]> CyberLeo.Net >> Repos - FreeBSD/releng/10.2.git/blob - contrib/llvm/tools/clang/lib/CodeGen/CodeGenFunction.cpp
- Copy stable/10@285827 to releng/10.2 in preparation for 10.2-RC1
[FreeBSD/releng/10.2.git] / contrib / llvm / tools / clang / lib / CodeGen / CodeGenFunction.cpp
1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-function state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CodeGenFunction.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGDebugInfo.h"
18 #include "CodeGenModule.h"
19 #include "TargetInfo.h"
20 #include "clang/AST/ASTContext.h"
21 #include "clang/AST/Decl.h"
22 #include "clang/AST/DeclCXX.h"
23 #include "clang/AST/StmtCXX.h"
24 #include "clang/Basic/OpenCL.h"
25 #include "clang/Basic/TargetInfo.h"
26 #include "clang/CodeGen/CGFunctionInfo.h"
27 #include "clang/Frontend/CodeGenOptions.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/Intrinsics.h"
30 #include "llvm/IR/MDBuilder.h"
31 #include "llvm/IR/Operator.h"
32 using namespace clang;
33 using namespace CodeGen;
34
35 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
36     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
37       Builder(cgm.getModule().getContext()), CapturedStmtInfo(0),
38       SanitizePerformTypeCheck(CGM.getSanOpts().Null |
39                                CGM.getSanOpts().Alignment |
40                                CGM.getSanOpts().ObjectSize |
41                                CGM.getSanOpts().Vptr),
42       SanOpts(&CGM.getSanOpts()), AutoreleaseResult(false), BlockInfo(0),
43       BlockPointer(0), LambdaThisCaptureField(0), NormalCleanupDest(0),
44       NextCleanupDestIndex(1), FirstBlockInfo(0), EHResumeBlock(0),
45       ExceptionSlot(0), EHSelectorSlot(0), DebugInfo(CGM.getModuleDebugInfo()),
46       DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(0),
47       SwitchInsn(0), CaseRangeBlock(0), UnreachableBlock(0), NumReturnExprs(0),
48       NumSimpleReturnExprs(0), CXXABIThisDecl(0), CXXABIThisValue(0),
49       CXXThisValue(0), CXXDefaultInitExprThis(0),
50       CXXStructorImplicitParamDecl(0), CXXStructorImplicitParamValue(0),
51       OutermostConditional(0), CurLexicalScope(0), TerminateLandingPad(0),
52       TerminateHandler(0), TrapBB(0) {
53   if (!suppressNewContext)
54     CGM.getCXXABI().getMangleContext().startNewFunction();
55
56   llvm::FastMathFlags FMF;
57   if (CGM.getLangOpts().FastMath)
58     FMF.setUnsafeAlgebra();
59   if (CGM.getLangOpts().FiniteMathOnly) {
60     FMF.setNoNaNs();
61     FMF.setNoInfs();
62   }
63   Builder.SetFastMathFlags(FMF);
64 }
65
66 CodeGenFunction::~CodeGenFunction() {
67   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
68
69   // If there are any unclaimed block infos, go ahead and destroy them
70   // now.  This can happen if IR-gen gets clever and skips evaluating
71   // something.
72   if (FirstBlockInfo)
73     destroyBlockInfos(FirstBlockInfo);
74 }
75
76
77 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
78   return CGM.getTypes().ConvertTypeForMem(T);
79 }
80
81 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
82   return CGM.getTypes().ConvertType(T);
83 }
84
85 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
86   type = type.getCanonicalType();
87   while (true) {
88     switch (type->getTypeClass()) {
89 #define TYPE(name, parent)
90 #define ABSTRACT_TYPE(name, parent)
91 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
92 #define DEPENDENT_TYPE(name, parent) case Type::name:
93 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
94 #include "clang/AST/TypeNodes.def"
95       llvm_unreachable("non-canonical or dependent type in IR-generation");
96
97     case Type::Auto:
98       llvm_unreachable("undeduced auto type in IR-generation");
99
100     // Various scalar types.
101     case Type::Builtin:
102     case Type::Pointer:
103     case Type::BlockPointer:
104     case Type::LValueReference:
105     case Type::RValueReference:
106     case Type::MemberPointer:
107     case Type::Vector:
108     case Type::ExtVector:
109     case Type::FunctionProto:
110     case Type::FunctionNoProto:
111     case Type::Enum:
112     case Type::ObjCObjectPointer:
113       return TEK_Scalar;
114
115     // Complexes.
116     case Type::Complex:
117       return TEK_Complex;
118
119     // Arrays, records, and Objective-C objects.
120     case Type::ConstantArray:
121     case Type::IncompleteArray:
122     case Type::VariableArray:
123     case Type::Record:
124     case Type::ObjCObject:
125     case Type::ObjCInterface:
126       return TEK_Aggregate;
127
128     // We operate on atomic values according to their underlying type.
129     case Type::Atomic:
130       type = cast<AtomicType>(type)->getValueType();
131       continue;
132     }
133     llvm_unreachable("unknown type kind!");
134   }
135 }
136
137 void CodeGenFunction::EmitReturnBlock() {
138   // For cleanliness, we try to avoid emitting the return block for
139   // simple cases.
140   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
141
142   if (CurBB) {
143     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
144
145     // We have a valid insert point, reuse it if it is empty or there are no
146     // explicit jumps to the return block.
147     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
148       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
149       delete ReturnBlock.getBlock();
150     } else
151       EmitBlock(ReturnBlock.getBlock());
152     return;
153   }
154
155   // Otherwise, if the return block is the target of a single direct
156   // branch then we can just put the code in that block instead. This
157   // cleans up functions which started with a unified return block.
158   if (ReturnBlock.getBlock()->hasOneUse()) {
159     llvm::BranchInst *BI =
160       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin());
161     if (BI && BI->isUnconditional() &&
162         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
163       // Reset insertion point, including debug location, and delete the
164       // branch.  This is really subtle and only works because the next change
165       // in location will hit the caching in CGDebugInfo::EmitLocation and not
166       // override this.
167       Builder.SetCurrentDebugLocation(BI->getDebugLoc());
168       Builder.SetInsertPoint(BI->getParent());
169       BI->eraseFromParent();
170       delete ReturnBlock.getBlock();
171       return;
172     }
173   }
174
175   // FIXME: We are at an unreachable point, there is no reason to emit the block
176   // unless it has uses. However, we still need a place to put the debug
177   // region.end for now.
