI__builtin_neon_vpminnm_v:
3629   case AArch64::BI__builtin_neon_vpminnmq_v: {
3630     Int = Intrinsic::aarch64_neon_vpminnm;
3631     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpminnm");
3632   }
3633   case AArch64::BI__builtin_neon_vpmaxq_v: {
3634     Int = usgn ? Intrinsic::arm_neon_vpmaxu : Intrinsic::arm_neon_vpmaxs;
3635     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmax");
3636   }
3637   case AArch64::BI__builtin_neon_vpminq_v: {
3638     Int = usgn ? Intrinsic::arm_neon_vpminu : Intrinsic::arm_neon_vpmins;
3639     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmin");
3640   }
3641   case AArch64::BI__builtin_neon_vpaddq_v: {
3642     Int = Intrinsic::arm_neon_vpadd;
3643     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpadd");
3644   }
3645   case AArch64::BI__builtin_neon_vmulx_v:
3646   case AArch64::BI__builtin_neon_vmulxq_v: {
3647     Int = Intrinsic::aarch64_neon_vmulx;
3648     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmulx");
3649   }
3650   case AArch64::BI__builtin_neon_vpaddl_v:
3651   case AArch64::BI__builtin_neon_vpaddlq_v:
3652     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vpaddl_v, E);
3653   case AArch64::BI__builtin_neon_vpadal_v:
3654   case AArch64::BI__builtin_neon_vpadalq_v:
3655     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vpadal_v, E);
3656   case AArch64::BI__builtin_neon_vqabs_v:
3657   case AArch64::BI__builtin_neon_vqabsq_v:
3658     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqabs_v, E);
3659   case AArch64::BI__builtin_neon_vqneg_v:
3660   case AArch64::BI__builtin_neon_vqnegq_v:
3661     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqneg_v, E);
3662   case AArch64::BI__builtin_neon_vabs_v:
3663   case AArch64::BI__builtin_neon_vabsq_v: {
3664     if (VTy->getElementType()->isFloatingPointTy()) {
3665       return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, Ty), Ops, "vabs");
3666     }
3667     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vabs_v, E);
3668   }
3669   case AArch64::BI__builtin_neon_vsqadd_v:
3670   case AArch64::BI__builtin_neon_vsqaddq_v: {
3671     Int = Intrinsic::aarch64_neon_usqadd;
3672     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqadd");
3673   }
3674   case AArch64::BI__builtin_neon_vuqadd_v:
3675   case AArch64::BI__builtin_neon_vuqaddq_v: {
3676     Int = Intrinsic::aarch64_neon_suqadd;
3677     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vuqadd");
3678   }
3679   case AArch64::BI__builtin_neon_vcls_v:
3680   case AArch64::BI__builtin_neon_vclsq_v:
3681     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vcls_v, E);
3682   case AArch64::BI__builtin_neon_vclz_v:
3683   case AArch64::BI__builtin_neon_vclzq_v:
3684     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vclz_v, E);
3685   case AArch64::BI__builtin_neon_vcnt_v:
3686   case AArch64::BI__builtin_neon_vcntq_v:
3687     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vcnt_v, E);
3688   case AArch64::BI__builtin_neon_vrbit_v:
3689   case AArch64::BI__builtin_neon_vrbitq_v:
3690     Int = Intrinsic::aarch64_neon_rbit;
3691     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrbit");
3692   case AArch64::BI__builtin_neon_vmovn_v:
3693     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vmovn_v, E);
3694   case AArch64::BI__builtin_neon_vqmovun_v:
3695     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqmovun_v, E);
3696   case AArch64::BI__builtin_neon_vqmovn_v:
3697     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqmovn_v, E);
3698   case AArch64::BI__builtin_neon_vcvt_f16_v:
3699     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vcvt_f16_v, E);
3700   case AArch64::BI__builtin_neon_vcvt_f32_f16:
3701     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vcvt_f32_f16, E);
3702   case AArch64::BI__builtin_neon_vcvt_f32_f64: {
3703     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
3704     Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, false));
3705     return Builder.CreateFPTrunc(Ops[0], Ty, "vcvt");
3706   }
3707   case AArch64::BI__builtin_neon_vcvtx_f32_v: {
3708     llvm::Type *EltTy = FloatTy;
3709     llvm::Type *ResTy = llvm::VectorType::get(EltTy, 2);
3710     llvm::Type *Tys[2] = { ResTy, Ty };
3711     Int = Intrinsic::aarch64_neon_fcvtxn;
3712     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtx_f32_f64");
3713   }
3714   case AArch64::BI__builtin_neon_vcvt_f64_f32: {
3715     llvm::Type *OpTy =
3716         GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, false));
3717     Ops[0] = Builder.CreateBitCast(Ops[0], OpTy);
3718     return Builder.CreateFPExt(Ops[0], Ty, "vcvt");
3719   }
3720   case AArch64::BI__builtin_neon_vcvt_f64_v:
3721   case AArch64::BI__builtin_neon_vcvtq_f64_v: {
3722     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
3723     Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, quad));
3724     return usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
3725                 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
3726   }
3727   case AArch64::BI__builtin_neon_vrndn_v:
3728   case AArch64::BI__builtin_neon_vrndnq_v: {
3729     Int = Intrinsic::aarch64_neon_frintn;
3730     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndn");
3731   }
3732   case AArch64::BI__builtin_neon_vrnda_v:
3733   case AArch64::BI__builtin_neon_vrndaq_v: {
3734     Int = Intrinsic::round;
3735     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnda");
3736   }
3737   case AArch64::BI__builtin_neon_vrndp_v:
3738   case AArch64::BI__builtin_neon_vrndpq_v: {
3739     Int = Intrinsic::ceil;
3740     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndp");
3741   }
3742   case AArch64::BI__builtin_neon_vrndm_v:
3743   case AArch64::BI__builtin_neon_vrndmq_v: {
3744     Int = Intrinsic::floor;
3745     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndm");
3746   }
3747   case AArch64::BI__builtin_neon_vrndx_v:
3748   case AArch64::BI__builtin_neon_vrndxq_v: {
3749     Int = Intrinsic::rint;
3750     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndx");
3751   }
3752   case AArch64::BI__builtin_neon_vrnd_v:
3753   case AArch64::BI__builtin_neon_vrndq_v: {
3754     Int = Intrinsic::trunc;
3755     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnd");
3756   }
3757   case AArch64::BI__builtin_neon_vrndi_v:
3758   case AArch64::BI__builtin_neon_vrndiq_v: {
3759     Int = Intrinsic::nearbyint;
3760     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndi");
3761   }
3762   case AArch64::BI__builtin_neon_vcvt_s32_v:
3763   case AArch64::BI__builtin_neon_vcvt_u32_v:
3764   case AArch64::BI__builtin_neon_vcvtq_s32_v:
3765   case AArch64::BI__builtin_neon_vcvtq_u32_v:
3766     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vcvtq_u32_v, E);
3767   case AArch64::BI__builtin_neon_vcvt_s64_v:
3768   case AArch64::BI__builtin_neon_vcvt_u64_v:
3769   case AArch64::BI__builtin_neon_vcvtq_s64_v:
3770   case AArch64::BI__builtin_neon_vcvtq_u64_v: {
3771     llvm::Type *DoubleTy =
3772         GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, quad));
3773     Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
3774     return usgn ? Builder.CreateFPToUI(Ops[0], Ty, "vcvt")
3775                 : Builder.CreateFPToSI(Ops[0], Ty, "vcvt");
3776   }
3777   case AArch64::BI__builtin_neon_vcvtn_s32_v:
3778   case AArch64::BI__builtin_neon_vcvtnq_s32_v: {
3779     llvm::Type *OpTy = llvm::VectorType::get(FloatTy, VTy->getNumElements());
3780     llvm::Type *Tys[2] = { Ty, OpTy };
3781     Int = Intrinsic::aarch64_neon_fcvtns;
3782     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtns_f32");
3783   }
3784   case AArch64::BI__builtin_neon_vcvtn_s64_v:
3785   case AArch64::BI__builtin_neon_vcvtnq_s64_v: {
3786     llvm::Type *OpTy = llvm::VectorType::get(DoubleTy, VTy->getNumElements());
3787     llvm::Type *Tys[2] = { Ty, OpTy };
3788     Int = Intrinsic::aarch64_neon_fcvtns;
3789     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtns_f64");
3790   }
3791   case AArch64::BI__builtin_neon_vcvtn_u32_v:
3792   case AArch64::BI__builtin_neon_vcvtnq_u32_v: {
3793     llvm::Type *OpTy = llvm::VectorType::get(FloatTy, VTy->getNumElements());
3794     llvm::Type *Tys[2] = { Ty, OpTy };
3795     Int = Intrinsic::aarch64_neon_fcvtnu;
3796     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtnu_f32");
3797   }
3798   case AArch64::BI__builtin_neon_vcvtn_u64_v:
3799   case AArch64::BI__builtin_neon_vcvtnq_u64_v: {
3800     llvm::Type *OpTy = llvm::VectorType::get(DoubleTy, VTy->getNumElements());
3801     llvm::Type *Tys[2] = { Ty, OpTy };
3802     Int = Intrinsic::aarch64_neon_fcvtnu;
3803     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtnu_f64");
3804   }
3805   case AArch64::BI__builtin_neon_vcvtp_s32_v:
3806   case AArch64::BI__builtin_neon_vcvtpq_s32_v: {
3807     llvm::Type *OpTy = llvm::VectorType::get(FloatTy, VTy->getNumElements());
3808     llvm::Type *Tys[2] = { Ty, OpTy };
3809     Int = Intrinsic::aarch64_neon_fcvtps;
3810     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtps_f32");
3811   }
3812   case AArch64::BI__builtin_neon_vcvtp_s64_v:
3813   case AArch64::BI__builtin_neon_vcvtpq_s64_v: {
3814     llvm::Type *OpTy = llvm::VectorType::get(DoubleTy, VTy->getNumElements());
3815     llvm::Type *Tys[2] = { Ty, OpTy };
3816     Int = Intrinsic::aarch64_neon_fcvtps;
3817     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtps_f64");
3818   }
3819   case AArch64::BI__builtin_neon_vcvtp_u32_v:
3820   case AArch64::BI__builtin_neon_vcvtpq_u32_v: {
3821     llvm::Type *OpTy = llvm::VectorType::get(FloatTy, VTy->getNumElements());
3822     llvm::Type *Tys[2] = { Ty, OpTy };
3823     Int = Intrinsic::aarch64_neon_fcvtpu;
3824     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtpu_f32");
3825   }
3826   case AArch64::BI__builtin_neon_vcvtp_u64_v:
3827   case AArch64::BI__builtin_neon_vcvtpq_u64_v: {
3828     llvm::Type *OpTy = llvm::VectorType::get(DoubleTy, VTy->getNumElements());
3829     llvm::Type *Tys[2] = { Ty, OpTy };
3830     Int = Intrinsic::aarch64_neon_fcvtpu;
3831     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtpu_f64");
3832   }
3833   case AArch64::BI__builtin_neon_vcvtm_s32_v:
3834   case AArch64::BI__builtin_neon_vcvtmq_s32_v: {
