]> CyberLeo.Net >> Repos - FreeBSD/releng/10.2.git/blob - contrib/llvm/tools/clang/lib/CodeGen/CodeGenTypes.cpp
- Copy stable/10@285827 to releng/10.2 in preparation for 10.2-RC1
[FreeBSD/releng/10.2.git] / contrib / llvm / tools / clang / lib / CodeGen / CodeGenTypes.cpp
1 //===--- CodeGenTypes.cpp - Type translation for LLVM CodeGen -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the code that handles AST -> LLVM type lowering.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CodeGenTypes.h"
15 #include "CGCXXABI.h"
16 #include "CGCall.h"
17 #include "CGOpenCLRuntime.h"
18 #include "CGRecordLayout.h"
19 #include "TargetInfo.h"
20 #include "clang/AST/ASTContext.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/Expr.h"
24 #include "clang/AST/RecordLayout.h"
25 #include "clang/CodeGen/CGFunctionInfo.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/DerivedTypes.h"
28 #include "llvm/IR/Module.h"
29 using namespace clang;
30 using namespace CodeGen;
31
32 CodeGenTypes::CodeGenTypes(CodeGenModule &cgm)
33   : CGM(cgm), Context(cgm.getContext()), TheModule(cgm.getModule()),
34     TheDataLayout(cgm.getDataLayout()),
35     Target(cgm.getTarget()), TheCXXABI(cgm.getCXXABI()),
36     TheABIInfo(cgm.getTargetCodeGenInfo().getABIInfo()) {
37   SkippedLayout = false;
38 }
39
40 CodeGenTypes::~CodeGenTypes() {
41   for (llvm::DenseMap<const Type *, CGRecordLayout *>::iterator
42          I = CGRecordLayouts.begin(), E = CGRecordLayouts.end();
43       I != E; ++I)
44     delete I->second;
45
46   for (llvm::FoldingSet<CGFunctionInfo>::iterator
47        I = FunctionInfos.begin(), E = FunctionInfos.end(); I != E; )
48     delete &*I++;
49 }
50
51 void CodeGenTypes::addRecordTypeName(const RecordDecl *RD,
52                                      llvm::StructType *Ty,
53                                      StringRef suffix) {
54   SmallString<256> TypeName;
55   llvm::raw_svector_ostream OS(TypeName);
56   OS << RD->getKindName() << '.';
57   
58   // Name the codegen type after the typedef name
59   // if there is no tag type name available
60   if (RD->getIdentifier()) {
61     // FIXME: We should not have to check for a null decl context here.
62     // Right now we do it because the implicit Obj-C decls don't have one.
63     if (RD->getDeclContext())
64       RD->printQualifiedName(OS);
65     else
66       RD->printName(OS);
67   } else if (const TypedefNameDecl *TDD = RD->getTypedefNameForAnonDecl()) {
68     // FIXME: We should not have to check for a null decl context here.
69     // Right now we do it because the implicit Obj-C decls don't have one.
70     if (TDD->getDeclContext())
71       TDD->printQualifiedName(OS);
72     else
73       TDD->printName(OS);
74   } else
75     OS << "anon";
76
77   if (!suffix.empty())
78     OS << suffix;
79
80   Ty->setName(OS.str());
81 }
82
83 /// ConvertTypeForMem - Convert type T into a llvm::Type.  This differs from
84 /// ConvertType in that it is used to convert to the memory representation for
85 /// a type.  For example, the scalar representation for _Bool is i1, but the
86 /// memory representation is usually i8 or i32, depending on the target.
87 llvm::Type *CodeGenTypes::ConvertTypeForMem(QualType T){
88   llvm::Type *R = ConvertType(T);
89
90   // If this is a non-bool type, don't map it.
91   if (!R->isIntegerTy(1))
92     return R;
93
94   // Otherwise, return an integer of the target-specified size.
95   return llvm::IntegerType::get(getLLVMContext(),
96                                 (unsigned)Context.getTypeSize(T));
97 }
98
99
100 /// isRecordLayoutComplete - Return true if the specified type is already
101 /// completely laid out.
102 bool CodeGenTypes::isRecordLayoutComplete(const Type *Ty) const {
103   llvm::DenseMap<const Type*, llvm::StructType *>::const_iterator I = 
104   RecordDeclTypes.find(Ty);
105   return I != RecordDeclTypes.end() && !I->second->isOpaque();
106 }
107
108 static bool
109 isSafeToConvert(QualType T, CodeGenTypes &CGT,
110                 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked);
111
112
113 /// isSafeToConvert - Return true if it is safe to convert the specified record
114 /// decl to IR and lay it out, false if doing so would cause us to get into a
115 /// recursive compilation mess.