178
179   EmitBlock(ReturnBlock.getBlock());
180 }
181
182 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
183   if (!BB) return;
184   if (!BB->use_empty())
185     return CGF.CurFn->getBasicBlockList().push_back(BB);
186   delete BB;
187 }
188
189 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
190   assert(BreakContinueStack.empty() &&
191          "mismatched push/pop in break/continue stack!");
192
193   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
194     && NumSimpleReturnExprs == NumReturnExprs
195     && ReturnBlock.getBlock()->use_empty();
196   // Usually the return expression is evaluated before the cleanup
197   // code.  If the function contains only a simple return statement,
198   // such as a constant, the location before the cleanup code becomes
199   // the last useful breakpoint in the function, because the simple
200   // return expression will be evaluated after the cleanup code. To be
201   // safe, set the debug location for cleanup code to the location of
202   // the return statement.  Otherwise the cleanup code should be at the
203   // end of the function's lexical scope.
204   //
205   // If there are multiple branches to the return block, the branch
206   // instructions will get the location of the return statements and
207   // all will be fine.
208   if (CGDebugInfo *DI = getDebugInfo()) {
209     if (OnlySimpleReturnStmts)
210       DI->EmitLocation(Builder, LastStopPoint);
211     else
212       DI->EmitLocation(Builder, EndLoc);
213   }
214
215   // Pop any cleanups that might have been associated with the
216   // parameters.  Do this in whatever block we're currently in; it's
217   // important to do this before we enter the return block or return
218   // edges will be *really* confused.
219   bool EmitRetDbgLoc = true;
220   if (EHStack.stable_begin() != PrologueCleanupDepth) {
221     PopCleanupBlocks(PrologueCleanupDepth);
222
223     // Make sure the line table doesn't jump back into the body for
224     // the ret after it's been at EndLoc.
225     EmitRetDbgLoc = false;
226
227     if (CGDebugInfo *DI = getDebugInfo())
228       if (OnlySimpleReturnStmts)
229         DI->EmitLocation(Builder, EndLoc);
230   }
231
232   // Emit function epilog (to return).
233   EmitReturnBlock();
234
235   if (ShouldInstrumentFunction())
236     EmitFunctionInstrumentation("__cyg_profile_func_exit");
237
238   // Emit debug descriptor for function end.
239   if (CGDebugInfo *DI = getDebugInfo()) {
240     DI->EmitFunctionEnd(Builder);
241   }
242
243   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
244   EmitEndEHSpec(CurCodeDecl);
245
246   assert(EHStack.empty() &&
247          "did not remove all scopes from cleanup stack!");
248
249   // If someone did an indirect goto, emit the indirect goto block at the end of
250   // the function.
251   if (IndirectBranch) {
252     EmitBlock(IndirectBranch->getParent());
253     Builder.ClearInsertionPoint();
254   }
255
256   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
257   llvm::Instruction *Ptr = AllocaInsertPt;
258   AllocaInsertPt = 0;
259   Ptr->eraseFromParent();
260
261   // If someone took the address of a label but never did an indirect goto, we
262   // made a zero entry PHI node, which is illegal, zap it now.
263   if (IndirectBranch) {
264     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
265     if (PN->getNumIncomingValues() == 0) {
266       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
267       PN->eraseFromParent();
268     }
269   }
270
271   EmitIfUsed(*this, EHResumeBlock);
272   EmitIfUsed(*this, TerminateLandingPad);
273   EmitIfUsed(*this, TerminateHandler);
274   EmitIfUsed(*this, UnreachableBlock);
275
276   if (CGM.getCodeGenOpts().EmitDeclMetadata)
277     EmitDeclMetadata();
278 }
279
280 /// ShouldInstrumentFunction - Return true if the current function should be
281 /// instrumented with __cyg_profile_func_* calls
282 bool CodeGenFunction::ShouldInstrumentFunction() {
283   if (!CGM.getCodeGenOpts().InstrumentFunctions)
284     return false;
285   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
286     return false;
287   return true;
288 }
289
290 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
291 /// instrumentation function with the current function and the call site, if
292 /// function instrumentation is enabled.
293 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
294   // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
295   llvm::PointerType *PointerTy = Int8PtrTy;
296   llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy };
297   llvm::FunctionType *FunctionTy =
298     llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false);
299
300   llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
301   llvm::CallInst *CallSite = Builder.CreateCall(
302     CGM.getIntrinsic(llvm::Intrinsic::returnaddress),
303     llvm::ConstantInt::get(Int32Ty, 0),
304     "callsite");
305
306   llvm::Value *args[] = {
307     llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
308     CallSite
309   };
310
311   EmitNounwindRuntimeCall(F, args);
312 }
313
314 void CodeGenFunction::EmitMCountInstrumentation() {
315   llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
316
317   llvm::Constant *MCountFn =
318     CGM.CreateRuntimeFunction(FTy, getTarget().getMCountName());
319   EmitNounwindRuntimeCall(MCountFn);
320 }
321
322 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument
323 // information in the program executable. The argument information stored
324 // includes the argument name, its type, the address and access qualifiers used.
325 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn,
326                                  CodeGenModule &CGM,llvm::LLVMContext &Context,
327                                  SmallVector <llvm::Value*, 5> &kernelMDArgs,
328                                  CGBuilderTy& Builder, ASTContext &ASTCtx) {
329   // Create MDNodes that represent the kernel arg metadata.
330   // Each MDNode is a list in the form of "key", N number of values which is
331   // the same number of values as their are kernel arguments.
332
333   // MDNode for the kernel argument address space qualifiers.
334   SmallVector<llvm::Value*, 8> addressQuals;
335   addressQuals.push_back(llvm::MDString::get(Context, "kernel_arg_addr_space"));
336
337   // MDNode for the kernel argument access qualifiers (images only).
338   SmallVector<llvm::Value*, 8> accessQuals;
339   accessQuals.push_back(llvm::MDString::get(Context, "kernel_arg_access_qual"));
340
341   // MDNode for the kernel argument type names.
342   SmallVector<llvm::Value*, 8> argTypeNames;
343   argTypeNames.push_back(llvm::MDString::get(Context, "kernel_arg_type"));
344
345   // MDNode for the kernel argument type qualifiers.
346   SmallVector<llvm::Value*, 8> argTypeQuals;
347   argTypeQuals.push_back(llvm::MDString::get(Context, "kernel_arg_type_qual"));
348
349   // MDNode for the kernel argument names.
350   SmallVector<llvm::Value*, 8> argNames;
351   argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name"));
352
353   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
354     const ParmVarDecl *parm = FD->getParamDecl(i);
355     QualType ty = parm->getType();
356     std::string typeQuals;
357
358     if (ty->isPointerType()) {
359       QualType pointeeTy = ty->getPointeeType();
360
361       // Get address qualifier.