3835     llvm::Type *OpTy = llvm::VectorType::get(FloatTy, VTy->getNumElements());
3836     llvm::Type *Tys[2] = { Ty, OpTy };
3837     Int = Intrinsic::aarch64_neon_fcvtms;
3838     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtms_f32");
3839   }
3840   case AArch64::BI__builtin_neon_vcvtm_s64_v:
3841   case AArch64::BI__builtin_neon_vcvtmq_s64_v: {
3842     llvm::Type *OpTy = llvm::VectorType::get(DoubleTy, VTy->getNumElements());
3843     llvm::Type *Tys[2] = { Ty, OpTy };
3844     Int = Intrinsic::aarch64_neon_fcvtms;
3845     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtms_f64");
3846   }
3847   case AArch64::BI__builtin_neon_vcvtm_u32_v:
3848   case AArch64::BI__builtin_neon_vcvtmq_u32_v: {
3849     llvm::Type *OpTy = llvm::VectorType::get(FloatTy, VTy->getNumElements());
3850     llvm::Type *Tys[2] = { Ty, OpTy };
3851     Int = Intrinsic::aarch64_neon_fcvtmu;
3852     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtmu_f32");
3853   }
3854   case AArch64::BI__builtin_neon_vcvtm_u64_v:
3855   case AArch64::BI__builtin_neon_vcvtmq_u64_v: {
3856     llvm::Type *OpTy = llvm::VectorType::get(DoubleTy, VTy->getNumElements());
3857     llvm::Type *Tys[2] = { Ty, OpTy };
3858     Int = Intrinsic::aarch64_neon_fcvtmu;
3859     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtmu_f64");
3860   }
3861   case AArch64::BI__builtin_neon_vcvta_s32_v:
3862   case AArch64::BI__builtin_neon_vcvtaq_s32_v: {
3863     llvm::Type *OpTy = llvm::VectorType::get(FloatTy, VTy->getNumElements());
3864     llvm::Type *Tys[2] = { Ty, OpTy };
3865     Int = Intrinsic::aarch64_neon_fcvtas;
3866     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtas_f32");
3867   }
3868   case AArch64::BI__builtin_neon_vcvta_s64_v:
3869   case AArch64::BI__builtin_neon_vcvtaq_s64_v: {
3870     llvm::Type *OpTy = llvm::VectorType::get(DoubleTy, VTy->getNumElements());
3871     llvm::Type *Tys[2] = { Ty, OpTy };
3872     Int = Intrinsic::aarch64_neon_fcvtas;
3873     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtas_f64");
3874   }
3875   case AArch64::BI__builtin_neon_vcvta_u32_v:
3876   case AArch64::BI__builtin_neon_vcvtaq_u32_v: {
3877     llvm::Type *OpTy = llvm::VectorType::get(FloatTy, VTy->getNumElements());
3878     llvm::Type *Tys[2] = { Ty, OpTy };
3879     Int = Intrinsic::aarch64_neon_fcvtau;
3880     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtau_f32");
3881   }
3882   case AArch64::BI__builtin_neon_vcvta_u64_v:
3883   case AArch64::BI__builtin_neon_vcvtaq_u64_v: {
3884     llvm::Type *OpTy = llvm::VectorType::get(DoubleTy, VTy->getNumElements());
3885     llvm::Type *Tys[2] = { Ty, OpTy };
3886     Int = Intrinsic::aarch64_neon_fcvtau;
3887     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtau_f64");
3888   }
3889   case AArch64::BI__builtin_neon_vrecpe_v:
3890   case AArch64::BI__builtin_neon_vrecpeq_v:
3891     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vrecpe_v, E);
3892   case AArch64::BI__builtin_neon_vrsqrte_v:
3893   case AArch64::BI__builtin_neon_vrsqrteq_v:
3894     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vrsqrte_v, E);
3895   case AArch64::BI__builtin_neon_vsqrt_v:
3896   case AArch64::BI__builtin_neon_vsqrtq_v: {
3897     Int = Intrinsic::sqrt;
3898     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqrt");
3899   }
3900   case AArch64::BI__builtin_neon_vcvt_f32_v:
3901   case AArch64::BI__builtin_neon_vcvtq_f32_v:
3902     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vcvt_f32_v, E);
3903   case AArch64::BI__builtin_neon_vceqz_v:
3904   case AArch64::BI__builtin_neon_vceqzq_v:
3905     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OEQ,
3906                                          ICmpInst::ICMP_EQ, "vceqz");
3907   case AArch64::BI__builtin_neon_vcgez_v:
3908   case AArch64::BI__builtin_neon_vcgezq_v:
3909     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGE,
3910                                          ICmpInst::ICMP_SGE, "vcgez");
3911   case AArch64::BI__builtin_neon_vclez_v:
3912   case AArch64::BI__builtin_neon_vclezq_v:
3913     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLE,
3914                                          ICmpInst::ICMP_SLE, "vclez");
3915   case AArch64::BI__builtin_neon_vcgtz_v:
3916   case AArch64::BI__builtin_neon_vcgtzq_v:
3917     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGT,
3918                                          ICmpInst::ICMP_SGT, "vcgtz");
3919   case AArch64::BI__builtin_neon_vcltz_v:
3920   case AArch64::BI__builtin_neon_vcltzq_v:
3921     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLT,
3922                                          ICmpInst::ICMP_SLT, "vcltz");
3923   }
3924 }
3925
3926 Value *CodeGenFunction::EmitARMBuiltinExpr(unsigned BuiltinID,
3927                                            const CallExpr *E) {
3928   if (BuiltinID == ARM::BI__clear_cache) {
3929     assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments");
3930     const FunctionDecl *FD = E->getDirectCallee();
3931     SmallVector<Value*, 2> Ops;
3932     for (unsigned i = 0; i < 2; i++)
3933       Ops.push_back(EmitScalarExpr(E->getArg(i)));
3934     llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
3935     llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
3936     StringRef Name = FD->getName();
3937     return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
3938   }
3939
3940   if (BuiltinID == ARM::BI__builtin_arm_ldrexd ||
3941       (BuiltinID == ARM::BI__builtin_arm_ldrex &&
3942        getContext().getTypeSize(E->getType()) == 64)) {
3943     Function *F = CGM.getIntrinsic(Intrinsic::arm_ldrexd);
3944
3945     Value *LdPtr = EmitScalarExpr(E->getArg(0));
3946     Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy),
3947                                     "ldrexd");
3948
3949     Value *Val0 = Builder.CreateExtractValue(Val, 1);
3950     Value *Val1 = Builder.CreateExtractValue(Val, 0);
3951     Val0 = Builder.CreateZExt(Val0, Int64Ty);
3952     Val1 = Builder.CreateZExt(Val1, Int64Ty);
3953
3954     Value *ShiftCst = llvm::ConstantInt::get(Int64Ty, 32);
3955     Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
3956     Val = Builder.CreateOr(Val, Val1);
3957     return Builder.CreateBitCast(Val, ConvertType(E->getType()));
3958   }
3959
3960   if (BuiltinID == ARM::BI__builtin_arm_ldrex) {
3961     Value *LoadAddr = EmitScalarExpr(E->getArg(0));
3962
3963     QualType Ty = E->getType();
3964     llvm::Type *RealResTy = ConvertType(Ty);
3965     llvm::Type *IntResTy = llvm::IntegerType::get(getLLVMContext(),
3966                                                   getContext().getTypeSize(Ty));
3967     LoadAddr = Builder.CreateBitCast(LoadAddr, IntResTy->getPointerTo());
3968
3969     Function *F = CGM.getIntrinsic(Intrinsic::arm_ldrex, LoadAddr->getType());
3970     Value *Val = Builder.CreateCall(F, LoadAddr, "ldrex");
3971
3972     if (RealResTy->isPointerTy())
3973       return Builder.CreateIntToPtr(Val, RealResTy);
3974     else {
3975       Val = Builder.CreateTruncOrBitCast(Val, IntResTy);
3976       return Builder.CreateBitCast(Val, RealResTy);
3977     }
3978   }
3979
3980   if (BuiltinID == ARM::BI__builtin_arm_strexd ||
3981       (BuiltinID == ARM::BI__builtin_arm_strex &&
3982        getContext().getTypeSize(E->getArg(0)->getType()) == 64)) {
3983     Function *F = CGM.getIntrinsic(Intrinsic::arm_strexd);
3984     llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, NULL);
3985
3986     Value *Tmp = CreateMemTemp(E->getArg(0)->getType());
3987     Value *Val = EmitScalarExpr(E->getArg(0));
3988     Builder.CreateStore(Val, Tmp);
3989
3990     Value *LdPtr = Builder.CreateBitCast(Tmp,llvm::PointerType::getUnqual(STy));
3991     Val = Builder.CreateLoad(LdPtr);
3992
3993     Value *Arg0 = Builder.CreateExtractValue(Val, 0);
3994     Value *Arg1 = Builder.CreateExtractValue(Val, 1);
3995     Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), Int8PtrTy);
3996     return Builder.CreateCall3(F, Arg0, Arg1, StPtr, "strexd");
3997   }
3998
3999   if (BuiltinID == ARM::BI__builtin_arm_strex) {
4000     Value *StoreVal = EmitScalarExpr(E->getArg(0));
4001     Value *StoreAddr = EmitScalarExpr(E->getArg(1));
4002
4003     QualType Ty = E->getArg(0)->getType();
4004     llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(),
4005                                                  getContext().getTypeSize(Ty));
4006     StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo());
4007
4008     if (StoreVal->getType()->isPointerTy())
4009       StoreVal = Builder.CreatePtrToInt(StoreVal, Int32Ty);
4010     else {
4011       StoreVal = Builder.CreateBitCast(StoreVal, StoreTy);
4012       StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int32Ty);
4013     }
4014
4015     Function *F = CGM.getIntrinsic(Intrinsic::arm_strex, StoreAddr->getType());
4016     return Builder.CreateCall2(F, StoreVal, StoreAddr, "strex");
4017   }
4018
4019   if (BuiltinID == ARM::BI__builtin_arm_clrex) {
4020     Function *F = CGM.getIntrinsic(Intrinsic::arm_clrex);
4021     return Builder.CreateCall(F);
4022   }
4023
4024   if (BuiltinID == ARM::BI__builtin_arm_sevl) {
4025     Function *F = CGM.getIntrinsic(Intrinsic::arm_sevl);
4026     return Builder.CreateCall(F);
4027   }
4028
4029   // CRC32
4030   Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic;
4031   switch (BuiltinID) {
4032   case ARM::BI__builtin_arm_crc32b:
4033     CRCIntrinsicID = Intrinsic::arm_crc32b; break;
4034   case ARM::BI__builtin_arm_crc32cb:
4035     CRCIntrinsicID = Intrinsic::arm_crc32cb; break;
4036   case ARM::BI__builtin_arm_crc32h:
4037     CRCIntrinsicID = Intrinsic::arm_crc32h; break;
4038   case ARM::BI__builtin_arm_crc32ch:
4039     CRCIntrinsicID = Intrinsic::arm_crc32ch; break;
4040   case ARM::BI__builtin_arm_crc32w:
4041   case ARM::BI__builtin_arm_crc32d:
4042     CRCIntrinsicID = Intrinsic::arm_crc32w; break;
4043   case ARM::BI__builtin_arm_crc32cw:
4044   case ARM::BI__builtin_arm_crc32cd:
4045     CRCIntrinsicID = Intrinsic::arm_crc32cw; break;
4046   }
4047
4048   if (CRCIntrinsicID != Intrinsic::not_intrinsic) {
4049     Value *Arg0 = EmitScalarExpr(E->getArg(0));
4050     Value *Arg1 = EmitScalarExpr(E->getArg(1));
4051
4052     // crc32{c,}d intrinsics are implemnted as two calls to crc32{c,}w
4053     // intrinsics, hence we need different codegen for these cases.