116 static bool 
117 isSafeToConvert(const RecordDecl *RD, CodeGenTypes &CGT,
118                 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked) {
119   // If we have already checked this type (maybe the same type is used by-value
120   // multiple times in multiple structure fields, don't check again.
121   if (!AlreadyChecked.insert(RD)) return true;
122   
123   const Type *Key = CGT.getContext().getTagDeclType(RD).getTypePtr();
124   
125   // If this type is already laid out, converting it is a noop.
126   if (CGT.isRecordLayoutComplete(Key)) return true;
127   
128   // If this type is currently being laid out, we can't recursively compile it.
129   if (CGT.isRecordBeingLaidOut(Key))
130     return false;
131   
132   // If this type would require laying out bases that are currently being laid
133   // out, don't do it.  This includes virtual base classes which get laid out
134   // when a class is translated, even though they aren't embedded by-value into
135   // the class.
136   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
137     for (CXXRecordDecl::base_class_const_iterator I = CRD->bases_begin(),
138          E = CRD->bases_end(); I != E; ++I)
139       if (!isSafeToConvert(I->getType()->getAs<RecordType>()->getDecl(),
140                            CGT, AlreadyChecked))
141         return false;
142   }
143   
144   // If this type would require laying out members that are currently being laid
145   // out, don't do it.
146   for (RecordDecl::field_iterator I = RD->field_begin(),
147        E = RD->field_end(); I != E; ++I)
148     if (!isSafeToConvert(I->getType(), CGT, AlreadyChecked))
149       return false;
150   
151   // If there are no problems, lets do it.
152   return true;
153 }
154
155 /// isSafeToConvert - Return true if it is safe to convert this field type,
156 /// which requires the structure elements contained by-value to all be
157 /// recursively safe to convert.
158 static bool
159 isSafeToConvert(QualType T, CodeGenTypes &CGT,
160                 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked) {
161   T = T.getCanonicalType();
162   
163   // If this is a record, check it.
164   if (const RecordType *RT = dyn_cast<RecordType>(T))
165     return isSafeToConvert(RT->getDecl(), CGT, AlreadyChecked);
166   
167   // If this is an array, check the elements, which are embedded inline.
168   if (const ArrayType *AT = dyn_cast<ArrayType>(T))
169     return isSafeToConvert(AT->getElementType(), CGT, AlreadyChecked);
170
171   // Otherwise, there is no concern about transforming this.  We only care about
172   // things that are contained by-value in a structure that can have another 
173   // structure as a member.
174   return true;
175 }
176
177
178 /// isSafeToConvert - Return true if it is safe to convert the specified record
179 /// decl to IR and lay it out, false if doing so would cause us to get into a
180 /// recursive compilation mess.
181 static bool isSafeToConvert(const RecordDecl *RD, CodeGenTypes &CGT) {
182   // If no structs are being laid out, we can certainly do this one.
183   if (CGT.noRecordsBeingLaidOut()) return true;
184   
185   llvm::SmallPtrSet<const RecordDecl*, 16> AlreadyChecked;
186   return isSafeToConvert(RD, CGT, AlreadyChecked);
187 }
188
189
190 /// isFuncTypeArgumentConvertible - Return true if the specified type in a 
191 /// function argument or result position can be converted to an IR type at this
192 /// point.  This boils down to being whether it is complete, as well as whether
193 /// we've temporarily deferred expanding the type because we're in a recursive
194 /// context.
195 bool CodeGenTypes::isFuncTypeArgumentConvertible(QualType Ty) {
196   // If this isn't a tagged type, we can convert it!
197   const TagType *TT = Ty->getAs<TagType>();
198   if (TT == 0) return true;
199     
200   // Incomplete types cannot be converted.
201   if (TT->isIncompleteType())
202     return false;
203   
204   // If this is an enum, then it is always safe to convert.
205   const RecordType *RT = dyn_cast<RecordType>(TT);
206   if (RT == 0) return true;
207
208   // Otherwise, we have to be careful.  If it is a struct that we're in the
209   // process of expanding, then we can't convert the function type.  That's ok
210   // though because we must be in a pointer context under the struct, so we can
211   // just convert it to a dummy type.