362       addressQuals.push_back(Builder.getInt32(ASTCtx.getTargetAddressSpace(
363         pointeeTy.getAddressSpace())));
364
365       // Get argument type name.
366       std::string typeName = pointeeTy.getUnqualifiedType().getAsString() + "*";
367
368       // Turn "unsigned type" to "utype"
369       std::string::size_type pos = typeName.find("unsigned");
370       if (pos != std::string::npos)
371         typeName.erase(pos+1, 8);
372
373       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
374
375       // Get argument type qualifiers:
376       if (ty.isRestrictQualified())
377         typeQuals = "restrict";
378       if (pointeeTy.isConstQualified() ||
379           (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
380         typeQuals += typeQuals.empty() ? "const" : " const";
381       if (pointeeTy.isVolatileQualified())
382         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
383     } else {
384       addressQuals.push_back(Builder.getInt32(0));
385
386       // Get argument type name.
387       std::string typeName = ty.getUnqualifiedType().getAsString();
388
389       // Turn "unsigned type" to "utype"
390       std::string::size_type pos = typeName.find("unsigned");
391       if (pos != std::string::npos)
392         typeName.erase(pos+1, 8);
393
394       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
395
396       // Get argument type qualifiers:
397       if (ty.isConstQualified())
398         typeQuals = "const";
399       if (ty.isVolatileQualified())
400         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
401     }
402     
403     argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals));
404
405     // Get image access qualifier:
406     if (ty->isImageType()) {
407       if (parm->hasAttr<OpenCLImageAccessAttr>() &&
408           parm->getAttr<OpenCLImageAccessAttr>()->getAccess() == CLIA_write_only)
409         accessQuals.push_back(llvm::MDString::get(Context, "write_only"));
410       else
411         accessQuals.push_back(llvm::MDString::get(Context, "read_only"));
412     } else
413       accessQuals.push_back(llvm::MDString::get(Context, "none"));
414
415     // Get argument name.
416     argNames.push_back(llvm::MDString::get(Context, parm->getName()));
417   }
418
419   kernelMDArgs.push_back(llvm::MDNode::get(Context, addressQuals));
420   kernelMDArgs.push_back(llvm::MDNode::get(Context, accessQuals));
421   kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeNames));
422   kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeQuals));
423   kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames));
424 }
425
426 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
427                                                llvm::Function *Fn)
428 {
429   if (!FD->hasAttr<OpenCLKernelAttr>())
430     return;
431
432   llvm::LLVMContext &Context = getLLVMContext();
433
434   SmallVector <llvm::Value*, 5> kernelMDArgs;
435   kernelMDArgs.push_back(Fn);
436
437   if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
438     GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs,
439                          Builder, getContext());
440
441   if (FD->hasAttr<VecTypeHintAttr>()) {
442     VecTypeHintAttr *attr = FD->getAttr<VecTypeHintAttr>();
443     QualType hintQTy = attr->getTypeHint();
444     const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>();
445     bool isSignedInteger =
446         hintQTy->isSignedIntegerType() ||
447         (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType());
448     llvm::Value *attrMDArgs[] = {
449       llvm::MDString::get(Context, "vec_type_hint"),
450       llvm::UndefValue::get(CGM.getTypes().ConvertType(attr->getTypeHint())),
451       llvm::ConstantInt::get(
452           llvm::IntegerType::get(Context, 32),
453           llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0)))
454     };
455     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
456   }
457
458   if (FD->hasAttr<WorkGroupSizeHintAttr>()) {
459     WorkGroupSizeHintAttr *attr = FD->getAttr<WorkGroupSizeHintAttr>();
460     llvm::Value *attrMDArgs[] = {
461       llvm::MDString::get(Context, "work_group_size_hint"),
462       Builder.getInt32(attr->getXDim()),
463       Builder.getInt32(attr->getYDim()),
464       Builder.getInt32(attr->getZDim())
465     };
466     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
467   }
468
469   if (FD->hasAttr<ReqdWorkGroupSizeAttr>()) {
470     ReqdWorkGroupSizeAttr *attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
471     llvm::Value *attrMDArgs[] = {
472       llvm::MDString::get(Context, "reqd_work_group_size"),
473       Builder.getInt32(attr->getXDim()),
474       Builder.getInt32(attr->getYDim()),
475       Builder.getInt32(attr->getZDim())
476     };
477     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
478   }
479
480   llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs);
481   llvm::NamedMDNode *OpenCLKernelMetadata =
482     CGM.getModule().getOrInsertNamedMetadata("opencl.kernels");
483   OpenCLKernelMetadata->addOperand(kernelMDNode);
484 }
485
486 void CodeGenFunction::StartFunction(GlobalDecl GD,
487                                     QualType RetTy,
488                                     llvm::Function *Fn,
489                                     const CGFunctionInfo &FnInfo,
490                                     const FunctionArgList &Args,
491                                     SourceLocation StartLoc) {
492   const Decl *D = GD.getDecl();
493
494   DidCallStackSave = false;
495   CurCodeDecl = D;
496   CurFuncDecl = (D ? D->getNonClosureContext() : 0);
497   FnRetTy = RetTy;
498   CurFn = Fn;
499   CurFnInfo = &FnInfo;
500   assert(CurFn->isDeclaration() && "Function already has body?");
501
502   if (CGM.getSanitizerBlacklist().isIn(*Fn)) {
503     SanOpts = &SanitizerOptions::Disabled;
504     SanitizePerformTypeCheck = false;
505   }
506
507   // Pass inline keyword to optimizer if it appears explicitly on any
508   // declaration.
509   if (!CGM.getCodeGenOpts().NoInline)
510     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
511       for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(),
512              RE = FD->redecls_end(); RI != RE; ++RI)
513         if (RI->isInlineSpecified()) {
514           Fn->addFnAttr(llvm::Attribute::InlineHint);
515           break;
516         }
517
518   if (getLangOpts().OpenCL) {
519     // Add metadata for a kernel function.
520     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
521       EmitOpenCLKernelMetadata(FD, Fn);
522   }
523
524   // If we are checking function types, emit a function type signature as
525   // prefix data.