4054     if (BuiltinID == ARM::BI__builtin_arm_crc32d ||
4055         BuiltinID == ARM::BI__builtin_arm_crc32cd) {
4056       Value *C1 = llvm::ConstantInt::get(Int64Ty, 32);
4057       Value *Arg1a = Builder.CreateTruncOrBitCast(Arg1, Int32Ty);
4058       Value *Arg1b = Builder.CreateLShr(Arg1, C1);
4059       Arg1b = Builder.CreateTruncOrBitCast(Arg1b, Int32Ty);
4060
4061       Function *F = CGM.getIntrinsic(CRCIntrinsicID);
4062       Value *Res = Builder.CreateCall2(F, Arg0, Arg1a);
4063       return Builder.CreateCall2(F, Res, Arg1b);
4064     } else {
4065       Arg1 = Builder.CreateZExtOrBitCast(Arg1, Int32Ty);
4066
4067       Function *F = CGM.getIntrinsic(CRCIntrinsicID);
4068       return Builder.CreateCall2(F, Arg0, Arg1);
4069     }
4070   }
4071
4072   SmallVector<Value*, 4> Ops;
4073   llvm::Value *Align = 0;
4074   for (unsigned i = 0, e = E->getNumArgs() - 1; i != e; i++) {
4075     if (i == 0) {
4076       switch (BuiltinID) {
4077       case ARM::BI__builtin_neon_vld1_v:
4078       case ARM::BI__builtin_neon_vld1q_v:
4079       case ARM::BI__builtin_neon_vld1q_lane_v:
4080       case ARM::BI__builtin_neon_vld1_lane_v:
4081       case ARM::BI__builtin_neon_vld1_dup_v:
4082       case ARM::BI__builtin_neon_vld1q_dup_v:
4083       case ARM::BI__builtin_neon_vst1_v:
4084       case ARM::BI__builtin_neon_vst1q_v:
4085       case ARM::BI__builtin_neon_vst1q_lane_v:
4086       case ARM::BI__builtin_neon_vst1_lane_v:
4087       case ARM::BI__builtin_neon_vst2_v:
4088       case ARM::BI__builtin_neon_vst2q_v:
4089       case ARM::BI__builtin_neon_vst2_lane_v:
4090       case ARM::BI__builtin_neon_vst2q_lane_v:
4091       case ARM::BI__builtin_neon_vst3_v:
4092       case ARM::BI__builtin_neon_vst3q_v:
4093       case ARM::BI__builtin_neon_vst3_lane_v:
4094       case ARM::BI__builtin_neon_vst3q_lane_v:
4095       case ARM::BI__builtin_neon_vst4_v:
4096       case ARM::BI__builtin_neon_vst4q_v:
4097       case ARM::BI__builtin_neon_vst4_lane_v:
4098       case ARM::BI__builtin_neon_vst4q_lane_v:
4099         // Get the alignment for the argument in addition to the value;
4100         // we'll use it later.
4101         std::pair<llvm::Value*, unsigned> Src =
4102             EmitPointerWithAlignment(E->getArg(0));
4103         Ops.push_back(Src.first);
4104         Align = Builder.getInt32(Src.second);
4105         continue;
4106       }
4107     }
4108     if (i == 1) {
4109       switch (BuiltinID) {
4110       case ARM::BI__builtin_neon_vld2_v:
4111       case ARM::BI__builtin_neon_vld2q_v:
4112       case ARM::BI__builtin_neon_vld3_v:
4113       case ARM::BI__builtin_neon_vld3q_v:
4114       case ARM::BI__builtin_neon_vld4_v:
4115       case ARM::BI__builtin_neon_vld4q_v:
4116       case ARM::BI__builtin_neon_vld2_lane_v:
4117       case ARM::BI__builtin_neon_vld2q_lane_v:
4118       case ARM::BI__builtin_neon_vld3_lane_v:
4119       case ARM::BI__builtin_neon_vld3q_lane_v:
4120       case ARM::BI__builtin_neon_vld4_lane_v:
4121       case ARM::BI__builtin_neon_vld4q_lane_v:
4122       case ARM::BI__builtin_neon_vld2_dup_v:
4123       case ARM::BI__builtin_neon_vld3_dup_v:
4124       case ARM::BI__builtin_neon_vld4_dup_v:
4125         // Get the alignment for the argument in addition to the value;
4126         // we'll use it later.
4127         std::pair<llvm::Value*, unsigned> Src =
4128             EmitPointerWithAlignment(E->getArg(1));
4129         Ops.push_back(Src.first);
4130         Align = Builder.getInt32(Src.second);
4131         continue;
4132       }
4133     }
4134     Ops.push_back(EmitScalarExpr(E->getArg(i)));
4135   }
4136
4137   // vget_lane and vset_lane are not overloaded and do not have an extra
4138   // argument that specifies the vector type.
4139   switch (BuiltinID) {
4140   default: break;
4141   case ARM::BI__builtin_neon_vget_lane_i8:
4142   case ARM::BI__builtin_neon_vget_lane_i16:
4143   case ARM::BI__builtin_neon_vget_lane_i32:
4144   case ARM::BI__builtin_neon_vget_lane_i64:
4145   case ARM::BI__builtin_neon_vget_lane_f32:
4146   case ARM::BI__builtin_neon_vgetq_lane_i8:
4147   case ARM::BI__builtin_neon_vgetq_lane_i16:
4148   case ARM::BI__builtin_neon_vgetq_lane_i32:
4149   case ARM::BI__builtin_neon_vgetq_lane_i64:
4150   case ARM::BI__builtin_neon_vgetq_lane_f32:
4151     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
4152                                         "vget_lane");
4153   case ARM::BI__builtin_neon_vset_lane_i8:
4154   case ARM::BI__builtin_neon_vset_lane_i16:
4155   case ARM::BI__builtin_neon_vset_lane_i32:
4156   case ARM::BI__builtin_neon_vset_lane_i64:
4157   case ARM::BI__builtin_neon_vset_lane_f32:
4158   case ARM::BI__builtin_neon_vsetq_lane_i8:
4159   case ARM::BI__builtin_neon_vsetq_lane_i16:
4160   case ARM::BI__builtin_neon_vsetq_lane_i32:
4161   case ARM::BI__builtin_neon_vsetq_lane_i64:
4162   case ARM::BI__builtin_neon_vsetq_lane_f32:
4163     Ops.push_back(EmitScalarExpr(E->getArg(2)));
4164     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
4165   }
4166
4167   // Get the last argument, which specifies the vector type.
4168   llvm::APSInt Result;
4169   const Expr *Arg = E->getArg(E->getNumArgs()-1);
4170   if (!Arg->isIntegerConstantExpr(Result, getContext()))
4171     return 0;
4172
4173   if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f ||
4174       BuiltinID == ARM::BI__builtin_arm_vcvtr_d) {
4175     // Determine the overloaded type of this builtin.
4176     llvm::Type *Ty;
4177     if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f)
4178       Ty = FloatTy;
4179     else
4180       Ty = DoubleTy;
4181
4182     // Determine whether this is an unsigned conversion or not.
4183     bool usgn = Result.getZExtValue() == 1;
4184     unsigned Int = usgn ? Intrinsic::arm_vcvtru : Intrinsic::arm_vcvtr;
4185
4186     // Call the appropriate intrinsic.
4187     Function *F = CGM.getIntrinsic(Int, Ty);
4188     return Builder.CreateCall(F, Ops, "vcvtr");
4189   }
4190
4191   // Determine the type of this overloaded NEON intrinsic.