212   //
213   // We decide this by checking whether ConvertRecordDeclType returns us an
214   // opaque type for a struct that we know is defined.
215   return isSafeToConvert(RT->getDecl(), *this);
216 }
217
218
219 /// Code to verify a given function type is complete, i.e. the return type
220 /// and all of the argument types are complete.  Also check to see if we are in
221 /// a RS_StructPointer context, and if so whether any struct types have been
222 /// pended.  If so, we don't want to ask the ABI lowering code to handle a type
223 /// that cannot be converted to an IR type.
224 bool CodeGenTypes::isFuncTypeConvertible(const FunctionType *FT) {
225   if (!isFuncTypeArgumentConvertible(FT->getResultType()))
226     return false;
227   
228   if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT))
229     for (unsigned i = 0, e = FPT->getNumArgs(); i != e; i++)
230       if (!isFuncTypeArgumentConvertible(FPT->getArgType(i)))
231         return false;
232
233   return true;
234 }
235
236 /// UpdateCompletedType - When we find the full definition for a TagDecl,
237 /// replace the 'opaque' type we previously made for it if applicable.
238 void CodeGenTypes::UpdateCompletedType(const TagDecl *TD) {
239   // If this is an enum being completed, then we flush all non-struct types from
240   // the cache.  This allows function types and other things that may be derived
241   // from the enum to be recomputed.
242   if (const EnumDecl *ED = dyn_cast<EnumDecl>(TD)) {
243     // Only flush the cache if we've actually already converted this type.
244     if (TypeCache.count(ED->getTypeForDecl())) {
245       // Okay, we formed some types based on this.  We speculated that the enum
246       // would be lowered to i32, so we only need to flush the cache if this
247       // didn't happen.
248       if (!ConvertType(ED->getIntegerType())->isIntegerTy(32))
249         TypeCache.clear();
250     }
251     return;
252   }
253   
254   // If we completed a RecordDecl that we previously used and converted to an
255   // anonymous type, then go ahead and complete it now.
256   const RecordDecl *RD = cast<RecordDecl>(TD);
257   if (RD->isDependentType()) return;
258
259   // Only complete it if we converted it already.  If we haven't converted it
260   // yet, we'll just do it lazily.
261   if (RecordDeclTypes.count(Context.getTagDeclType(RD).getTypePtr()))
262     ConvertRecordDeclType(RD);
263
264   // If necessary, provide the full definition of a type only used with a
265   // declaration so far.
266   if (CGDebugInfo *DI = CGM.getModuleDebugInfo())
267     DI->completeType(RD);
268 }
269
270 static llvm::Type *getTypeForFormat(llvm::LLVMContext &VMContext,
271                                     const llvm::fltSemantics &format,
272                                     bool UseNativeHalf = false) {
273   if (&format == &llvm::APFloat::IEEEhalf) {
274     if (UseNativeHalf)
275       return llvm::Type::getHalfTy(VMContext);
276     else
277       return llvm::Type::getInt16Ty(VMContext);
278   }
279   if (&format == &llvm::APFloat::IEEEsingle)
280     return llvm::Type::getFloatTy(VMContext);
281   if (&format == &llvm::APFloat::IEEEdouble)
282     return llvm::Type::getDoubleTy(VMContext);
283   if (&format == &llvm::APFloat::IEEEquad)
284     return llvm::Type::getFP128Ty(VMContext);
285   if (&format == &llvm::APFloat::PPCDoubleDouble)
286     return llvm::Type::getPPC_FP128Ty(VMContext);
287   if (&format == &llvm::APFloat::x87DoubleExtended)
288     return llvm::Type::getX86_FP80Ty(VMContext);
289   llvm_unreachable("Unknown float format!");
290 }
291
292 /// ConvertType - Convert the specified type to its LLVM form.
293 llvm::Type *CodeGenTypes::ConvertType(QualType T) {
294   T = Context.getCanonicalType(T);
295
296   const Type *Ty = T.getTypePtr();
297
298   // RecordTypes are cached and processed specially.
299   if (const RecordType *RT = dyn_cast<RecordType>(Ty))
300     return ConvertRecordDeclType(RT->getDecl());
301   
302   // See if type is already cached.
303   llvm::DenseMap<const Type *, llvm::Type *>::iterator TCI = TypeCache.find(Ty);
304   // If type is found in map then use it. Otherwise, convert type T.