526   if (getLangOpts().CPlusPlus && SanOpts->Function) {
527     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
528       if (llvm::Constant *PrefixSig =
529               CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
530         llvm::Constant *FTRTTIConst =
531             CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true);
532         llvm::Constant *PrefixStructElems[] = { PrefixSig, FTRTTIConst };
533         llvm::Constant *PrefixStructConst =
534             llvm::ConstantStruct::getAnon(PrefixStructElems, /*Packed=*/true);
535         Fn->setPrefixData(PrefixStructConst);
536       }
537     }
538   }
539
540   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
541
542   // Create a marker to make it easy to insert allocas into the entryblock
543   // later.  Don't create this with the builder, because we don't want it
544   // folded.
545   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
546   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB);
547   if (Builder.isNamePreserving())
548     AllocaInsertPt->setName("allocapt");
549
550   ReturnBlock = getJumpDestInCurrentScope("return");
551
552   Builder.SetInsertPoint(EntryBB);
553
554   // Emit subprogram debug descriptor.
555   if (CGDebugInfo *DI = getDebugInfo()) {
556     SmallVector<QualType, 16> ArgTypes;
557     for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
558          i != e; ++i) {
559       ArgTypes.push_back((*i)->getType());
560     }
561
562     QualType FnType =
563       getContext().getFunctionType(RetTy, ArgTypes,
564                                    FunctionProtoType::ExtProtoInfo());
565
566     DI->setLocation(StartLoc);
567     DI->EmitFunctionStart(GD, FnType, CurFn, Builder);
568   }
569
570   if (ShouldInstrumentFunction())
571     EmitFunctionInstrumentation("__cyg_profile_func_enter");
572
573   if (CGM.getCodeGenOpts().InstrumentForProfiling)
574     EmitMCountInstrumentation();
575
576   if (RetTy->isVoidType()) {
577     // Void type; nothing to return.
578     ReturnValue = 0;
579   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
580              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
581     // Indirect aggregate return; emit returned value directly into sret slot.
582     // This reduces code size, and affects correctness in C++.
583     ReturnValue = CurFn->arg_begin();
584   } else {
585     ReturnValue = CreateIRTemp(RetTy, "retval");
586
587     // Tell the epilog emitter to autorelease the result.  We do this
588     // now so that various specialized functions can suppress it
589     // during their IR-generation.
590     if (getLangOpts().ObjCAutoRefCount &&
591         !CurFnInfo->isReturnsRetained() &&
592         RetTy->isObjCRetainableType())
593       AutoreleaseResult = true;
594   }
595
596   EmitStartEHSpec(CurCodeDecl);
597
598   PrologueCleanupDepth = EHStack.stable_begin();
599   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
600
601   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
602     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
603     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
604     if (MD->getParent()->isLambda() &&
605         MD->getOverloadedOperator() == OO_Call) {
606       // We're in a lambda; figure out the captures.
607       MD->getParent()->getCaptureFields(LambdaCaptureFields,
608                                         LambdaThisCaptureField);
609       if (LambdaThisCaptureField) {
610         // If this lambda captures this, load it.
611         LValue ThisLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
612         CXXThisValue = EmitLoadOfLValue(ThisLValue,
613                                         SourceLocation()).getScalarVal();
614       }
615     } else {
616       // Not in a lambda; just use 'this' from the method.
617       // FIXME: Should we generate a new load for each use of 'this'?  The
618       // fast register allocator would be happier...
619       CXXThisValue = CXXABIThisValue;
620     }
621   }
622
623   // If any of the arguments have a variably modified type, make sure to
624   // emit the type size.
625   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
626        i != e; ++i) {
627     const VarDecl *VD = *i;
628
629     // Dig out the type as written from ParmVarDecls; it's unclear whether
630     // the standard (C99 6.9.1p10) requires this, but we're following the
631     // precedent set by gcc.
632     QualType Ty;
633     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
634       Ty = PVD->getOriginalType();
635     else
636       Ty = VD->getType();
637
638     if (Ty->isVariablyModifiedType())
639       EmitVariablyModifiedType(Ty);
640   }
641   // Emit a location at the end of the prologue.
642   if (CGDebugInfo *DI = getDebugInfo())
643     DI->EmitLocation(Builder, StartLoc);
644 }
645
646 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args,
647                                        const Stmt *Body) {
648   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
649     EmitCompoundStmtWithoutScope(*S);
650   else
651     EmitStmt(Body);
652 }
653
654 /// Tries to mark the given function nounwind based on the
655 /// non-existence of any throwing calls within it.  We believe this is
656 /// lightweight enough to do at -O0.
657 static void TryMarkNoThrow(llvm::Function *F) {
658   // LLVM treats 'nounwind' on a function as part of the type, so we
659   // can't do this on functions that can be overwritten.
660   if (F->mayBeOverridden()) return;
661
662   for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI)
663     for (llvm::BasicBlock::iterator
664            BI = FI->begin(), BE = FI->end(); BI != BE; ++BI)
665       if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) {
666         if (!Call->doesNotThrow())
667           return;
668       } else if (isa<llvm::ResumeInst>(&*BI)) {
669         return;
670       }
671   F->setDoesNotThrow();
672 }
673
674 static void EmitSizedDeallocationFunction(CodeGenFunction &CGF,
675                                           const FunctionDecl *UnsizedDealloc) {
676   // This is a weak discardable definition of the sized deallocation function.
677   CGF.CurFn->setLinkage(llvm::Function::LinkOnceAnyLinkage);
678
679   // Call the unsized deallocation function and forward the first argument
680   // unchanged.
681   llvm::Constant *Unsized = CGF.CGM.GetAddrOfFunction(UnsizedDealloc);
682   CGF.Builder.CreateCall(Unsized, &*CGF.CurFn->arg_begin());
683 }
684
685 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
686                                    const CGFunctionInfo &FnInfo) {
687   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
688
689   // Check if we should generate debug info for this function.
690   if (FD->hasAttr<NoDebugAttr>())
691     DebugInfo = NULL; // disable debug info indefinitely for this function
692
693   FunctionArgList Args;
694   QualType ResTy = FD->getResultType();
695
696   CurGD = GD;
697   const CXXMethodDecl *MD;
698   if ((MD = dyn_cast<CXXMethodDecl>(FD)) && MD->isInstance()) {
699     if (CGM.getCXXABI().HasThisReturn(GD))
700       ResTy = MD->getThisType(getContext());
701     CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResTy, Args);
702   }
703
704   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i)
705     Args.push_back(FD->getParamDecl(i));
706
707   SourceRange BodyRange;
708   if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange();
709   CurEHLocation = BodyRange.getEnd();
710
711   // Emit the standard function prologue.
712   StartFunction(GD, ResTy, Fn, FnInfo, Args, BodyRange.getBegin());
713
714   // Generate the body of the function.