4192   NeonTypeFlags Type(Result.getZExtValue());
4193   bool usgn = Type.isUnsigned();
4194   bool quad = Type.isQuad();
4195   bool rightShift = false;
4196
4197   llvm::VectorType *VTy = GetNeonType(this, Type);
4198   llvm::Type *Ty = VTy;
4199   if (!Ty)
4200     return 0;
4201
4202   unsigned Int;
4203   switch (BuiltinID) {
4204   default: return 0;
4205   case ARM::BI__builtin_neon_vbsl_v:
4206   case ARM::BI__builtin_neon_vbslq_v:
4207     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vbsl, Ty),
4208                         Ops, "vbsl");
4209   case ARM::BI__builtin_neon_vabd_v:
4210   case ARM::BI__builtin_neon_vabdq_v:
4211     Int = usgn ? Intrinsic::arm_neon_vabdu : Intrinsic::arm_neon_vabds;
4212     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vabd");
4213   case ARM::BI__builtin_neon_vabs_v:
4214   case ARM::BI__builtin_neon_vabsq_v:
4215     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vabs, Ty),
4216                         Ops, "vabs");
4217   case ARM::BI__builtin_neon_vaddhn_v: {
4218     llvm::VectorType *SrcTy =
4219         llvm::VectorType::getExtendedElementVectorType(VTy);
4220
4221     // %sum = add <4 x i32> %lhs, %rhs
4222     Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
4223     Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy);
4224     Ops[0] = Builder.CreateAdd(Ops[0], Ops[1], "vaddhn");
4225
4226     // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
4227     Constant *ShiftAmt = ConstantInt::get(SrcTy->getElementType(),
4228                                        SrcTy->getScalarSizeInBits() / 2);
4229     ShiftAmt = ConstantVector::getSplat(VTy->getNumElements(), ShiftAmt);
4230     Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vaddhn");
4231
4232     // %res = trunc <4 x i32> %high to <4 x i16>
4233     return Builder.CreateTrunc(Ops[0], VTy, "vaddhn");
4234   }
4235   case ARM::BI__builtin_neon_vcale_v:
4236     std::swap(Ops[0], Ops[1]);
4237   case ARM::BI__builtin_neon_vcage_v: {
4238     Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vacged);
4239     return EmitNeonCall(F, Ops, "vcage");
4240   }
4241   case ARM::BI__builtin_neon_vcaleq_v:
4242     std::swap(Ops[0], Ops[1]);
4243   case ARM::BI__builtin_neon_vcageq_v: {
4244     Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vacgeq);
4245     return EmitNeonCall(F, Ops, "vcage");
4246   }
4247   case ARM::BI__builtin_neon_vcalt_v:
4248     std::swap(Ops[0], Ops[1]);
4249   case ARM::BI__builtin_neon_vcagt_v: {
4250     Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vacgtd);
4251     return EmitNeonCall(F, Ops, "vcagt");
4252   }
4253   case ARM::BI__builtin_neon_vcaltq_v:
4254     std::swap(Ops[0], Ops[1]);
4255   case ARM::BI__builtin_neon_vcagtq_v: {
4256     Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vacgtq);
4257     return EmitNeonCall(F, Ops, "vcagt");
4258   }
4259   case ARM::BI__builtin_neon_vcls_v:
4260   case ARM::BI__builtin_neon_vclsq_v: {
4261     Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vcls, Ty);
4262     return EmitNeonCall(F, Ops, "vcls");
4263   }
4264   case ARM::BI__builtin_neon_vclz_v:
4265   case ARM::BI__builtin_neon_vclzq_v: {
4266     // Generate target-independent intrinsic; also need to add second argument
4267     // for whether or not clz of zero is undefined; on ARM it isn't.
4268     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ty);
4269     Ops.push_back(Builder.getInt1(getTarget().isCLZForZeroUndef()));
4270     return EmitNeonCall(F, Ops, "vclz");
4271   }
4272   case ARM::BI__builtin_neon_vcnt_v:
4273   case ARM::BI__builtin_neon_vcntq_v: {
4274     // generate target-independent intrinsic
4275     Function *F = CGM.getIntrinsic(Intrinsic::ctpop, Ty);
4276     return EmitNeonCall(F, Ops, "vctpop");
4277   }
4278   case ARM::BI__builtin_neon_vcvt_f16_v: {
4279     assert(Type.getEltType() == NeonTypeFlags::Float16 && !quad &&
4280            "unexpected vcvt_f16_v builtin");
4281     Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vcvtfp2hf);
4282     return EmitNeonCall(F, Ops, "vcvt");
4283   }
4284   case ARM::BI__builtin_neon_vcvt_f32_f16: {
4285     assert(Type.getEltType() == NeonTypeFlags::Float16 && !quad &&
4286            "unexpected vcvt_f32_f16 builtin");
4287     Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vcvthf2fp);
4288     return EmitNeonCall(F, Ops, "vcvt");
4289   }
4290   case ARM::BI__builtin_neon_vcvt_f32_v:
4291   case ARM::BI__builtin_neon_vcvtq_f32_v:
4292     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
4293     Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, quad));
4294     return usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
4295                 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
4296   case ARM::BI__builtin_neon_vcvt_s32_v:
4297   case ARM::BI__builtin_neon_vcvt_u32_v:
4298   case ARM::BI__builtin_neon_vcvtq_s32_v:
4299   case ARM::BI__builtin_neon_vcvtq_u32_v: {
4300     llvm::Type *FloatTy =
4301       GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, quad));
4302     Ops[0] = Builder.CreateBitCast(Ops[0], FloatTy);
4303     return usgn ? Builder.CreateFPToUI(Ops[0], Ty, "vcvt")
4304                 : Builder.CreateFPToSI(Ops[0], Ty, "vcvt");
4305   }
4306   case ARM::BI__builtin_neon_vcvt_n_f32_v:
4307   case ARM::BI__builtin_neon_vcvtq_n_f32_v: {
4308     llvm::Type *FloatTy =
4309       GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, quad));
4310     llvm::Type *Tys[2] = { FloatTy, Ty };
4311     Int = usgn ? Intrinsic::arm_neon_vcvtfxu2fp
4312                : Intrinsic::arm_neon_vcvtfxs2fp;
4313     Function *F = CGM.getIntrinsic(Int, Tys);
4314     return EmitNeonCall(F, Ops, "vcvt_n");
4315   }
4316   case ARM::BI__builtin_neon_vcvt_n_s32_v:
4317   case ARM::BI__builtin_neon_vcvt_n_u32_v:
4318   case ARM::BI__builtin_neon_vcvtq_n_s32_v:
4319   case ARM::BI__builtin_neon_vcvtq_n_u32_v: {
4320     llvm::Type *FloatTy =
4321       GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, quad));
4322     llvm::Type *Tys[2] = { Ty, FloatTy };
4323     Int = usgn ? Intrinsic::arm_neon_vcvtfp2fxu
4324                : Intrinsic::arm_neon_vcvtfp2fxs;
4325     Function *F = CGM.getIntrinsic(Int, Tys);
4326     return EmitNeonCall(F, Ops, "vcvt_n");
4327   }
4328   case ARM::BI__builtin_neon_vext_v:
4329   case ARM::BI__builtin_neon_vextq_v: {
4330     int CV = cast<ConstantInt>(Ops[2])->getSExtValue();
4331     SmallVector<Constant*, 16> Indices;
4332     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
4333       Indices.push_back(ConstantInt::get(Int32Ty, i+CV));
4334
4335     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
4336     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
4337     Value *SV = llvm::ConstantVector::get(Indices);
4338     return Builder.CreateShuffleVector(Ops[0], Ops[1], SV, "vext");
4339   }
4340   case ARM::BI__builtin_neon_vhadd_v:
4341   case ARM::BI__builtin_neon_vhaddq_v:
4342     Int = usgn ? Intrinsic::arm_neon_vhaddu : Intrinsic::arm_neon_vhadds;
4343     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vhadd");
4344   case ARM::BI__builtin_neon_vhsub_v:
4345   case ARM::BI__builtin_neon_vhsubq_v:
4346     Int = usgn ? Intrinsic::arm_neon_vhsubu : Intrinsic::arm_neon_vhsubs;
4347     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vhsub");
4348   case ARM::BI__builtin_neon_vld1_v:
4349   case ARM::BI__builtin_neon_vld1q_v:
4350     Ops.push_back(Align);
4351     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vld1, Ty),
4352                         Ops, "vld1");
4353   case ARM::BI__builtin_neon_vld1q_lane_v:
4354     // Handle 64-bit integer elements as a special case.  Use shuffles of
4355     // one-element vectors to avoid poor code for i64 in the backend.
4356     if (VTy->getElementType()->isIntegerTy(64)) {
4357       // Extract the other lane.
4358       Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
4359       int Lane = cast<ConstantInt>(Ops[2])->getZExtValue();
4360       Value *SV = llvm::ConstantVector::get(ConstantInt::get(Int32Ty, 1-Lane));
4361       Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
4362       // Load the value as a one-element vector.
4363       Ty = llvm::VectorType::get(VTy->getElementType(), 1);
4364       Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld1, Ty);
4365       Value *Ld = Builder.CreateCall2(F, Ops[0], Align);
4366       // Combine them.
4367       SmallVector<Constant*, 2> Indices;
4368       Indices.push_back(ConstantInt::get(Int32Ty, 1-Lane));
4369       Indices.push_back(ConstantInt::get(Int32Ty, Lane));
4370       SV = llvm::ConstantVector::get(Indices);
4371       return Builder.CreateShuffleVector(Ops[1], Ld, SV, "vld1q_lane");
4372     }
4373     // fall through
4374   case ARM::BI__builtin_neon_vld1_lane_v: {
4375     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
4376     Ty = llvm::PointerType::getUnqual(VTy->getElementType());
4377     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
4378     LoadInst *Ld = Builder.CreateLoad(Ops[0]);
4379     Ld->setAlignment(cast<ConstantInt>(Align)->getZExtValue());
4380     return Builder.CreateInsertElement(Ops[1], Ld, Ops[2], "vld1_lane");
4381   }
4382   case ARM::BI__builtin_neon_vld1_dup_v:
4383   case ARM::BI__builtin_neon_vld1q_dup_v: {
4384     Value *V = UndefValue::get(Ty);
4385     Ty = llvm::PointerType::getUnqual(VTy->getElementType());
4386     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
4387     LoadInst *Ld = Builder.CreateLoad(Ops[0]);
4388     Ld->setAlignment(cast<ConstantInt>(Align)->getZExtValue());
4389     llvm::Constant *CI = ConstantInt::get(Int32Ty, 0);
4390     Ops[0] = Builder.CreateInsertElement(V, Ld, CI);
4391     return EmitNeonSplat(Ops[0], CI);
4392   }
4393   case ARM::BI__builtin_neon_vld2_v:
4394   case ARM::BI__builtin_neon_vld2q_v: {
4395     Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld2, Ty);
4396     Ops[1] = Builder.CreateCall2(F, Ops[1], Align, "vld2");
4397     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
4398     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
4399     return Builder.CreateStore(Ops[1], Ops[0]);
4400   }
4401   case ARM::BI__builtin_neon_vld3_v:
4402   case ARM::BI__builtin_neon_vld3q_v: {
4403     Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld3, Ty);
4404     Ops[1] = Builder.CreateCall2(F, Ops[1], Align, "vld3");
4405     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
4406     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
4407     return Builder.CreateStore(Ops[1], Ops[0]);
4408   }
4409   case ARM::BI__builtin_neon_vld4_v:
4410   case ARM::BI__builtin_neon_vld4q_v: {
4411     Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld4, Ty);
4412     Ops[1] = Builder.CreateCall2(F, Ops[1], Align, "vld4");
4413     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
4414     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
4415     return Builder.CreateStore(Ops[1], Ops[0]);
4416   }
4417   case ARM::BI__builtin_neon_vld2_lane_v:
4418   case ARM::BI__builtin_neon_vld2q_lane_v: {
4419     Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld2lane, Ty);
4420     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
4421     Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
4422     Ops.push_back(Align);
4423     Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld2_lane");
4424     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
4425     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
4426     return Builder.CreateStore(Ops[1], Ops[0]);
4427   }
4428   case ARM::BI__builtin_neon_vld3_lane_v:
4429   case ARM::BI__builtin_neon_vld3q_lane_v: {
4430     Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld3lane, Ty);
4431     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
4432     Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
4433     Ops[4] = Builder.CreateBitCast(Ops[4], Ty);
4434     Ops.push_back(Align);
4435     Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld3_lane");
4436     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
4437     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
4438     return Builder.CreateStore(Ops[1], Ops[0]);
4439   }
4440   case ARM::BI__builtin_neon_vld4_lane_v:
4441   case ARM::BI__builtin_neon_vld4q_lane_v: {
4442     Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld4lane, Ty);
4443     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
4444     Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
4445     Ops[4] = Builder.CreateBitCast(Ops[4], Ty);
4446     Ops[5] = Builder.CreateBitCast(Ops[5], Ty);
4447     Ops.push_back(Align);
4448     Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld3_lane");
4449     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
4450     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
4451     return Builder.CreateStore(Ops[1], Ops[0]);
4452   }
4453   case ARM::BI__builtin_neon_vld2_dup_v:
4454   case ARM::BI__builtin_neon_vld3_dup_v:
4455   case ARM::BI__builtin_neon_vld4_dup_v: {
4456     // Handle 64-bit elements as a special-case.  There is no "dup" needed.