305   if (TCI != TypeCache.end())
306     return TCI->second;
307
308   // If we don't have it in the cache, convert it now.
309   llvm::Type *ResultType = 0;
310   switch (Ty->getTypeClass()) {
311   case Type::Record: // Handled above.
312 #define TYPE(Class, Base)
313 #define ABSTRACT_TYPE(Class, Base)
314 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
315 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
316 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
317 #include "clang/AST/TypeNodes.def"
318     llvm_unreachable("Non-canonical or dependent types aren't possible.");
319
320   case Type::Builtin: {
321     switch (cast<BuiltinType>(Ty)->getKind()) {
322     case BuiltinType::Void:
323     case BuiltinType::ObjCId:
324     case BuiltinType::ObjCClass:
325     case BuiltinType::ObjCSel:
326       // LLVM void type can only be used as the result of a function call.  Just
327       // map to the same as char.
328       ResultType = llvm::Type::getInt8Ty(getLLVMContext());
329       break;
330
331     case BuiltinType::Bool:
332       // Note that we always return bool as i1 for use as a scalar type.
333       ResultType = llvm::Type::getInt1Ty(getLLVMContext());
334       break;
335
336     case BuiltinType::Char_S:
337     case BuiltinType::Char_U:
338     case BuiltinType::SChar:
339     case BuiltinType::UChar:
340     case BuiltinType::Short:
341     case BuiltinType::UShort:
342     case BuiltinType::Int:
343     case BuiltinType::UInt:
344     case BuiltinType::Long:
345     case BuiltinType::ULong:
346     case BuiltinType::LongLong:
347     case BuiltinType::ULongLong:
348     case BuiltinType::WChar_S:
349     case BuiltinType::WChar_U:
350     case BuiltinType::Char16:
351     case BuiltinType::Char32:
352       ResultType = llvm::IntegerType::get(getLLVMContext(),
353                                  static_cast<unsigned>(Context.getTypeSize(T)));
354       break;
355
356     case BuiltinType::Half:
357       // Half FP can either be storage-only (lowered to i16) or native.
358       ResultType = getTypeForFormat(getLLVMContext(),
359           Context.getFloatTypeSemantics(T),
360           Context.getLangOpts().NativeHalfType);
361       break;
362     case BuiltinType::Float:
363     case BuiltinType::Double:
364     case BuiltinType::LongDouble:
365       ResultType = getTypeForFormat(getLLVMContext(),
366                                     Context.getFloatTypeSemantics(T),
367                                     /* UseNativeHalf = */ false);
368       break;
369
370     case BuiltinType::NullPtr:
371       // Model std::nullptr_t as i8*
372       ResultType = llvm::Type::getInt8PtrTy(getLLVMContext());
373       break;
374         
375     case BuiltinType::UInt128:
376     case BuiltinType::Int128:
377       ResultType = llvm::IntegerType::get(getLLVMContext(), 128);
378       break;
379
380     case BuiltinType::OCLImage1d:
381     case BuiltinType::OCLImage1dArray:
382     case BuiltinType::OCLImage1dBuffer:
383     case BuiltinType::OCLImage2d:
384     case BuiltinType::OCLImage2dArray:
385     case BuiltinType::OCLImage3d:
386     case BuiltinType::OCLSampler:
387     case BuiltinType::OCLEvent:
388       ResultType = CGM.getOpenCLRuntime().convertOpenCLSpecificType(Ty);
389       break;
390     
391     case BuiltinType::Dependent:
392 #define BUILTIN_TYPE(Id, SingletonId)
393 #define PLACEHOLDER_TYPE(Id, SingletonId) \
394     case BuiltinType::Id:
395 #include "clang/AST/BuiltinTypes.def"
396       llvm_unreachable("Unexpected placeholder builtin type!");
397     }
398     break;
399   }
400   case Type::Auto:
401     llvm_unreachable("Unexpected undeduced auto type!");
402   case Type::Complex: {
403     llvm::Type *EltTy = ConvertType(cast<ComplexType>(Ty)->getElementType());
404     ResultType = llvm::StructType::get(EltTy, EltTy, NULL);
405     break;
406   }
407   case Type::LValueReference:
408   case Type::RValueReference: {
409     const ReferenceType *RTy = cast<ReferenceType>(Ty);
410     QualType ETy = RTy->getPointeeType();
411     llvm::Type *PointeeType = ConvertTypeForMem(ETy);
412     unsigned AS = Context.getTargetAddressSpace(ETy);
413     ResultType = llvm::PointerType::get(PointeeType, AS);
414     break;
415   }
416   case Type::Pointer: {
417     const PointerType *PTy = cast<PointerType>(Ty);
418     QualType ETy = PTy->getPointeeType();
419     llvm::Type *PointeeType = ConvertTypeForMem(ETy);
420     if (PointeeType->isVoidTy())
421       PointeeType = llvm::Type::getInt8Ty(getLLVMContext());
422     unsigned AS = Context.getTargetAddressSpace(ETy);
423     ResultType = llvm::PointerType::get(PointeeType, AS);
424     break;
425   }
426
427   case Type::VariableArray: {
428     const VariableArrayType *A = cast<VariableArrayType>(Ty);
429     assert(A->getIndexTypeCVRQualifiers() == 0 &&
430            "FIXME: We only handle trivial array types so far!");
431     // VLAs resolve to the innermost element type; this matches
432     // the return of alloca, and there isn't any obviously better choice.