715   if (isa<CXXDestructorDecl>(FD))
716     EmitDestructorBody(Args);
717   else if (isa<CXXConstructorDecl>(FD))
718     EmitConstructorBody(Args);
719   else if (getLangOpts().CUDA &&
720            !CGM.getCodeGenOpts().CUDAIsDevice &&
721            FD->hasAttr<CUDAGlobalAttr>())
722     CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args);
723   else if (isa<CXXConversionDecl>(FD) &&
724            cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) {
725     // The lambda conversion to block pointer is special; the semantics can't be
726     // expressed in the AST, so IRGen needs to special-case it.
727     EmitLambdaToBlockPointerBody(Args);
728   } else if (isa<CXXMethodDecl>(FD) &&
729              cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
730     // The lambda static invoker function is special, because it forwards or
731     // clones the body of the function call operator (but is actually static).
732     EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD));
733   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
734              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
735               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
736     // Implicit copy-assignment gets the same special treatment as implicit
737     // copy-constructors.
738     emitImplicitAssignmentOperatorBody(Args);
739   } else if (Stmt *Body = FD->getBody()) {
740     EmitFunctionBody(Args, Body);
741   } else if (FunctionDecl *UnsizedDealloc =
742                  FD->getCorrespondingUnsizedGlobalDeallocationFunction()) {
743     // Global sized deallocation functions get an implicit weak definition if
744     // they don't have an explicit definition.
745     EmitSizedDeallocationFunction(*this, UnsizedDealloc);
746   } else
747     llvm_unreachable("no definition for emitted function");
748
749   // C++11 [stmt.return]p2:
750   //   Flowing off the end of a function [...] results in undefined behavior in
751   //   a value-returning function.
752   // C11 6.9.1p12:
753   //   If the '}' that terminates a function is reached, and the value of the
754   //   function call is used by the caller, the behavior is undefined.
755   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() &&
756       !FD->getResultType()->isVoidType() && Builder.GetInsertBlock()) {
757     if (SanOpts->Return)
758       EmitCheck(Builder.getFalse(), "missing_return",
759                 EmitCheckSourceLocation(FD->getLocation()),
760                 ArrayRef<llvm::Value *>(), CRK_Unrecoverable);
761     else if (CGM.getCodeGenOpts().OptimizationLevel == 0)
762       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::trap));
763     Builder.CreateUnreachable();
764     Builder.ClearInsertionPoint();
765   }
766
767   // Emit the standard function epilogue.
768   FinishFunction(BodyRange.getEnd());
769
770   // If we haven't marked the function nothrow through other means, do
771   // a quick pass now to see if we can.
772   if (!CurFn->doesNotThrow())
773     TryMarkNoThrow(CurFn);
774 }
775
776 /// ContainsLabel - Return true if the statement contains a label in it.  If
777 /// this statement is not executed normally, it not containing a label means
778 /// that we can just remove the code.
779 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
780   // Null statement, not a label!
781   if (S == 0) return false;
782
783   // If this is a label, we have to emit the code, consider something like:
784   // if (0) {  ...  foo:  bar(); }  goto foo;
785   //
786   // TODO: If anyone cared, we could track __label__'s, since we know that you
787   // can't jump to one from outside their declared region.
788   if (isa<LabelStmt>(S))
789     return true;
790
791   // If this is a case/default statement, and we haven't seen a switch, we have
792   // to emit the code.
793   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
794     return true;
795
796   // If this is a switch statement, we want to ignore cases below it.
797   if (isa<SwitchStmt>(S))
798     IgnoreCaseStmts = true;
799
800   // Scan subexpressions for verboten labels.
801   for (Stmt::const_child_range I = S->children(); I; ++I)
802     if (ContainsLabel(*I, IgnoreCaseStmts))
803       return true;
804
805   return false;
806 }
807
808 /// containsBreak - Return true if the statement contains a break out of it.
809 /// If the statement (recursively) contains a switch or loop with a break
810 /// inside of it, this is fine.
811 bool CodeGenFunction::containsBreak(const Stmt *S) {
812   // Null statement, not a label!
813   if (S == 0) return false;
814
815   // If this is a switch or loop that defines its own break scope, then we can
816   // include it and anything inside of it.
817   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
818       isa<ForStmt>(S))
819     return false;
820
821   if (isa<BreakStmt>(S))
822     return true;
823
824   // Scan subexpressions for verboten breaks.
825   for (Stmt::const_child_range I = S->children(); I; ++I)
826     if (containsBreak(*I))
827       return true;
828
829   return false;
830 }
831
832
833 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
834 /// to a constant, or if it does but contains a label, return false.  If it
835 /// constant folds return true and set the boolean result in Result.
836 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
837                                                    bool &ResultBool) {
838   llvm::APSInt ResultInt;
839   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt))
840     return false;
841
842   ResultBool = ResultInt.getBoolValue();
843   return true;
844 }
845
846 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
847 /// to a constant, or if it does but contains a label, return false.  If it
848 /// constant folds return true and set the folded value.
849 bool CodeGenFunction::
850 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) {
851   // FIXME: Rename and handle conversion of other evaluatable things
852   // to bool.
853   llvm::APSInt Int;
854   if (!Cond->EvaluateAsInt(Int, getContext()))
855     return false;  // Not foldable, not integer or not fully evaluatable.
856
857   if (CodeGenFunction::ContainsLabel(Cond))
858     return false;  // Contains a label.
859
860   ResultInt = Int;
861   return true;
862 }
863
864
865
866 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
867 /// statement) to the specified blocks.  Based on the condition, this might try
868 /// to simplify the codegen of the conditional based on the branch.
869 ///
870 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
871                                            llvm::BasicBlock *TrueBlock,
872                                            llvm::BasicBlock *FalseBlock) {
873   Cond = Cond->IgnoreParens();
874
875   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
876     // Handle X && Y in a condition.
877     if (CondBOp->getOpcode() == BO_LAnd) {
878       // If we have "1 && X", simplify the code.  "0 && X" would have constant
879       // folded if the case was simple enough.
880       bool ConstantBool = false;
881       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
882           ConstantBool) {
883         // br(1 && X) -> br(X).
884         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
885       }
886
887       // If we have "X && 1", simplify the code to use an uncond branch.
888       // "X && 0" would have been constant folded to 0.
889       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
890           ConstantBool) {
891         // br(X && 1) -> br(X).
892         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
893       }
894
895       // Emit the LHS as a conditional.  If the LHS conditional is false, we
896       // want to jump to the FalseBlock.