4457     if (VTy->getElementType()->getPrimitiveSizeInBits() == 64) {
4458       switch (BuiltinID) {
4459       case ARM::BI__builtin_neon_vld2_dup_v:
4460         Int = Intrinsic::arm_neon_vld2;
4461         break;
4462       case ARM::BI__builtin_neon_vld3_dup_v:
4463         Int = Intrinsic::arm_neon_vld3;
4464         break;
4465       case ARM::BI__builtin_neon_vld4_dup_v:
4466         Int = Intrinsic::arm_neon_vld4;
4467         break;
4468       default: llvm_unreachable("unknown vld_dup intrinsic?");
4469       }
4470       Function *F = CGM.getIntrinsic(Int, Ty);
4471       Ops[1] = Builder.CreateCall2(F, Ops[1], Align, "vld_dup");
4472       Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
4473       Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
4474       return Builder.CreateStore(Ops[1], Ops[0]);
4475     }
4476     switch (BuiltinID) {
4477     case ARM::BI__builtin_neon_vld2_dup_v:
4478       Int = Intrinsic::arm_neon_vld2lane;
4479       break;
4480     case ARM::BI__builtin_neon_vld3_dup_v:
4481       Int = Intrinsic::arm_neon_vld3lane;
4482       break;
4483     case ARM::BI__builtin_neon_vld4_dup_v:
4484       Int = Intrinsic::arm_neon_vld4lane;
4485       break;
4486     default: llvm_unreachable("unknown vld_dup intrinsic?");
4487     }
4488     Function *F = CGM.getIntrinsic(Int, Ty);
4489     llvm::StructType *STy = cast<llvm::StructType>(F->getReturnType());
4490
4491     SmallVector<Value*, 6> Args;
4492     Args.push_back(Ops[1]);
4493     Args.append(STy->getNumElements(), UndefValue::get(Ty));
4494
4495     llvm::Constant *CI = ConstantInt::get(Int32Ty, 0);
4496     Args.push_back(CI);
4497     Args.push_back(Align);
4498
4499     Ops[1] = Builder.CreateCall(F, Args, "vld_dup");
4500     // splat lane 0 to all elts in each vector of the result.
4501     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
4502       Value *Val = Builder.CreateExtractValue(Ops[1], i);
4503       Value *Elt = Builder.CreateBitCast(Val, Ty);
4504       Elt = EmitNeonSplat(Elt, CI);
4505       Elt = Builder.CreateBitCast(Elt, Val->getType());
4506       Ops[1] = Builder.CreateInsertValue(Ops[1], Elt, i);
4507     }
4508     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
4509     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
4510     return Builder.CreateStore(Ops[1], Ops[0]);
4511   }
4512   case ARM::BI__builtin_neon_vmax_v:
4513   case ARM::BI__builtin_neon_vmaxq_v:
4514     Int = usgn ? Intrinsic::arm_neon_vmaxu : Intrinsic::arm_neon_vmaxs;
4515     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmax");
4516   case ARM::BI__builtin_neon_vmin_v:
4517   case ARM::BI__builtin_neon_vminq_v:
4518     Int = usgn ? Intrinsic::arm_neon_vminu : Intrinsic::arm_neon_vmins;
4519     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmin");
4520   case ARM::BI__builtin_neon_vmovl_v: {
4521     llvm::Type *DTy =llvm::VectorType::getTruncatedElementVectorType(VTy);
4522     Ops[0] = Builder.CreateBitCast(Ops[0], DTy);
4523     if (usgn)
4524       return Builder.CreateZExt(Ops[0], Ty, "vmovl");
4525     return Builder.CreateSExt(Ops[0], Ty, "vmovl");
4526   }
4527   case ARM::BI__builtin_neon_vmovn_v: {
4528     llvm::Type *QTy = llvm::VectorType::getExtendedElementVectorType(VTy);
4529     Ops[0] = Builder.CreateBitCast(Ops[0], QTy);
4530     return Builder.CreateTrunc(Ops[0], Ty, "vmovn");
4531   }
4532   case ARM::BI__builtin_neon_vmul_v:
4533   case ARM::BI__builtin_neon_vmulq_v:
4534     assert(Type.isPoly() && "vmul builtin only supported for polynomial types");
4535     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vmulp, Ty),
4536                         Ops, "vmul");
4537   case ARM::BI__builtin_neon_vmull_v:
4538     // FIXME: the integer vmull operations could be emitted in terms of pure
4539     // LLVM IR (2 exts followed by a mul). Unfortunately LLVM has a habit of
4540     // hoisting the exts outside loops. Until global ISel comes along that can
4541     // see through such movement this leads to bad CodeGen. So we need an
4542     // intrinsic for now.
4543     Int = usgn ? Intrinsic::arm_neon_vmullu : Intrinsic::arm_neon_vmulls;
4544     Int = Type.isPoly() ? (unsigned)Intrinsic::arm_neon_vmullp : Int;
4545     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
4546   case ARM::BI__builtin_neon_vfma_v:
4547   case ARM::BI__builtin_neon_vfmaq_v: {
4548     Value *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
4549     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
4550     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
4551     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
4552
4553     // NEON intrinsic puts accumulator first, unlike the LLVM fma.
4554     return Builder.CreateCall3(F, Ops[1], Ops[2], Ops[0]);
4555   }
4556   case ARM::BI__builtin_neon_vpadal_v:
4557   case ARM::BI__builtin_neon_vpadalq_v: {
4558     Int = usgn ? Intrinsic::arm_neon_vpadalu : Intrinsic::arm_neon_vpadals;
4559     // The source operand type has twice as many elements of half the size.
4560     unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
4561     llvm::Type *EltTy =
4562       llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
4563     llvm::Type *NarrowTy =
4564       llvm::VectorType::get(EltTy, VTy->getNumElements() * 2);
4565     llvm::Type *Tys[2] = { Ty, NarrowTy };
4566     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vpadal");
4567   }
4568   case ARM::BI__builtin_neon_vpadd_v:
4569     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vpadd, Ty),
4570                         Ops, "vpadd");
4571   case ARM::BI__builtin_neon_vpaddl_v:
4572   case ARM::BI__builtin_neon_vpaddlq_v: {
4573     Int = usgn ? Intrinsic::arm_neon_vpaddlu : Intrinsic::arm_neon_vpaddls;
4574     // The source operand type has twice as many elements of half the size.