433     ResultType = ConvertTypeForMem(A->getElementType());
434     break;
435   }
436   case Type::IncompleteArray: {
437     const IncompleteArrayType *A = cast<IncompleteArrayType>(Ty);
438     assert(A->getIndexTypeCVRQualifiers() == 0 &&
439            "FIXME: We only handle trivial array types so far!");
440     // int X[] -> [0 x int], unless the element type is not sized.  If it is
441     // unsized (e.g. an incomplete struct) just use [0 x i8].
442     ResultType = ConvertTypeForMem(A->getElementType());
443     if (!ResultType->isSized()) {
444       SkippedLayout = true;
445       ResultType = llvm::Type::getInt8Ty(getLLVMContext());
446     }
447     ResultType = llvm::ArrayType::get(ResultType, 0);
448     break;
449   }
450   case Type::ConstantArray: {
451     const ConstantArrayType *A = cast<ConstantArrayType>(Ty);
452     llvm::Type *EltTy = ConvertTypeForMem(A->getElementType());
453     
454     // Lower arrays of undefined struct type to arrays of i8 just to have a 
455     // concrete type.
456     if (!EltTy->isSized()) {
457       SkippedLayout = true;
458       EltTy = llvm::Type::getInt8Ty(getLLVMContext());
459     }
460
461     ResultType = llvm::ArrayType::get(EltTy, A->getSize().getZExtValue());
462     break;
463   }
464   case Type::ExtVector:
465   case Type::Vector: {
466     const VectorType *VT = cast<VectorType>(Ty);
467     ResultType = llvm::VectorType::get(ConvertType(VT->getElementType()),
468                                        VT->getNumElements());
469     break;
470   }
471   case Type::FunctionNoProto:
472   case Type::FunctionProto: {
473     const FunctionType *FT = cast<FunctionType>(Ty);
474     // First, check whether we can build the full function type.  If the
475     // function type depends on an incomplete type (e.g. a struct or enum), we
476     // cannot lower the function type.
477     if (!isFuncTypeConvertible(FT)) {
478       // This function's type depends on an incomplete tag type.
479
480       // Force conversion of all the relevant record types, to make sure
481       // we re-convert the FunctionType when appropriate.
482       if (const RecordType *RT = FT->getResultType()->getAs<RecordType>())
483         ConvertRecordDeclType(RT->getDecl());
484       if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT))
485         for (unsigned i = 0, e = FPT->getNumArgs(); i != e; i++)
486           if (const RecordType *RT = FPT->getArgType(i)->getAs<RecordType>())
487             ConvertRecordDeclType(RT->getDecl());
488
489       // Return a placeholder type.
490       ResultType = llvm::StructType::get(getLLVMContext());
491
492       SkippedLayout = true;
493       break;
494     }
495
496     // While we're converting the argument types for a function, we don't want
497     // to recursively convert any pointed-to structs.  Converting directly-used
498     // structs is ok though.
499     if (!RecordsBeingLaidOut.insert(Ty)) {
500       ResultType = llvm::StructType::get(getLLVMContext());
501       
502       SkippedLayout = true;
503       break;
504     }
505     
506     // The function type can be built; call the appropriate routines to
507     // build it.