897       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
898
899       ConditionalEvaluation eval(*this);
900       EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock);
901       EmitBlock(LHSTrue);
902
903       // Any temporaries created here are conditional.
904       eval.begin(*this);
905       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
906       eval.end(*this);
907
908       return;
909     }
910
911     if (CondBOp->getOpcode() == BO_LOr) {
912       // If we have "0 || X", simplify the code.  "1 || X" would have constant
913       // folded if the case was simple enough.
914       bool ConstantBool = false;
915       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
916           !ConstantBool) {
917         // br(0 || X) -> br(X).
918         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
919       }
920
921       // If we have "X || 0", simplify the code to use an uncond branch.
922       // "X || 1" would have been constant folded to 1.
923       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
924           !ConstantBool) {
925         // br(X || 0) -> br(X).
926         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
927       }
928
929       // Emit the LHS as a conditional.  If the LHS conditional is true, we
930       // want to jump to the TrueBlock.
931       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
932
933       ConditionalEvaluation eval(*this);
934       EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse);
935       EmitBlock(LHSFalse);
936
937       // Any temporaries created here are conditional.
938       eval.begin(*this);
939       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
940       eval.end(*this);
941
942       return;
943     }
944   }
945
946   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
947     // br(!x, t, f) -> br(x, f, t)
948     if (CondUOp->getOpcode() == UO_LNot)
949       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock);
950   }
951
952   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
953     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
954     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
955     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
956
957     ConditionalEvaluation cond(*this);
958     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock);
959
960     cond.begin(*this);
961     EmitBlock(LHSBlock);
962     EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock);
963     cond.end(*this);
964
965     cond.begin(*this);
966     EmitBlock(RHSBlock);
967     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock);
968     cond.end(*this);
969
970     return;
971   }
972
973   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
974     // Conditional operator handling can give us a throw expression as a
975     // condition for a case like:
976     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
977     // Fold this to:
978     //   br(c, throw x, br(y, t, f))
979     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
980     return;
981   }
982
983   // Emit the code with the fully general case.
984   llvm::Value *CondV = EvaluateExprAsBool(Cond);
985   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock);
986 }
987
988 /// ErrorUnsupported - Print out an error that codegen doesn't support the
989 /// specified stmt yet.
990 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
991   CGM.ErrorUnsupported(S, Type);
992 }
993
994 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
995 /// variable-length array whose elements have a non-zero bit-pattern.
996 ///
997 /// \param baseType the inner-most element type of the array
998 /// \param src - a char* pointing to the bit-pattern for a single
999 /// base element of the array
1000 /// \param sizeInChars - the total size of the VLA, in chars
1001 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1002                                llvm::Value *dest, llvm::Value *src,
1003                                llvm::Value *sizeInChars) {
1004   std::pair<CharUnits,CharUnits> baseSizeAndAlign
1005     = CGF.getContext().getTypeInfoInChars(baseType);
1006
1007   CGBuilderTy &Builder = CGF.Builder;
1008
1009   llvm::Value *baseSizeInChars
1010     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity());
1011
1012   llvm::Type *i8p = Builder.getInt8PtrTy();
1013
1014   llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin");
1015   llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end");
1016
1017   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1018   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1019   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1020
1021   // Make a loop over the VLA.  C99 guarantees that the VLA element
1022   // count must be nonzero.
1023   CGF.EmitBlock(loopBB);
1024
1025   llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur");
1026   cur->addIncoming(begin, originBB);
1027
1028   // memcpy the individual element bit-pattern.
1029   Builder.CreateMemCpy(cur, src, baseSizeInChars,
1030                        baseSizeAndAlign.second.getQuantity(),
1031                        /*volatile*/ false);
1032
1033   // Go to the next element.
1034   llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next");
1035
1036   // Leave if that's the end of the VLA.
1037   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1038   Builder.CreateCondBr(done, contBB, loopBB);
1039   cur->addIncoming(next, loopBB);
1040
1041   CGF.EmitBlock(contBB);
1042 }
1043
1044 void
1045 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) {
1046   // Ignore empty classes in C++.
1047   if (getLangOpts().CPlusPlus) {
1048     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1049       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1050         return;
1051     }
1052   }
1053
1054   // Cast the dest ptr to the appropriate i8 pointer type.
1055   unsigned DestAS =
1056     cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
1057   llvm::Type *BP = Builder.getInt8PtrTy(DestAS);
1058   if (DestPtr->getType() != BP)
1059     DestPtr = Builder.CreateBitCast(DestPtr, BP);
1060
1061   // Get size and alignment info for this aggregate.
1062   std::pair<CharUnits, CharUnits> TypeInfo =
1063     getContext().getTypeInfoInChars(Ty);
1064   CharUnits Size = TypeInfo.first;
1065   CharUnits Align = TypeInfo.second;
1066
1067   llvm::Value *SizeVal;
1068   const VariableArrayType *vla;
1069
1070   // Don't bother emitting a zero-byte memset.
1071   if (Size.isZero()) {
1072     // But note that getTypeInfo returns 0 for a VLA.
1073     if (const VariableArrayType *vlaType =
1074           dyn_cast_or_null<VariableArrayType>(
1075                                           getContext().getAsArrayType(Ty))) {
1076       QualType eltType;
1077       llvm::Value *numElts;
1078       llvm::tie(numElts, eltType) = getVLASize(vlaType);
1079
1080       SizeVal = numElts;
1081       CharUnits eltSize = getContext().getTypeSizeInChars(eltType);
1082       if (!eltSize.isOne())
1083         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1084       vla = vlaType;
1085     } else {
1086       return;
1087     }
1088   } else {
1089     SizeVal = CGM.getSize(Size);
1090     vla = 0;
1091   }
1092
1093   // If the type contains a pointer to data member we can't memset it to zero.
1094   // Instead, create a null constant and copy it to the destination.
1095   // TODO: there are other patterns besides zero that we can usefully memset,
1096   // like -1, which happens to be the pattern used by member-pointers.
1097   if (!CGM.getTypes().isZeroInitializable(Ty)) {
1098     // For a VLA, emit a single element, then splat that over the VLA.
1099     if (vla) Ty = getContext().getBaseElementType(vla);
1100
1101     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1102
1103     llvm::GlobalVariable *NullVariable =
1104       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1105                                /*isConstant=*/true,
1106                                llvm::GlobalVariable::PrivateLinkage,
1107                                NullConstant, Twine());
1108     llvm::Value *SrcPtr =
1109       Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy());
1110
1111     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1112
1113     // Get and call the appropriate llvm.memcpy overload.