4575     unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
4576     llvm::Type *EltTy = llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
4577     llvm::Type *NarrowTy =
4578       llvm::VectorType::get(EltTy, VTy->getNumElements() * 2);
4579     llvm::Type *Tys[2] = { Ty, NarrowTy };
4580     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vpaddl");
4581   }
4582   case ARM::BI__builtin_neon_vpmax_v:
4583     Int = usgn ? Intrinsic::arm_neon_vpmaxu : Intrinsic::arm_neon_vpmaxs;
4584     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmax");
4585   case ARM::BI__builtin_neon_vpmin_v:
4586     Int = usgn ? Intrinsic::arm_neon_vpminu : Intrinsic::arm_neon_vpmins;
4587     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmin");
4588   case ARM::BI__builtin_neon_vqabs_v:
4589   case ARM::BI__builtin_neon_vqabsq_v:
4590     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqabs, Ty),
4591                         Ops, "vqabs");
4592   case ARM::BI__builtin_neon_vqadd_v:
4593   case ARM::BI__builtin_neon_vqaddq_v:
4594     Int = usgn ? Intrinsic::arm_neon_vqaddu : Intrinsic::arm_neon_vqadds;
4595     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqadd");
4596   case ARM::BI__builtin_neon_vqdmlal_v: {
4597     SmallVector<Value *, 2> MulOps(Ops.begin() + 1, Ops.end());
4598     Value *Mul = EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqdmull, Ty),
4599                               MulOps, "vqdmlal");
4600
4601     SmallVector<Value *, 2> AddOps;
4602     AddOps.push_back(Ops[0]);
4603     AddOps.push_back(Mul);
4604     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqadds, Ty),
4605                         AddOps, "vqdmlal");
4606   }
4607   case ARM::BI__builtin_neon_vqdmlsl_v: {
4608     SmallVector<Value *, 2> MulOps(Ops.begin() + 1, Ops.end());
4609     Value *Mul = EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqdmull, Ty),
4610                               MulOps, "vqdmlsl");
4611
4612     SmallVector<Value *, 2> SubOps;
4613     SubOps.push_back(Ops[0]);
4614     SubOps.push_back(Mul);
4615     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqsubs, Ty),
4616                         SubOps, "vqdmlsl");
4617   }
4618   case ARM::BI__builtin_neon_vqdmulh_v:
4619   case ARM::BI__builtin_neon_vqdmulhq_v:
4620     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqdmulh, Ty),
4621                         Ops, "vqdmulh");
4622   case ARM::BI__builtin_neon_vqdmull_v:
4623     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqdmull, Ty),
4624                         Ops, "vqdmull");
4625   case ARM::BI__builtin_neon_vqmovn_v:
4626     Int = usgn ? Intrinsic::arm_neon_vqmovnu : Intrinsic::arm_neon_vqmovns;
4627     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqmovn");
4628   case ARM::BI__builtin_neon_vqmovun_v:
4629     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqmovnsu, Ty),
4630                         Ops, "vqdmull");
4631   case ARM::BI__builtin_neon_vqneg_v:
4632   case ARM::BI__builtin_neon_vqnegq_v:
4633     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqneg, Ty),
4634                         Ops, "vqneg");
4635   case ARM::BI__builtin_neon_vqrdmulh_v:
4636   case ARM::BI__builtin_neon_vqrdmulhq_v:
4637     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqrdmulh, Ty),
4638                         Ops, "vqrdmulh");
4639   case ARM::BI__builtin_neon_vqrshl_v:
4640   case ARM::BI__builtin_neon_vqrshlq_v:
4641     Int = usgn ? Intrinsic::arm_neon_vqrshiftu : Intrinsic::arm_neon_vqrshifts;
4642     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshl");
4643   case ARM::BI__builtin_neon_vqrshrn_n_v:
4644     Int =
4645       usgn ? Intrinsic::arm_neon_vqrshiftnu : Intrinsic::arm_neon_vqrshiftns;
4646     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n",
4647                         1, true);
4648   case ARM::BI__builtin_neon_vqrshrun_n_v:
4649     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqrshiftnsu, Ty),
4650                         Ops, "vqrshrun_n", 1, true);
4651   case ARM::BI__builtin_neon_vqshl_v:
4652   case ARM::BI__builtin_neon_vqshlq_v:
4653     Int = usgn ? Intrinsic::arm_neon_vqshiftu : Intrinsic::arm_neon_vqshifts;
4654     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshl");
4655   case ARM::BI__builtin_neon_vqshl_n_v:
4656   case ARM::BI__builtin_neon_vqshlq_n_v:
4657     Int = usgn ? Intrinsic::arm_neon_vqshiftu : Intrinsic::arm_neon_vqshifts;
4658     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshl_n",
4659                         1, false);
4660   case ARM::BI__builtin_neon_vqshlu_n_v:
4661   case ARM::BI__builtin_neon_vqshluq_n_v:
4662     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqshiftsu, Ty),
4663                         Ops, "vqshlu", 1, false);
4664   case ARM::BI__builtin_neon_vqshrn_n_v:
4665     Int = usgn ? Intrinsic::arm_neon_vqshiftnu : Intrinsic::arm_neon_vqshiftns;
4666     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n",
4667                         1, true);
4668   case ARM::BI__builtin_neon_vqshrun_n_v:
4669     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqshiftnsu, Ty),
4670                         Ops, "vqshrun_n", 1, true);
4671   case ARM::BI__builtin_neon_vqsub_v:
4672   case ARM::BI__builtin_neon_vqsubq_v:
4673     Int = usgn ? Intrinsic::arm_neon_vqsubu : Intrinsic::arm_neon_vqsubs;
4674     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqsub");
4675   case ARM::BI__builtin_neon_vraddhn_v:
4676     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vraddhn, Ty),
4677                         Ops, "vraddhn");
4678   case ARM::BI__builtin_neon_vrecpe_v:
4679   case ARM::BI__builtin_neon_vrecpeq_v:
4680     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrecpe, Ty),
4681                         Ops, "vrecpe");
4682   case ARM::BI__builtin_neon_vrecps_v:
4683   case ARM::BI__builtin_neon_vrecpsq_v:
4684     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrecps, Ty),
4685                         Ops, "vrecps");
4686   case ARM::BI__builtin_neon_vrhadd_v:
4687   case ARM::BI__builtin_neon_vrhaddq_v:
4688     Int = usgn ? Intrinsic::arm_neon_vrhaddu : Intrinsic::arm_neon_vrhadds;
4689     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrhadd");
4690   case ARM::BI__builtin_neon_vrshl_v:
4691   case ARM::BI__builtin_neon_vrshlq_v:
4692     Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts;
4693     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshl");
4694   case ARM::BI__builtin_neon_vrshrn_n_v:
4695     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrshiftn, Ty),
4696                         Ops, "vrshrn_n", 1, true);
4697   case ARM::BI__builtin_neon_vrshr_n_v:
4698   case ARM::BI__builtin_neon_vrshrq_n_v:
4699     Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts;
4700     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshr_n", 1, true);
4701   case ARM::BI__builtin_neon_vrsqrte_v:
4702   case ARM::BI__builtin_neon_vrsqrteq_v:
4703     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrsqrte, Ty),
4704                         Ops, "vrsqrte");
4705   case ARM::BI__builtin_neon_vrsqrts_v:
4706   case ARM::BI__builtin_neon_vrsqrtsq_v:
4707     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrsqrts, Ty),
4708                         Ops, "vrsqrts");
4709   case ARM::BI__builtin_neon_vrsra_n_v:
4710   case ARM::BI__builtin_neon_vrsraq_n_v:
4711     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
4712     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
4713     Ops[2] = EmitNeonShiftVector(Ops[2], Ty, true);
4714     Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts;
4715     Ops[1] = Builder.CreateCall2(CGM.getIntrinsic(Int, Ty), Ops[1], Ops[2]);
4716     return Builder.CreateAdd(Ops[0], Ops[1], "vrsra_n");
4717   case ARM::BI__builtin_neon_vrsubhn_v:
4718     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrsubhn, Ty),
4719                         Ops, "vrsubhn");
4720   case ARM::BI__builtin_neon_vshl_v:
4721   case ARM::BI__builtin_neon_vshlq_v:
4722     Int = usgn ? Intrinsic::arm_neon_vshiftu : Intrinsic::arm_neon_vshifts;
4723     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vshl");
4724   case ARM::BI__builtin_neon_vshll_n_v:
4725     Int = usgn ? Intrinsic::arm_neon_vshiftlu : Intrinsic::arm_neon_vshiftls;
4726     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vshll", 1);
4727   case ARM::BI__builtin_neon_vshl_n_v:
4728   case ARM::BI__builtin_neon_vshlq_n_v:
4729     Ops[1] = EmitNeonShiftVector(Ops[1], Ty, false);
4730     return Builder.CreateShl(Builder.CreateBitCast(Ops[0],Ty), Ops[1],
4731                              "vshl_n");
4732   case ARM::BI__builtin_neon_vshrn_n_v:
4733     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vshiftn, Ty),
4734                         Ops, "vshrn_n", 1, true);
4735   case ARM::BI__builtin_neon_vshr_n_v:
4736   case ARM::BI__builtin_neon_vshrq_n_v:
4737     return EmitNeonRShiftImm(Ops[0], Ops[1], Ty, usgn, "vshr_n");
4738   case ARM::BI__builtin_neon_vsri_n_v:
4739   case ARM::BI__builtin_neon_vsriq_n_v:
4740     rightShift = true;
4741   case ARM::BI__builtin_neon_vsli_n_v:
4742   case ARM::BI__builtin_neon_vsliq_n_v:
4743     Ops[2] = EmitNeonShiftVector(Ops[2], Ty, rightShift);
4744     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vshiftins, Ty),
4745                         Ops, "vsli_n");
4746   case ARM::BI__builtin_neon_vsra_n_v:
4747   case ARM::BI__builtin_neon_vsraq_n_v:
4748     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
4749     Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n");
4750     return Builder.CreateAdd(Ops[0], Ops[1]);
4751   case ARM::BI__builtin_neon_vst1_v:
4752   case ARM::BI__builtin_neon_vst1q_v:
4753     Ops.push_back(Align);
4754     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst1, Ty),
4755                         Ops, "");
4756   case ARM::BI__builtin_neon_vst1q_lane_v:
4757     // Handle 64-bit integer elements as a special case.  Use a shuffle to get
4758     // a one-element vector and avoid poor code for i64 in the backend.