508     const CGFunctionInfo *FI;
509     if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
510       FI = &arrangeFreeFunctionType(
511                    CanQual<FunctionProtoType>::CreateUnsafe(QualType(FPT, 0)));
512     } else {
513       const FunctionNoProtoType *FNPT = cast<FunctionNoProtoType>(FT);
514       FI = &arrangeFreeFunctionType(
515                 CanQual<FunctionNoProtoType>::CreateUnsafe(QualType(FNPT, 0)));
516     }
517     
518     // If there is something higher level prodding our CGFunctionInfo, then
519     // don't recurse into it again.
520     if (FunctionsBeingProcessed.count(FI)) {
521
522       ResultType = llvm::StructType::get(getLLVMContext());
523       SkippedLayout = true;
524     } else {
525
526       // Otherwise, we're good to go, go ahead and convert it.
527       ResultType = GetFunctionType(*FI);
528     }
529
530     RecordsBeingLaidOut.erase(Ty);
531
532     if (SkippedLayout)
533       TypeCache.clear();
534     
535     if (RecordsBeingLaidOut.empty())
536       while (!DeferredRecords.empty())
537         ConvertRecordDeclType(DeferredRecords.pop_back_val());
538     break;
539   }
540
541   case Type::ObjCObject:
542     ResultType = ConvertType(cast<ObjCObjectType>(Ty)->getBaseType());
543     break;
544
545   case Type::ObjCInterface: {
546     // Objective-C interfaces are always opaque (outside of the
547     // runtime, which can do whatever it likes); we never refine
548     // these.
549     llvm::Type *&T = InterfaceTypes[cast<ObjCInterfaceType>(Ty)];
550     if (!T)
551       T = llvm::StructType::create(getLLVMContext());
552     ResultType = T;
553     break;
554   }
555
556   case Type::ObjCObjectPointer: {
557     // Protocol qualifications do not influence the LLVM type, we just return a
558     // pointer to the underlying interface type. We don't need to worry about
559     // recursive conversion.
560     llvm::Type *T =
561       ConvertTypeForMem(cast<ObjCObjectPointerType>(Ty)->getPointeeType());
562     ResultType = T->getPointerTo();
563     break;
564   }
565
566   case Type::Enum: {
567     const EnumDecl *ED = cast<EnumType>(Ty)->getDecl();
568     if (ED->isCompleteDefinition() || ED->isFixed())
569       return ConvertType(ED->getIntegerType());
570     // Return a placeholder 'i32' type.  This can be changed later when the
571     // type is defined (see UpdateCompletedType), but is likely to be the
572     // "right" answer.
573     ResultType = llvm::Type::getInt32Ty(getLLVMContext());
574     break;
575   }
576
577   case Type::BlockPointer: {
578     const QualType FTy = cast<BlockPointerType>(Ty)->getPointeeType();
579     llvm::Type *PointeeType = ConvertTypeForMem(FTy);
580     unsigned AS = Context.getTargetAddressSpace(FTy);
581     ResultType = llvm::PointerType::get(PointeeType, AS);
582     break;
583   }
584
585   case Type::MemberPointer: {
586     ResultType = 
587       getCXXABI().ConvertMemberPointerType(cast<MemberPointerType>(Ty));
588     break;
589   }
590
591   case Type::Atomic: {
592     QualType valueType = cast<AtomicType>(Ty)->getValueType();
593     ResultType = ConvertTypeForMem(valueType);
594
595     // Pad out to the inflated size if necessary.
596     uint64_t valueSize = Context.getTypeSize(valueType);
597     uint64_t atomicSize = Context.getTypeSize(Ty);
598     if (valueSize != atomicSize) {
599       assert(valueSize < atomicSize);
600       llvm::Type *elts[] = {
601         ResultType,
602         llvm::ArrayType::get(CGM.Int8Ty, (atomicSize - valueSize) / 8)
603       };
604       ResultType = llvm::StructType::get(getLLVMContext(),
605                                          llvm::makeArrayRef(elts));
606     }
607     break;
608   }
609   }
610   
611   assert(ResultType && "Didn't convert a type?");
612   
613   TypeCache[Ty] = ResultType;
614   return ResultType;
615 }
616
617 bool CodeGenModule::isPaddedAtomicType(QualType type) {
618   return isPaddedAtomicType(type->castAs<AtomicType>());
619 }
620
621 bool CodeGenModule::isPaddedAtomicType(const AtomicType *type) {
622   return Context.getTypeSize(type) != Context.getTypeSize(type->getValueType());
623 }
624
625 /// ConvertRecordDeclType - Lay out a tagged decl type like struct or union.
626 llvm::StructType *CodeGenTypes::ConvertRecordDeclType(const RecordDecl *RD) {
627   // TagDecl's are not necessarily unique, instead use the (clang)
628   // type connected to the decl.
629   const Type *Key = Context.getTagDeclType(RD).getTypePtr();
630
631   llvm::StructType *&Entry = RecordDeclTypes[Key];
632
633   // If we don't have a StructType at all yet, create the forward declaration.
634   if (Entry == 0) {
635     Entry = llvm::StructType::create(getLLVMContext());
636     addRecordTypeName(RD, Entry, "");
637   }
638   llvm::StructType *Ty = Entry;
639
640   // If this is still a forward declaration, or the LLVM type is already
641   // complete, there's nothing more to do.
642   RD = RD->getDefinition();
643   if (RD == 0 || !RD->isCompleteDefinition() || !Ty->isOpaque())
644     return Ty;
645   
646   // If converting this type would cause us to infinitely loop, don't do it!
647   if (!isSafeToConvert(RD, *this)) {
648     DeferredRecords.push_back(RD);
649     return Ty;
650   }
651
652   // Okay, this is a definition of a type.  Compile the implementation now.
653   bool InsertResult = RecordsBeingLaidOut.insert(Key); (void)InsertResult;
654   assert(InsertResult && "Recursively compiling a struct?");
655   
656   // Force conversion of non-virtual base classes recursively.
657   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
658     for (CXXRecordDecl::base_class_const_iterator i = CRD->bases_begin(),
659          e = CRD->bases_end(); i != e; ++i) {
660       if (i->isVirtual()) continue;
661       
662       ConvertRecordDeclType(i->getType()->getAs<RecordType>()->getDecl());
663     }
664   }
665
666   // Layout fields.
667   CGRecordLayout *Layout = ComputeRecordLayout(RD, Ty);
668   CGRecordLayouts[Key] = Layout;
669
670   // We're done laying out this struct.
671   bool EraseResult = RecordsBeingLaidOut.erase(Key); (void)EraseResult;
672   assert(EraseResult && "struct not in RecordsBeingLaidOut set?");
673    
674   // If this struct blocked a FunctionType conversion, then recompute whatever
675   // was derived from that.
676   // FIXME: This is hugely overconservative.
677   if (SkippedLayout)
678     TypeCache.clear();
679     
680   // If we're done converting the outer-most record, then convert any deferred
681   // structs as well.
682   if (RecordsBeingLaidOut.empty())
683     while (!DeferredRecords.empty())
684       ConvertRecordDeclType(DeferredRecords.pop_back_val());
685
686   return Ty;
687 }
688
689 /// getCGRecordLayout - Return record layout info for the given record decl.
690 const CGRecordLayout &
691 CodeGenTypes::getCGRecordLayout(const RecordDecl *RD) {
692   const Type *Key = Context.getTagDeclType(RD).getTypePtr();
693
694   const CGRecordLayout *Layout = CGRecordLayouts.lookup(Key);
695   if (!Layout) {
696     // Compute the type information.
697     ConvertRecordDeclType(RD);
698
699     // Now try again.
700     Layout = CGRecordLayouts.lookup(Key);
701   }
702
703   assert(Layout && "Unable to find record layout information for type");
704   return *Layout;
705 }
706
707 bool CodeGenTypes::isZeroInitializable(QualType T) {
708   // No need to check for member pointers when not compiling C++.
709   if (!Context.getLangOpts().CPlusPlus)
710     return true;
711   
712   T = Context.getBaseElementType(T);
713   
714   // Records are non-zero-initializable if they contain any
715   // non-zero-initializable subobjects.
716   if (const RecordType *RT = T->getAs<RecordType>()) {
717     const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
718     return isZeroInitializable(RD);
719   }
720
721   // We have to ask the ABI about member pointers.
722   if (const MemberPointerType *MPT = T->getAs<MemberPointerType>())
723     return getCXXABI().isZeroInitializable(MPT);
724   
725   // Everything else is okay.
726   return true;
727 }
728
729 bool CodeGenTypes::isZeroInitializable(const CXXRecordDecl *RD) {
730   return getCGRecordLayout(RD).isZeroInitializable();
731 }