1114     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false);
1115     return;
1116   }
1117
1118   // Otherwise, just memset the whole thing to zero.  This is legal
1119   // because in LLVM, all default initializers (other than the ones we just
1120   // handled above) are guaranteed to have a bit pattern of all zeros.
1121   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal,
1122                        Align.getQuantity(), false);
1123 }
1124
1125 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1126   // Make sure that there is a block for the indirect goto.
1127   if (IndirectBranch == 0)
1128     GetIndirectGotoBlock();
1129
1130   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1131
1132   // Make sure the indirect branch includes all of the address-taken blocks.
1133   IndirectBranch->addDestination(BB);
1134   return llvm::BlockAddress::get(CurFn, BB);
1135 }
1136
1137 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1138   // If we already made the indirect branch for indirect goto, return its block.
1139   if (IndirectBranch) return IndirectBranch->getParent();
1140
1141   CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto"));
1142
1143   // Create the PHI node that indirect gotos will add entries to.
1144   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1145                                               "indirect.goto.dest");
1146
1147   // Create the indirect branch instruction.
1148   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1149   return IndirectBranch->getParent();
1150 }
1151
1152 /// Computes the length of an array in elements, as well as the base
1153 /// element type and a properly-typed first element pointer.
1154 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1155                                               QualType &baseType,
1156                                               llvm::Value *&addr) {
1157   const ArrayType *arrayType = origArrayType;
1158
1159   // If it's a VLA, we have to load the stored size.  Note that
1160   // this is the size of the VLA in bytes, not its size in elements.
1161   llvm::Value *numVLAElements = 0;
1162   if (isa<VariableArrayType>(arrayType)) {
1163     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first;
1164
1165     // Walk into all VLAs.  This doesn't require changes to addr,
1166     // which has type T* where T is the first non-VLA element type.
1167     do {
1168       QualType elementType = arrayType->getElementType();
1169       arrayType = getContext().getAsArrayType(elementType);
1170
1171       // If we only have VLA components, 'addr' requires no adjustment.
1172       if (!arrayType) {
1173         baseType = elementType;
1174         return numVLAElements;
1175       }
1176     } while (isa<VariableArrayType>(arrayType));
1177
1178     // We get out here only if we find a constant array type
1179     // inside the VLA.
1180   }
1181
1182   // We have some number of constant-length arrays, so addr should
1183   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
1184   // down to the first element of addr.
1185   SmallVector<llvm::Value*, 8> gepIndices;
1186
1187   // GEP down to the array type.
1188   llvm::ConstantInt *zero = Builder.getInt32(0);
1189   gepIndices.push_back(zero);
1190
1191   uint64_t countFromCLAs = 1;
1192   QualType eltType;
1193
1194   llvm::ArrayType *llvmArrayType =
1195     dyn_cast<llvm::ArrayType>(
1196       cast<llvm::PointerType>(addr->getType())->getElementType());
1197   while (llvmArrayType) {
1198     assert(isa<ConstantArrayType>(arrayType));
1199     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
1200              == llvmArrayType->getNumElements());
1201
1202     gepIndices.push_back(zero);
1203     countFromCLAs *= llvmArrayType->getNumElements();
1204     eltType = arrayType->getElementType();
1205
1206     llvmArrayType =
1207       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
1208     arrayType = getContext().getAsArrayType(arrayType->getElementType());
1209     assert((!llvmArrayType || arrayType) &&
1210            "LLVM and Clang types are out-of-synch");
1211   }
1212
1213   if (arrayType) {
1214     // From this point onwards, the Clang array type has been emitted
1215     // as some other type (probably a packed struct). Compute the array
1216     // size, and just emit the 'begin' expression as a bitcast.
1217     while (arrayType) {
1218       countFromCLAs *=
1219           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
1220       eltType = arrayType->getElementType();
1221       arrayType = getContext().getAsArrayType(eltType);
1222     }
1223
1224     unsigned AddressSpace = addr->getType()->getPointerAddressSpace();
1225     llvm::Type *BaseType = ConvertType(eltType)->getPointerTo(AddressSpace);
1226     addr = Builder.CreateBitCast(addr, BaseType, "array.begin");
1227   } else {
1228     // Create the actual GEP.
1229     addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin");
1230   }
1231
1232   baseType = eltType;
1233
1234   llvm::Value *numElements
1235     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
1236
1237   // If we had any VLA dimensions, factor them in.
1238   if (numVLAElements)
1239     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
1240
1241   return numElements;
1242 }
1243
1244 std::pair<llvm::Value*, QualType>
1245 CodeGenFunction::getVLASize(QualType type) {
1246   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1247   assert(vla && "type was not a variable array type!");
1248   return getVLASize(vla);
1249 }
1250
1251 std::pair<llvm::Value*, QualType>
1252 CodeGenFunction::getVLASize(const VariableArrayType *type) {
1253   // The number of elements so far; always size_t.
1254   llvm::Value *numElements = 0;
1255
1256   QualType elementType;
1257   do {
1258     elementType = type->getElementType();
1259     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
1260     assert(vlaSize && "no size for VLA!");
1261     assert(vlaSize->getType() == SizeTy);
1262
1263     if (!numElements) {
1264       numElements = vlaSize;
1265     } else {
1266       // It's undefined behavior if this wraps around, so mark it that way.
1267       // FIXME: Teach -fcatch-undefined-behavior to trap this.
1268       numElements = Builder.CreateNUWMul(numElements, vlaSize);
1269     }
1270   } while ((type = getContext().getAsVariableArrayType(elementType)));
1271
1272   return std::pair<llvm::Value*,QualType>(numElements, elementType);
1273 }
1274
1275 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
1276   assert(type->isVariablyModifiedType() &&
1277          "Must pass variably modified type to EmitVLASizes!");
1278
1279   EnsureInsertPoint();
1280
1281   // We're going to walk down into the type and look for VLA
1282   // expressions.
1283   do {
1284     assert(type->isVariablyModifiedType());
1285
1286     const Type *ty = type.getTypePtr();
1287     switch (ty->getTypeClass()) {
1288
1289 #define TYPE(Class, Base)
1290 #define ABSTRACT_TYPE(Class, Base)
1291 #define NON_CANONICAL_TYPE(Class, Base)
1292 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1293 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
1294 #include "clang/AST/TypeNodes.def"
1295       llvm_unreachable("unexpected dependent type!");
1296
1297     // These types are never variably-modified.