4759     if (VTy->getElementType()->isIntegerTy(64)) {
4760       Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
4761       Value *SV = llvm::ConstantVector::get(cast<llvm::Constant>(Ops[2]));
4762       Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
4763       Ops[2] = Align;
4764       return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst1,
4765                                                  Ops[1]->getType()), Ops);
4766     }
4767     // fall through
4768   case ARM::BI__builtin_neon_vst1_lane_v: {
4769     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
4770     Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
4771     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
4772     StoreInst *St = Builder.CreateStore(Ops[1],
4773                                         Builder.CreateBitCast(Ops[0], Ty));
4774     St->setAlignment(cast<ConstantInt>(Align)->getZExtValue());
4775     return St;
4776   }
4777   case ARM::BI__builtin_neon_vst2_v:
4778   case ARM::BI__builtin_neon_vst2q_v:
4779     Ops.push_back(Align);
4780     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst2, Ty),
4781                         Ops, "");
4782   case ARM::BI__builtin_neon_vst2_lane_v:
4783   case ARM::BI__builtin_neon_vst2q_lane_v:
4784     Ops.push_back(Align);
4785     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst2lane, Ty),
4786                         Ops, "");
4787   case ARM::BI__builtin_neon_vst3_v:
4788   case ARM::BI__builtin_neon_vst3q_v:
4789     Ops.push_back(Align);
4790     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst3, Ty),
4791                         Ops, "");
4792   case ARM::BI__builtin_neon_vst3_lane_v:
4793   case ARM::BI__builtin_neon_vst3q_lane_v:
4794     Ops.push_back(Align);
4795     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst3lane, Ty),
4796                         Ops, "");
4797   case ARM::BI__builtin_neon_vst4_v:
4798   case ARM::BI__builtin_neon_vst4q_v:
4799     Ops.push_back(Align);
4800     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst4, Ty),
4801                         Ops, "");
4802   case ARM::BI__builtin_neon_vst4_lane_v:
4803   case ARM::BI__builtin_neon_vst4q_lane_v:
4804     Ops.push_back(Align);
4805     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst4lane, Ty),
4806                         Ops, "");
4807   case ARM::BI__builtin_neon_vsubhn_v: {
4808     llvm::VectorType *SrcTy =
4809         llvm::VectorType::getExtendedElementVectorType(VTy);
4810
4811     // %sum = add <4 x i32> %lhs, %rhs
4812     Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
4813     Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy);
4814     Ops[0] = Builder.CreateSub(Ops[0], Ops[1], "vsubhn");
4815
4816     // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
4817     Constant *ShiftAmt = ConstantInt::get(SrcTy->getElementType(),
4818                                        SrcTy->getScalarSizeInBits() / 2);
4819     ShiftAmt = ConstantVector::getSplat(VTy->getNumElements(), ShiftAmt);
4820     Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vsubhn");
4821
4822     // %res = trunc <4 x i32> %high to <4 x i16>
4823     return Builder.CreateTrunc(Ops[0], VTy, "vsubhn");
4824   }
4825   case ARM::BI__builtin_neon_vtbl1_v:
4826     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl1),
4827                         Ops, "vtbl1");
4828   case ARM::BI__builtin_neon_vtbl2_v:
4829     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl2),
4830                         Ops, "vtbl2");
4831   case ARM::BI__builtin_neon_vtbl3_v:
4832     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl3),
4833                         Ops, "vtbl3");
4834   case ARM::BI__builtin_neon_vtbl4_v:
4835     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl4),
4836                         Ops, "vtbl4");
4837   case ARM::BI__builtin_neon_vtbx1_v:
4838     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx1),
4839                         Ops, "vtbx1");
4840   case ARM::BI__builtin_neon_vtbx2_v:
4841     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx2),
4842                         Ops, "vtbx2");
4843   case ARM::BI__builtin_neon_vtbx3_v:
4844     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx3),
4845                         Ops, "vtbx3");
4846   case ARM::BI__builtin_neon_vtbx4_v:
4847     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx4),
4848                         Ops, "vtbx4");
4849   case ARM::BI__builtin_neon_vtst_v:
4850   case ARM::BI__builtin_neon_vtstq_v: {
4851     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
4852     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
4853     Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
4854     Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
4855                                 ConstantAggregateZero::get(Ty));
4856     return Builder.CreateSExt(Ops[0], Ty, "vtst");
4857   }
4858   case ARM::BI__builtin_neon_vtrn_v:
4859   case ARM::BI__builtin_neon_vtrnq_v: {
4860     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
4861     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
4862     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
4863     Value *SV = 0;
4864
4865     for (unsigned vi = 0; vi != 2; ++vi) {
4866       SmallVector<Constant*, 16> Indices;
4867       for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
4868         Indices.push_back(Builder.getInt32(i+vi));
4869         Indices.push_back(Builder.getInt32(i+e+vi));
4870       }
4871       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ops[0], vi);
4872       SV = llvm::ConstantVector::get(Indices);
4873       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vtrn");
4874       SV = Builder.CreateStore(SV, Addr);
4875     }
4876     return SV;
4877   }
4878   case ARM::BI__builtin_neon_vuzp_v:
4879   case ARM::BI__builtin_neon_vuzpq_v: {
4880     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
4881     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
4882     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
4883     Value *SV = 0;
4884
4885     for (unsigned vi = 0; vi != 2; ++vi) {
4886       SmallVector<Constant*, 16> Indices;
4887       for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
4888         Indices.push_back(ConstantInt::get(Int32Ty, 2*i+vi));
4889
4890       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ops[0], vi);
4891       SV = llvm::ConstantVector::get(Indices);
4892       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vuzp");
4893       SV = Builder.CreateStore(SV, Addr);
4894     }
4895     return SV;
4896   }
4897   case ARM::BI__builtin_neon_vzip_v:
4898   case ARM::BI__builtin_neon_vzipq_v: {
4899     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
4900     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
4901     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
4902     Value *SV = 0;
4903
4904     for (unsigned vi = 0; vi != 2; ++vi) {
4905       SmallVector<Constant*, 16> Indices;
4906       for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
4907         Indices.push_back(ConstantInt::get(Int32Ty, (i + vi*e) >> 1));
4908         Indices.push_back(ConstantInt::get(Int32Ty, ((i + vi*e) >> 1)+e));
4909       }
4910       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ops[0], vi);
4911       SV = llvm::ConstantVector::get(Indices);
4912       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vzip");
4913       SV = Builder.CreateStore(SV, Addr);
4914     }
4915     return SV;
4916   }
4917   }
4918 }
4919
4920 llvm::Value *CodeGenFunction::
4921 BuildVector(ArrayRef<llvm::Value*> Ops) {
4922   assert((Ops.size() & (Ops.size() - 1)) == 0 &&
4923          "Not a power-of-two sized vector!");
4924   bool AllConstants = true;
4925   for (unsigned i = 0, e = Ops.size(); i != e && AllConstants; ++i)
4926     AllConstants &= isa<Constant>(Ops[i]);
4927
4928   // If this is a constant vector, create a ConstantVector.
4929   if (AllConstants) {
4930     SmallVector<llvm::Constant*, 16> CstOps;
4931     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
4932       CstOps.push_back(cast<Constant>(Ops[i]));
4933     return llvm::ConstantVector::get(CstOps);
4934   }
4935
4936   // Otherwise, insertelement the values to build the vector.
4937   Value *Result =
4938     llvm::UndefValue::get(llvm::VectorType::get(Ops[0]->getType(), Ops.size()));
4939
4940   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
4941     Result = Builder.CreateInsertElement(Result, Ops[i], Builder.getInt32(i));
4942
4943   return Result;
4944 }
4945
4946 Value *CodeGenFunction::EmitX86BuiltinExpr(unsigned BuiltinID,
4947                                            const CallExpr *E) {
4948   SmallVector<Value*, 4> Ops;
4949
4950   // Find out if any arguments are required to be integer constant expressions.
4951   unsigned ICEArguments = 0;
4952   ASTContext::GetBuiltinTypeError Error;
4953   getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
4954   assert(Error == ASTContext::GE_None && "Should not codegen an error");
4955
4956   for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
4957     // If this is a normal argument, just emit it as a scalar.
4958     if ((ICEArguments & (1 << i)) == 0) {
4959       Ops.push_back(EmitScalarExpr(E->getArg(i)));
4960       continue;
4961     }
4962
4963     // If this is required to be a constant, constant fold it so that we know
4964     // that the generated intrinsic gets a ConstantInt.
4965     llvm::APSInt Result;
4966     bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext());
4967     assert(IsConst && "Constant arg isn't actually constant?"); (void)IsConst;
4968     Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result));
4969   }
4970
4971   switch (BuiltinID) {
4972   default: return 0;
4973   case X86::BI__builtin_ia32_vec_init_v8qi:
4974   case X86::BI__builtin_ia32_vec_init_v4hi:
4975   case X86::BI__builtin_ia32_vec_init_v2si:
4976     return Builder.CreateBitCast(BuildVector(Ops),
4977                                  llvm::Type::getX86_MMXTy(getLLVMContext()));
4978   case X86::BI__builtin_ia32_vec_ext_v2si:
4979     return Builder.CreateExtractElement(Ops[0],
4980                                   llvm::ConstantInt::get(Ops[1]->getType(), 0));
4981   case X86::BI__builtin_ia32_ldmxcsr: {
4982     Value *Tmp = CreateMemTemp(E->getArg(0)->getType());
4983     Builder.CreateStore(Ops[0], Tmp);
4984     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_ldmxcsr),
4985                               Builder.CreateBitCast(Tmp, Int8PtrTy));
4986   }
4987   case X86::BI__builtin_ia32_stmxcsr: {
4988     Value *Tmp = CreateMemTemp(E->getType());
4989     Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_stmxcsr),
4990                        Builder.CreateBitCast(Tmp, Int8PtrTy));
4991     return Builder.CreateLoad(Tmp, "stmxcsr");
4992   }
4993   case X86::BI__builtin_ia32_storehps:
4994   case X86::BI__builtin_ia32_storelps: {
4995     llvm::Type *PtrTy = llvm::PointerType::getUnqual(Int64Ty);
4996     llvm::Type *VecTy = llvm::VectorType::get(Int64Ty, 2);
4997
4998     // cast val v2i64
4999     Ops[1] = Builder.CreateBitCast(Ops[1], VecTy, "cast");
5000
5001     // extract (0, 1)
5002     unsigned Index = BuiltinID == X86::BI__builtin_ia32_storelps ? 0 : 1;
5003     llvm::Value *Idx = llvm::ConstantInt::get(Int32Ty, Index);
5004     Ops[1] = Builder.CreateExtractElement(Ops[1], Idx, "extract");
5005
5006     // cast pointer to i64 & store
5007     Ops[0] = Builder.CreateBitCast(Ops[0], PtrTy);
5008     return Builder.CreateStore(Ops[1], Ops[0]);
5009   }
5010   case X86::BI__builtin_ia32_palignr: {
5011     unsigned shiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
5012
5013     // If palignr is shifting the pair of input vectors less than 9 bytes,
5014     // emit a shuffle instruction.
5015     if (shiftVal <= 8) {
5016       SmallVector<llvm::Constant*, 8> Indices;
5017       for (unsigned i = 0; i != 8; ++i)
5018         Indices.push_back(llvm::ConstantInt::get(Int32Ty, shiftVal + i));
5019
5020       Value* SV = llvm::ConstantVector::get(Indices);
5021       return Builder.CreateShuffleVector(Ops[1], Ops[0], SV, "palignr");
5022     }
5023
5024     // If palignr is shifting the pair of input vectors more than 8 but less
5025     // than 16 bytes, emit a logical right shift of the destination.
5026     if (shiftVal < 16) {
5027       // MMX has these as 1 x i64 vectors for some odd optimization reasons.
5028       llvm::Type *VecTy = llvm::VectorType::get(Int64Ty, 1);
5029
5030       Ops[0] = Builder.CreateBitCast(Ops[0], VecTy, "cast");
5031       Ops[1] = llvm::ConstantInt::get(VecTy, (shiftVal-8) * 8);
5032
5033       // create i32 constant
5034       llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_mmx_psrl_q);
5035       return Builder.CreateCall(F, makeArrayRef(&Ops[0], 2), "palignr");
5036     }
5037
5038     // If palignr is shifting the pair of vectors more than 16 bytes, emit zero.
5039     return llvm::Constant::getNullValue(ConvertType(E->getType()));
5040   }
5041   case X86::BI__builtin_ia32_palignr128: {
5042     unsigned shiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
5043
5044     // If palignr is shifting the pair of input vectors less than 17 bytes,
5045     // emit a shuffle instruction.
5046     if (shiftVal <= 16) {
5047       SmallVector<llvm::Constant*, 16> Indices;
5048       for (unsigned i = 0; i != 16; ++i)
5049         Indices.push_back(llvm::ConstantInt::get(Int32Ty, shiftVal + i));
5050
5051       Value* SV = llvm::ConstantVector::get(Indices);
5052       return Builder.CreateShuffleVector(Ops[1], Ops[0], SV, "palignr");
5053     }
5054
5055     // If palignr is shifting the pair of input vectors more than 16 but less
5056     // than 32 bytes, emit a logical right shift of the destination.
5057     if (shiftVal < 32) {
5058       llvm::Type *VecTy = llvm::VectorType::get(Int64Ty, 2);
5059
5060       Ops[0] = Builder.CreateBitCast(Ops[0], VecTy, "cast");
5061       Ops[1] = llvm::ConstantInt::get(Int32Ty, (shiftVal-16) * 8);
5062
5063       // create i32 constant
5064       llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_sse2_psrl_dq);
5065       return Builder.CreateCall(F, makeArrayRef(&Ops[0], 2), "palignr");
5066     }
5067
5068     // If palignr is shifting the pair of vectors more than 32 bytes, emit zero.
5069     return llvm::Constant::getNullValue(ConvertType(E->getType()));
5070   }
5071   case X86::BI__builtin_ia32_palignr256: {
5072     unsigned shiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
5073
5074     // If palignr is shifting the pair of input vectors less than 17 bytes,
5075     // emit a shuffle instruction.
5076     if (shiftVal <= 16) {
5077       SmallVector<llvm::Constant*, 32> Indices;
5078       // 256-bit palignr operates on 128-bit lanes so we need to handle that
5079       for (unsigned l = 0; l != 2; ++l) {
5080         unsigned LaneStart = l * 16;
5081         unsigned LaneEnd = (l+1) * 16;
5082         for (unsigned i = 0; i != 16; ++i) {
5083           unsigned Idx = shiftVal + i + LaneStart;
5084           if (Idx >= LaneEnd) Idx += 16; // end of lane, switch operand
5085           Indices.push_back(llvm::ConstantInt::get(Int32Ty, Idx));
5086         }
5087       }
5088
5089       Value* SV = llvm::ConstantVector::get(Indices);
5090       return Builder.CreateShuffleVector(Ops[1], Ops[0], SV, "palignr");
5091     }
5092
5093     // If palignr is shifting the pair of input vectors more than 16 but less
5094     // than 32 bytes, emit a logical right shift of the destination.
5095     if (shiftVal < 32) {
5096       llvm::Type *VecTy = llvm::VectorType::get(Int64Ty, 4);
5097
5098       Ops[0] = Builder.CreateBitCast(Ops[0], VecTy, "cast");
5099       Ops[1] = llvm::ConstantInt::get(Int32Ty, (shiftVal-16) * 8);
5100
5101       // create i32 constant
5102       llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_avx2_psrl_dq);
5103       return Builder.CreateCall(F, makeArrayRef(&Ops[0], 2), "palignr");
5104     }
5105
5106     // If palignr is shifting the pair of vectors more than 32 bytes, emit zero.
5107     return llvm::Constant::getNullValue(ConvertType(E->getType()));
5108   }
5109   case X86::BI__builtin_ia32_movntps:
5110   case X86::BI__builtin_ia32_movntps256:
5111   case X86::BI__builtin_ia32_movntpd:
5112   case X86::BI__builtin_ia32_movntpd256:
5113   case X86::BI__builtin_ia32_movntdq:
5114   case X86::BI__builtin_ia32_movntdq256:
5115   case X86::BI__builtin_ia32_movnti:
5116   case X86::BI__builtin_ia32_movnti64: {
5117     llvm::MDNode *Node = llvm::MDNode::get(getLLVMContext(),
5118                                            Builder.getInt32(1));
5119
5120     // Convert the type of the pointer to a pointer to the stored type.
5121     Value *BC = Builder.CreateBitCast(Ops[0],
5122                                 llvm::PointerType::getUnqual(Ops[1]->getType()),
5123                                       "cast");
5124     StoreInst *SI = Builder.CreateStore(Ops[1], BC);
5125     SI->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
5126
5127     // If the operand is an integer, we can't assume alignment. Otherwise,
5128     // assume natural alignment.
5129     QualType ArgTy = E->getArg(1)->getType();
5130     unsigned Align;
5131     if (ArgTy->isIntegerType())
5132       Align = 1;
5133     else
5134       Align = getContext().getTypeSizeInChars(ArgTy).getQuantity();
5135     SI->setAlignment(Align);
5136     return SI;
5137   }
5138   // 3DNow!
5139   case X86::BI__builtin_ia32_pswapdsf:
5140   case X86::BI__builtin_ia32_pswapdsi: {
5141     const char *name = 0;
5142     Intrinsic::ID ID = Intrinsic::not_intrinsic;
5143     switch(BuiltinID) {
5144     default: llvm_unreachable("Unsupported intrinsic!");
5145     case X86::BI__builtin_ia32_pswapdsf:
5146     case X86::BI__builtin_ia32_pswapdsi:
5147       name = "pswapd";
5148       ID = Intrinsic::x86_3dnowa_pswapd;
5149       break;
5150     }
5151     llvm::Type *MMXTy = llvm::Type::getX86_MMXTy(getLLVMContext());
5152     Ops[0] = Builder.CreateBitCast(Ops[0], MMXTy, "cast");
5153     llvm::Function *F = CGM.getIntrinsic(ID);
5154     return Builder.CreateCall(F, Ops, name);
5155   }
5156   case X86::BI__builtin_ia32_rdrand16_step:
5157   case X86::BI__builtin_ia32_rdrand32_step:
5158   case X86::BI__builtin_ia32_rdrand64_step:
5159   case X86::BI__builtin_ia32_rdseed16_step:
5160   case X86::BI__builtin_ia32_rdseed32_step:
5161   case X86::BI__builtin_ia32_rdseed64_step: {
5162     Intrinsic::ID ID;
5163     switch (BuiltinID) {
5164     default: llvm_unreachable("Unsupported intrinsic!");
5165     case X86::BI__builtin_ia32_rdrand16_step:
5166       ID = Intrinsic::x86_rdrand_16;
5167       break;
5168     case X86::BI__builtin_ia32_rdrand32_step:
5169       ID = Intrinsic::x86_rdrand_32;
5170       break;
5171     case X86::BI__builtin_ia32_rdrand64_step:
5172       ID = Intrinsic::x86_rdrand_64;
5173       break;
5174     case X86::BI__builtin_ia32_rdseed16_step:
5175       ID = Intrinsic::x86_rdseed_16;
5176       break;
5177     case X86::BI__builtin_ia32_rdseed32_step:
5178       ID = Intrinsic::x86_rdseed_32;
5179       break;
5180     case X86::BI__builtin_ia32_rdseed64_step:
5181       ID = Intrinsic::x86_rdseed_64;
5182       break;
5183     }
5184
5185     Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID));
5186     Builder.CreateStore(Builder.CreateExtractValue(Call, 0), Ops[0]);
5187     return Builder.CreateExtractValue(Call, 1);
5188   }
5189   // AVX2 broadcast
5190   case X86::BI__builtin_ia32_vbroadcastsi256: {
5191     Value *VecTmp = CreateMemTemp(E->getArg(0)->getType());
5192     Builder.CreateStore(Ops[0], VecTmp);
5193     Value *F = CGM.getIntrinsic(Intrinsic::x86_avx2_vbroadcasti128);
5194     return Builder.CreateCall(F, Builder.CreateBitCast(VecTmp, Int8PtrTy));
5195   }
5196   }
5197 }
5198
5199
5200 Value *CodeGenFunction::EmitPPCBuiltinExpr(unsigned BuiltinID,
5201                                            const CallExpr *E) {
5202   SmallVector<Value*, 4> Ops;
5203
5204   for (unsigned i = 0, e = E->getNumArgs(); i != e; i++)
5205     Ops.push_back(EmitScalarExpr(E->getArg(i)));
5206
5207   Intrinsic::ID ID = Intrinsic::not_intrinsic;
5208
5209   switch (BuiltinID) {
5210   default: return 0;
5211
5212   // vec_ld, vec_lvsl, vec_lvsr
5213   case PPC::BI__builtin_altivec_lvx:
5214   case PPC::BI__builtin_altivec_lvxl:
5215   case PPC::BI__builtin_altivec_lvebx:
5216   case PPC::BI__builtin_altivec_lvehx:
5217   case PPC::BI__builtin_altivec_lvewx:
5218   case PPC::BI__builtin_altivec_lvsl:
5219   case PPC::BI__builtin_altivec_lvsr:
5220   {
5221     Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
5222
5223     Ops[0] = Builder.CreateGEP(Ops[1], Ops[0]);
5224     Ops.pop_back();
5225
5226     switch (BuiltinID) {
5227     default: llvm_unreachable("Unsupported ld/lvsl/lvsr intrinsic!");
5228     case PPC::BI__builtin_altivec_lvx:
5229       ID = Intrinsic::ppc_altivec_lvx;
5230       break;
5231     case PPC::BI__builtin_altivec_lvxl:
5232       ID = Intrinsic::ppc_altivec_lvxl;
5233       break;
5234     case PPC::BI__builtin_altivec_lvebx:
5235       ID = Intrinsic::ppc_altivec_lvebx;
5236       break;
5237     case PPC::BI__builtin_altivec_lvehx:
5238       ID = Intrinsic::ppc_altivec_lvehx;
5239       break;
5240     case PPC::BI__builtin_altivec_lvewx:
5241       ID = Intrinsic::ppc_altivec_lvewx;
5242       break;
5243     case PPC::BI__builtin_altivec_lvsl:
5244       ID = Intrinsic::ppc_altivec_lvsl;
5245       break;
5246     case PPC::BI__builtin_altivec_lvsr:
5247       ID = Intrinsic::ppc_altivec_lvsr;
5248       break;
5249     }
5250     llvm::Function *F = CGM.getIntrinsic(ID);
5251     return Builder.CreateCall(F, Ops, "");
5252   }
5253
5254   // vec_st
5255   case PPC::BI__builtin_altivec_stvx:
5256   case PPC::BI__builtin_altivec_stvxl:
5257   case PPC::BI__builtin_altivec_stvebx:
5258   case PPC::BI__builtin_altivec_stvehx:
5259   case PPC::BI__builtin_altivec_stvewx:
5260   {
5261     Ops[2] = Builder.CreateBitCast(Ops[2], Int8PtrTy);
5262     Ops[1] = Builder.CreateGEP(Ops[2], Ops[1]);
5263     Ops.pop_back();
5264
5265     switch (BuiltinID) {
5266     default: llvm_unreachable("Unsupported st intrinsic!");
5267     case PPC::BI__builtin_altivec_stvx:
5268       ID = Intrinsic::ppc_altivec_stvx;
5269       break;
5270     case PPC::BI__builtin_altivec_stvxl:
5271       ID = Intrinsic::ppc_altivec_stvxl;
5272       break;
5273     case PPC::BI__builtin_altivec_stvebx:
5274       ID = Intrinsic::ppc_altivec_stvebx;
5275       break;
5276     case PPC::BI__builtin_altivec_stvehx:
5277       ID = Intrinsic::ppc_altivec_stvehx;
5278       break;
5279     case PPC::BI__builtin_altivec_stvewx:
5280       ID = Intrinsic::ppc_altivec_stvewx;
5281       break;
5282     }
5283     llvm::Function *F = CGM.getIntrinsic(ID);
5284     return Builder.CreateCall(F, Ops, "");
5285   }
5286   }
5287 }