1298     case Type::Builtin:
1299     case Type::Complex:
1300     case Type::Vector:
1301     case Type::ExtVector:
1302     case Type::Record:
1303     case Type::Enum:
1304     case Type::Elaborated:
1305     case Type::TemplateSpecialization:
1306     case Type::ObjCObject:
1307     case Type::ObjCInterface:
1308     case Type::ObjCObjectPointer:
1309       llvm_unreachable("type class is never variably-modified!");
1310
1311     case Type::Decayed:
1312       type = cast<DecayedType>(ty)->getPointeeType();
1313       break;
1314
1315     case Type::Pointer:
1316       type = cast<PointerType>(ty)->getPointeeType();
1317       break;
1318
1319     case Type::BlockPointer:
1320       type = cast<BlockPointerType>(ty)->getPointeeType();
1321       break;
1322
1323     case Type::LValueReference:
1324     case Type::RValueReference:
1325       type = cast<ReferenceType>(ty)->getPointeeType();
1326       break;
1327
1328     case Type::MemberPointer:
1329       type = cast<MemberPointerType>(ty)->getPointeeType();
1330       break;
1331
1332     case Type::ConstantArray:
1333     case Type::IncompleteArray:
1334       // Losing element qualification here is fine.
1335       type = cast<ArrayType>(ty)->getElementType();
1336       break;
1337
1338     case Type::VariableArray: {
1339       // Losing element qualification here is fine.
1340       const VariableArrayType *vat = cast<VariableArrayType>(ty);
1341
1342       // Unknown size indication requires no size computation.
1343       // Otherwise, evaluate and record it.
1344       if (const Expr *size = vat->getSizeExpr()) {
1345         // It's possible that we might have emitted this already,
1346         // e.g. with a typedef and a pointer to it.
1347         llvm::Value *&entry = VLASizeMap[size];
1348         if (!entry) {
1349           llvm::Value *Size = EmitScalarExpr(size);
1350
1351           // C11 6.7.6.2p5:
1352           //   If the size is an expression that is not an integer constant
1353           //   expression [...] each time it is evaluated it shall have a value
1354           //   greater than zero.
1355           if (SanOpts->VLABound &&
1356               size->getType()->isSignedIntegerType()) {
1357             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
1358             llvm::Constant *StaticArgs[] = {
1359               EmitCheckSourceLocation(size->getLocStart()),
1360               EmitCheckTypeDescriptor(size->getType())
1361             };
1362             EmitCheck(Builder.CreateICmpSGT(Size, Zero),
1363                       "vla_bound_not_positive", StaticArgs, Size,
1364                       CRK_Recoverable);
1365           }
1366
1367           // Always zexting here would be wrong if it weren't
1368           // undefined behavior to have a negative bound.
1369           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
1370         }
1371       }
1372       type = vat->getElementType();
1373       break;
1374     }
1375
1376     case Type::FunctionProto:
1377     case Type::FunctionNoProto:
1378       type = cast<FunctionType>(ty)->getResultType();
1379       break;
1380
1381     case Type::Paren:
1382     case Type::TypeOf:
1383     case Type::UnaryTransform:
1384     case Type::Attributed:
1385     case Type::SubstTemplateTypeParm:
1386     case Type::PackExpansion:
1387       // Keep walking after single level desugaring.
1388       type = type.getSingleStepDesugaredType(getContext());
1389       break;
1390
1391     case Type::Typedef:
1392     case Type::Decltype:
1393     case Type::Auto:
1394       // Stop walking: nothing to do.
1395       return;
1396
1397     case Type::TypeOfExpr:
1398       // Stop walking: emit typeof expression.
1399       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
1400       return;
1401
1402     case Type::Atomic:
1403       type = cast<AtomicType>(ty)->getValueType();
1404       break;
1405     }
1406   } while (type->isVariablyModifiedType());
1407 }
1408
1409 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) {
1410   if (getContext().getBuiltinVaListType()->isArrayType())
1411     return EmitScalarExpr(E);
1412   return EmitLValue(E).getAddress();
1413 }
1414
1415 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
1416                                               llvm::Constant *Init) {
1417   assert (Init && "Invalid DeclRefExpr initializer!");
1418   if (CGDebugInfo *Dbg = getDebugInfo())
1419     if (CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1420       Dbg->EmitGlobalVariable(E->getDecl(), Init);
1421 }
1422
1423 CodeGenFunction::PeepholeProtection
1424 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
1425   // At the moment, the only aggressive peephole we do in IR gen
1426   // is trunc(zext) folding, but if we add more, we can easily
1427   // extend this protection.
1428
1429   if (!rvalue.isScalar()) return PeepholeProtection();
1430   llvm::Value *value = rvalue.getScalarVal();
1431   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
1432
1433   // Just make an extra bitcast.
1434   assert(HaveInsertPoint());
1435   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
1436                                                   Builder.GetInsertBlock());
1437
1438   PeepholeProtection protection;
1439   protection.Inst = inst;
1440   return protection;
1441 }
1442
1443 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
1444   if (!protection.Inst) return;
1445
1446   // In theory, we could try to duplicate the peepholes now, but whatever.
1447   protection.Inst->eraseFromParent();
1448 }
1449
1450 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
1451                                                  llvm::Value *AnnotatedVal,
1452                                                  StringRef AnnotationStr,
1453                                                  SourceLocation Location) {
1454   llvm::Value *Args[4] = {
1455     AnnotatedVal,
1456     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
1457     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
1458     CGM.EmitAnnotationLineNo(Location)
1459   };
1460   return Builder.CreateCall(AnnotationFn, Args);
1461 }
1462
1463 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
1464   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1465   // FIXME We create a new bitcast for every annotation because that's what
1466   // llvm-gcc was doing.
1467   for (specific_attr_iterator<AnnotateAttr>
1468        ai = D->specific_attr_begin<AnnotateAttr>(),
1469        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
1470     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
1471                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
1472                        (*ai)->getAnnotation(), D->getLocation());
1473 }
1474
1475 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
1476                                                    llvm::Value *V) {
1477   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1478   llvm::Type *VTy = V->getType();
1479   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
1480                                     CGM.Int8PtrTy);
1481
1482   for (specific_attr_iterator<AnnotateAttr>
1483        ai = D->specific_attr_begin<AnnotateAttr>(),
1484        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) {
1485     // FIXME Always emit the cast inst so we can differentiate between
1486     // annotation on the first field of a struct and annotation on the struct
1487     // itself.
1488     if (VTy != CGM.Int8PtrTy)
1489       V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
1490     V = EmitAnnotationCall(F, V, (*ai)->getAnnotation(), D->getLocation());
1491     V = Builder.CreateBitCast(V, VTy);
1492   }
1493
1494   return V;
1495 }
1496
1497 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }