]> CyberLeo.Net >> Repos - FreeBSD/releng/10.2.git/blob - contrib/llvm/tools/clang/lib/CodeGen/TargetInfo.cpp
- Copy stable/10@285827 to releng/10.2 in preparation for 10.2-RC1
[FreeBSD/releng/10.2.git] / contrib / llvm / tools / clang / lib / CodeGen / TargetInfo.cpp
1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "TargetInfo.h"
16 #include "ABIInfo.h"
17 #include "CGCXXABI.h"
18 #include "CodeGenFunction.h"
19 #include "clang/AST/RecordLayout.h"
20 #include "clang/CodeGen/CGFunctionInfo.h"
21 #include "clang/Frontend/CodeGenOptions.h"
22 #include "llvm/ADT/Triple.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/Type.h"
25 #include "llvm/Support/raw_ostream.h"
26 using namespace clang;
27 using namespace CodeGen;
28
29 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
30                                llvm::Value *Array,
31                                llvm::Value *Value,
32                                unsigned FirstIndex,
33                                unsigned LastIndex) {
34   // Alternatively, we could emit this as a loop in the source.
35   for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
36     llvm::Value *Cell = Builder.CreateConstInBoundsGEP1_32(Array, I);
37     Builder.CreateStore(Value, Cell);
38   }
39 }
40
41 static bool isAggregateTypeForABI(QualType T) {
42   return !CodeGenFunction::hasScalarEvaluationKind(T) ||
43          T->isMemberFunctionPointerType();
44 }
45
46 ABIInfo::~ABIInfo() {}
47
48 static bool isRecordReturnIndirect(const RecordType *RT,
49                                    CGCXXABI &CXXABI) {
50   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
51   if (!RD)
52     return false;
53   return CXXABI.isReturnTypeIndirect(RD);
54 }
55
56
57 static bool isRecordReturnIndirect(QualType T, CGCXXABI &CXXABI) {
58   const RecordType *RT = T->getAs<RecordType>();
59   if (!RT)
60     return false;
61   return isRecordReturnIndirect(RT, CXXABI);
62 }
63
64 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT,
65                                               CGCXXABI &CXXABI) {
66   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
67   if (!RD)
68     return CGCXXABI::RAA_Default;
69   return CXXABI.getRecordArgABI(RD);
70 }
71
72 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T,
73                                               CGCXXABI &CXXABI) {
74   const RecordType *RT = T->getAs<RecordType>();
75   if (!RT)
76     return CGCXXABI::RAA_Default;
77   return getRecordArgABI(RT, CXXABI);
78 }
79
80 CGCXXABI &ABIInfo::getCXXABI() const {
81   return CGT.getCXXABI();
82 }
83
84 ASTContext &ABIInfo::getContext() const {
85   return CGT.getContext();
86 }
87
88 llvm::LLVMContext &ABIInfo::getVMContext() const {
89   return CGT.getLLVMContext();
90 }
91
92 const llvm::DataLayout &ABIInfo::getDataLayout() const {
93   return CGT.getDataLayout();
94 }
95
96 const TargetInfo &ABIInfo::getTarget() const {
97   return CGT.getTarget();
98 }
99
100 void ABIArgInfo::dump() const {
101   raw_ostream &OS = llvm::errs();
102   OS << "(ABIArgInfo Kind=";
103   switch (TheKind) {
104   case Direct:
105     OS << "Direct Type=";
106     if (llvm::Type *Ty = getCoerceToType())
107       Ty->print(OS);
108     else
109       OS << "null";
110     break;
111   case Extend:
112     OS << "Extend";
113     break;
114   case Ignore:
115     OS << "Ignore";
116     break;
117   case Indirect:
118     OS << "Indirect Align=" << getIndirectAlign()
119        << " ByVal=" << getIndirectByVal()
120        << " Realign=" << getIndirectRealign();
121     break;
122   case Expand:
123     OS << "Expand";
124     break;
125   }
126   OS << ")\n";
127 }
128
129 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
130
131 // If someone can figure out a general rule for this, that would be great.
132 // It's probably just doomed to be platform-dependent, though.
133 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
134   // Verified for:
135   //   x86-64     FreeBSD, Linux, Darwin
136   //   x86-32     FreeBSD, Linux, Darwin
137   //   PowerPC    Linux, Darwin
138   //   ARM        Darwin (*not* EABI)
139   //   AArch64    Linux
140   return 32;
141 }
142
143 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
144                                      const FunctionNoProtoType *fnType) const {
145   // The following conventions are known to require this to be false:
146   //   x86_stdcall
147   //   MIPS
148   // For everything else, we just prefer false unless we opt out.
149   return false;
150 }
151
152 void
153 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib,
154                                              llvm::SmallString<24> &Opt) const {
155   // This assumes the user is passing a library name like "rt" instead of a
156   // filename like "librt.a/so", and that they don't care whether it's static or
157   // dynamic.
158   Opt = "-l";
159   Opt += Lib;
160 }
161
162 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
163
164 /// isEmptyField - Return true iff a the field is "empty", that is it
165 /// is an unnamed bit-field or an (array of) empty record(s).
166 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
167                          bool AllowArrays) {
168   if (FD->isUnnamedBitfield())
169     return true;
170
171   QualType FT = FD->getType();
172
173   // Constant arrays of empty records count as empty, strip them off.
174   // Constant arrays of zero length always count as empty.
175   if (AllowArrays)
176     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
177       if (AT->getSize() == 0)
178         return true;
179       FT = AT->getElementType();
180     }
181
182   const RecordType *RT = FT->getAs<RecordType>();
183   if (!RT)
184     return false;
185
186   // C++ record fields are never empty, at least in the Itanium ABI.
187   //
188   // FIXME: We should use a predicate for whether this behavior is true in the
189   // current ABI.
190   if (isa<CXXRecordDecl>(RT->getDecl()))
191     return false;
192
193   return isEmptyRecord(Context, FT, AllowArrays);
194 }
195
196 /// isEmptyRecord - Return true iff a structure contains only empty
197 /// fields. Note that a structure with a flexible array member is not
198 /// considered empty.
199 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
200   const RecordType *RT = T->getAs<RecordType>();
201   if (!RT)
202     return 0;
203   const RecordDecl *RD = RT->getDecl();
204   if (RD->hasFlexibleArrayMember())
205     return false;
206
207   // If this is a C++ record, check the bases first.
208   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
209     for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
210            e = CXXRD->bases_end(); i != e; ++i)
211       if (!isEmptyRecord(Context, i->getType(), true))
212         return false;
213
214   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
215          i != e; ++i)
216     if (!isEmptyField(Context, *i, AllowArrays))
217       return false;
218   return true;
219 }
220
221 /// isSingleElementStruct - Determine if a structure is a "single
222 /// element struct", i.e. it has exactly one non-empty field or
223 /// exactly one field which is itself a single element
224 /// struct. Structures with flexible array members are never
225 /// considered single element structs.
226 ///
227 /// \return The field declaration for the single non-empty field, if
228 /// it exists.
229 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
230   const RecordType *RT = T->getAsStructureType();
231   if (!RT)
232     return 0;
233
234   const RecordDecl *RD = RT->getDecl();
235   if (RD->hasFlexibleArrayMember())
236     return 0;
237
238   const Type *Found = 0;
239
240   // If this is a C++ record, check the bases first.
241   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
242     for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
243            e = CXXRD->bases_end(); i != e; ++i) {
244       // Ignore empty records.
245       if (isEmptyRecord(Context, i->getType(), true))
246         continue;
247
248       // If we already found an element then this isn't a single-element struct.
249       if (Found)
250         return 0;
251
252       // If this is non-empty and not a single element struct, the composite
253       // cannot be a single element struct.
254       Found = isSingleElementStruct(i->getType(), Context);
255       if (!Found)
256         return 0;
257     }
258   }
259
260   // Check for single element.
261   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
262          i != e; ++i) {
263     const FieldDecl *FD = *i;
264     QualType FT = FD->getType();
265
266     // Ignore empty fields.
267     if (isEmptyField(Context, FD, true))
268       continue;
269
270     // If we already found an element then this isn't a single-element
271     // struct.
272     if (Found)
273       return 0;
274
275     // Treat single element arrays as the element.
276     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
277       if (AT->getSize().getZExtValue() != 1)
278         break;
279       FT = AT->getElementType();
280     }
281
282     if (!isAggregateTypeForABI(FT)) {
283       Found = FT.getTypePtr();
284     } else {
285       Found = isSingleElementStruct(FT, Context);
286       if (!Found)
287         return 0;
288     }
289   }
290
291   // We don't consider a struct a single-element struct if it has
292   // padding beyond the element type.
293   if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
294     return 0;
295
296   return Found;
297 }
298
299 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
300   // Treat complex types as the element type.
301   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
302     Ty = CTy->getElementType();
303
304   // Check for a type which we know has a simple scalar argument-passing
305   // convention without any padding.  (We're specifically looking for 32
306   // and 64-bit integer and integer-equivalents, float, and double.)
307   if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
308       !Ty->isEnumeralType() && !Ty->isBlockPointerType())
309     return false;
310
311   uint64_t Size = Context.getTypeSize(Ty);
312   return Size == 32 || Size == 64;
313 }
314
315 /// canExpandIndirectArgument - Test whether an argument type which is to be
316 /// passed indirectly (on the stack) would have the equivalent layout if it was
317 /// expanded into separate arguments. If so, we prefer to do the latter to avoid
318 /// inhibiting optimizations.
319 ///
320 // FIXME: This predicate is missing many cases, currently it just follows
321 // llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We
322 // should probably make this smarter, or better yet make the LLVM backend
323 // capable of handling it.
324 static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) {
325   // We can only expand structure types.
326   const RecordType *RT = Ty->getAs<RecordType>();
327   if (!RT)
328     return false;
329
330   // We can only expand (C) structures.
331   //
332   // FIXME: This needs to be generalized to handle classes as well.
333   const RecordDecl *RD = RT->getDecl();
334   if (!RD->isStruct() || isa<CXXRecordDecl>(RD))
335     return false;
336
337   uint64_t Size = 0;
338
339   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
340          i != e; ++i) {
341     const FieldDecl *FD = *i;
342
343     if (!is32Or64BitBasicType(FD->getType(), Context))
344       return false;
345
346     // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
347     // how to expand them yet, and the predicate for telling if a bitfield still
348     // counts as "basic" is more complicated than what we were doing previously.
349     if (FD->isBitField())
350       return false;
351
352     Size += Context.getTypeSize(FD->getType());
353   }
354
355   // Make sure there are not any holes in the struct.
356   if (Size != Context.getTypeSize(Ty))
357     return false;
358
359   return true;
360 }
361
362 namespace {
363 /// DefaultABIInfo - The default implementation for ABI specific
364 /// details. This implementation provides information which results in
365 /// self-consistent and sensible LLVM IR generation, but does not
366 /// conform to any particular ABI.
367 class DefaultABIInfo : public ABIInfo {
368 public:
369   DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
370
371   ABIArgInfo classifyReturnType(QualType RetTy) const;
372   ABIArgInfo classifyArgumentType(QualType RetTy) const;
373
374   virtual void computeInfo(CGFunctionInfo &FI) const {
375     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
376     for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
377          it != ie; ++it)
378       it->info = classifyArgumentType(it->type);
379   }
380
381   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
382                                  CodeGenFunction &CGF) const;
383 };
384
385 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
386 public:
387   DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
388     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
389 };
390
391 llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
392                                        CodeGenFunction &CGF) const {
393   return 0;
394 }
395
396 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
397   if (isAggregateTypeForABI(Ty)) {
398     // Records with non trivial destructors/constructors should not be passed
399     // by value.
400     if (isRecordReturnIndirect(Ty, getCXXABI()))
401       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
402
403     return ABIArgInfo::getIndirect(0);
404   }
405
406   // Treat an enum type as its underlying type.
407   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
408     Ty = EnumTy->getDecl()->getIntegerType();
409
410   return (Ty->isPromotableIntegerType() ?
411           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
412 }
413
414 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
415   if (RetTy->isVoidType())
416     return ABIArgInfo::getIgnore();
417
418   if (isAggregateTypeForABI(RetTy))
419     return ABIArgInfo::getIndirect(0);
420
421   // Treat an enum type as its underlying type.
422   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
423     RetTy = EnumTy->getDecl()->getIntegerType();
424
425   return (RetTy->isPromotableIntegerType() ?
426           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
427 }
428
429 //===----------------------------------------------------------------------===//
430 // le32/PNaCl bitcode ABI Implementation
431 //
432 // This is a simplified version of the x86_32 ABI.  Arguments and return values
433 // are always passed on the stack.
434 //===----------------------------------------------------------------------===//
435
436 class PNaClABIInfo : public ABIInfo {
437  public:
438   PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
439
440   ABIArgInfo classifyReturnType(QualType RetTy) const;
441   ABIArgInfo classifyArgumentType(QualType RetTy) const;
442
443   virtual void computeInfo(CGFunctionInfo &FI) const;
444   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
445                                  CodeGenFunction &CGF) const;
446 };
447
448 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
449  public:
450   PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
451     : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {}
452 };
453
454 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
455     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
456
457     for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
458          it != ie; ++it)
459       it->info = classifyArgumentType(it->type);
460   }
461
462 llvm::Value *PNaClABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
463                                        CodeGenFunction &CGF) const {
464   return 0;
465 }
466
467 /// \brief Classify argument of given type \p Ty.
468 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
469   if (isAggregateTypeForABI(Ty)) {
470     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
471       return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
472     return ABIArgInfo::getIndirect(0);
473   } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
474     // Treat an enum type as its underlying type.
475     Ty = EnumTy->getDecl()->getIntegerType();
476   } else if (Ty->isFloatingType()) {
477     // Floating-point types don't go inreg.
478     return ABIArgInfo::getDirect();
479   }
480
481   return (Ty->isPromotableIntegerType() ?
482           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
483 }
484
485 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
486   if (RetTy->isVoidType())
487     return ABIArgInfo::getIgnore();
488
489   // In the PNaCl ABI we always return records/structures on the stack.
490   if (isAggregateTypeForABI(RetTy))
491     return ABIArgInfo::getIndirect(0);
492
493   // Treat an enum type as its underlying type.
494   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
495     RetTy = EnumTy->getDecl()->getIntegerType();
496
497   return (RetTy->isPromotableIntegerType() ?
498           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
499 }
500
501 /// IsX86_MMXType - Return true if this is an MMX type.
502 bool IsX86_MMXType(llvm::Type *IRType) {
503   // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
504   return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
505     cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
506     IRType->getScalarSizeInBits() != 64;
507 }
508
509 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
510                                           StringRef Constraint,
511                                           llvm::Type* Ty) {
512   if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy()) {
513     if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) {
514       // Invalid MMX constraint
515       return 0;
516     }
517
518     return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
519   }
520
521   // No operation needed
522   return Ty;
523 }
524
525 //===----------------------------------------------------------------------===//
526 // X86-32 ABI Implementation
527 //===----------------------------------------------------------------------===//
528
529 /// X86_32ABIInfo - The X86-32 ABI information.
530 class X86_32ABIInfo : public ABIInfo {
531   enum Class {
532     Integer,
533     Float
534   };
535
536   static const unsigned MinABIStackAlignInBytes = 4;
537
538   bool IsDarwinVectorABI;
539   bool IsSmallStructInRegABI;
540   bool IsWin32StructABI;
541   unsigned DefaultNumRegisterParameters;
542
543   static bool isRegisterSize(unsigned Size) {
544     return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
545   }
546
547   static bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context, 
548                                           unsigned callingConvention);
549
550   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
551   /// such that the argument will be passed in memory.
552   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal,
553                                unsigned &FreeRegs) const;
554
555   /// \brief Return the alignment to use for the given type on the stack.
556   unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
557
558   Class classify(QualType Ty) const;
559   ABIArgInfo classifyReturnType(QualType RetTy,
560                                 unsigned callingConvention) const;
561   ABIArgInfo classifyArgumentType(QualType RetTy, unsigned &FreeRegs,
562                                   bool IsFastCall) const;
563   bool shouldUseInReg(QualType Ty, unsigned &FreeRegs,
564                       bool IsFastCall, bool &NeedsPadding) const;
565
566 public:
567
568   virtual void computeInfo(CGFunctionInfo &FI) const;
569   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
570                                  CodeGenFunction &CGF) const;
571
572   X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool w,
573                 unsigned r)
574     : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p),
575       IsWin32StructABI(w), DefaultNumRegisterParameters(r) {}
576 };
577
578 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
579 public:
580   X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
581       bool d, bool p, bool w, unsigned r)
582     :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p, w, r)) {}
583
584   static bool isStructReturnInRegABI(
585       const llvm::Triple &Triple, const CodeGenOptions &Opts);
586
587   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
588                            CodeGen::CodeGenModule &CGM) const;
589
590   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
591     // Darwin uses different dwarf register numbers for EH.
592     if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
593     return 4;
594   }
595
596   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
597                                llvm::Value *Address) const;
598
599   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
600                                   StringRef Constraint,
601                                   llvm::Type* Ty) const {
602     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
603   }
604
605   llvm::Constant *getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const {
606     unsigned Sig = (0xeb << 0) |  // jmp rel8
607                    (0x06 << 8) |  //           .+0x08
608                    ('F' << 16) |
609                    ('T' << 24);
610     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
611   }
612
613 };
614
615 }
616
617 /// shouldReturnTypeInRegister - Determine if the given type should be
618 /// passed in a register (for the Darwin ABI).
619 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
620                                                ASTContext &Context,
621                                                unsigned callingConvention) {
622   uint64_t Size = Context.getTypeSize(Ty);
623
624   // Type must be register sized.
625   if (!isRegisterSize(Size))
626     return false;
627
628   if (Ty->isVectorType()) {
629     // 64- and 128- bit vectors inside structures are not returned in
630     // registers.
631     if (Size == 64 || Size == 128)
632       return false;
633
634     return true;
635   }
636
637   // If this is a builtin, pointer, enum, complex type, member pointer, or
638   // member function pointer it is ok.
639   if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
640       Ty->isAnyComplexType() || Ty->isEnumeralType() ||
641       Ty->isBlockPointerType() || Ty->isMemberPointerType())
642     return true;
643
644   // Arrays are treated like records.
645   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
646     return shouldReturnTypeInRegister(AT->getElementType(), Context,
647                                       callingConvention);
648
649   // Otherwise, it must be a record type.
650   const RecordType *RT = Ty->getAs<RecordType>();
651   if (!RT) return false;
652
653   // FIXME: Traverse bases here too.
654
655   // For thiscall conventions, structures will never be returned in
656   // a register.  This is for compatibility with the MSVC ABI
657   if (callingConvention == llvm::CallingConv::X86_ThisCall && 
658       RT->isStructureType()) {
659     return false;
660   }
661
662   // Structure types are passed in register if all fields would be
663   // passed in a register.
664   for (RecordDecl::field_iterator i = RT->getDecl()->field_begin(),
665          e = RT->getDecl()->field_end(); i != e; ++i) {
666     const FieldDecl *FD = *i;
667
668     // Empty fields are ignored.
669     if (isEmptyField(Context, FD, true))
670       continue;
671
672     // Check fields recursively.
673     if (!shouldReturnTypeInRegister(FD->getType(), Context, 
674                                     callingConvention))
675       return false;
676   }
677   return true;
678 }
679
680 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, 
681                                             unsigned callingConvention) const {
682   if (RetTy->isVoidType())
683     return ABIArgInfo::getIgnore();
684
685   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
686     // On Darwin, some vectors are returned in registers.
687     if (IsDarwinVectorABI) {
688       uint64_t Size = getContext().getTypeSize(RetTy);
689
690       // 128-bit vectors are a special case; they are returned in
691       // registers and we need to make sure to pick a type the LLVM
692       // backend will like.
693       if (Size == 128)
694         return ABIArgInfo::getDirect(llvm::VectorType::get(
695                   llvm::Type::getInt64Ty(getVMContext()), 2));
696
697       // Always return in register if it fits in a general purpose
698       // register, or if it is 64 bits and has a single element.
699       if ((Size == 8 || Size == 16 || Size == 32) ||
700           (Size == 64 && VT->getNumElements() == 1))
701         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
702                                                             Size));
703
704       return ABIArgInfo::getIndirect(0);
705     }
706
707     return ABIArgInfo::getDirect();
708   }
709
710   if (isAggregateTypeForABI(RetTy)) {
711     if (const RecordType *RT = RetTy->getAs<RecordType>()) {
712       if (isRecordReturnIndirect(RT, getCXXABI()))
713         return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
714
715       // Structures with flexible arrays are always indirect.
716       if (RT->getDecl()->hasFlexibleArrayMember())
717         return ABIArgInfo::getIndirect(0);
718     }
719
720     // If specified, structs and unions are always indirect.
721     if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType())
722       return ABIArgInfo::getIndirect(0);
723
724     // Small structures which are register sized are generally returned
725     // in a register.
726     if (X86_32ABIInfo::shouldReturnTypeInRegister(RetTy, getContext(), 
727                                                   callingConvention)) {
728       uint64_t Size = getContext().getTypeSize(RetTy);
729
730       // As a special-case, if the struct is a "single-element" struct, and
731       // the field is of type "float" or "double", return it in a
732       // floating-point register. (MSVC does not apply this special case.)
733       // We apply a similar transformation for pointer types to improve the
734       // quality of the generated IR.
735       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
736         if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
737             || SeltTy->hasPointerRepresentation())
738           return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
739
740       // FIXME: We should be able to narrow this integer in cases with dead
741       // padding.
742       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
743     }
744
745     return ABIArgInfo::getIndirect(0);
746   }
747
748   // Treat an enum type as its underlying type.
749   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
750     RetTy = EnumTy->getDecl()->getIntegerType();
751
752   return (RetTy->isPromotableIntegerType() ?
753           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
754 }
755
756 static bool isSSEVectorType(ASTContext &Context, QualType Ty) {
757   return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
758 }
759
760 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
761   const RecordType *RT = Ty->getAs<RecordType>();
762   if (!RT)
763     return 0;
764   const RecordDecl *RD = RT->getDecl();
765
766   // If this is a C++ record, check the bases first.
767   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
768     for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
769            e = CXXRD->bases_end(); i != e; ++i)
770       if (!isRecordWithSSEVectorType(Context, i->getType()))
771         return false;
772
773   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
774        i != e; ++i) {
775     QualType FT = i->getType();
776
777     if (isSSEVectorType(Context, FT))
778       return true;
779
780     if (isRecordWithSSEVectorType(Context, FT))
781       return true;
782   }
783
784   return false;
785 }
786
787 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
788                                                  unsigned Align) const {
789   // Otherwise, if the alignment is less than or equal to the minimum ABI
790   // alignment, just use the default; the backend will handle this.
791   if (Align <= MinABIStackAlignInBytes)
792     return 0; // Use default alignment.
793
794   // On non-Darwin, the stack type alignment is always 4.
795   if (!IsDarwinVectorABI) {
796     // Set explicit alignment, since we may need to realign the top.
797     return MinABIStackAlignInBytes;
798   }
799
800   // Otherwise, if the type contains an SSE vector type, the alignment is 16.
801   if (Align >= 16 && (isSSEVectorType(getContext(), Ty) ||
802                       isRecordWithSSEVectorType(getContext(), Ty)))
803     return 16;
804
805   return MinABIStackAlignInBytes;
806 }
807
808 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
809                                             unsigned &FreeRegs) const {
810   if (!ByVal) {
811     if (FreeRegs) {
812       --FreeRegs; // Non byval indirects just use one pointer.
813       return ABIArgInfo::getIndirectInReg(0, false);
814     }
815     return ABIArgInfo::getIndirect(0, false);
816   }
817
818   // Compute the byval alignment.
819   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
820   unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
821   if (StackAlign == 0)
822     return ABIArgInfo::getIndirect(4);
823
824   // If the stack alignment is less than the type alignment, realign the
825   // argument.
826   if (StackAlign < TypeAlign)
827     return ABIArgInfo::getIndirect(StackAlign, /*ByVal=*/true,
828                                    /*Realign=*/true);
829
830   return ABIArgInfo::getIndirect(StackAlign);
831 }
832
833 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
834   const Type *T = isSingleElementStruct(Ty, getContext());
835   if (!T)
836     T = Ty.getTypePtr();
837
838   if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
839     BuiltinType::Kind K = BT->getKind();
840     if (K == BuiltinType::Float || K == BuiltinType::Double)
841       return Float;
842   }
843   return Integer;
844 }
845
846 bool X86_32ABIInfo::shouldUseInReg(QualType Ty, unsigned &FreeRegs,
847                                    bool IsFastCall, bool &NeedsPadding) const {
848   NeedsPadding = false;
849   Class C = classify(Ty);
850   if (C == Float)
851     return false;
852
853   unsigned Size = getContext().getTypeSize(Ty);
854   unsigned SizeInRegs = (Size + 31) / 32;
855
856   if (SizeInRegs == 0)
857     return false;
858
859   if (SizeInRegs > FreeRegs) {
860     FreeRegs = 0;
861     return false;
862   }
863
864   FreeRegs -= SizeInRegs;
865
866   if (IsFastCall) {
867     if (Size > 32)
868       return false;
869
870     if (Ty->isIntegralOrEnumerationType())
871       return true;
872
873     if (Ty->isPointerType())
874       return true;
875
876     if (Ty->isReferenceType())
877       return true;
878
879     if (FreeRegs)
880       NeedsPadding = true;
881
882     return false;
883   }
884
885   return true;
886 }
887
888 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
889                                                unsigned &FreeRegs,
890                                                bool IsFastCall) const {
891   // FIXME: Set alignment on indirect arguments.
892   if (isAggregateTypeForABI(Ty)) {
893     if (const RecordType *RT = Ty->getAs<RecordType>()) {
894       if (IsWin32StructABI)
895         return getIndirectResult(Ty, true, FreeRegs);
896
897       if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
898         return getIndirectResult(Ty, RAA == CGCXXABI::RAA_DirectInMemory, FreeRegs);
899
900       // Structures with flexible arrays are always indirect.
901       if (RT->getDecl()->hasFlexibleArrayMember())
902         return getIndirectResult(Ty, true, FreeRegs);
903     }
904
905     // Ignore empty structs/unions.
906     if (isEmptyRecord(getContext(), Ty, true))
907       return ABIArgInfo::getIgnore();
908
909     llvm::LLVMContext &LLVMContext = getVMContext();
910     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
911     bool NeedsPadding;
912     if (shouldUseInReg(Ty, FreeRegs, IsFastCall, NeedsPadding)) {
913       unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
914       SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
915       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
916       return ABIArgInfo::getDirectInReg(Result);
917     }
918     llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : 0;
919
920     // Expand small (<= 128-bit) record types when we know that the stack layout
921     // of those arguments will match the struct. This is important because the
922     // LLVM backend isn't smart enough to remove byval, which inhibits many
923     // optimizations.
924     if (getContext().getTypeSize(Ty) <= 4*32 &&
925         canExpandIndirectArgument(Ty, getContext()))
926       return ABIArgInfo::getExpandWithPadding(IsFastCall, PaddingType);
927
928     return getIndirectResult(Ty, true, FreeRegs);
929   }
930
931   if (const VectorType *VT = Ty->getAs<VectorType>()) {
932     // On Darwin, some vectors are passed in memory, we handle this by passing
933     // it as an i8/i16/i32/i64.
934     if (IsDarwinVectorABI) {
935       uint64_t Size = getContext().getTypeSize(Ty);
936       if ((Size == 8 || Size == 16 || Size == 32) ||
937           (Size == 64 && VT->getNumElements() == 1))
938         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
939                                                             Size));
940     }
941
942     if (IsX86_MMXType(CGT.ConvertType(Ty)))
943       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
944
945     return ABIArgInfo::getDirect();
946   }
947
948
949   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
950     Ty = EnumTy->getDecl()->getIntegerType();
951
952   bool NeedsPadding;
953   bool InReg = shouldUseInReg(Ty, FreeRegs, IsFastCall, NeedsPadding);
954
955   if (Ty->isPromotableIntegerType()) {
956     if (InReg)
957       return ABIArgInfo::getExtendInReg();
958     return ABIArgInfo::getExtend();
959   }
960   if (InReg)
961     return ABIArgInfo::getDirectInReg();
962   return ABIArgInfo::getDirect();
963 }
964
965 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
966   FI.getReturnInfo() = classifyReturnType(FI.getReturnType(),
967                                           FI.getCallingConvention());
968
969   unsigned CC = FI.getCallingConvention();
970   bool IsFastCall = CC == llvm::CallingConv::X86_FastCall;
971   unsigned FreeRegs;
972   if (IsFastCall)
973     FreeRegs = 2;
974   else if (FI.getHasRegParm())
975     FreeRegs = FI.getRegParm();
976   else
977     FreeRegs = DefaultNumRegisterParameters;
978
979   // If the return value is indirect, then the hidden argument is consuming one
980   // integer register.
981   if (FI.getReturnInfo().isIndirect() && FreeRegs) {
982     --FreeRegs;
983     ABIArgInfo &Old = FI.getReturnInfo();
984     Old = ABIArgInfo::getIndirectInReg(Old.getIndirectAlign(),
985                                        Old.getIndirectByVal(),
986                                        Old.getIndirectRealign());
987   }
988
989   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
990        it != ie; ++it)
991     it->info = classifyArgumentType(it->type, FreeRegs, IsFastCall);
992 }
993
994 llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
995                                       CodeGenFunction &CGF) const {
996   llvm::Type *BPP = CGF.Int8PtrPtrTy;
997
998   CGBuilderTy &Builder = CGF.Builder;
999   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
1000                                                        "ap");
1001   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
1002
1003   // Compute if the address needs to be aligned
1004   unsigned Align = CGF.getContext().getTypeAlignInChars(Ty).getQuantity();
1005   Align = getTypeStackAlignInBytes(Ty, Align);
1006   Align = std::max(Align, 4U);
1007   if (Align > 4) {
1008     // addr = (addr + align - 1) & -align;
1009     llvm::Value *Offset =
1010       llvm::ConstantInt::get(CGF.Int32Ty, Align - 1);
1011     Addr = CGF.Builder.CreateGEP(Addr, Offset);
1012     llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(Addr,
1013                                                     CGF.Int32Ty);
1014     llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -Align);
1015     Addr = CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
1016                                       Addr->getType(),
1017                                       "ap.cur.aligned");
1018   }
1019
1020   llvm::Type *PTy =
1021     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
1022   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
1023
1024   uint64_t Offset =
1025     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, Align);
1026   llvm::Value *NextAddr =
1027     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
1028                       "ap.next");
1029   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
1030
1031   return AddrTyped;
1032 }
1033
1034 void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
1035                                                   llvm::GlobalValue *GV,
1036                                             CodeGen::CodeGenModule &CGM) const {
1037   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1038     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
1039       // Get the LLVM function.
1040       llvm::Function *Fn = cast<llvm::Function>(GV);
1041
1042       // Now add the 'alignstack' attribute with a value of 16.
1043       llvm::AttrBuilder B;
1044       B.addStackAlignmentAttr(16);
1045       Fn->addAttributes(llvm::AttributeSet::FunctionIndex,
1046                       llvm::AttributeSet::get(CGM.getLLVMContext(),
1047                                               llvm::AttributeSet::FunctionIndex,
1048                                               B));
1049     }
1050   }
1051 }
1052
1053 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
1054                                                CodeGen::CodeGenFunction &CGF,
1055                                                llvm::Value *Address) const {
1056   CodeGen::CGBuilderTy &Builder = CGF.Builder;
1057
1058   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
1059
1060   // 0-7 are the eight integer registers;  the order is different
1061   //   on Darwin (for EH), but the range is the same.
1062   // 8 is %eip.
1063   AssignToArrayRange(Builder, Address, Four8, 0, 8);
1064
1065   if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
1066     // 12-16 are st(0..4).  Not sure why we stop at 4.
1067     // These have size 16, which is sizeof(long double) on
1068     // platforms with 8-byte alignment for that type.
1069     llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
1070     AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
1071
1072   } else {
1073     // 9 is %eflags, which doesn't get a size on Darwin for some
1074     // reason.
1075     Builder.CreateStore(Four8, Builder.CreateConstInBoundsGEP1_32(Address, 9));
1076
1077     // 11-16 are st(0..5).  Not sure why we stop at 5.
1078     // These have size 12, which is sizeof(long double) on
1079     // platforms with 4-byte alignment for that type.
1080     llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
1081     AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
1082   }
1083
1084   return false;
1085 }
1086
1087 //===----------------------------------------------------------------------===//
1088 // X86-64 ABI Implementation
1089 //===----------------------------------------------------------------------===//
1090
1091
1092 namespace {
1093 /// X86_64ABIInfo - The X86_64 ABI information.
1094 class X86_64ABIInfo : public ABIInfo {
1095   enum Class {
1096     Integer = 0,
1097     SSE,
1098     SSEUp,
1099     X87,
1100     X87Up,
1101     ComplexX87,
1102     NoClass,
1103     Memory
1104   };
1105
1106   /// merge - Implement the X86_64 ABI merging algorithm.
1107   ///
1108   /// Merge an accumulating classification \arg Accum with a field
1109   /// classification \arg Field.
1110   ///
1111   /// \param Accum - The accumulating classification. This should
1112   /// always be either NoClass or the result of a previous merge
1113   /// call. In addition, this should never be Memory (the caller
1114   /// should just return Memory for the aggregate).
1115   static Class merge(Class Accum, Class Field);
1116
1117   /// postMerge - Implement the X86_64 ABI post merging algorithm.
1118   ///
1119   /// Post merger cleanup, reduces a malformed Hi and Lo pair to
1120   /// final MEMORY or SSE classes when necessary.
1121   ///
1122   /// \param AggregateSize - The size of the current aggregate in
1123   /// the classification process.
1124   ///
1125   /// \param Lo - The classification for the parts of the type
1126   /// residing in the low word of the containing object.
1127   ///
1128   /// \param Hi - The classification for the parts of the type
1129   /// residing in the higher words of the containing object.
1130   ///
1131   void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
1132
1133   /// classify - Determine the x86_64 register classes in which the
1134   /// given type T should be passed.
1135   ///
1136   /// \param Lo - The classification for the parts of the type
1137   /// residing in the low word of the containing object.
1138   ///
1139   /// \param Hi - The classification for the parts of the type
1140   /// residing in the high word of the containing object.
1141   ///
1142   /// \param OffsetBase - The bit offset of this type in the
1143   /// containing object.  Some parameters are classified different
1144   /// depending on whether they straddle an eightbyte boundary.
1145   ///
1146   /// \param isNamedArg - Whether the argument in question is a "named"
1147   /// argument, as used in AMD64-ABI 3.5.7.
1148   ///
1149   /// If a word is unused its result will be NoClass; if a type should
1150   /// be passed in Memory then at least the classification of \arg Lo
1151   /// will be Memory.
1152   ///
1153   /// The \arg Lo class will be NoClass iff the argument is ignored.
1154   ///
1155   /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
1156   /// also be ComplexX87.
1157   void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
1158                 bool isNamedArg) const;
1159
1160   llvm::Type *GetByteVectorType(QualType Ty) const;
1161   llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
1162                                  unsigned IROffset, QualType SourceTy,
1163                                  unsigned SourceOffset) const;
1164   llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
1165                                      unsigned IROffset, QualType SourceTy,
1166                                      unsigned SourceOffset) const;
1167
1168   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1169   /// such that the argument will be returned in memory.
1170   ABIArgInfo getIndirectReturnResult(QualType Ty) const;
1171
1172   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1173   /// such that the argument will be passed in memory.
1174   ///
1175   /// \param freeIntRegs - The number of free integer registers remaining
1176   /// available.
1177   ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
1178
1179   ABIArgInfo classifyReturnType(QualType RetTy) const;
1180
1181   ABIArgInfo classifyArgumentType(QualType Ty,
1182                                   unsigned freeIntRegs,
1183                                   unsigned &neededInt,
1184                                   unsigned &neededSSE,
1185                                   bool isNamedArg) const;
1186
1187   bool IsIllegalVectorType(QualType Ty) const;
1188
1189   /// The 0.98 ABI revision clarified a lot of ambiguities,
1190   /// unfortunately in ways that were not always consistent with
1191   /// certain previous compilers.  In particular, platforms which
1192   /// required strict binary compatibility with older versions of GCC
1193   /// may need to exempt themselves.
1194   bool honorsRevision0_98() const {
1195     return !getTarget().getTriple().isOSDarwin();
1196   }
1197
1198   bool HasAVX;
1199   // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
1200   // 64-bit hardware.
1201   bool Has64BitPointers;
1202
1203 public:
1204   X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool hasavx) :
1205       ABIInfo(CGT), HasAVX(hasavx),
1206       Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
1207   }
1208
1209   bool isPassedUsingAVXType(QualType type) const {
1210     unsigned neededInt, neededSSE;
1211     // The freeIntRegs argument doesn't matter here.
1212     ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
1213                                            /*isNamedArg*/true);
1214     if (info.isDirect()) {
1215       llvm::Type *ty = info.getCoerceToType();
1216       if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
1217         return (vectorTy->getBitWidth() > 128);
1218     }
1219     return false;
1220   }
1221
1222   virtual void computeInfo(CGFunctionInfo &FI) const;
1223
1224   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1225                                  CodeGenFunction &CGF) const;
1226 };
1227
1228 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
1229 class WinX86_64ABIInfo : public ABIInfo {
1230
1231   ABIArgInfo classify(QualType Ty, bool IsReturnType) const;
1232
1233 public:
1234   WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
1235
1236   virtual void computeInfo(CGFunctionInfo &FI) const;
1237
1238   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1239                                  CodeGenFunction &CGF) const;
1240 };
1241
1242 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1243 public:
1244   X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
1245       : TargetCodeGenInfo(new X86_64ABIInfo(CGT, HasAVX)) {}
1246
1247   const X86_64ABIInfo &getABIInfo() const {
1248     return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
1249   }
1250
1251   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
1252     return 7;
1253   }
1254
1255   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1256                                llvm::Value *Address) const {
1257     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1258
1259     // 0-15 are the 16 integer registers.
1260     // 16 is %rip.
1261     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1262     return false;
1263   }
1264
1265   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1266                                   StringRef Constraint,
1267                                   llvm::Type* Ty) const {
1268     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
1269   }
1270
1271   bool isNoProtoCallVariadic(const CallArgList &args,
1272                              const FunctionNoProtoType *fnType) const {
1273     // The default CC on x86-64 sets %al to the number of SSA
1274     // registers used, and GCC sets this when calling an unprototyped
1275     // function, so we override the default behavior.  However, don't do
1276     // that when AVX types are involved: the ABI explicitly states it is
1277     // undefined, and it doesn't work in practice because of how the ABI
1278     // defines varargs anyway.
1279     if (fnType->getCallConv() == CC_C) {
1280       bool HasAVXType = false;
1281       for (CallArgList::const_iterator
1282              it = args.begin(), ie = args.end(); it != ie; ++it) {
1283         if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
1284           HasAVXType = true;
1285           break;
1286         }
1287       }
1288
1289       if (!HasAVXType)
1290         return true;
1291     }
1292
1293     return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
1294   }
1295
1296   llvm::Constant *getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const {
1297     unsigned Sig = (0xeb << 0) |  // jmp rel8
1298                    (0x0a << 8) |  //           .+0x0c
1299                    ('F' << 16) |
1300                    ('T' << 24);
1301     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
1302   }
1303
1304 };
1305
1306 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) {
1307   // If the argument does not end in .lib, automatically add the suffix. This
1308   // matches the behavior of MSVC.
1309   std::string ArgStr = Lib;
1310   if (!Lib.endswith_lower(".lib"))
1311     ArgStr += ".lib";
1312   return ArgStr;
1313 }
1314
1315 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
1316 public:
1317   WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
1318         bool d, bool p, bool w, unsigned RegParms)
1319     : X86_32TargetCodeGenInfo(CGT, d, p, w, RegParms) {}
1320
1321   void getDependentLibraryOption(llvm::StringRef Lib,
1322                                  llvm::SmallString<24> &Opt) const {
1323     Opt = "/DEFAULTLIB:";
1324     Opt += qualifyWindowsLibrary(Lib);
1325   }
1326
1327   void getDetectMismatchOption(llvm::StringRef Name,
1328                                llvm::StringRef Value,
1329                                llvm::SmallString<32> &Opt) const {
1330     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
1331   }
1332 };
1333
1334 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1335 public:
1336   WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
1337     : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {}
1338
1339   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
1340     return 7;
1341   }
1342
1343   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1344                                llvm::Value *Address) const {
1345     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1346
1347     // 0-15 are the 16 integer registers.
1348     // 16 is %rip.
1349     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1350     return false;
1351   }
1352
1353   void getDependentLibraryOption(llvm::StringRef Lib,
1354                                  llvm::SmallString<24> &Opt) const {
1355     Opt = "/DEFAULTLIB:";
1356     Opt += qualifyWindowsLibrary(Lib);
1357   }
1358
1359   void getDetectMismatchOption(llvm::StringRef Name,
1360                                llvm::StringRef Value,
1361                                llvm::SmallString<32> &Opt) const {
1362     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
1363   }
1364 };
1365
1366 }
1367
1368 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
1369                               Class &Hi) const {
1370   // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
1371   //
1372   // (a) If one of the classes is Memory, the whole argument is passed in
1373   //     memory.
1374   //
1375   // (b) If X87UP is not preceded by X87, the whole argument is passed in
1376   //     memory.
1377   //
1378   // (c) If the size of the aggregate exceeds two eightbytes and the first
1379   //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
1380   //     argument is passed in memory. NOTE: This is necessary to keep the
1381   //     ABI working for processors that don't support the __m256 type.
1382   //
1383   // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
1384   //
1385   // Some of these are enforced by the merging logic.  Others can arise
1386   // only with unions; for example:
1387   //   union { _Complex double; unsigned; }
1388   //
1389   // Note that clauses (b) and (c) were added in 0.98.
1390   //
1391   if (Hi == Memory)
1392     Lo = Memory;
1393   if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
1394     Lo = Memory;
1395   if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
1396     Lo = Memory;
1397   if (Hi == SSEUp && Lo != SSE)
1398     Hi = SSE;
1399 }
1400
1401 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
1402   // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
1403   // classified recursively so that always two fields are
1404   // considered. The resulting class is calculated according to
1405   // the classes of the fields in the eightbyte:
1406   //
1407   // (a) If both classes are equal, this is the resulting class.
1408   //
1409   // (b) If one of the classes is NO_CLASS, the resulting class is
1410   // the other class.
1411   //
1412   // (c) If one of the classes is MEMORY, the result is the MEMORY
1413   // class.
1414   //
1415   // (d) If one of the classes is INTEGER, the result is the
1416   // INTEGER.
1417   //
1418   // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
1419   // MEMORY is used as class.
1420   //
1421   // (f) Otherwise class SSE is used.
1422
1423   // Accum should never be memory (we should have returned) or
1424   // ComplexX87 (because this cannot be passed in a structure).
1425   assert((Accum != Memory && Accum != ComplexX87) &&
1426          "Invalid accumulated classification during merge.");
1427   if (Accum == Field || Field == NoClass)
1428     return Accum;
1429   if (Field == Memory)
1430     return Memory;
1431   if (Accum == NoClass)
1432     return Field;
1433   if (Accum == Integer || Field == Integer)
1434     return Integer;
1435   if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
1436       Accum == X87 || Accum == X87Up)
1437     return Memory;
1438   return SSE;
1439 }
1440
1441 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
1442                              Class &Lo, Class &Hi, bool isNamedArg) const {
1443   // FIXME: This code can be simplified by introducing a simple value class for
1444   // Class pairs with appropriate constructor methods for the various
1445   // situations.
1446
1447   // FIXME: Some of the split computations are wrong; unaligned vectors
1448   // shouldn't be passed in registers for example, so there is no chance they
1449   // can straddle an eightbyte. Verify & simplify.
1450
1451   Lo = Hi = NoClass;
1452
1453   Class &Current = OffsetBase < 64 ? Lo : Hi;
1454   Current = Memory;
1455
1456   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
1457     BuiltinType::Kind k = BT->getKind();
1458
1459     if (k == BuiltinType::Void) {
1460       Current = NoClass;
1461     } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
1462       Lo = Integer;
1463       Hi = Integer;
1464     } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
1465       Current = Integer;
1466     } else if ((k == BuiltinType::Float || k == BuiltinType::Double) ||
1467                (k == BuiltinType::LongDouble &&
1468                 getTarget().getTriple().isOSNaCl())) {
1469       Current = SSE;
1470     } else if (k == BuiltinType::LongDouble) {
1471       Lo = X87;
1472       Hi = X87Up;
1473     }
1474     // FIXME: _Decimal32 and _Decimal64 are SSE.
1475     // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
1476     return;
1477   }
1478
1479   if (const EnumType *ET = Ty->getAs<EnumType>()) {
1480     // Classify the underlying integer type.
1481     classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
1482     return;
1483   }
1484
1485   if (Ty->hasPointerRepresentation()) {
1486     Current = Integer;
1487     return;
1488   }
1489
1490   if (Ty->isMemberPointerType()) {
1491     if (Ty->isMemberFunctionPointerType() && Has64BitPointers)
1492       Lo = Hi = Integer;
1493     else
1494       Current = Integer;
1495     return;
1496   }
1497
1498   if (const VectorType *VT = Ty->getAs<VectorType>()) {
1499     uint64_t Size = getContext().getTypeSize(VT);
1500     if (Size == 32) {
1501       // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x
1502       // float> as integer.
1503       Current = Integer;
1504
1505       // If this type crosses an eightbyte boundary, it should be
1506       // split.
1507       uint64_t EB_Real = (OffsetBase) / 64;
1508       uint64_t EB_Imag = (OffsetBase + Size - 1) / 64;
1509       if (EB_Real != EB_Imag)
1510         Hi = Lo;
1511     } else if (Size == 64) {
1512       // gcc passes <1 x double> in memory. :(
1513       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
1514         return;
1515
1516       // gcc passes <1 x long long> as INTEGER.
1517       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) ||
1518           VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) ||
1519           VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) ||
1520           VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong))
1521         Current = Integer;
1522       else
1523         Current = SSE;
1524
1525       // If this type crosses an eightbyte boundary, it should be
1526       // split.
1527       if (OffsetBase && OffsetBase != 64)
1528         Hi = Lo;
1529     } else if (Size == 128 || (HasAVX && isNamedArg && Size == 256)) {
1530       // Arguments of 256-bits are split into four eightbyte chunks. The
1531       // least significant one belongs to class SSE and all the others to class
1532       // SSEUP. The original Lo and Hi design considers that types can't be
1533       // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
1534       // This design isn't correct for 256-bits, but since there're no cases
1535       // where the upper parts would need to be inspected, avoid adding
1536       // complexity and just consider Hi to match the 64-256 part.
1537       //
1538       // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
1539       // registers if they are "named", i.e. not part of the "..." of a
1540       // variadic function.
1541       Lo = SSE;
1542       Hi = SSEUp;
1543     }
1544     return;
1545   }
1546
1547   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
1548     QualType ET = getContext().getCanonicalType(CT->getElementType());
1549
1550     uint64_t Size = getContext().getTypeSize(Ty);
1551     if (ET->isIntegralOrEnumerationType()) {
1552       if (Size <= 64)
1553         Current = Integer;
1554       else if (Size <= 128)
1555         Lo = Hi = Integer;
1556     } else if (ET == getContext().FloatTy)
1557       Current = SSE;
1558     else if (ET == getContext().DoubleTy ||
1559              (ET == getContext().LongDoubleTy &&
1560               getTarget().getTriple().isOSNaCl()))
1561       Lo = Hi = SSE;
1562     else if (ET == getContext().LongDoubleTy)
1563       Current = ComplexX87;
1564
1565     // If this complex type crosses an eightbyte boundary then it
1566     // should be split.
1567     uint64_t EB_Real = (OffsetBase) / 64;
1568     uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
1569     if (Hi == NoClass && EB_Real != EB_Imag)
1570       Hi = Lo;
1571
1572     return;
1573   }
1574
1575   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
1576     // Arrays are treated like structures.
1577
1578     uint64_t Size = getContext().getTypeSize(Ty);
1579
1580     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1581     // than four eightbytes, ..., it has class MEMORY.
1582     if (Size > 256)
1583       return;
1584
1585     // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
1586     // fields, it has class MEMORY.
1587     //
1588     // Only need to check alignment of array base.
1589     if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
1590       return;
1591
1592     // Otherwise implement simplified merge. We could be smarter about
1593     // this, but it isn't worth it and would be harder to verify.
1594     Current = NoClass;
1595     uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
1596     uint64_t ArraySize = AT->getSize().getZExtValue();
1597
1598     // The only case a 256-bit wide vector could be used is when the array
1599     // contains a single 256-bit element. Since Lo and Hi logic isn't extended
1600     // to work for sizes wider than 128, early check and fallback to memory.
1601     if (Size > 128 && EltSize != 256)
1602       return;
1603
1604     for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
1605       Class FieldLo, FieldHi;
1606       classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
1607       Lo = merge(Lo, FieldLo);
1608       Hi = merge(Hi, FieldHi);
1609       if (Lo == Memory || Hi == Memory)
1610         break;
1611     }
1612
1613     postMerge(Size, Lo, Hi);
1614     assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
1615     return;
1616   }
1617
1618   if (const RecordType *RT = Ty->getAs<RecordType>()) {
1619     uint64_t Size = getContext().getTypeSize(Ty);
1620
1621     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1622     // than four eightbytes, ..., it has class MEMORY.
1623     if (Size > 256)
1624       return;
1625
1626     // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
1627     // copy constructor or a non-trivial destructor, it is passed by invisible
1628     // reference.
1629     if (getRecordArgABI(RT, getCXXABI()))
1630       return;
1631
1632     const RecordDecl *RD = RT->getDecl();
1633
1634     // Assume variable sized types are passed in memory.
1635     if (RD->hasFlexibleArrayMember())
1636       return;
1637
1638     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
1639
1640     // Reset Lo class, this will be recomputed.
1641     Current = NoClass;
1642
1643     // If this is a C++ record, classify the bases first.
1644     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1645       for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
1646              e = CXXRD->bases_end(); i != e; ++i) {
1647         assert(!i->isVirtual() && !i->getType()->isDependentType() &&
1648                "Unexpected base class!");
1649         const CXXRecordDecl *Base =
1650           cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
1651
1652         // Classify this field.
1653         //
1654         // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
1655         // single eightbyte, each is classified separately. Each eightbyte gets
1656         // initialized to class NO_CLASS.
1657         Class FieldLo, FieldHi;
1658         uint64_t Offset =
1659           OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
1660         classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
1661         Lo = merge(Lo, FieldLo);
1662         Hi = merge(Hi, FieldHi);
1663         if (Lo == Memory || Hi == Memory)
1664           break;
1665       }
1666     }
1667
1668     // Classify the fields one at a time, merging the results.
1669     unsigned idx = 0;
1670     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1671            i != e; ++i, ++idx) {
1672       uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1673       bool BitField = i->isBitField();
1674
1675       // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
1676       // four eightbytes, or it contains unaligned fields, it has class MEMORY.
1677       //
1678       // The only case a 256-bit wide vector could be used is when the struct
1679       // contains a single 256-bit element. Since Lo and Hi logic isn't extended
1680       // to work for sizes wider than 128, early check and fallback to memory.
1681       //
1682       if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) {
1683         Lo = Memory;
1684         return;
1685       }
1686       // Note, skip this test for bit-fields, see below.
1687       if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
1688         Lo = Memory;
1689         return;
1690       }
1691
1692       // Classify this field.
1693       //
1694       // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
1695       // exceeds a single eightbyte, each is classified
1696       // separately. Each eightbyte gets initialized to class
1697       // NO_CLASS.
1698       Class FieldLo, FieldHi;
1699
1700       // Bit-fields require special handling, they do not force the
1701       // structure to be passed in memory even if unaligned, and
1702       // therefore they can straddle an eightbyte.
1703       if (BitField) {
1704         // Ignore padding bit-fields.
1705         if (i->isUnnamedBitfield())
1706           continue;
1707
1708         uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1709         uint64_t Size = i->getBitWidthValue(getContext());
1710
1711         uint64_t EB_Lo = Offset / 64;
1712         uint64_t EB_Hi = (Offset + Size - 1) / 64;
1713
1714         if (EB_Lo) {
1715           assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
1716           FieldLo = NoClass;
1717           FieldHi = Integer;
1718         } else {
1719           FieldLo = Integer;
1720           FieldHi = EB_Hi ? Integer : NoClass;
1721         }
1722       } else
1723         classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
1724       Lo = merge(Lo, FieldLo);
1725       Hi = merge(Hi, FieldHi);
1726       if (Lo == Memory || Hi == Memory)
1727         break;
1728     }
1729
1730     postMerge(Size, Lo, Hi);
1731   }
1732 }
1733
1734 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
1735   // If this is a scalar LLVM value then assume LLVM will pass it in the right
1736   // place naturally.
1737   if (!isAggregateTypeForABI(Ty)) {
1738     // Treat an enum type as its underlying type.
1739     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1740       Ty = EnumTy->getDecl()->getIntegerType();
1741
1742     return (Ty->isPromotableIntegerType() ?
1743             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1744   }
1745
1746   return ABIArgInfo::getIndirect(0);
1747 }
1748
1749 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
1750   if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
1751     uint64_t Size = getContext().getTypeSize(VecTy);
1752     unsigned LargestVector = HasAVX ? 256 : 128;
1753     if (Size <= 64 || Size > LargestVector)
1754       return true;
1755   }
1756
1757   return false;
1758 }
1759
1760 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
1761                                             unsigned freeIntRegs) const {
1762   // If this is a scalar LLVM value then assume LLVM will pass it in the right
1763   // place naturally.
1764   //
1765   // This assumption is optimistic, as there could be free registers available
1766   // when we need to pass this argument in memory, and LLVM could try to pass
1767   // the argument in the free register. This does not seem to happen currently,
1768   // but this code would be much safer if we could mark the argument with
1769   // 'onstack'. See PR12193.
1770   if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) {
1771     // Treat an enum type as its underlying type.
1772     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1773       Ty = EnumTy->getDecl()->getIntegerType();
1774
1775     return (Ty->isPromotableIntegerType() ?
1776             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1777   }
1778
1779   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
1780     return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
1781
1782   // Compute the byval alignment. We specify the alignment of the byval in all
1783   // cases so that the mid-level optimizer knows the alignment of the byval.
1784   unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
1785
1786   // Attempt to avoid passing indirect results using byval when possible. This
1787   // is important for good codegen.
1788   //
1789   // We do this by coercing the value into a scalar type which the backend can
1790   // handle naturally (i.e., without using byval).
1791   //
1792   // For simplicity, we currently only do this when we have exhausted all of the
1793   // free integer registers. Doing this when there are free integer registers
1794   // would require more care, as we would have to ensure that the coerced value
1795   // did not claim the unused register. That would require either reording the
1796   // arguments to the function (so that any subsequent inreg values came first),
1797   // or only doing this optimization when there were no following arguments that
1798   // might be inreg.
1799   //
1800   // We currently expect it to be rare (particularly in well written code) for
1801   // arguments to be passed on the stack when there are still free integer
1802   // registers available (this would typically imply large structs being passed
1803   // by value), so this seems like a fair tradeoff for now.
1804   //
1805   // We can revisit this if the backend grows support for 'onstack' parameter
1806   // attributes. See PR12193.
1807   if (freeIntRegs == 0) {
1808     uint64_t Size = getContext().getTypeSize(Ty);
1809
1810     // If this type fits in an eightbyte, coerce it into the matching integral
1811     // type, which will end up on the stack (with alignment 8).
1812     if (Align == 8 && Size <= 64)
1813       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1814                                                           Size));
1815   }
1816
1817   return ABIArgInfo::getIndirect(Align);
1818 }
1819
1820 /// GetByteVectorType - The ABI specifies that a value should be passed in an
1821 /// full vector XMM/YMM register.  Pick an LLVM IR type that will be passed as a
1822 /// vector register.
1823 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
1824   llvm::Type *IRType = CGT.ConvertType(Ty);
1825
1826   // Wrapper structs that just contain vectors are passed just like vectors,
1827   // strip them off if present.
1828   llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType);
1829   while (STy && STy->getNumElements() == 1) {
1830     IRType = STy->getElementType(0);
1831     STy = dyn_cast<llvm::StructType>(IRType);
1832   }
1833
1834   // If the preferred type is a 16-byte vector, prefer to pass it.
1835   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(IRType)){
1836     llvm::Type *EltTy = VT->getElementType();
1837     unsigned BitWidth = VT->getBitWidth();
1838     if ((BitWidth >= 128 && BitWidth <= 256) &&
1839         (EltTy->isFloatTy() || EltTy->isDoubleTy() ||
1840          EltTy->isIntegerTy(8) || EltTy->isIntegerTy(16) ||
1841          EltTy->isIntegerTy(32) || EltTy->isIntegerTy(64) ||
1842          EltTy->isIntegerTy(128)))
1843       return VT;
1844   }
1845
1846   return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2);
1847 }
1848
1849 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
1850 /// is known to either be off the end of the specified type or being in
1851 /// alignment padding.  The user type specified is known to be at most 128 bits
1852 /// in size, and have passed through X86_64ABIInfo::classify with a successful
1853 /// classification that put one of the two halves in the INTEGER class.
1854 ///
1855 /// It is conservatively correct to return false.
1856 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
1857                                   unsigned EndBit, ASTContext &Context) {
1858   // If the bytes being queried are off the end of the type, there is no user
1859   // data hiding here.  This handles analysis of builtins, vectors and other
1860   // types that don't contain interesting padding.
1861   unsigned TySize = (unsigned)Context.getTypeSize(Ty);
1862   if (TySize <= StartBit)
1863     return true;
1864
1865   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
1866     unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
1867     unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
1868
1869     // Check each element to see if the element overlaps with the queried range.
1870     for (unsigned i = 0; i != NumElts; ++i) {
1871       // If the element is after the span we care about, then we're done..
1872       unsigned EltOffset = i*EltSize;
1873       if (EltOffset >= EndBit) break;
1874
1875       unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
1876       if (!BitsContainNoUserData(AT->getElementType(), EltStart,
1877                                  EndBit-EltOffset, Context))
1878         return false;
1879     }
1880     // If it overlaps no elements, then it is safe to process as padding.
1881     return true;
1882   }
1883
1884   if (const RecordType *RT = Ty->getAs<RecordType>()) {
1885     const RecordDecl *RD = RT->getDecl();
1886     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1887
1888     // If this is a C++ record, check the bases first.
1889     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1890       for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
1891            e = CXXRD->bases_end(); i != e; ++i) {
1892         assert(!i->isVirtual() && !i->getType()->isDependentType() &&
1893                "Unexpected base class!");
1894         const CXXRecordDecl *Base =
1895           cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
1896
1897         // If the base is after the span we care about, ignore it.
1898         unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
1899         if (BaseOffset >= EndBit) continue;
1900
1901         unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
1902         if (!BitsContainNoUserData(i->getType(), BaseStart,
1903                                    EndBit-BaseOffset, Context))
1904           return false;
1905       }
1906     }
1907
1908     // Verify that no field has data that overlaps the region of interest.  Yes
1909     // this could be sped up a lot by being smarter about queried fields,
1910     // however we're only looking at structs up to 16 bytes, so we don't care
1911     // much.
1912     unsigned idx = 0;
1913     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1914          i != e; ++i, ++idx) {
1915       unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
1916
1917       // If we found a field after the region we care about, then we're done.
1918       if (FieldOffset >= EndBit) break;
1919
1920       unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
1921       if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
1922                                  Context))
1923         return false;
1924     }
1925
1926     // If nothing in this record overlapped the area of interest, then we're
1927     // clean.
1928     return true;
1929   }
1930
1931   return false;
1932 }
1933
1934 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
1935 /// float member at the specified offset.  For example, {int,{float}} has a
1936 /// float at offset 4.  It is conservatively correct for this routine to return
1937 /// false.
1938 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
1939                                   const llvm::DataLayout &TD) {
1940   // Base case if we find a float.
1941   if (IROffset == 0 && IRType->isFloatTy())
1942     return true;
1943
1944   // If this is a struct, recurse into the field at the specified offset.
1945   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
1946     const llvm::StructLayout *SL = TD.getStructLayout(STy);
1947     unsigned Elt = SL->getElementContainingOffset(IROffset);
1948     IROffset -= SL->getElementOffset(Elt);
1949     return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
1950   }
1951
1952   // If this is an array, recurse into the field at the specified offset.
1953   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
1954     llvm::Type *EltTy = ATy->getElementType();
1955     unsigned EltSize = TD.getTypeAllocSize(EltTy);
1956     IROffset -= IROffset/EltSize*EltSize;
1957     return ContainsFloatAtOffset(EltTy, IROffset, TD);
1958   }
1959
1960   return false;
1961 }
1962
1963
1964 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
1965 /// low 8 bytes of an XMM register, corresponding to the SSE class.
1966 llvm::Type *X86_64ABIInfo::
1967 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
1968                    QualType SourceTy, unsigned SourceOffset) const {
1969   // The only three choices we have are either double, <2 x float>, or float. We
1970   // pass as float if the last 4 bytes is just padding.  This happens for
1971   // structs that contain 3 floats.
1972   if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
1973                             SourceOffset*8+64, getContext()))
1974     return llvm::Type::getFloatTy(getVMContext());
1975
1976   // We want to pass as <2 x float> if the LLVM IR type contains a float at
1977   // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
1978   // case.
1979   if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
1980       ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout()))
1981     return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
1982
1983   return llvm::Type::getDoubleTy(getVMContext());
1984 }
1985
1986
1987 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
1988 /// an 8-byte GPR.  This means that we either have a scalar or we are talking
1989 /// about the high or low part of an up-to-16-byte struct.  This routine picks
1990 /// the best LLVM IR type to represent this, which may be i64 or may be anything
1991 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
1992 /// etc).
1993 ///
1994 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
1995 /// the source type.  IROffset is an offset in bytes into the LLVM IR type that
1996 /// the 8-byte value references.  PrefType may be null.
1997 ///
1998 /// SourceTy is the source level type for the entire argument.  SourceOffset is
1999 /// an offset into this that we're processing (which is always either 0 or 8).
2000 ///
2001 llvm::Type *X86_64ABIInfo::
2002 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
2003                        QualType SourceTy, unsigned SourceOffset) const {
2004   // If we're dealing with an un-offset LLVM IR type, then it means that we're
2005   // returning an 8-byte unit starting with it.  See if we can safely use it.
2006   if (IROffset == 0) {
2007     // Pointers and int64's always fill the 8-byte unit.
2008     if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
2009         IRType->isIntegerTy(64))
2010       return IRType;
2011
2012     // If we have a 1/2/4-byte integer, we can use it only if the rest of the
2013     // goodness in the source type is just tail padding.  This is allowed to
2014     // kick in for struct {double,int} on the int, but not on
2015     // struct{double,int,int} because we wouldn't return the second int.  We
2016     // have to do this analysis on the source type because we can't depend on
2017     // unions being lowered a specific way etc.
2018     if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
2019         IRType->isIntegerTy(32) ||
2020         (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
2021       unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
2022           cast<llvm::IntegerType>(IRType)->getBitWidth();
2023
2024       if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
2025                                 SourceOffset*8+64, getContext()))
2026         return IRType;
2027     }
2028   }
2029
2030   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
2031     // If this is a struct, recurse into the field at the specified offset.
2032     const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
2033     if (IROffset < SL->getSizeInBytes()) {
2034       unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
2035       IROffset -= SL->getElementOffset(FieldIdx);
2036
2037       return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
2038                                     SourceTy, SourceOffset);
2039     }
2040   }
2041
2042   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
2043     llvm::Type *EltTy = ATy->getElementType();
2044     unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
2045     unsigned EltOffset = IROffset/EltSize*EltSize;
2046     return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
2047                                   SourceOffset);
2048   }
2049
2050   // Okay, we don't have any better idea of what to pass, so we pass this in an
2051   // integer register that isn't too big to fit the rest of the struct.
2052   unsigned TySizeInBytes =
2053     (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
2054
2055   assert(TySizeInBytes != SourceOffset && "Empty field?");
2056
2057   // It is always safe to classify this as an integer type up to i64 that
2058   // isn't larger than the structure.
2059   return llvm::IntegerType::get(getVMContext(),
2060                                 std::min(TySizeInBytes-SourceOffset, 8U)*8);
2061 }
2062
2063
2064 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
2065 /// be used as elements of a two register pair to pass or return, return a
2066 /// first class aggregate to represent them.  For example, if the low part of
2067 /// a by-value argument should be passed as i32* and the high part as float,
2068 /// return {i32*, float}.
2069 static llvm::Type *
2070 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
2071                            const llvm::DataLayout &TD) {
2072   // In order to correctly satisfy the ABI, we need to the high part to start
2073   // at offset 8.  If the high and low parts we inferred are both 4-byte types
2074   // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
2075   // the second element at offset 8.  Check for this:
2076   unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
2077   unsigned HiAlign = TD.getABITypeAlignment(Hi);
2078   unsigned HiStart = llvm::DataLayout::RoundUpAlignment(LoSize, HiAlign);
2079   assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
2080
2081   // To handle this, we have to increase the size of the low part so that the
2082   // second element will start at an 8 byte offset.  We can't increase the size
2083   // of the second element because it might make us access off the end of the
2084   // struct.
2085   if (HiStart != 8) {
2086     // There are only two sorts of types the ABI generation code can produce for
2087     // the low part of a pair that aren't 8 bytes in size: float or i8/i16/i32.
2088     // Promote these to a larger type.
2089     if (Lo->isFloatTy())
2090       Lo = llvm::Type::getDoubleTy(Lo->getContext());
2091     else {
2092       assert(Lo->isIntegerTy() && "Invalid/unknown lo type");
2093       Lo = llvm::Type::getInt64Ty(Lo->getContext());
2094     }
2095   }
2096
2097   llvm::StructType *Result = llvm::StructType::get(Lo, Hi, NULL);
2098
2099
2100   // Verify that the second element is at an 8-byte offset.
2101   assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
2102          "Invalid x86-64 argument pair!");
2103   return Result;
2104 }
2105
2106 ABIArgInfo X86_64ABIInfo::
2107 classifyReturnType(QualType RetTy) const {
2108   // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
2109   // classification algorithm.
2110   X86_64ABIInfo::Class Lo, Hi;
2111   classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
2112
2113   // Check some invariants.
2114   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2115   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2116
2117   llvm::Type *ResType = 0;
2118   switch (Lo) {
2119   case NoClass:
2120     if (Hi == NoClass)
2121       return ABIArgInfo::getIgnore();
2122     // If the low part is just padding, it takes no register, leave ResType
2123     // null.
2124     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2125            "Unknown missing lo part");
2126     break;
2127
2128   case SSEUp:
2129   case X87Up:
2130     llvm_unreachable("Invalid classification for lo word.");
2131
2132     // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
2133     // hidden argument.
2134   case Memory:
2135     return getIndirectReturnResult(RetTy);
2136
2137     // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
2138     // available register of the sequence %rax, %rdx is used.
2139   case Integer:
2140     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2141
2142     // If we have a sign or zero extended integer, make sure to return Extend
2143     // so that the parameter gets the right LLVM IR attributes.
2144     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2145       // Treat an enum type as its underlying type.
2146       if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
2147         RetTy = EnumTy->getDecl()->getIntegerType();
2148
2149       if (RetTy->isIntegralOrEnumerationType() &&
2150           RetTy->isPromotableIntegerType())
2151         return ABIArgInfo::getExtend();
2152     }
2153     break;
2154
2155     // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
2156     // available SSE register of the sequence %xmm0, %xmm1 is used.
2157   case SSE:
2158     ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2159     break;
2160
2161     // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
2162     // returned on the X87 stack in %st0 as 80-bit x87 number.
2163   case X87:
2164     ResType = llvm::Type::getX86_FP80Ty(getVMContext());
2165     break;
2166
2167     // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
2168     // part of the value is returned in %st0 and the imaginary part in
2169     // %st1.
2170   case ComplexX87:
2171     assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
2172     ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
2173                                     llvm::Type::getX86_FP80Ty(getVMContext()),
2174                                     NULL);
2175     break;
2176   }
2177
2178   llvm::Type *HighPart = 0;
2179   switch (Hi) {
2180     // Memory was handled previously and X87 should
2181     // never occur as a hi class.
2182   case Memory:
2183   case X87:
2184     llvm_unreachable("Invalid classification for hi word.");
2185
2186   case ComplexX87: // Previously handled.
2187   case NoClass:
2188     break;
2189
2190   case Integer:
2191     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2192     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2193       return ABIArgInfo::getDirect(HighPart, 8);
2194     break;
2195   case SSE:
2196     HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2197     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2198       return ABIArgInfo::getDirect(HighPart, 8);
2199     break;
2200
2201     // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
2202     // is passed in the next available eightbyte chunk if the last used
2203     // vector register.
2204     //
2205     // SSEUP should always be preceded by SSE, just widen.
2206   case SSEUp:
2207     assert(Lo == SSE && "Unexpected SSEUp classification.");
2208     ResType = GetByteVectorType(RetTy);
2209     break;
2210
2211     // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
2212     // returned together with the previous X87 value in %st0.
2213   case X87Up:
2214     // If X87Up is preceded by X87, we don't need to do
2215     // anything. However, in some cases with unions it may not be
2216     // preceded by X87. In such situations we follow gcc and pass the
2217     // extra bits in an SSE reg.
2218     if (Lo != X87) {
2219       HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2220       if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2221         return ABIArgInfo::getDirect(HighPart, 8);
2222     }
2223     break;
2224   }
2225
2226   // If a high part was specified, merge it together with the low part.  It is
2227   // known to pass in the high eightbyte of the result.  We do this by forming a
2228   // first class struct aggregate with the high and low part: {low, high}
2229   if (HighPart)
2230     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
2231
2232   return ABIArgInfo::getDirect(ResType);
2233 }
2234
2235 ABIArgInfo X86_64ABIInfo::classifyArgumentType(
2236   QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE,
2237   bool isNamedArg)
2238   const
2239 {
2240   X86_64ABIInfo::Class Lo, Hi;
2241   classify(Ty, 0, Lo, Hi, isNamedArg);
2242
2243   // Check some invariants.
2244   // FIXME: Enforce these by construction.
2245   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2246   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2247
2248   neededInt = 0;
2249   neededSSE = 0;
2250   llvm::Type *ResType = 0;
2251   switch (Lo) {
2252   case NoClass:
2253     if (Hi == NoClass)
2254       return ABIArgInfo::getIgnore();
2255     // If the low part is just padding, it takes no register, leave ResType
2256     // null.
2257     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2258            "Unknown missing lo part");
2259     break;
2260
2261     // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
2262     // on the stack.
2263   case Memory:
2264
2265     // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
2266     // COMPLEX_X87, it is passed in memory.
2267   case X87:
2268   case ComplexX87:
2269     if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
2270       ++neededInt;
2271     return getIndirectResult(Ty, freeIntRegs);
2272
2273   case SSEUp:
2274   case X87Up:
2275     llvm_unreachable("Invalid classification for lo word.");
2276
2277     // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
2278     // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
2279     // and %r9 is used.
2280   case Integer:
2281     ++neededInt;
2282
2283     // Pick an 8-byte type based on the preferred type.
2284     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
2285
2286     // If we have a sign or zero extended integer, make sure to return Extend
2287     // so that the parameter gets the right LLVM IR attributes.
2288     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2289       // Treat an enum type as its underlying type.
2290       if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2291         Ty = EnumTy->getDecl()->getIntegerType();
2292
2293       if (Ty->isIntegralOrEnumerationType() &&
2294           Ty->isPromotableIntegerType())
2295         return ABIArgInfo::getExtend();
2296     }
2297
2298     break;
2299
2300     // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
2301     // available SSE register is used, the registers are taken in the
2302     // order from %xmm0 to %xmm7.
2303   case SSE: {
2304     llvm::Type *IRType = CGT.ConvertType(Ty);
2305     ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
2306     ++neededSSE;
2307     break;
2308   }
2309   }
2310
2311   llvm::Type *HighPart = 0;
2312   switch (Hi) {
2313     // Memory was handled previously, ComplexX87 and X87 should
2314     // never occur as hi classes, and X87Up must be preceded by X87,
2315     // which is passed in memory.
2316   case Memory:
2317   case X87:
2318   case ComplexX87:
2319     llvm_unreachable("Invalid classification for hi word.");
2320
2321   case NoClass: break;
2322
2323   case Integer:
2324     ++neededInt;
2325     // Pick an 8-byte type based on the preferred type.
2326     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2327
2328     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
2329       return ABIArgInfo::getDirect(HighPart, 8);
2330     break;
2331
2332     // X87Up generally doesn't occur here (long double is passed in
2333     // memory), except in situations involving unions.
2334   case X87Up:
2335   case SSE:
2336     HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2337
2338     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
2339       return ABIArgInfo::getDirect(HighPart, 8);
2340
2341     ++neededSSE;
2342     break;
2343
2344     // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
2345     // eightbyte is passed in the upper half of the last used SSE
2346     // register.  This only happens when 128-bit vectors are passed.
2347   case SSEUp:
2348     assert(Lo == SSE && "Unexpected SSEUp classification");
2349     ResType = GetByteVectorType(Ty);
2350     break;
2351   }
2352
2353   // If a high part was specified, merge it together with the low part.  It is
2354   // known to pass in the high eightbyte of the result.  We do this by forming a
2355   // first class struct aggregate with the high and low part: {low, high}
2356   if (HighPart)
2357     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
2358
2359   return ABIArgInfo::getDirect(ResType);
2360 }
2361
2362 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2363
2364   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2365
2366   // Keep track of the number of assigned registers.
2367   unsigned freeIntRegs = 6, freeSSERegs = 8;
2368
2369   // If the return value is indirect, then the hidden argument is consuming one
2370   // integer register.
2371   if (FI.getReturnInfo().isIndirect())
2372     --freeIntRegs;
2373
2374   bool isVariadic = FI.isVariadic();
2375   unsigned numRequiredArgs = 0;
2376   if (isVariadic)
2377     numRequiredArgs = FI.getRequiredArgs().getNumRequiredArgs();
2378
2379   // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
2380   // get assigned (in left-to-right order) for passing as follows...
2381   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2382        it != ie; ++it) {
2383     bool isNamedArg = true;
2384     if (isVariadic)
2385       isNamedArg = (it - FI.arg_begin()) < 
2386                     static_cast<signed>(numRequiredArgs);
2387
2388     unsigned neededInt, neededSSE;
2389     it->info = classifyArgumentType(it->type, freeIntRegs, neededInt,
2390                                     neededSSE, isNamedArg);
2391
2392     // AMD64-ABI 3.2.3p3: If there are no registers available for any
2393     // eightbyte of an argument, the whole argument is passed on the
2394     // stack. If registers have already been assigned for some
2395     // eightbytes of such an argument, the assignments get reverted.
2396     if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
2397       freeIntRegs -= neededInt;
2398       freeSSERegs -= neededSSE;
2399     } else {
2400       it->info = getIndirectResult(it->type, freeIntRegs);
2401     }
2402   }
2403 }
2404
2405 static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr,
2406                                         QualType Ty,
2407                                         CodeGenFunction &CGF) {
2408   llvm::Value *overflow_arg_area_p =
2409     CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
2410   llvm::Value *overflow_arg_area =
2411     CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
2412
2413   // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
2414   // byte boundary if alignment needed by type exceeds 8 byte boundary.
2415   // It isn't stated explicitly in the standard, but in practice we use
2416   // alignment greater than 16 where necessary.
2417   uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
2418   if (Align > 8) {
2419     // overflow_arg_area = (overflow_arg_area + align - 1) & -align;
2420     llvm::Value *Offset =
2421       llvm::ConstantInt::get(CGF.Int64Ty, Align - 1);
2422     overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset);
2423     llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area,
2424                                                     CGF.Int64Ty);
2425     llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, -(uint64_t)Align);
2426     overflow_arg_area =
2427       CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
2428                                  overflow_arg_area->getType(),
2429                                  "overflow_arg_area.align");
2430   }
2431
2432   // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
2433   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2434   llvm::Value *Res =
2435     CGF.Builder.CreateBitCast(overflow_arg_area,
2436                               llvm::PointerType::getUnqual(LTy));
2437
2438   // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
2439   // l->overflow_arg_area + sizeof(type).
2440   // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
2441   // an 8 byte boundary.
2442
2443   uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
2444   llvm::Value *Offset =
2445       llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
2446   overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
2447                                             "overflow_arg_area.next");
2448   CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
2449
2450   // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
2451   return Res;
2452 }
2453
2454 llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2455                                       CodeGenFunction &CGF) const {
2456   // Assume that va_list type is correct; should be pointer to LLVM type:
2457   // struct {
2458   //   i32 gp_offset;
2459   //   i32 fp_offset;
2460   //   i8* overflow_arg_area;
2461   //   i8* reg_save_area;
2462   // };
2463   unsigned neededInt, neededSSE;
2464
2465   Ty = CGF.getContext().getCanonicalType(Ty);
2466   ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, 
2467                                        /*isNamedArg*/false);
2468
2469   // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
2470   // in the registers. If not go to step 7.
2471   if (!neededInt && !neededSSE)
2472     return EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2473
2474   // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
2475   // general purpose registers needed to pass type and num_fp to hold
2476   // the number of floating point registers needed.
2477
2478   // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
2479   // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
2480   // l->fp_offset > 304 - num_fp * 16 go to step 7.
2481   //
2482   // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
2483   // register save space).
2484
2485   llvm::Value *InRegs = 0;
2486   llvm::Value *gp_offset_p = 0, *gp_offset = 0;
2487   llvm::Value *fp_offset_p = 0, *fp_offset = 0;
2488   if (neededInt) {
2489     gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
2490     gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
2491     InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
2492     InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
2493   }
2494
2495   if (neededSSE) {
2496     fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
2497     fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
2498     llvm::Value *FitsInFP =
2499       llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
2500     FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
2501     InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
2502   }
2503
2504   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
2505   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
2506   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
2507   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
2508
2509   // Emit code to load the value if it was passed in registers.
2510
2511   CGF.EmitBlock(InRegBlock);
2512
2513   // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
2514   // an offset of l->gp_offset and/or l->fp_offset. This may require
2515   // copying to a temporary location in case the parameter is passed
2516   // in different register classes or requires an alignment greater
2517   // than 8 for general purpose registers and 16 for XMM registers.
2518   //
2519   // FIXME: This really results in shameful code when we end up needing to
2520   // collect arguments from different places; often what should result in a
2521   // simple assembling of a structure from scattered addresses has many more
2522   // loads than necessary. Can we clean this up?
2523   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2524   llvm::Value *RegAddr =
2525     CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3),
2526                            "reg_save_area");
2527   if (neededInt && neededSSE) {
2528     // FIXME: Cleanup.
2529     assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
2530     llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
2531     llvm::Value *Tmp = CGF.CreateMemTemp(Ty);
2532     Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo());
2533     assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
2534     llvm::Type *TyLo = ST->getElementType(0);
2535     llvm::Type *TyHi = ST->getElementType(1);
2536     assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
2537            "Unexpected ABI info for mixed regs");
2538     llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
2539     llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
2540     llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2541     llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2542     llvm::Value *RegLoAddr = TyLo->isFloatingPointTy() ? FPAddr : GPAddr;
2543     llvm::Value *RegHiAddr = TyLo->isFloatingPointTy() ? GPAddr : FPAddr;
2544     llvm::Value *V =
2545       CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
2546     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2547     V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
2548     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2549
2550     RegAddr = CGF.Builder.CreateBitCast(Tmp,
2551                                         llvm::PointerType::getUnqual(LTy));
2552   } else if (neededInt) {
2553     RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2554     RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2555                                         llvm::PointerType::getUnqual(LTy));
2556
2557     // Copy to a temporary if necessary to ensure the appropriate alignment.
2558     std::pair<CharUnits, CharUnits> SizeAlign =
2559         CGF.getContext().getTypeInfoInChars(Ty);
2560     uint64_t TySize = SizeAlign.first.getQuantity();
2561     unsigned TyAlign = SizeAlign.second.getQuantity();
2562     if (TyAlign > 8) {
2563       llvm::Value *Tmp = CGF.CreateMemTemp(Ty);
2564       CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, 8, false);
2565       RegAddr = Tmp;
2566     }
2567   } else if (neededSSE == 1) {
2568     RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2569     RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2570                                         llvm::PointerType::getUnqual(LTy));
2571   } else {
2572     assert(neededSSE == 2 && "Invalid number of needed registers!");
2573     // SSE registers are spaced 16 bytes apart in the register save
2574     // area, we need to collect the two eightbytes together.
2575     llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2576     llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16);
2577     llvm::Type *DoubleTy = CGF.DoubleTy;
2578     llvm::Type *DblPtrTy =
2579       llvm::PointerType::getUnqual(DoubleTy);
2580     llvm::StructType *ST = llvm::StructType::get(DoubleTy, DoubleTy, NULL);
2581     llvm::Value *V, *Tmp = CGF.CreateMemTemp(Ty);
2582     Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo());
2583     V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo,
2584                                                          DblPtrTy));
2585     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2586     V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi,
2587                                                          DblPtrTy));
2588     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2589     RegAddr = CGF.Builder.CreateBitCast(Tmp,
2590                                         llvm::PointerType::getUnqual(LTy));
2591   }
2592
2593   // AMD64-ABI 3.5.7p5: Step 5. Set:
2594   // l->gp_offset = l->gp_offset + num_gp * 8
2595   // l->fp_offset = l->fp_offset + num_fp * 16.
2596   if (neededInt) {
2597     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
2598     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
2599                             gp_offset_p);
2600   }
2601   if (neededSSE) {
2602     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
2603     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
2604                             fp_offset_p);
2605   }
2606   CGF.EmitBranch(ContBlock);
2607
2608   // Emit code to load the value if it was passed in memory.
2609
2610   CGF.EmitBlock(InMemBlock);
2611   llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2612
2613   // Return the appropriate result.
2614
2615   CGF.EmitBlock(ContBlock);
2616   llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), 2,
2617                                                  "vaarg.addr");
2618   ResAddr->addIncoming(RegAddr, InRegBlock);
2619   ResAddr->addIncoming(MemAddr, InMemBlock);
2620   return ResAddr;
2621 }
2622
2623 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, bool IsReturnType) const {
2624
2625   if (Ty->isVoidType())
2626     return ABIArgInfo::getIgnore();
2627
2628   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2629     Ty = EnumTy->getDecl()->getIntegerType();
2630
2631   uint64_t Size = getContext().getTypeSize(Ty);
2632
2633   if (const RecordType *RT = Ty->getAs<RecordType>()) {
2634     if (IsReturnType) {
2635       if (isRecordReturnIndirect(RT, getCXXABI()))
2636         return ABIArgInfo::getIndirect(0, false);
2637     } else {
2638       if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
2639         return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
2640     }
2641
2642     if (RT->getDecl()->hasFlexibleArrayMember())
2643       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2644
2645     // FIXME: mingw-w64-gcc emits 128-bit struct as i128
2646     if (Size == 128 && getTarget().getTriple().getOS() == llvm::Triple::MinGW32)
2647       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2648                                                           Size));
2649
2650     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
2651     // not 1, 2, 4, or 8 bytes, must be passed by reference."
2652     if (Size <= 64 &&
2653         (Size & (Size - 1)) == 0)
2654       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2655                                                           Size));
2656
2657     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2658   }
2659
2660   if (Ty->isPromotableIntegerType())
2661     return ABIArgInfo::getExtend();
2662
2663   return ABIArgInfo::getDirect();
2664 }
2665
2666 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2667
2668   QualType RetTy = FI.getReturnType();
2669   FI.getReturnInfo() = classify(RetTy, true);
2670
2671   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2672        it != ie; ++it)
2673     it->info = classify(it->type, false);
2674 }
2675
2676 llvm::Value *WinX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2677                                       CodeGenFunction &CGF) const {
2678   llvm::Type *BPP = CGF.Int8PtrPtrTy;
2679
2680   CGBuilderTy &Builder = CGF.Builder;
2681   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
2682                                                        "ap");
2683   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
2684   llvm::Type *PTy =
2685     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
2686   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
2687
2688   uint64_t Offset =
2689     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 8);
2690   llvm::Value *NextAddr =
2691     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
2692                       "ap.next");
2693   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
2694
2695   return AddrTyped;
2696 }
2697
2698 namespace {
2699
2700 class NaClX86_64ABIInfo : public ABIInfo {
2701  public:
2702   NaClX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
2703       : ABIInfo(CGT), PInfo(CGT), NInfo(CGT, HasAVX) {}
2704   virtual void computeInfo(CGFunctionInfo &FI) const;
2705   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2706                                  CodeGenFunction &CGF) const;
2707  private:
2708   PNaClABIInfo PInfo;  // Used for generating calls with pnaclcall callingconv.
2709   X86_64ABIInfo NInfo; // Used for everything else.
2710 };
2711
2712 class NaClX86_64TargetCodeGenInfo : public TargetCodeGenInfo  {
2713  public:
2714   NaClX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
2715       : TargetCodeGenInfo(new NaClX86_64ABIInfo(CGT, HasAVX)) {}
2716 };
2717
2718 }
2719
2720 void NaClX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2721   if (FI.getASTCallingConvention() == CC_PnaclCall)
2722     PInfo.computeInfo(FI);
2723   else
2724     NInfo.computeInfo(FI);
2725 }
2726
2727 llvm::Value *NaClX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2728                                           CodeGenFunction &CGF) const {
2729   // Always use the native convention; calling pnacl-style varargs functions
2730   // is unuspported.
2731   return NInfo.EmitVAArg(VAListAddr, Ty, CGF);
2732 }
2733
2734
2735 // PowerPC-32
2736 namespace {
2737 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information.
2738 class PPC32_SVR4_ABIInfo : public DefaultABIInfo {
2739 public:
2740   PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
2741
2742   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2743                          CodeGenFunction &CGF) const;
2744 };
2745
2746 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo {
2747 public:
2748   PPC32TargetCodeGenInfo(CodeGenTypes &CGT) : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT)) {}
2749
2750   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2751     // This is recovered from gcc output.
2752     return 1; // r1 is the dedicated stack pointer
2753   }
2754
2755   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2756                                llvm::Value *Address) const;
2757 };
2758
2759 }
2760
2761 llvm::Value *PPC32_SVR4_ABIInfo::EmitVAArg(llvm::Value *VAListAddr,
2762                                            QualType Ty,
2763                                            CodeGenFunction &CGF) const {
2764   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
2765     // TODO: Implement this. For now ignore.
2766     (void)CTy;
2767     return NULL;
2768   }
2769
2770   bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64;
2771   bool isInt = Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType();
2772   llvm::Type *CharPtr = CGF.Int8PtrTy;
2773   llvm::Type *CharPtrPtr = CGF.Int8PtrPtrTy;
2774
2775   CGBuilderTy &Builder = CGF.Builder;
2776   llvm::Value *GPRPtr = Builder.CreateBitCast(VAListAddr, CharPtr, "gprptr");
2777   llvm::Value *GPRPtrAsInt = Builder.CreatePtrToInt(GPRPtr, CGF.Int32Ty);
2778   llvm::Value *FPRPtrAsInt = Builder.CreateAdd(GPRPtrAsInt, Builder.getInt32(1));
2779   llvm::Value *FPRPtr = Builder.CreateIntToPtr(FPRPtrAsInt, CharPtr);
2780   llvm::Value *OverflowAreaPtrAsInt = Builder.CreateAdd(FPRPtrAsInt, Builder.getInt32(3));
2781   llvm::Value *OverflowAreaPtr = Builder.CreateIntToPtr(OverflowAreaPtrAsInt, CharPtrPtr);
2782   llvm::Value *RegsaveAreaPtrAsInt = Builder.CreateAdd(OverflowAreaPtrAsInt, Builder.getInt32(4));
2783   llvm::Value *RegsaveAreaPtr = Builder.CreateIntToPtr(RegsaveAreaPtrAsInt, CharPtrPtr);
2784   llvm::Value *GPR = Builder.CreateLoad(GPRPtr, false, "gpr");
2785   // Align GPR when TY is i64.
2786   if (isI64) {
2787     llvm::Value *GPRAnd = Builder.CreateAnd(GPR, Builder.getInt8(1));
2788     llvm::Value *CC64 = Builder.CreateICmpEQ(GPRAnd, Builder.getInt8(1));
2789     llvm::Value *GPRPlusOne = Builder.CreateAdd(GPR, Builder.getInt8(1));
2790     GPR = Builder.CreateSelect(CC64, GPRPlusOne, GPR);
2791   }
2792   llvm::Value *FPR = Builder.CreateLoad(FPRPtr, false, "fpr");
2793   llvm::Value *OverflowArea = Builder.CreateLoad(OverflowAreaPtr, false, "overflow_area");
2794   llvm::Value *OverflowAreaAsInt = Builder.CreatePtrToInt(OverflowArea, CGF.Int32Ty);
2795   llvm::Value *RegsaveArea = Builder.CreateLoad(RegsaveAreaPtr, false, "regsave_area");
2796   llvm::Value *RegsaveAreaAsInt = Builder.CreatePtrToInt(RegsaveArea, CGF.Int32Ty);
2797
2798   llvm::Value *CC = Builder.CreateICmpULT(isInt ? GPR : FPR,
2799                                           Builder.getInt8(8), "cond");
2800
2801   llvm::Value *RegConstant = Builder.CreateMul(isInt ? GPR : FPR,
2802                                                Builder.getInt8(isInt ? 4 : 8));
2803
2804   llvm::Value *OurReg = Builder.CreateAdd(RegsaveAreaAsInt, Builder.CreateSExt(RegConstant, CGF.Int32Ty));
2805
2806   if (Ty->isFloatingType())
2807     OurReg = Builder.CreateAdd(OurReg, Builder.getInt32(32));
2808
2809   llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs");
2810   llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow");
2811   llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
2812
2813   Builder.CreateCondBr(CC, UsingRegs, UsingOverflow);
2814
2815   CGF.EmitBlock(UsingRegs);
2816
2817   llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
2818   llvm::Value *Result1 = Builder.CreateIntToPtr(OurReg, PTy);
2819   // Increase the GPR/FPR indexes.
2820   if (isInt) {
2821     GPR = Builder.CreateAdd(GPR, Builder.getInt8(isI64 ? 2 : 1));
2822     Builder.CreateStore(GPR, GPRPtr);
2823   } else {
2824     FPR = Builder.CreateAdd(FPR, Builder.getInt8(1));
2825     Builder.CreateStore(FPR, FPRPtr);
2826   }
2827   CGF.EmitBranch(Cont);
2828
2829   CGF.EmitBlock(UsingOverflow);
2830
2831   // Increase the overflow area.
2832   llvm::Value *Result2 = Builder.CreateIntToPtr(OverflowAreaAsInt, PTy);
2833   OverflowAreaAsInt = Builder.CreateAdd(OverflowAreaAsInt, Builder.getInt32(isInt ? 4 : 8));
2834   Builder.CreateStore(Builder.CreateIntToPtr(OverflowAreaAsInt, CharPtr), OverflowAreaPtr);
2835   CGF.EmitBranch(Cont);
2836
2837   CGF.EmitBlock(Cont);
2838
2839   llvm::PHINode *Result = CGF.Builder.CreatePHI(PTy, 2, "vaarg.addr");
2840   Result->addIncoming(Result1, UsingRegs);
2841   Result->addIncoming(Result2, UsingOverflow);
2842
2843   if (Ty->isAggregateType()) {
2844     llvm::Value *AGGPtr = Builder.CreateBitCast(Result, CharPtrPtr, "aggrptr")  ;
2845     return Builder.CreateLoad(AGGPtr, false, "aggr");
2846   }
2847
2848   return Result;
2849 }
2850
2851 bool
2852 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2853                                                 llvm::Value *Address) const {
2854   // This is calculated from the LLVM and GCC tables and verified
2855   // against gcc output.  AFAIK all ABIs use the same encoding.
2856
2857   CodeGen::CGBuilderTy &Builder = CGF.Builder;
2858
2859   llvm::IntegerType *i8 = CGF.Int8Ty;
2860   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
2861   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
2862   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
2863
2864   // 0-31: r0-31, the 4-byte general-purpose registers
2865   AssignToArrayRange(Builder, Address, Four8, 0, 31);
2866
2867   // 32-63: fp0-31, the 8-byte floating-point registers
2868   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
2869
2870   // 64-76 are various 4-byte special-purpose registers:
2871   // 64: mq
2872   // 65: lr
2873   // 66: ctr
2874   // 67: ap
2875   // 68-75 cr0-7
2876   // 76: xer
2877   AssignToArrayRange(Builder, Address, Four8, 64, 76);
2878
2879   // 77-108: v0-31, the 16-byte vector registers
2880   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
2881
2882   // 109: vrsave
2883   // 110: vscr
2884   // 111: spe_acc
2885   // 112: spefscr
2886   // 113: sfp
2887   AssignToArrayRange(Builder, Address, Four8, 109, 113);
2888
2889   return false;
2890 }
2891
2892 // PowerPC-64
2893
2894 namespace {
2895 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
2896 class PPC64_SVR4_ABIInfo : public DefaultABIInfo {
2897
2898 public:
2899   PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
2900
2901   bool isPromotableTypeForABI(QualType Ty) const;
2902
2903   ABIArgInfo classifyReturnType(QualType RetTy) const;
2904   ABIArgInfo classifyArgumentType(QualType Ty) const;
2905
2906   // TODO: We can add more logic to computeInfo to improve performance.
2907   // Example: For aggregate arguments that fit in a register, we could
2908   // use getDirectInReg (as is done below for structs containing a single
2909   // floating-point value) to avoid pushing them to memory on function
2910   // entry.  This would require changing the logic in PPCISelLowering
2911   // when lowering the parameters in the caller and args in the callee.
2912   virtual void computeInfo(CGFunctionInfo &FI) const {
2913     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2914     for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2915          it != ie; ++it) {
2916       // We rely on the default argument classification for the most part.
2917       // One exception:  An aggregate containing a single floating-point
2918       // or vector item must be passed in a register if one is available.
2919       const Type *T = isSingleElementStruct(it->type, getContext());
2920       if (T) {
2921         const BuiltinType *BT = T->getAs<BuiltinType>();
2922         if (T->isVectorType() || (BT && BT->isFloatingPoint())) {
2923           QualType QT(T, 0);
2924           it->info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
2925           continue;
2926         }
2927       }
2928       it->info = classifyArgumentType(it->type);
2929     }
2930   }
2931
2932   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, 
2933                                  QualType Ty,
2934                                  CodeGenFunction &CGF) const;
2935 };
2936
2937 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
2938 public:
2939   PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT)
2940     : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT)) {}
2941
2942   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2943     // This is recovered from gcc output.
2944     return 1; // r1 is the dedicated stack pointer
2945   }
2946
2947   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2948                                llvm::Value *Address) const;
2949 };
2950
2951 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
2952 public:
2953   PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
2954
2955   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2956     // This is recovered from gcc output.
2957     return 1; // r1 is the dedicated stack pointer
2958   }
2959
2960   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2961                                llvm::Value *Address) const;
2962 };
2963
2964 }
2965
2966 // Return true if the ABI requires Ty to be passed sign- or zero-
2967 // extended to 64 bits.
2968 bool
2969 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
2970   // Treat an enum type as its underlying type.
2971   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2972     Ty = EnumTy->getDecl()->getIntegerType();
2973
2974   // Promotable integer types are required to be promoted by the ABI.
2975   if (Ty->isPromotableIntegerType())
2976     return true;
2977
2978   // In addition to the usual promotable integer types, we also need to
2979   // extend all 32-bit types, since the ABI requires promotion to 64 bits.
2980   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
2981     switch (BT->getKind()) {
2982     case BuiltinType::Int:
2983     case BuiltinType::UInt:
2984       return true;
2985     default:
2986       break;
2987     }
2988
2989   return false;
2990 }
2991
2992 ABIArgInfo
2993 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
2994   if (Ty->isAnyComplexType())
2995     return ABIArgInfo::getDirect();
2996
2997   if (isAggregateTypeForABI(Ty)) {
2998     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
2999       return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
3000
3001     return ABIArgInfo::getIndirect(0);
3002   }
3003
3004   return (isPromotableTypeForABI(Ty) ?
3005           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3006 }
3007
3008 ABIArgInfo
3009 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
3010   if (RetTy->isVoidType())
3011     return ABIArgInfo::getIgnore();
3012
3013   if (RetTy->isAnyComplexType())
3014     return ABIArgInfo::getDirect();
3015
3016   if (isAggregateTypeForABI(RetTy))
3017     return ABIArgInfo::getIndirect(0);
3018
3019   return (isPromotableTypeForABI(RetTy) ?
3020           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3021 }
3022
3023 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
3024 llvm::Value *PPC64_SVR4_ABIInfo::EmitVAArg(llvm::Value *VAListAddr,
3025                                            QualType Ty,
3026                                            CodeGenFunction &CGF) const {
3027   llvm::Type *BP = CGF.Int8PtrTy;
3028   llvm::Type *BPP = CGF.Int8PtrPtrTy;
3029
3030   CGBuilderTy &Builder = CGF.Builder;
3031   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
3032   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
3033
3034   // Update the va_list pointer.  The pointer should be bumped by the
3035   // size of the object.  We can trust getTypeSize() except for a complex
3036   // type whose base type is smaller than a doubleword.  For these, the
3037   // size of the object is 16 bytes; see below for further explanation.
3038   unsigned SizeInBytes = CGF.getContext().getTypeSize(Ty) / 8;
3039   QualType BaseTy;
3040   unsigned CplxBaseSize = 0;
3041
3042   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
3043     BaseTy = CTy->getElementType();
3044     CplxBaseSize = CGF.getContext().getTypeSize(BaseTy) / 8;
3045     if (CplxBaseSize < 8)
3046       SizeInBytes = 16;
3047   }
3048
3049   unsigned Offset = llvm::RoundUpToAlignment(SizeInBytes, 8);
3050   llvm::Value *NextAddr =
3051     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int64Ty, Offset),
3052                       "ap.next");
3053   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
3054
3055   // If we have a complex type and the base type is smaller than 8 bytes,
3056   // the ABI calls for the real and imaginary parts to be right-adjusted
3057   // in separate doublewords.  However, Clang expects us to produce a
3058   // pointer to a structure with the two parts packed tightly.  So generate
3059   // loads of the real and imaginary parts relative to the va_list pointer,
3060   // and store them to a temporary structure.
3061   if (CplxBaseSize && CplxBaseSize < 8) {
3062     llvm::Value *RealAddr = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
3063     llvm::Value *ImagAddr = RealAddr;
3064     RealAddr = Builder.CreateAdd(RealAddr, Builder.getInt64(8 - CplxBaseSize));
3065     ImagAddr = Builder.CreateAdd(ImagAddr, Builder.getInt64(16 - CplxBaseSize));
3066     llvm::Type *PBaseTy = llvm::PointerType::getUnqual(CGF.ConvertType(BaseTy));
3067     RealAddr = Builder.CreateIntToPtr(RealAddr, PBaseTy);
3068     ImagAddr = Builder.CreateIntToPtr(ImagAddr, PBaseTy);
3069     llvm::Value *Real = Builder.CreateLoad(RealAddr, false, ".vareal");
3070     llvm::Value *Imag = Builder.CreateLoad(ImagAddr, false, ".vaimag");
3071     llvm::Value *Ptr = CGF.CreateTempAlloca(CGT.ConvertTypeForMem(Ty),
3072                                             "vacplx");
3073     llvm::Value *RealPtr = Builder.CreateStructGEP(Ptr, 0, ".real");
3074     llvm::Value *ImagPtr = Builder.CreateStructGEP(Ptr, 1, ".imag");
3075     Builder.CreateStore(Real, RealPtr, false);
3076     Builder.CreateStore(Imag, ImagPtr, false);
3077     return Ptr;
3078   }
3079
3080   // If the argument is smaller than 8 bytes, it is right-adjusted in
3081   // its doubleword slot.  Adjust the pointer to pick it up from the
3082   // correct offset.
3083   if (SizeInBytes < 8) {
3084     llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
3085     AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt64(8 - SizeInBytes));
3086     Addr = Builder.CreateIntToPtr(AddrAsInt, BP);
3087   }
3088
3089   llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3090   return Builder.CreateBitCast(Addr, PTy);
3091 }
3092
3093 static bool
3094 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3095                               llvm::Value *Address) {
3096   // This is calculated from the LLVM and GCC tables and verified
3097   // against gcc output.  AFAIK all ABIs use the same encoding.
3098
3099   CodeGen::CGBuilderTy &Builder = CGF.Builder;
3100
3101   llvm::IntegerType *i8 = CGF.Int8Ty;
3102   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
3103   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
3104   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
3105
3106   // 0-31: r0-31, the 8-byte general-purpose registers
3107   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
3108
3109   // 32-63: fp0-31, the 8-byte floating-point registers
3110   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
3111
3112   // 64-76 are various 4-byte special-purpose registers:
3113   // 64: mq
3114   // 65: lr
3115   // 66: ctr
3116   // 67: ap
3117   // 68-75 cr0-7
3118   // 76: xer
3119   AssignToArrayRange(Builder, Address, Four8, 64, 76);
3120
3121   // 77-108: v0-31, the 16-byte vector registers
3122   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
3123
3124   // 109: vrsave
3125   // 110: vscr
3126   // 111: spe_acc
3127   // 112: spefscr
3128   // 113: sfp
3129   AssignToArrayRange(Builder, Address, Four8, 109, 113);
3130
3131   return false;
3132 }
3133
3134 bool
3135 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
3136   CodeGen::CodeGenFunction &CGF,
3137   llvm::Value *Address) const {
3138
3139   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
3140 }
3141
3142 bool
3143 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3144                                                 llvm::Value *Address) const {
3145
3146   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
3147 }
3148
3149 //===----------------------------------------------------------------------===//
3150 // ARM ABI Implementation
3151 //===----------------------------------------------------------------------===//
3152
3153 namespace {
3154
3155 class ARMABIInfo : public ABIInfo {
3156 public:
3157   enum ABIKind {
3158     APCS = 0,
3159     AAPCS = 1,
3160     AAPCS_VFP
3161   };
3162
3163 private:
3164   ABIKind Kind;
3165
3166 public:
3167   ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind) {
3168     setRuntimeCC();
3169   }
3170
3171   bool isEABI() const {
3172     StringRef Env = getTarget().getTriple().getEnvironmentName();
3173     return (Env == "gnueabi" || Env == "eabi" ||
3174             Env == "android" || Env == "androideabi");
3175   }
3176
3177   ABIKind getABIKind() const { return Kind; }
3178
3179 private:
3180   ABIArgInfo classifyReturnType(QualType RetTy) const;
3181   ABIArgInfo classifyArgumentType(QualType RetTy, int *VFPRegs,
3182                                   unsigned &AllocatedVFP,
3183                                   bool &IsHA) const;
3184   bool isIllegalVectorType(QualType Ty) const;
3185
3186   virtual void computeInfo(CGFunctionInfo &FI) const;
3187
3188   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3189                                  CodeGenFunction &CGF) const;
3190
3191   llvm::CallingConv::ID getLLVMDefaultCC() const;
3192   llvm::CallingConv::ID getABIDefaultCC() const;
3193   void setRuntimeCC();
3194 };
3195
3196 class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
3197 public:
3198   ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
3199     :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
3200
3201   const ARMABIInfo &getABIInfo() const {
3202     return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
3203   }
3204
3205   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
3206     return 13;
3207   }
3208
3209   StringRef getARCRetainAutoreleasedReturnValueMarker() const {
3210     return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue";
3211   }
3212
3213   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3214                                llvm::Value *Address) const {
3215     llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
3216
3217     // 0-15 are the 16 integer registers.
3218     AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
3219     return false;
3220   }
3221
3222   unsigned getSizeOfUnwindException() const {
3223     if (getABIInfo().isEABI()) return 88;
3224     return TargetCodeGenInfo::getSizeOfUnwindException();
3225   }
3226
3227   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
3228                            CodeGen::CodeGenModule &CGM) const {
3229     const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
3230     if (!FD)
3231       return;
3232
3233     const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>();
3234     if (!Attr)
3235       return;
3236
3237     const char *Kind;
3238     switch (Attr->getInterrupt()) {
3239     case ARMInterruptAttr::Generic: Kind = ""; break;
3240     case ARMInterruptAttr::IRQ:     Kind = "IRQ"; break;
3241     case ARMInterruptAttr::FIQ:     Kind = "FIQ"; break;
3242     case ARMInterruptAttr::SWI:     Kind = "SWI"; break;
3243     case ARMInterruptAttr::ABORT:   Kind = "ABORT"; break;
3244     case ARMInterruptAttr::UNDEF:   Kind = "UNDEF"; break;
3245     }
3246
3247     llvm::Function *Fn = cast<llvm::Function>(GV);
3248
3249     Fn->addFnAttr("interrupt", Kind);
3250
3251     if (cast<ARMABIInfo>(getABIInfo()).getABIKind() == ARMABIInfo::APCS)
3252       return;
3253
3254     // AAPCS guarantees that sp will be 8-byte aligned on any public interface,
3255     // however this is not necessarily true on taking any interrupt. Instruct
3256     // the backend to perform a realignment as part of the function prologue.
3257     llvm::AttrBuilder B;
3258     B.addStackAlignmentAttr(8);
3259     Fn->addAttributes(llvm::AttributeSet::FunctionIndex,
3260                       llvm::AttributeSet::get(CGM.getLLVMContext(),
3261                                               llvm::AttributeSet::FunctionIndex,
3262                                               B));
3263   }
3264
3265 };
3266
3267 }
3268
3269 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
3270   // To correctly handle Homogeneous Aggregate, we need to keep track of the
3271   // VFP registers allocated so far.
3272   // C.1.vfp If the argument is a VFP CPRC and there are sufficient consecutive
3273   // VFP registers of the appropriate type unallocated then the argument is
3274   // allocated to the lowest-numbered sequence of such registers.
3275   // C.2.vfp If the argument is a VFP CPRC then any VFP registers that are
3276   // unallocated are marked as unavailable. 
3277   unsigned AllocatedVFP = 0;
3278   int VFPRegs[16] = { 0 };
3279   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3280   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3281        it != ie; ++it) {
3282     unsigned PreAllocation = AllocatedVFP;
3283     bool IsHA = false;
3284     // 6.1.2.3 There is one VFP co-processor register class using registers
3285     // s0-s15 (d0-d7) for passing arguments.
3286     const unsigned NumVFPs = 16;
3287     it->info = classifyArgumentType(it->type, VFPRegs, AllocatedVFP, IsHA);
3288     // If we do not have enough VFP registers for the HA, any VFP registers
3289     // that are unallocated are marked as unavailable. To achieve this, we add
3290     // padding of (NumVFPs - PreAllocation) floats.
3291     if (IsHA && AllocatedVFP > NumVFPs && PreAllocation < NumVFPs) {
3292       llvm::Type *PaddingTy = llvm::ArrayType::get(
3293           llvm::Type::getFloatTy(getVMContext()), NumVFPs - PreAllocation);
3294       it->info = ABIArgInfo::getExpandWithPadding(false, PaddingTy);
3295     }
3296   }
3297
3298   // Always honor user-specified calling convention.
3299   if (FI.getCallingConvention() != llvm::CallingConv::C)
3300     return;
3301
3302   llvm::CallingConv::ID cc = getRuntimeCC();
3303   if (cc != llvm::CallingConv::C)
3304     FI.setEffectiveCallingConvention(cc);    
3305 }
3306
3307 /// Return the default calling convention that LLVM will use.
3308 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
3309   // The default calling convention that LLVM will infer.
3310   if (getTarget().getTriple().getEnvironmentName()=="gnueabihf")
3311     return llvm::CallingConv::ARM_AAPCS_VFP;
3312   else if (isEABI())
3313     return llvm::CallingConv::ARM_AAPCS;
3314   else
3315     return llvm::CallingConv::ARM_APCS;
3316 }
3317
3318 /// Return the calling convention that our ABI would like us to use
3319 /// as the C calling convention.
3320 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
3321   switch (getABIKind()) {
3322   case APCS: return llvm::CallingConv::ARM_APCS;
3323   case AAPCS: return llvm::CallingConv::ARM_AAPCS;
3324   case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
3325   }
3326   llvm_unreachable("bad ABI kind");
3327 }
3328
3329 void ARMABIInfo::setRuntimeCC() {
3330   assert(getRuntimeCC() == llvm::CallingConv::C);
3331
3332   // Don't muddy up the IR with a ton of explicit annotations if
3333   // they'd just match what LLVM will infer from the triple.
3334   llvm::CallingConv::ID abiCC = getABIDefaultCC();
3335   if (abiCC != getLLVMDefaultCC())
3336     RuntimeCC = abiCC;
3337 }
3338
3339 /// isHomogeneousAggregate - Return true if a type is an AAPCS-VFP homogeneous
3340 /// aggregate.  If HAMembers is non-null, the number of base elements
3341 /// contained in the type is returned through it; this is used for the
3342 /// recursive calls that check aggregate component types.
3343 static bool isHomogeneousAggregate(QualType Ty, const Type *&Base,
3344                                    ASTContext &Context,
3345                                    uint64_t *HAMembers = 0) {
3346   uint64_t Members = 0;
3347   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
3348     if (!isHomogeneousAggregate(AT->getElementType(), Base, Context, &Members))
3349       return false;
3350     Members *= AT->getSize().getZExtValue();
3351   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
3352     const RecordDecl *RD = RT->getDecl();
3353     if (RD->hasFlexibleArrayMember())
3354       return false;
3355
3356     Members = 0;
3357     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3358          i != e; ++i) {
3359       const FieldDecl *FD = *i;
3360       uint64_t FldMembers;
3361       if (!isHomogeneousAggregate(FD->getType(), Base, Context, &FldMembers))
3362         return false;
3363
3364       Members = (RD->isUnion() ?
3365                  std::max(Members, FldMembers) : Members + FldMembers);
3366     }
3367   } else {
3368     Members = 1;
3369     if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
3370       Members = 2;
3371       Ty = CT->getElementType();
3372     }
3373
3374     // Homogeneous aggregates for AAPCS-VFP must have base types of float,
3375     // double, or 64-bit or 128-bit vectors.
3376     if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
3377       if (BT->getKind() != BuiltinType::Float && 
3378           BT->getKind() != BuiltinType::Double &&
3379           BT->getKind() != BuiltinType::LongDouble)
3380         return false;
3381     } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
3382       unsigned VecSize = Context.getTypeSize(VT);
3383       if (VecSize != 64 && VecSize != 128)
3384         return false;
3385     } else {
3386       return false;
3387     }
3388
3389     // The base type must be the same for all members.  Vector types of the
3390     // same total size are treated as being equivalent here.
3391     const Type *TyPtr = Ty.getTypePtr();
3392     if (!Base)
3393       Base = TyPtr;
3394     if (Base != TyPtr &&
3395         (!Base->isVectorType() || !TyPtr->isVectorType() ||
3396          Context.getTypeSize(Base) != Context.getTypeSize(TyPtr)))
3397       return false;
3398   }
3399
3400   // Homogeneous Aggregates can have at most 4 members of the base type.
3401   if (HAMembers)
3402     *HAMembers = Members;
3403
3404   return (Members > 0 && Members <= 4);
3405 }
3406
3407 /// markAllocatedVFPs - update VFPRegs according to the alignment and
3408 /// number of VFP registers (unit is S register) requested.
3409 static void markAllocatedVFPs(int *VFPRegs, unsigned &AllocatedVFP,
3410                               unsigned Alignment,
3411                               unsigned NumRequired) {
3412   // Early Exit.
3413   if (AllocatedVFP >= 16)
3414     return;
3415   // C.1.vfp If the argument is a VFP CPRC and there are sufficient consecutive
3416   // VFP registers of the appropriate type unallocated then the argument is
3417   // allocated to the lowest-numbered sequence of such registers.
3418   for (unsigned I = 0; I < 16; I += Alignment) {
3419     bool FoundSlot = true;
3420     for (unsigned J = I, JEnd = I + NumRequired; J < JEnd; J++)
3421       if (J >= 16 || VFPRegs[J]) {
3422          FoundSlot = false;
3423          break;
3424       }
3425     if (FoundSlot) {
3426       for (unsigned J = I, JEnd = I + NumRequired; J < JEnd; J++)
3427         VFPRegs[J] = 1;
3428       AllocatedVFP += NumRequired;
3429       return;
3430     }
3431   }
3432   // C.2.vfp If the argument is a VFP CPRC then any VFP registers that are
3433   // unallocated are marked as unavailable.
3434   for (unsigned I = 0; I < 16; I++)
3435     VFPRegs[I] = 1;
3436   AllocatedVFP = 17; // We do not have enough VFP registers.
3437 }
3438
3439 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, int *VFPRegs,
3440                                             unsigned &AllocatedVFP,
3441                                             bool &IsHA) const {
3442   // We update number of allocated VFPs according to
3443   // 6.1.2.1 The following argument types are VFP CPRCs:
3444   //   A single-precision floating-point type (including promoted
3445   //   half-precision types); A double-precision floating-point type;
3446   //   A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
3447   //   with a Base Type of a single- or double-precision floating-point type,
3448   //   64-bit containerized vectors or 128-bit containerized vectors with one
3449   //   to four Elements.
3450
3451   // Handle illegal vector types here.
3452   if (isIllegalVectorType(Ty)) {
3453     uint64_t Size = getContext().getTypeSize(Ty);
3454     if (Size <= 32) {
3455       llvm::Type *ResType =
3456           llvm::Type::getInt32Ty(getVMContext());
3457       return ABIArgInfo::getDirect(ResType);
3458     }
3459     if (Size == 64) {
3460       llvm::Type *ResType = llvm::VectorType::get(
3461           llvm::Type::getInt32Ty(getVMContext()), 2);
3462       markAllocatedVFPs(VFPRegs, AllocatedVFP, 2, 2);
3463       return ABIArgInfo::getDirect(ResType);
3464     }
3465     if (Size == 128) {
3466       llvm::Type *ResType = llvm::VectorType::get(
3467           llvm::Type::getInt32Ty(getVMContext()), 4);
3468       markAllocatedVFPs(VFPRegs, AllocatedVFP, 4, 4);
3469       return ABIArgInfo::getDirect(ResType);
3470     }
3471     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3472   }
3473   // Update VFPRegs for legal vector types.
3474   if (const VectorType *VT = Ty->getAs<VectorType>()) {
3475     uint64_t Size = getContext().getTypeSize(VT);
3476     // Size of a legal vector should be power of 2 and above 64.
3477     markAllocatedVFPs(VFPRegs, AllocatedVFP, Size >= 128 ? 4 : 2, Size / 32);
3478   }
3479   // Update VFPRegs for floating point types.
3480   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
3481     if (BT->getKind() == BuiltinType::Half ||
3482         BT->getKind() == BuiltinType::Float)
3483       markAllocatedVFPs(VFPRegs, AllocatedVFP, 1, 1);
3484     if (BT->getKind() == BuiltinType::Double ||
3485         BT->getKind() == BuiltinType::LongDouble)
3486       markAllocatedVFPs(VFPRegs, AllocatedVFP, 2, 2);
3487   }
3488
3489   if (!isAggregateTypeForABI(Ty)) {
3490     // Treat an enum type as its underlying type.
3491     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3492       Ty = EnumTy->getDecl()->getIntegerType();
3493
3494     return (Ty->isPromotableIntegerType() ?
3495             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3496   }
3497
3498   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
3499     return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
3500
3501   // Ignore empty records.
3502   if (isEmptyRecord(getContext(), Ty, true))
3503     return ABIArgInfo::getIgnore();
3504
3505   if (getABIKind() == ARMABIInfo::AAPCS_VFP) {
3506     // Homogeneous Aggregates need to be expanded when we can fit the aggregate
3507     // into VFP registers.
3508     const Type *Base = 0;
3509     uint64_t Members = 0;
3510     if (isHomogeneousAggregate(Ty, Base, getContext(), &Members)) {
3511       assert(Base && "Base class should be set for homogeneous aggregate");
3512       // Base can be a floating-point or a vector.
3513       if (Base->isVectorType()) {
3514         // ElementSize is in number of floats.
3515         unsigned ElementSize = getContext().getTypeSize(Base) == 64 ? 2 : 4;
3516         markAllocatedVFPs(VFPRegs, AllocatedVFP, ElementSize,
3517                           Members * ElementSize);
3518       } else if (Base->isSpecificBuiltinType(BuiltinType::Float))
3519         markAllocatedVFPs(VFPRegs, AllocatedVFP, 1, Members);
3520       else {
3521         assert(Base->isSpecificBuiltinType(BuiltinType::Double) ||
3522                Base->isSpecificBuiltinType(BuiltinType::LongDouble));
3523         markAllocatedVFPs(VFPRegs, AllocatedVFP, 2, Members * 2);
3524       }
3525       IsHA = true;
3526       return ABIArgInfo::getExpand();
3527     }
3528   }
3529
3530   // Support byval for ARM.
3531   // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
3532   // most 8-byte. We realign the indirect argument if type alignment is bigger
3533   // than ABI alignment.
3534   uint64_t ABIAlign = 4;
3535   uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8;
3536   if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
3537       getABIKind() == ARMABIInfo::AAPCS)
3538     ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
3539   if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
3540     return ABIArgInfo::getIndirect(0, /*ByVal=*/true,
3541            /*Realign=*/TyAlign > ABIAlign);
3542   }
3543
3544   // Otherwise, pass by coercing to a structure of the appropriate size.
3545   llvm::Type* ElemTy;
3546   unsigned SizeRegs;
3547   // FIXME: Try to match the types of the arguments more accurately where
3548   // we can.
3549   if (getContext().getTypeAlign(Ty) <= 32) {
3550     ElemTy = llvm::Type::getInt32Ty(getVMContext());
3551     SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
3552   } else {
3553     ElemTy = llvm::Type::getInt64Ty(getVMContext());
3554     SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
3555   }
3556
3557   llvm::Type *STy =
3558     llvm::StructType::get(llvm::ArrayType::get(ElemTy, SizeRegs), NULL);
3559   return ABIArgInfo::getDirect(STy);
3560 }
3561
3562 static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
3563                               llvm::LLVMContext &VMContext) {
3564   // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
3565   // is called integer-like if its size is less than or equal to one word, and
3566   // the offset of each of its addressable sub-fields is zero.
3567
3568   uint64_t Size = Context.getTypeSize(Ty);
3569
3570   // Check that the type fits in a word.
3571   if (Size > 32)
3572     return false;
3573
3574   // FIXME: Handle vector types!
3575   if (Ty->isVectorType())
3576     return false;
3577
3578   // Float types are never treated as "integer like".
3579   if (Ty->isRealFloatingType())
3580     return false;
3581
3582   // If this is a builtin or pointer type then it is ok.
3583   if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
3584     return true;
3585
3586   // Small complex integer types are "integer like".
3587   if (const ComplexType *CT = Ty->getAs<ComplexType>())
3588     return isIntegerLikeType(CT->getElementType(), Context, VMContext);
3589
3590   // Single element and zero sized arrays should be allowed, by the definition
3591   // above, but they are not.
3592
3593   // Otherwise, it must be a record type.
3594   const RecordType *RT = Ty->getAs<RecordType>();
3595   if (!RT) return false;
3596
3597   // Ignore records with flexible arrays.
3598   const RecordDecl *RD = RT->getDecl();
3599   if (RD->hasFlexibleArrayMember())
3600     return false;
3601
3602   // Check that all sub-fields are at offset 0, and are themselves "integer
3603   // like".
3604   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3605
3606   bool HadField = false;
3607   unsigned idx = 0;
3608   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3609        i != e; ++i, ++idx) {
3610     const FieldDecl *FD = *i;
3611
3612     // Bit-fields are not addressable, we only need to verify they are "integer
3613     // like". We still have to disallow a subsequent non-bitfield, for example:
3614     //   struct { int : 0; int x }
3615     // is non-integer like according to gcc.
3616     if (FD->isBitField()) {
3617       if (!RD->isUnion())
3618         HadField = true;
3619
3620       if (!isIntegerLikeType(FD->getType(), Context, VMContext))
3621         return false;
3622
3623       continue;
3624     }
3625
3626     // Check if this field is at offset 0.
3627     if (Layout.getFieldOffset(idx) != 0)
3628       return false;
3629
3630     if (!isIntegerLikeType(FD->getType(), Context, VMContext))
3631       return false;
3632
3633     // Only allow at most one field in a structure. This doesn't match the
3634     // wording above, but follows gcc in situations with a field following an
3635     // empty structure.
3636     if (!RD->isUnion()) {
3637       if (HadField)
3638         return false;
3639
3640       HadField = true;
3641     }
3642   }
3643
3644   return true;
3645 }
3646
3647 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy) const {
3648   if (RetTy->isVoidType())
3649     return ABIArgInfo::getIgnore();
3650
3651   // Large vector types should be returned via memory.
3652   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
3653     return ABIArgInfo::getIndirect(0);
3654
3655   if (!isAggregateTypeForABI(RetTy)) {
3656     // Treat an enum type as its underlying type.
3657     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3658       RetTy = EnumTy->getDecl()->getIntegerType();
3659
3660     return (RetTy->isPromotableIntegerType() ?
3661             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3662   }
3663
3664   // Structures with either a non-trivial destructor or a non-trivial
3665   // copy constructor are always indirect.
3666   if (isRecordReturnIndirect(RetTy, getCXXABI()))
3667     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3668
3669   // Are we following APCS?
3670   if (getABIKind() == APCS) {
3671     if (isEmptyRecord(getContext(), RetTy, false))
3672       return ABIArgInfo::getIgnore();
3673
3674     // Complex types are all returned as packed integers.
3675     //
3676     // FIXME: Consider using 2 x vector types if the back end handles them
3677     // correctly.
3678     if (RetTy->isAnyComplexType())
3679       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
3680                                               getContext().getTypeSize(RetTy)));
3681
3682     // Integer like structures are returned in r0.
3683     if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
3684       // Return in the smallest viable integer type.
3685       uint64_t Size = getContext().getTypeSize(RetTy);
3686       if (Size <= 8)
3687         return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
3688       if (Size <= 16)
3689         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
3690       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
3691     }
3692
3693     // Otherwise return in memory.
3694     return ABIArgInfo::getIndirect(0);
3695   }
3696
3697   // Otherwise this is an AAPCS variant.
3698
3699   if (isEmptyRecord(getContext(), RetTy, true))
3700     return ABIArgInfo::getIgnore();
3701
3702   // Check for homogeneous aggregates with AAPCS-VFP.
3703   if (getABIKind() == AAPCS_VFP) {
3704     const Type *Base = 0;
3705     if (isHomogeneousAggregate(RetTy, Base, getContext())) {
3706       assert(Base && "Base class should be set for homogeneous aggregate");
3707       // Homogeneous Aggregates are returned directly.
3708       return ABIArgInfo::getDirect();
3709     }
3710   }
3711
3712   // Aggregates <= 4 bytes are returned in r0; other aggregates
3713   // are returned indirectly.
3714   uint64_t Size = getContext().getTypeSize(RetTy);
3715   if (Size <= 32) {
3716     // Return in the smallest viable integer type.
3717     if (Size <= 8)
3718       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
3719     if (Size <= 16)
3720       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
3721     return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
3722   }
3723
3724   return ABIArgInfo::getIndirect(0);
3725 }
3726
3727 /// isIllegalVector - check whether Ty is an illegal vector type.
3728 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
3729   if (const VectorType *VT = Ty->getAs<VectorType>()) {
3730     // Check whether VT is legal.
3731     unsigned NumElements = VT->getNumElements();
3732     uint64_t Size = getContext().getTypeSize(VT);
3733     // NumElements should be power of 2.
3734     if ((NumElements & (NumElements - 1)) != 0)
3735       return true;
3736     // Size should be greater than 32 bits.
3737     return Size <= 32;
3738   }
3739   return false;
3740 }
3741
3742 llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3743                                    CodeGenFunction &CGF) const {
3744   llvm::Type *BP = CGF.Int8PtrTy;
3745   llvm::Type *BPP = CGF.Int8PtrPtrTy;
3746
3747   CGBuilderTy &Builder = CGF.Builder;
3748   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
3749   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
3750
3751   if (isEmptyRecord(getContext(), Ty, true)) {
3752     // These are ignored for parameter passing purposes.
3753     llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3754     return Builder.CreateBitCast(Addr, PTy);
3755   }
3756
3757   uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8;
3758   uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8;
3759   bool IsIndirect = false;
3760
3761   // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
3762   // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
3763   if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
3764       getABIKind() == ARMABIInfo::AAPCS)
3765     TyAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
3766   else
3767     TyAlign = 4;
3768   // Use indirect if size of the illegal vector is bigger than 16 bytes.
3769   if (isIllegalVectorType(Ty) && Size > 16) {
3770     IsIndirect = true;
3771     Size = 4;
3772     TyAlign = 4;
3773   }
3774
3775   // Handle address alignment for ABI alignment > 4 bytes.
3776   if (TyAlign > 4) {
3777     assert((TyAlign & (TyAlign - 1)) == 0 &&
3778            "Alignment is not power of 2!");
3779     llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty);
3780     AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1));
3781     AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1)));
3782     Addr = Builder.CreateIntToPtr(AddrAsInt, BP, "ap.align");
3783   }
3784
3785   uint64_t Offset =
3786     llvm::RoundUpToAlignment(Size, 4);
3787   llvm::Value *NextAddr =
3788     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
3789                       "ap.next");
3790   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
3791
3792   if (IsIndirect)
3793     Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP));
3794   else if (TyAlign < CGF.getContext().getTypeAlign(Ty) / 8) {
3795     // We can't directly cast ap.cur to pointer to a vector type, since ap.cur
3796     // may not be correctly aligned for the vector type. We create an aligned
3797     // temporary space and copy the content over from ap.cur to the temporary
3798     // space. This is necessary if the natural alignment of the type is greater
3799     // than the ABI alignment.
3800     llvm::Type *I8PtrTy = Builder.getInt8PtrTy();
3801     CharUnits CharSize = getContext().getTypeSizeInChars(Ty);
3802     llvm::Value *AlignedTemp = CGF.CreateTempAlloca(CGF.ConvertType(Ty),
3803                                                     "var.align");
3804     llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy);
3805     llvm::Value *Src = Builder.CreateBitCast(Addr, I8PtrTy);
3806     Builder.CreateMemCpy(Dst, Src,
3807         llvm::ConstantInt::get(CGF.IntPtrTy, CharSize.getQuantity()),
3808         TyAlign, false);
3809     Addr = AlignedTemp; //The content is in aligned location.
3810   }
3811   llvm::Type *PTy =
3812     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3813   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
3814
3815   return AddrTyped;
3816 }
3817
3818 namespace {
3819
3820 class NaClARMABIInfo : public ABIInfo {
3821  public:
3822   NaClARMABIInfo(CodeGen::CodeGenTypes &CGT, ARMABIInfo::ABIKind Kind)
3823       : ABIInfo(CGT), PInfo(CGT), NInfo(CGT, Kind) {}
3824   virtual void computeInfo(CGFunctionInfo &FI) const;
3825   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3826                                  CodeGenFunction &CGF) const;
3827  private:
3828   PNaClABIInfo PInfo; // Used for generating calls with pnaclcall callingconv.
3829   ARMABIInfo NInfo; // Used for everything else.
3830 };
3831
3832 class NaClARMTargetCodeGenInfo : public TargetCodeGenInfo  {
3833  public:
3834   NaClARMTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, ARMABIInfo::ABIKind Kind)
3835       : TargetCodeGenInfo(new NaClARMABIInfo(CGT, Kind)) {}
3836 };
3837
3838 }
3839
3840 void NaClARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
3841   if (FI.getASTCallingConvention() == CC_PnaclCall)
3842     PInfo.computeInfo(FI);
3843   else
3844     static_cast<const ABIInfo&>(NInfo).computeInfo(FI);
3845 }
3846
3847 llvm::Value *NaClARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3848                                        CodeGenFunction &CGF) const {
3849   // Always use the native convention; calling pnacl-style varargs functions
3850   // is unsupported.
3851   return static_cast<const ABIInfo&>(NInfo).EmitVAArg(VAListAddr, Ty, CGF);
3852 }
3853
3854 //===----------------------------------------------------------------------===//
3855 // AArch64 ABI Implementation
3856 //===----------------------------------------------------------------------===//
3857
3858 namespace {
3859
3860 class AArch64ABIInfo : public ABIInfo {
3861 public:
3862   AArch64ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
3863
3864 private:
3865   // The AArch64 PCS is explicit about return types and argument types being
3866   // handled identically, so we don't need to draw a distinction between
3867   // Argument and Return classification.
3868   ABIArgInfo classifyGenericType(QualType Ty, int &FreeIntRegs,
3869                                  int &FreeVFPRegs) const;
3870
3871   ABIArgInfo tryUseRegs(QualType Ty, int &FreeRegs, int RegsNeeded, bool IsInt,
3872                         llvm::Type *DirectTy = 0) const;
3873
3874   virtual void computeInfo(CGFunctionInfo &FI) const;
3875
3876   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3877                                  CodeGenFunction &CGF) const;
3878 };
3879
3880 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
3881 public:
3882   AArch64TargetCodeGenInfo(CodeGenTypes &CGT)
3883     :TargetCodeGenInfo(new AArch64ABIInfo(CGT)) {}
3884
3885   const AArch64ABIInfo &getABIInfo() const {
3886     return static_cast<const AArch64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
3887   }
3888
3889   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
3890     return 31;
3891   }
3892
3893   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3894                                llvm::Value *Address) const {
3895     // 0-31 are x0-x30 and sp: 8 bytes each
3896     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
3897     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 31);
3898
3899     // 64-95 are v0-v31: 16 bytes each
3900     llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
3901     AssignToArrayRange(CGF.Builder, Address, Sixteen8, 64, 95);
3902
3903     return false;
3904   }
3905
3906 };
3907
3908 }
3909
3910 void AArch64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3911   int FreeIntRegs = 8, FreeVFPRegs = 8;
3912
3913   FI.getReturnInfo() = classifyGenericType(FI.getReturnType(),
3914                                            FreeIntRegs, FreeVFPRegs);
3915
3916   FreeIntRegs = FreeVFPRegs = 8;
3917   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3918        it != ie; ++it) {
3919     it->info = classifyGenericType(it->type, FreeIntRegs, FreeVFPRegs);
3920
3921   }
3922 }
3923
3924 ABIArgInfo
3925 AArch64ABIInfo::tryUseRegs(QualType Ty, int &FreeRegs, int RegsNeeded,
3926                            bool IsInt, llvm::Type *DirectTy) const {
3927   if (FreeRegs >= RegsNeeded) {
3928     FreeRegs -= RegsNeeded;
3929     return ABIArgInfo::getDirect(DirectTy);
3930   }
3931
3932   llvm::Type *Padding = 0;
3933
3934   // We need padding so that later arguments don't get filled in anyway. That
3935   // wouldn't happen if only ByVal arguments followed in the same category, but
3936   // a large structure will simply seem to be a pointer as far as LLVM is
3937   // concerned.
3938   if (FreeRegs > 0) {
3939     if (IsInt)
3940       Padding = llvm::Type::getInt64Ty(getVMContext());
3941     else
3942       Padding = llvm::Type::getFloatTy(getVMContext());
3943
3944     // Either [N x i64] or [N x float].
3945     Padding = llvm::ArrayType::get(Padding, FreeRegs);
3946     FreeRegs = 0;
3947   }
3948
3949   return ABIArgInfo::getIndirect(getContext().getTypeAlign(Ty) / 8,
3950                                  /*IsByVal=*/ true, /*Realign=*/ false,
3951                                  Padding);
3952 }
3953
3954
3955 ABIArgInfo AArch64ABIInfo::classifyGenericType(QualType Ty,
3956                                                int &FreeIntRegs,
3957                                                int &FreeVFPRegs) const {
3958   // Can only occurs for return, but harmless otherwise.
3959   if (Ty->isVoidType())
3960     return ABIArgInfo::getIgnore();
3961
3962   // Large vector types should be returned via memory. There's no such concept
3963   // in the ABI, but they'd be over 16 bytes anyway so no matter how they're
3964   // classified they'd go into memory (see B.3).
3965   if (Ty->isVectorType() && getContext().getTypeSize(Ty) > 128) {
3966     if (FreeIntRegs > 0)
3967       --FreeIntRegs;
3968     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3969   }
3970
3971   // All non-aggregate LLVM types have a concrete ABI representation so they can
3972   // be passed directly. After this block we're guaranteed to be in a
3973   // complicated case.
3974   if (!isAggregateTypeForABI(Ty)) {
3975     // Treat an enum type as its underlying type.
3976     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3977       Ty = EnumTy->getDecl()->getIntegerType();
3978
3979     if (Ty->isFloatingType() || Ty->isVectorType())
3980       return tryUseRegs(Ty, FreeVFPRegs, /*RegsNeeded=*/ 1, /*IsInt=*/ false);
3981
3982     assert(getContext().getTypeSize(Ty) <= 128 &&
3983            "unexpectedly large scalar type");
3984
3985     int RegsNeeded = getContext().getTypeSize(Ty) > 64 ? 2 : 1;
3986
3987     // If the type may need padding registers to ensure "alignment", we must be
3988     // careful when this is accounted for. Increasing the effective size covers
3989     // all cases.
3990     if (getContext().getTypeAlign(Ty) == 128)
3991       RegsNeeded += FreeIntRegs % 2 != 0;
3992
3993     return tryUseRegs(Ty, FreeIntRegs, RegsNeeded, /*IsInt=*/ true);
3994   }
3995
3996   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
3997     if (FreeIntRegs > 0 && RAA == CGCXXABI::RAA_Indirect)
3998       --FreeIntRegs;
3999     return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
4000   }
4001
4002   if (isEmptyRecord(getContext(), Ty, true)) {
4003     if (!getContext().getLangOpts().CPlusPlus) {
4004       // Empty structs outside C++ mode are a GNU extension, so no ABI can
4005       // possibly tell us what to do. It turns out (I believe) that GCC ignores
4006       // the object for parameter-passsing purposes.
4007       return ABIArgInfo::getIgnore();
4008     }
4009
4010     // The combination of C++98 9p5 (sizeof(struct) != 0) and the pseudocode
4011     // description of va_arg in the PCS require that an empty struct does
4012     // actually occupy space for parameter-passing. I'm hoping for a
4013     // clarification giving an explicit paragraph to point to in future.
4014     return tryUseRegs(Ty, FreeIntRegs, /*RegsNeeded=*/ 1, /*IsInt=*/ true,
4015                       llvm::Type::getInt8Ty(getVMContext()));
4016   }
4017
4018   // Homogeneous vector aggregates get passed in registers or on the stack.
4019   const Type *Base = 0;
4020   uint64_t NumMembers = 0;
4021   if (isHomogeneousAggregate(Ty, Base, getContext(), &NumMembers)) {
4022     assert(Base && "Base class should be set for homogeneous aggregate");
4023     // Homogeneous aggregates are passed and returned directly.
4024     return tryUseRegs(Ty, FreeVFPRegs, /*RegsNeeded=*/ NumMembers,
4025                       /*IsInt=*/ false);
4026   }
4027
4028   uint64_t Size = getContext().getTypeSize(Ty);
4029   if (Size <= 128) {
4030     // Small structs can use the same direct type whether they're in registers
4031     // or on the stack.
4032     llvm::Type *BaseTy;
4033     unsigned NumBases;
4034     int SizeInRegs = (Size + 63) / 64;
4035
4036     if (getContext().getTypeAlign(Ty) == 128) {
4037       BaseTy = llvm::Type::getIntNTy(getVMContext(), 128);
4038       NumBases = 1;
4039
4040       // If the type may need padding registers to ensure "alignment", we must
4041       // be careful when this is accounted for. Increasing the effective size
4042       // covers all cases.
4043       SizeInRegs += FreeIntRegs % 2 != 0;
4044     } else {
4045       BaseTy = llvm::Type::getInt64Ty(getVMContext());
4046       NumBases = SizeInRegs;
4047     }
4048     llvm::Type *DirectTy = llvm::ArrayType::get(BaseTy, NumBases);
4049
4050     return tryUseRegs(Ty, FreeIntRegs, /*RegsNeeded=*/ SizeInRegs,
4051                       /*IsInt=*/ true, DirectTy);
4052   }
4053
4054   // If the aggregate is > 16 bytes, it's passed and returned indirectly. In
4055   // LLVM terms the return uses an "sret" pointer, but that's handled elsewhere.
4056   --FreeIntRegs;
4057   return ABIArgInfo::getIndirect(0, /* byVal = */ false);
4058 }
4059
4060 llvm::Value *AArch64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4061                                        CodeGenFunction &CGF) const {
4062   // The AArch64 va_list type and handling is specified in the Procedure Call
4063   // Standard, section B.4:
4064   //
4065   // struct {
4066   //   void *__stack;
4067   //   void *__gr_top;
4068   //   void *__vr_top;
4069   //   int __gr_offs;
4070   //   int __vr_offs;
4071   // };
4072
4073   assert(!CGF.CGM.getDataLayout().isBigEndian()
4074          && "va_arg not implemented for big-endian AArch64");
4075
4076   int FreeIntRegs = 8, FreeVFPRegs = 8;
4077   Ty = CGF.getContext().getCanonicalType(Ty);
4078   ABIArgInfo AI = classifyGenericType(Ty, FreeIntRegs, FreeVFPRegs);
4079
4080   llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
4081   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
4082   llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
4083   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
4084
4085   llvm::Value *reg_offs_p = 0, *reg_offs = 0;
4086   int reg_top_index;
4087   int RegSize;
4088   if (FreeIntRegs < 8) {
4089     assert(FreeVFPRegs == 8 && "Arguments never split between int & VFP regs");
4090     // 3 is the field number of __gr_offs
4091     reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p");
4092     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
4093     reg_top_index = 1; // field number for __gr_top
4094     RegSize = 8 * (8 - FreeIntRegs);
4095   } else {
4096     assert(FreeVFPRegs < 8 && "Argument must go in VFP or int regs");
4097     // 4 is the field number of __vr_offs.
4098     reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p");
4099     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
4100     reg_top_index = 2; // field number for __vr_top
4101     RegSize = 16 * (8 - FreeVFPRegs);
4102   }
4103
4104   //=======================================
4105   // Find out where argument was passed
4106   //=======================================
4107
4108   // If reg_offs >= 0 we're already using the stack for this type of
4109   // argument. We don't want to keep updating reg_offs (in case it overflows,
4110   // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
4111   // whatever they get).
4112   llvm::Value *UsingStack = 0;
4113   UsingStack = CGF.Builder.CreateICmpSGE(reg_offs,
4114                                          llvm::ConstantInt::get(CGF.Int32Ty, 0));
4115
4116   CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
4117
4118   // Otherwise, at least some kind of argument could go in these registers, the
4119   // quesiton is whether this particular type is too big.
4120   CGF.EmitBlock(MaybeRegBlock);
4121
4122   // Integer arguments may need to correct register alignment (for example a
4123   // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
4124   // align __gr_offs to calculate the potential address.
4125   if (FreeIntRegs < 8 && AI.isDirect() && getContext().getTypeAlign(Ty) > 64) {
4126     int Align = getContext().getTypeAlign(Ty) / 8;
4127
4128     reg_offs = CGF.Builder.CreateAdd(reg_offs,
4129                                  llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
4130                                  "align_regoffs");
4131     reg_offs = CGF.Builder.CreateAnd(reg_offs,
4132                                     llvm::ConstantInt::get(CGF.Int32Ty, -Align),
4133                                     "aligned_regoffs");
4134   }
4135
4136   // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
4137   llvm::Value *NewOffset = 0;
4138   NewOffset = CGF.Builder.CreateAdd(reg_offs,
4139                                     llvm::ConstantInt::get(CGF.Int32Ty, RegSize),
4140                                     "new_reg_offs");
4141   CGF.Builder.CreateStore(NewOffset, reg_offs_p);
4142
4143   // Now we're in a position to decide whether this argument really was in
4144   // registers or not.
4145   llvm::Value *InRegs = 0;
4146   InRegs = CGF.Builder.CreateICmpSLE(NewOffset,
4147                                      llvm::ConstantInt::get(CGF.Int32Ty, 0),
4148                                      "inreg");
4149
4150   CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
4151
4152   //=======================================
4153   // Argument was in registers
4154   //=======================================
4155
4156   // Now we emit the code for if the argument was originally passed in
4157   // registers. First start the appropriate block:
4158   CGF.EmitBlock(InRegBlock);
4159
4160   llvm::Value *reg_top_p = 0, *reg_top = 0;
4161   reg_top_p = CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p");
4162   reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
4163   llvm::Value *BaseAddr = CGF.Builder.CreateGEP(reg_top, reg_offs);
4164   llvm::Value *RegAddr = 0;
4165   llvm::Type *MemTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
4166
4167   if (!AI.isDirect()) {
4168     // If it's been passed indirectly (actually a struct), whatever we find from
4169     // stored registers or on the stack will actually be a struct **.
4170     MemTy = llvm::PointerType::getUnqual(MemTy);
4171   }
4172
4173   const Type *Base = 0;
4174   uint64_t NumMembers;
4175   if (isHomogeneousAggregate(Ty, Base, getContext(), &NumMembers)
4176       && NumMembers > 1) {
4177     // Homogeneous aggregates passed in registers will have their elements split
4178     // and stored 16-bytes apart regardless of size (they're notionally in qN,
4179     // qN+1, ...). We reload and store into a temporary local variable
4180     // contiguously.
4181     assert(AI.isDirect() && "Homogeneous aggregates should be passed directly");
4182     llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
4183     llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
4184     llvm::Value *Tmp = CGF.CreateTempAlloca(HFATy);
4185
4186     for (unsigned i = 0; i < NumMembers; ++i) {
4187       llvm::Value *BaseOffset = llvm::ConstantInt::get(CGF.Int32Ty, 16 * i);
4188       llvm::Value *LoadAddr = CGF.Builder.CreateGEP(BaseAddr, BaseOffset);
4189       LoadAddr = CGF.Builder.CreateBitCast(LoadAddr,
4190                                            llvm::PointerType::getUnqual(BaseTy));
4191       llvm::Value *StoreAddr = CGF.Builder.CreateStructGEP(Tmp, i);
4192
4193       llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
4194       CGF.Builder.CreateStore(Elem, StoreAddr);
4195     }
4196
4197     RegAddr = CGF.Builder.CreateBitCast(Tmp, MemTy);
4198   } else {
4199     // Otherwise the object is contiguous in memory
4200     RegAddr = CGF.Builder.CreateBitCast(BaseAddr, MemTy);
4201   }
4202
4203   CGF.EmitBranch(ContBlock);
4204
4205   //=======================================
4206   // Argument was on the stack
4207   //=======================================
4208   CGF.EmitBlock(OnStackBlock);
4209
4210   llvm::Value *stack_p = 0, *OnStackAddr = 0;
4211   stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p");
4212   OnStackAddr = CGF.Builder.CreateLoad(stack_p, "stack");
4213
4214   // Again, stack arguments may need realigmnent. In this case both integer and
4215   // floating-point ones might be affected.
4216   if (AI.isDirect() && getContext().getTypeAlign(Ty) > 64) {
4217     int Align = getContext().getTypeAlign(Ty) / 8;
4218
4219     OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty);
4220
4221     OnStackAddr = CGF.Builder.CreateAdd(OnStackAddr,
4222                                  llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
4223                                  "align_stack");
4224     OnStackAddr = CGF.Builder.CreateAnd(OnStackAddr,
4225                                     llvm::ConstantInt::get(CGF.Int64Ty, -Align),
4226                                     "align_stack");
4227
4228     OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy);
4229   }
4230
4231   uint64_t StackSize;
4232   if (AI.isDirect())
4233     StackSize = getContext().getTypeSize(Ty) / 8;
4234   else
4235     StackSize = 8;
4236
4237   // All stack slots are 8 bytes
4238   StackSize = llvm::RoundUpToAlignment(StackSize, 8);
4239
4240   llvm::Value *StackSizeC = llvm::ConstantInt::get(CGF.Int32Ty, StackSize);
4241   llvm::Value *NewStack = CGF.Builder.CreateGEP(OnStackAddr, StackSizeC,
4242                                                 "new_stack");
4243
4244   // Write the new value of __stack for the next call to va_arg
4245   CGF.Builder.CreateStore(NewStack, stack_p);
4246
4247   OnStackAddr = CGF.Builder.CreateBitCast(OnStackAddr, MemTy);
4248
4249   CGF.EmitBranch(ContBlock);
4250
4251   //=======================================
4252   // Tidy up
4253   //=======================================
4254   CGF.EmitBlock(ContBlock);
4255
4256   llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(MemTy, 2, "vaarg.addr");
4257   ResAddr->addIncoming(RegAddr, InRegBlock);
4258   ResAddr->addIncoming(OnStackAddr, OnStackBlock);
4259
4260   if (AI.isDirect())
4261     return ResAddr;
4262
4263   return CGF.Builder.CreateLoad(ResAddr, "vaarg.addr");
4264 }
4265
4266 //===----------------------------------------------------------------------===//
4267 // NVPTX ABI Implementation
4268 //===----------------------------------------------------------------------===//
4269
4270 namespace {
4271
4272 class NVPTXABIInfo : public ABIInfo {
4273 public:
4274   NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
4275
4276   ABIArgInfo classifyReturnType(QualType RetTy) const;
4277   ABIArgInfo classifyArgumentType(QualType Ty) const;
4278
4279   virtual void computeInfo(CGFunctionInfo &FI) const;
4280   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4281                                  CodeGenFunction &CFG) const;
4282 };
4283
4284 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
4285 public:
4286   NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
4287     : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {}
4288     
4289   virtual void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4290                                    CodeGen::CodeGenModule &M) const;
4291 private:
4292   static void addKernelMetadata(llvm::Function *F);
4293 };
4294
4295 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
4296   if (RetTy->isVoidType())
4297     return ABIArgInfo::getIgnore();
4298
4299   // note: this is different from default ABI
4300   if (!RetTy->isScalarType())
4301     return ABIArgInfo::getDirect();
4302
4303   // Treat an enum type as its underlying type.
4304   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
4305     RetTy = EnumTy->getDecl()->getIntegerType();
4306
4307   return (RetTy->isPromotableIntegerType() ?
4308           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4309 }
4310
4311 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
4312   // Treat an enum type as its underlying type.
4313   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4314     Ty = EnumTy->getDecl()->getIntegerType();
4315
4316   return (Ty->isPromotableIntegerType() ?
4317           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4318 }
4319
4320 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
4321   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4322   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
4323        it != ie; ++it)
4324     it->info = classifyArgumentType(it->type);
4325
4326   // Always honor user-specified calling convention.
4327   if (FI.getCallingConvention() != llvm::CallingConv::C)
4328     return;
4329
4330   FI.setEffectiveCallingConvention(getRuntimeCC());
4331 }
4332
4333 llvm::Value *NVPTXABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4334                                      CodeGenFunction &CFG) const {
4335   llvm_unreachable("NVPTX does not support varargs");
4336 }
4337
4338 void NVPTXTargetCodeGenInfo::
4339 SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4340                     CodeGen::CodeGenModule &M) const{
4341   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
4342   if (!FD) return;
4343
4344   llvm::Function *F = cast<llvm::Function>(GV);
4345
4346   // Perform special handling in OpenCL mode
4347   if (M.getLangOpts().OpenCL) {
4348     // Use OpenCL function attributes to check for kernel functions
4349     // By default, all functions are device functions
4350     if (FD->hasAttr<OpenCLKernelAttr>()) {
4351       // OpenCL __kernel functions get kernel metadata
4352       addKernelMetadata(F);
4353       // And kernel functions are not subject to inlining
4354       F->addFnAttr(llvm::Attribute::NoInline);
4355     }
4356   }
4357
4358   // Perform special handling in CUDA mode.
4359   if (M.getLangOpts().CUDA) {
4360     // CUDA __global__ functions get a kernel metadata entry.  Since
4361     // __global__ functions cannot be called from the device, we do not
4362     // need to set the noinline attribute.
4363     if (FD->getAttr<CUDAGlobalAttr>())
4364       addKernelMetadata(F);
4365   }
4366 }
4367
4368 void NVPTXTargetCodeGenInfo::addKernelMetadata(llvm::Function *F) {
4369   llvm::Module *M = F->getParent();
4370   llvm::LLVMContext &Ctx = M->getContext();
4371
4372   // Get "nvvm.annotations" metadata node
4373   llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
4374
4375   // Create !{<func-ref>, metadata !"kernel", i32 1} node
4376   llvm::SmallVector<llvm::Value *, 3> MDVals;
4377   MDVals.push_back(F);
4378   MDVals.push_back(llvm::MDString::get(Ctx, "kernel"));
4379   MDVals.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), 1));
4380
4381   // Append metadata to nvvm.annotations
4382   MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
4383 }
4384
4385 }
4386
4387 //===----------------------------------------------------------------------===//
4388 // SystemZ ABI Implementation
4389 //===----------------------------------------------------------------------===//
4390
4391 namespace {
4392
4393 class SystemZABIInfo : public ABIInfo {
4394 public:
4395   SystemZABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
4396
4397   bool isPromotableIntegerType(QualType Ty) const;
4398   bool isCompoundType(QualType Ty) const;
4399   bool isFPArgumentType(QualType Ty) const;
4400
4401   ABIArgInfo classifyReturnType(QualType RetTy) const;
4402   ABIArgInfo classifyArgumentType(QualType ArgTy) const;
4403
4404   virtual void computeInfo(CGFunctionInfo &FI) const {
4405     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4406     for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
4407          it != ie; ++it)
4408       it->info = classifyArgumentType(it->type);
4409   }
4410
4411   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4412                                  CodeGenFunction &CGF) const;
4413 };
4414
4415 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
4416 public:
4417   SystemZTargetCodeGenInfo(CodeGenTypes &CGT)
4418     : TargetCodeGenInfo(new SystemZABIInfo(CGT)) {}
4419 };
4420
4421 }
4422
4423 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
4424   // Treat an enum type as its underlying type.
4425   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4426     Ty = EnumTy->getDecl()->getIntegerType();
4427
4428   // Promotable integer types are required to be promoted by the ABI.
4429   if (Ty->isPromotableIntegerType())
4430     return true;
4431
4432   // 32-bit values must also be promoted.
4433   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
4434     switch (BT->getKind()) {
4435     case BuiltinType::Int:
4436     case BuiltinType::UInt:
4437       return true;
4438     default:
4439       return false;
4440     }
4441   return false;
4442 }
4443
4444 bool SystemZABIInfo::isCompoundType(QualType Ty) const {
4445   return Ty->isAnyComplexType() || isAggregateTypeForABI(Ty);
4446 }
4447
4448 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
4449   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
4450     switch (BT->getKind()) {
4451     case BuiltinType::Float:
4452     case BuiltinType::Double:
4453       return true;
4454     default:
4455       return false;
4456     }
4457
4458   if (const RecordType *RT = Ty->getAsStructureType()) {
4459     const RecordDecl *RD = RT->getDecl();
4460     bool Found = false;
4461
4462     // If this is a C++ record, check the bases first.
4463     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
4464       for (CXXRecordDecl::base_class_const_iterator I = CXXRD->bases_begin(),
4465              E = CXXRD->bases_end(); I != E; ++I) {
4466         QualType Base = I->getType();
4467
4468         // Empty bases don't affect things either way.
4469         if (isEmptyRecord(getContext(), Base, true))
4470           continue;
4471
4472         if (Found)
4473           return false;
4474         Found = isFPArgumentType(Base);
4475         if (!Found)
4476           return false;
4477       }
4478
4479     // Check the fields.
4480     for (RecordDecl::field_iterator I = RD->field_begin(),
4481            E = RD->field_end(); I != E; ++I) {
4482       const FieldDecl *FD = *I;
4483
4484       // Empty bitfields don't affect things either way.
4485       // Unlike isSingleElementStruct(), empty structure and array fields
4486       // do count.  So do anonymous bitfields that aren't zero-sized.
4487       if (FD->isBitField() && FD->getBitWidthValue(getContext()) == 0)
4488         return true;
4489
4490       // Unlike isSingleElementStruct(), arrays do not count.
4491       // Nested isFPArgumentType structures still do though.
4492       if (Found)
4493         return false;
4494       Found = isFPArgumentType(FD->getType());
4495       if (!Found)
4496         return false;
4497     }
4498
4499     // Unlike isSingleElementStruct(), trailing padding is allowed.
4500     // An 8-byte aligned struct s { float f; } is passed as a double.
4501     return Found;
4502   }
4503
4504   return false;
4505 }
4506
4507 llvm::Value *SystemZABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4508                                        CodeGenFunction &CGF) const {
4509   // Assume that va_list type is correct; should be pointer to LLVM type:
4510   // struct {
4511   //   i64 __gpr;
4512   //   i64 __fpr;
4513   //   i8 *__overflow_arg_area;
4514   //   i8 *__reg_save_area;
4515   // };
4516
4517   // Every argument occupies 8 bytes and is passed by preference in either
4518   // GPRs or FPRs.
4519   Ty = CGF.getContext().getCanonicalType(Ty);
4520   ABIArgInfo AI = classifyArgumentType(Ty);
4521   bool InFPRs = isFPArgumentType(Ty);
4522
4523   llvm::Type *APTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
4524   bool IsIndirect = AI.isIndirect();
4525   unsigned UnpaddedBitSize;
4526   if (IsIndirect) {
4527     APTy = llvm::PointerType::getUnqual(APTy);
4528     UnpaddedBitSize = 64;
4529   } else
4530     UnpaddedBitSize = getContext().getTypeSize(Ty);
4531   unsigned PaddedBitSize = 64;
4532   assert((UnpaddedBitSize <= PaddedBitSize) && "Invalid argument size.");
4533
4534   unsigned PaddedSize = PaddedBitSize / 8;
4535   unsigned Padding = (PaddedBitSize - UnpaddedBitSize) / 8;
4536
4537   unsigned MaxRegs, RegCountField, RegSaveIndex, RegPadding;
4538   if (InFPRs) {
4539     MaxRegs = 4; // Maximum of 4 FPR arguments
4540     RegCountField = 1; // __fpr
4541     RegSaveIndex = 16; // save offset for f0
4542     RegPadding = 0; // floats are passed in the high bits of an FPR
4543   } else {
4544     MaxRegs = 5; // Maximum of 5 GPR arguments
4545     RegCountField = 0; // __gpr
4546     RegSaveIndex = 2; // save offset for r2
4547     RegPadding = Padding; // values are passed in the low bits of a GPR
4548   }
4549
4550   llvm::Value *RegCountPtr =
4551     CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr");
4552   llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
4553   llvm::Type *IndexTy = RegCount->getType();
4554   llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
4555   llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
4556                                                   "fits_in_regs");
4557
4558   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
4559   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
4560   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
4561   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
4562
4563   // Emit code to load the value if it was passed in registers.
4564   CGF.EmitBlock(InRegBlock);
4565
4566   // Work out the address of an argument register.
4567   llvm::Value *PaddedSizeV = llvm::ConstantInt::get(IndexTy, PaddedSize);
4568   llvm::Value *ScaledRegCount =
4569     CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
4570   llvm::Value *RegBase =
4571     llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize + RegPadding);
4572   llvm::Value *RegOffset =
4573     CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
4574   llvm::Value *RegSaveAreaPtr =
4575     CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr");
4576   llvm::Value *RegSaveArea =
4577     CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
4578   llvm::Value *RawRegAddr =
4579     CGF.Builder.CreateGEP(RegSaveArea, RegOffset, "raw_reg_addr");
4580   llvm::Value *RegAddr =
4581     CGF.Builder.CreateBitCast(RawRegAddr, APTy, "reg_addr");
4582
4583   // Update the register count
4584   llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
4585   llvm::Value *NewRegCount =
4586     CGF.Builder.CreateAdd(RegCount, One, "reg_count");
4587   CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
4588   CGF.EmitBranch(ContBlock);
4589
4590   // Emit code to load the value if it was passed in memory.
4591   CGF.EmitBlock(InMemBlock);
4592
4593   // Work out the address of a stack argument.
4594   llvm::Value *OverflowArgAreaPtr =
4595     CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
4596   llvm::Value *OverflowArgArea =
4597     CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area");
4598   llvm::Value *PaddingV = llvm::ConstantInt::get(IndexTy, Padding);
4599   llvm::Value *RawMemAddr =
4600     CGF.Builder.CreateGEP(OverflowArgArea, PaddingV, "raw_mem_addr");
4601   llvm::Value *MemAddr =
4602     CGF.Builder.CreateBitCast(RawMemAddr, APTy, "mem_addr");
4603
4604   // Update overflow_arg_area_ptr pointer
4605   llvm::Value *NewOverflowArgArea =
4606     CGF.Builder.CreateGEP(OverflowArgArea, PaddedSizeV, "overflow_arg_area");
4607   CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
4608   CGF.EmitBranch(ContBlock);
4609
4610   // Return the appropriate result.
4611   CGF.EmitBlock(ContBlock);
4612   llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(APTy, 2, "va_arg.addr");
4613   ResAddr->addIncoming(RegAddr, InRegBlock);
4614   ResAddr->addIncoming(MemAddr, InMemBlock);
4615
4616   if (IsIndirect)
4617     return CGF.Builder.CreateLoad(ResAddr, "indirect_arg");
4618
4619   return ResAddr;
4620 }
4621
4622 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
4623     const llvm::Triple &Triple, const CodeGenOptions &Opts) {
4624   assert(Triple.getArch() == llvm::Triple::x86);
4625
4626   switch (Opts.getStructReturnConvention()) {
4627   case CodeGenOptions::SRCK_Default:
4628     break;
4629   case CodeGenOptions::SRCK_OnStack:  // -fpcc-struct-return
4630     return false;
4631   case CodeGenOptions::SRCK_InRegs:  // -freg-struct-return
4632     return true;
4633   }
4634
4635   if (Triple.isOSDarwin())
4636     return true;
4637
4638   switch (Triple.getOS()) {
4639   case llvm::Triple::Cygwin:
4640   case llvm::Triple::MinGW32:
4641   case llvm::Triple::AuroraUX:
4642   case llvm::Triple::DragonFly:
4643   case llvm::Triple::FreeBSD:
4644   case llvm::Triple::OpenBSD:
4645   case llvm::Triple::Bitrig:
4646   case llvm::Triple::Win32:
4647     return true;
4648   default:
4649     return false;
4650   }
4651 }
4652
4653 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
4654   if (RetTy->isVoidType())
4655     return ABIArgInfo::getIgnore();
4656   if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
4657     return ABIArgInfo::getIndirect(0);
4658   return (isPromotableIntegerType(RetTy) ?
4659           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4660 }
4661
4662 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
4663   // Handle the generic C++ ABI.
4664   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
4665     return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
4666
4667   // Integers and enums are extended to full register width.
4668   if (isPromotableIntegerType(Ty))
4669     return ABIArgInfo::getExtend();
4670
4671   // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
4672   uint64_t Size = getContext().getTypeSize(Ty);
4673   if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
4674     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
4675
4676   // Handle small structures.
4677   if (const RecordType *RT = Ty->getAs<RecordType>()) {
4678     // Structures with flexible arrays have variable length, so really
4679     // fail the size test above.
4680     const RecordDecl *RD = RT->getDecl();
4681     if (RD->hasFlexibleArrayMember())
4682       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
4683
4684     // The structure is passed as an unextended integer, a float, or a double.
4685     llvm::Type *PassTy;
4686     if (isFPArgumentType(Ty)) {
4687       assert(Size == 32 || Size == 64);
4688       if (Size == 32)
4689         PassTy = llvm::Type::getFloatTy(getVMContext());
4690       else
4691         PassTy = llvm::Type::getDoubleTy(getVMContext());
4692     } else
4693       PassTy = llvm::IntegerType::get(getVMContext(), Size);
4694     return ABIArgInfo::getDirect(PassTy);
4695   }
4696
4697   // Non-structure compounds are passed indirectly.
4698   if (isCompoundType(Ty))
4699     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
4700
4701   return ABIArgInfo::getDirect(0);
4702 }
4703
4704 //===----------------------------------------------------------------------===//
4705 // MSP430 ABI Implementation
4706 //===----------------------------------------------------------------------===//
4707
4708 namespace {
4709
4710 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
4711 public:
4712   MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
4713     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
4714   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4715                            CodeGen::CodeGenModule &M) const;
4716 };
4717
4718 }
4719
4720 void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
4721                                                   llvm::GlobalValue *GV,
4722                                              CodeGen::CodeGenModule &M) const {
4723   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
4724     if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
4725       // Handle 'interrupt' attribute:
4726       llvm::Function *F = cast<llvm::Function>(GV);
4727
4728       // Step 1: Set ISR calling convention.
4729       F->setCallingConv(llvm::CallingConv::MSP430_INTR);
4730
4731       // Step 2: Add attributes goodness.
4732       F->addFnAttr(llvm::Attribute::NoInline);
4733
4734       // Step 3: Emit ISR vector alias.
4735       unsigned Num = attr->getNumber() / 2;
4736       new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
4737                             "__isr_" + Twine(Num),
4738                             GV, &M.getModule());
4739     }
4740   }
4741 }
4742
4743 //===----------------------------------------------------------------------===//
4744 // MIPS ABI Implementation.  This works for both little-endian and
4745 // big-endian variants.
4746 //===----------------------------------------------------------------------===//
4747
4748 namespace {
4749 class MipsABIInfo : public ABIInfo {
4750   bool IsO32;
4751   unsigned MinABIStackAlignInBytes, StackAlignInBytes;
4752   void CoerceToIntArgs(uint64_t TySize,
4753                        SmallVectorImpl<llvm::Type *> &ArgList) const;
4754   llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
4755   llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
4756   llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
4757 public:
4758   MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
4759     ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
4760     StackAlignInBytes(IsO32 ? 8 : 16) {}
4761
4762   ABIArgInfo classifyReturnType(QualType RetTy) const;
4763   ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
4764   virtual void computeInfo(CGFunctionInfo &FI) const;
4765   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4766                                  CodeGenFunction &CGF) const;
4767 };
4768
4769 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
4770   unsigned SizeOfUnwindException;
4771 public:
4772   MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
4773     : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)),
4774       SizeOfUnwindException(IsO32 ? 24 : 32) {}
4775
4776   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
4777     return 29;
4778   }
4779
4780   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4781                            CodeGen::CodeGenModule &CGM) const {
4782     const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
4783     if (!FD) return;
4784     llvm::Function *Fn = cast<llvm::Function>(GV);
4785     if (FD->hasAttr<Mips16Attr>()) {
4786       Fn->addFnAttr("mips16");
4787     }
4788     else if (FD->hasAttr<NoMips16Attr>()) {
4789       Fn->addFnAttr("nomips16");
4790     }
4791   }
4792
4793   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4794                                llvm::Value *Address) const;
4795
4796   unsigned getSizeOfUnwindException() const {
4797     return SizeOfUnwindException;
4798   }
4799 };
4800 }
4801
4802 void MipsABIInfo::CoerceToIntArgs(uint64_t TySize,
4803                                   SmallVectorImpl<llvm::Type *> &ArgList) const {
4804   llvm::IntegerType *IntTy =
4805     llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
4806
4807   // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
4808   for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
4809     ArgList.push_back(IntTy);
4810
4811   // If necessary, add one more integer type to ArgList.
4812   unsigned R = TySize % (MinABIStackAlignInBytes * 8);
4813
4814   if (R)
4815     ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
4816 }
4817
4818 // In N32/64, an aligned double precision floating point field is passed in
4819 // a register.
4820 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
4821   SmallVector<llvm::Type*, 8> ArgList, IntArgList;
4822
4823   if (IsO32) {
4824     CoerceToIntArgs(TySize, ArgList);
4825     return llvm::StructType::get(getVMContext(), ArgList);
4826   }
4827
4828   if (Ty->isComplexType())
4829     return CGT.ConvertType(Ty);
4830
4831   const RecordType *RT = Ty->getAs<RecordType>();
4832
4833   // Unions/vectors are passed in integer registers.
4834   if (!RT || !RT->isStructureOrClassType()) {
4835     CoerceToIntArgs(TySize, ArgList);
4836     return llvm::StructType::get(getVMContext(), ArgList);
4837   }
4838
4839   const RecordDecl *RD = RT->getDecl();
4840   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
4841   assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
4842   
4843   uint64_t LastOffset = 0;
4844   unsigned idx = 0;
4845   llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
4846
4847   // Iterate over fields in the struct/class and check if there are any aligned
4848   // double fields.
4849   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
4850        i != e; ++i, ++idx) {
4851     const QualType Ty = i->getType();
4852     const BuiltinType *BT = Ty->getAs<BuiltinType>();
4853
4854     if (!BT || BT->getKind() != BuiltinType::Double)
4855       continue;
4856
4857     uint64_t Offset = Layout.getFieldOffset(idx);
4858     if (Offset % 64) // Ignore doubles that are not aligned.
4859       continue;
4860
4861     // Add ((Offset - LastOffset) / 64) args of type i64.
4862     for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
4863       ArgList.push_back(I64);
4864
4865     // Add double type.
4866     ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
4867     LastOffset = Offset + 64;
4868   }
4869
4870   CoerceToIntArgs(TySize - LastOffset, IntArgList);
4871   ArgList.append(IntArgList.begin(), IntArgList.end());
4872
4873   return llvm::StructType::get(getVMContext(), ArgList);
4874 }
4875
4876 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset,
4877                                         uint64_t Offset) const {
4878   if (OrigOffset + MinABIStackAlignInBytes > Offset)
4879     return 0;
4880
4881   return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8);
4882 }
4883
4884 ABIArgInfo
4885 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
4886   uint64_t OrigOffset = Offset;
4887   uint64_t TySize = getContext().getTypeSize(Ty);
4888   uint64_t Align = getContext().getTypeAlign(Ty) / 8;
4889
4890   Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
4891                    (uint64_t)StackAlignInBytes);
4892   unsigned CurrOffset = llvm::RoundUpToAlignment(Offset, Align);
4893   Offset = CurrOffset + llvm::RoundUpToAlignment(TySize, Align * 8) / 8;
4894
4895   if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
4896     // Ignore empty aggregates.
4897     if (TySize == 0)
4898       return ABIArgInfo::getIgnore();
4899
4900     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
4901       Offset = OrigOffset + MinABIStackAlignInBytes;
4902       return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
4903     }
4904
4905     // If we have reached here, aggregates are passed directly by coercing to
4906     // another structure type. Padding is inserted if the offset of the
4907     // aggregate is unaligned.
4908     return ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
4909                                  getPaddingType(OrigOffset, CurrOffset));
4910   }
4911
4912   // Treat an enum type as its underlying type.
4913   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4914     Ty = EnumTy->getDecl()->getIntegerType();
4915
4916   if (Ty->isPromotableIntegerType())
4917     return ABIArgInfo::getExtend();
4918
4919   return ABIArgInfo::getDirect(
4920       0, 0, IsO32 ? 0 : getPaddingType(OrigOffset, CurrOffset));
4921 }
4922
4923 llvm::Type*
4924 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
4925   const RecordType *RT = RetTy->getAs<RecordType>();
4926   SmallVector<llvm::Type*, 8> RTList;
4927
4928   if (RT && RT->isStructureOrClassType()) {
4929     const RecordDecl *RD = RT->getDecl();
4930     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
4931     unsigned FieldCnt = Layout.getFieldCount();
4932
4933     // N32/64 returns struct/classes in floating point registers if the
4934     // following conditions are met:
4935     // 1. The size of the struct/class is no larger than 128-bit.
4936     // 2. The struct/class has one or two fields all of which are floating
4937     //    point types.
4938     // 3. The offset of the first field is zero (this follows what gcc does). 
4939     //
4940     // Any other composite results are returned in integer registers.
4941     //
4942     if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
4943       RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
4944       for (; b != e; ++b) {
4945         const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
4946
4947         if (!BT || !BT->isFloatingPoint())
4948           break;
4949
4950         RTList.push_back(CGT.ConvertType(b->getType()));
4951       }
4952
4953       if (b == e)
4954         return llvm::StructType::get(getVMContext(), RTList,
4955                                      RD->hasAttr<PackedAttr>());
4956
4957       RTList.clear();
4958     }
4959   }
4960
4961   CoerceToIntArgs(Size, RTList);
4962   return llvm::StructType::get(getVMContext(), RTList);
4963 }
4964
4965 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
4966   uint64_t Size = getContext().getTypeSize(RetTy);
4967
4968   if (RetTy->isVoidType() || Size == 0)
4969     return ABIArgInfo::getIgnore();
4970
4971   if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
4972     if (isRecordReturnIndirect(RetTy, getCXXABI()))
4973       return ABIArgInfo::getIndirect(0);
4974
4975     if (Size <= 128) {
4976       if (RetTy->isAnyComplexType())
4977         return ABIArgInfo::getDirect();
4978
4979       // O32 returns integer vectors in registers.
4980       if (IsO32 && RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())
4981         return ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
4982
4983       if (!IsO32)
4984         return ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
4985     }
4986
4987     return ABIArgInfo::getIndirect(0);
4988   }
4989
4990   // Treat an enum type as its underlying type.
4991   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
4992     RetTy = EnumTy->getDecl()->getIntegerType();
4993
4994   return (RetTy->isPromotableIntegerType() ?
4995           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4996 }
4997
4998 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
4999   ABIArgInfo &RetInfo = FI.getReturnInfo();
5000   RetInfo = classifyReturnType(FI.getReturnType());
5001
5002   // Check if a pointer to an aggregate is passed as a hidden argument.  
5003   uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
5004
5005   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
5006        it != ie; ++it)
5007     it->info = classifyArgumentType(it->type, Offset);
5008 }
5009
5010 llvm::Value* MipsABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5011                                     CodeGenFunction &CGF) const {
5012   llvm::Type *BP = CGF.Int8PtrTy;
5013   llvm::Type *BPP = CGF.Int8PtrPtrTy;
5014  
5015   CGBuilderTy &Builder = CGF.Builder;
5016   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
5017   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
5018   int64_t TypeAlign = getContext().getTypeAlign(Ty) / 8;
5019   llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
5020   llvm::Value *AddrTyped;
5021   unsigned PtrWidth = getTarget().getPointerWidth(0);
5022   llvm::IntegerType *IntTy = (PtrWidth == 32) ? CGF.Int32Ty : CGF.Int64Ty;
5023
5024   if (TypeAlign > MinABIStackAlignInBytes) {
5025     llvm::Value *AddrAsInt = CGF.Builder.CreatePtrToInt(Addr, IntTy);
5026     llvm::Value *Inc = llvm::ConstantInt::get(IntTy, TypeAlign - 1);
5027     llvm::Value *Mask = llvm::ConstantInt::get(IntTy, -TypeAlign);
5028     llvm::Value *Add = CGF.Builder.CreateAdd(AddrAsInt, Inc);
5029     llvm::Value *And = CGF.Builder.CreateAnd(Add, Mask);
5030     AddrTyped = CGF.Builder.CreateIntToPtr(And, PTy);
5031   }
5032   else
5033     AddrTyped = Builder.CreateBitCast(Addr, PTy);  
5034
5035   llvm::Value *AlignedAddr = Builder.CreateBitCast(AddrTyped, BP);
5036   TypeAlign = std::max((unsigned)TypeAlign, MinABIStackAlignInBytes);
5037   uint64_t Offset =
5038     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, TypeAlign);
5039   llvm::Value *NextAddr =
5040     Builder.CreateGEP(AlignedAddr, llvm::ConstantInt::get(IntTy, Offset),
5041                       "ap.next");
5042   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
5043   
5044   return AddrTyped;
5045 }
5046
5047 bool
5048 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5049                                                llvm::Value *Address) const {
5050   // This information comes from gcc's implementation, which seems to
5051   // as canonical as it gets.
5052
5053   // Everything on MIPS is 4 bytes.  Double-precision FP registers
5054   // are aliased to pairs of single-precision FP registers.
5055   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
5056
5057   // 0-31 are the general purpose registers, $0 - $31.
5058   // 32-63 are the floating-point registers, $f0 - $f31.
5059   // 64 and 65 are the multiply/divide registers, $hi and $lo.
5060   // 66 is the (notional, I think) register for signal-handler return.
5061   AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
5062
5063   // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
5064   // They are one bit wide and ignored here.
5065
5066   // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
5067   // (coprocessor 1 is the FP unit)
5068   // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
5069   // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
5070   // 176-181 are the DSP accumulator registers.
5071   AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
5072   return false;
5073 }
5074
5075 //===----------------------------------------------------------------------===//
5076 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
5077 // Currently subclassed only to implement custom OpenCL C function attribute 
5078 // handling.
5079 //===----------------------------------------------------------------------===//
5080
5081 namespace {
5082
5083 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
5084 public:
5085   TCETargetCodeGenInfo(CodeGenTypes &CGT)
5086     : DefaultTargetCodeGenInfo(CGT) {}
5087
5088   virtual void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5089                                    CodeGen::CodeGenModule &M) const;
5090 };
5091
5092 void TCETargetCodeGenInfo::SetTargetAttributes(const Decl *D,
5093                                                llvm::GlobalValue *GV,
5094                                                CodeGen::CodeGenModule &M) const {
5095   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
5096   if (!FD) return;
5097
5098   llvm::Function *F = cast<llvm::Function>(GV);
5099   
5100   if (M.getLangOpts().OpenCL) {
5101     if (FD->hasAttr<OpenCLKernelAttr>()) {
5102       // OpenCL C Kernel functions are not subject to inlining
5103       F->addFnAttr(llvm::Attribute::NoInline);
5104           
5105       if (FD->hasAttr<ReqdWorkGroupSizeAttr>()) {
5106
5107         // Convert the reqd_work_group_size() attributes to metadata.
5108         llvm::LLVMContext &Context = F->getContext();
5109         llvm::NamedMDNode *OpenCLMetadata = 
5110             M.getModule().getOrInsertNamedMetadata("opencl.kernel_wg_size_info");
5111
5112         SmallVector<llvm::Value*, 5> Operands;
5113         Operands.push_back(F);
5114
5115         Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty, 
5116                              llvm::APInt(32, 
5117                              FD->getAttr<ReqdWorkGroupSizeAttr>()->getXDim())));
5118         Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
5119                              llvm::APInt(32,
5120                                FD->getAttr<ReqdWorkGroupSizeAttr>()->getYDim())));
5121         Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty, 
5122                              llvm::APInt(32, 
5123                                FD->getAttr<ReqdWorkGroupSizeAttr>()->getZDim())));
5124
5125         // Add a boolean constant operand for "required" (true) or "hint" (false)
5126         // for implementing the work_group_size_hint attr later. Currently 
5127         // always true as the hint is not yet implemented.
5128         Operands.push_back(llvm::ConstantInt::getTrue(Context));
5129         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
5130       }
5131     }
5132   }
5133 }
5134
5135 }
5136
5137 //===----------------------------------------------------------------------===//
5138 // Hexagon ABI Implementation
5139 //===----------------------------------------------------------------------===//
5140
5141 namespace {
5142
5143 class HexagonABIInfo : public ABIInfo {
5144
5145
5146 public:
5147   HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
5148
5149 private:
5150
5151   ABIArgInfo classifyReturnType(QualType RetTy) const;
5152   ABIArgInfo classifyArgumentType(QualType RetTy) const;
5153
5154   virtual void computeInfo(CGFunctionInfo &FI) const;
5155
5156   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5157                                  CodeGenFunction &CGF) const;
5158 };
5159
5160 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
5161 public:
5162   HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
5163     :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {}
5164
5165   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
5166     return 29;
5167   }
5168 };
5169
5170 }
5171
5172 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
5173   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
5174   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
5175        it != ie; ++it)
5176     it->info = classifyArgumentType(it->type);
5177 }
5178
5179 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const {
5180   if (!isAggregateTypeForABI(Ty)) {
5181     // Treat an enum type as its underlying type.
5182     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5183       Ty = EnumTy->getDecl()->getIntegerType();
5184
5185     return (Ty->isPromotableIntegerType() ?
5186             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5187   }
5188
5189   // Ignore empty records.
5190   if (isEmptyRecord(getContext(), Ty, true))
5191     return ABIArgInfo::getIgnore();
5192
5193   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
5194     return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
5195
5196   uint64_t Size = getContext().getTypeSize(Ty);
5197   if (Size > 64)
5198     return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
5199     // Pass in the smallest viable integer type.
5200   else if (Size > 32)
5201       return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
5202   else if (Size > 16)
5203       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5204   else if (Size > 8)
5205       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
5206   else
5207       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5208 }
5209
5210 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
5211   if (RetTy->isVoidType())
5212     return ABIArgInfo::getIgnore();
5213
5214   // Large vector types should be returned via memory.
5215   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64)
5216     return ABIArgInfo::getIndirect(0);
5217
5218   if (!isAggregateTypeForABI(RetTy)) {
5219     // Treat an enum type as its underlying type.
5220     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5221       RetTy = EnumTy->getDecl()->getIntegerType();
5222
5223     return (RetTy->isPromotableIntegerType() ?
5224             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5225   }
5226
5227   // Structures with either a non-trivial destructor or a non-trivial
5228   // copy constructor are always indirect.
5229   if (isRecordReturnIndirect(RetTy, getCXXABI()))
5230     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
5231
5232   if (isEmptyRecord(getContext(), RetTy, true))
5233     return ABIArgInfo::getIgnore();
5234
5235   // Aggregates <= 8 bytes are returned in r0; other aggregates
5236   // are returned indirectly.
5237   uint64_t Size = getContext().getTypeSize(RetTy);
5238   if (Size <= 64) {
5239     // Return in the smallest viable integer type.
5240     if (Size <= 8)
5241       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5242     if (Size <= 16)
5243       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
5244     if (Size <= 32)
5245       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5246     return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
5247   }
5248
5249   return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
5250 }
5251
5252 llvm::Value *HexagonABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5253                                        CodeGenFunction &CGF) const {
5254   // FIXME: Need to handle alignment
5255   llvm::Type *BPP = CGF.Int8PtrPtrTy;
5256
5257   CGBuilderTy &Builder = CGF.Builder;
5258   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
5259                                                        "ap");
5260   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
5261   llvm::Type *PTy =
5262     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
5263   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
5264
5265   uint64_t Offset =
5266     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
5267   llvm::Value *NextAddr =
5268     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
5269                       "ap.next");
5270   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
5271
5272   return AddrTyped;
5273 }
5274
5275
5276 //===----------------------------------------------------------------------===//
5277 // SPARC v9 ABI Implementation.
5278 // Based on the SPARC Compliance Definition version 2.4.1.
5279 //
5280 // Function arguments a mapped to a nominal "parameter array" and promoted to
5281 // registers depending on their type. Each argument occupies 8 or 16 bytes in
5282 // the array, structs larger than 16 bytes are passed indirectly.
5283 //
5284 // One case requires special care:
5285 //
5286 //   struct mixed {
5287 //     int i;
5288 //     float f;
5289 //   };
5290 //
5291 // When a struct mixed is passed by value, it only occupies 8 bytes in the
5292 // parameter array, but the int is passed in an integer register, and the float
5293 // is passed in a floating point register. This is represented as two arguments
5294 // with the LLVM IR inreg attribute:
5295 //
5296 //   declare void f(i32 inreg %i, float inreg %f)
5297 //
5298 // The code generator will only allocate 4 bytes from the parameter array for
5299 // the inreg arguments. All other arguments are allocated a multiple of 8
5300 // bytes.
5301 //
5302 namespace {
5303 class SparcV9ABIInfo : public ABIInfo {
5304 public:
5305   SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
5306
5307 private:
5308   ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
5309   virtual void computeInfo(CGFunctionInfo &FI) const;
5310   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5311                                  CodeGenFunction &CGF) const;
5312
5313   // Coercion type builder for structs passed in registers. The coercion type
5314   // serves two purposes:
5315   //
5316   // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
5317   //    in registers.
5318   // 2. Expose aligned floating point elements as first-level elements, so the
5319   //    code generator knows to pass them in floating point registers.
5320   //
5321   // We also compute the InReg flag which indicates that the struct contains
5322   // aligned 32-bit floats.
5323   //
5324   struct CoerceBuilder {
5325     llvm::LLVMContext &Context;
5326     const llvm::DataLayout &DL;
5327     SmallVector<llvm::Type*, 8> Elems;
5328     uint64_t Size;
5329     bool InReg;
5330
5331     CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
5332       : Context(c), DL(dl), Size(0), InReg(false) {}
5333
5334     // Pad Elems with integers until Size is ToSize.
5335     void pad(uint64_t ToSize) {
5336       assert(ToSize >= Size && "Cannot remove elements");
5337       if (ToSize == Size)
5338         return;
5339
5340       // Finish the current 64-bit word.
5341       uint64_t Aligned = llvm::RoundUpToAlignment(Size, 64);
5342       if (Aligned > Size && Aligned <= ToSize) {
5343         Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
5344         Size = Aligned;
5345       }
5346
5347       // Add whole 64-bit words.
5348       while (Size + 64 <= ToSize) {
5349         Elems.push_back(llvm::Type::getInt64Ty(Context));
5350         Size += 64;
5351       }
5352
5353       // Final in-word padding.
5354       if (Size < ToSize) {
5355         Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
5356         Size = ToSize;
5357       }
5358     }
5359
5360     // Add a floating point element at Offset.
5361     void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
5362       // Unaligned floats are treated as integers.
5363       if (Offset % Bits)
5364         return;
5365       // The InReg flag is only required if there are any floats < 64 bits.
5366       if (Bits < 64)
5367         InReg = true;
5368       pad(Offset);
5369       Elems.push_back(Ty);
5370       Size = Offset + Bits;
5371     }
5372
5373     // Add a struct type to the coercion type, starting at Offset (in bits).
5374     void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
5375       const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
5376       for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
5377         llvm::Type *ElemTy = StrTy->getElementType(i);
5378         uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
5379         switch (ElemTy->getTypeID()) {
5380         case llvm::Type::StructTyID:
5381           addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
5382           break;
5383         case llvm::Type::FloatTyID:
5384           addFloat(ElemOffset, ElemTy, 32);
5385           break;
5386         case llvm::Type::DoubleTyID:
5387           addFloat(ElemOffset, ElemTy, 64);
5388           break;
5389         case llvm::Type::FP128TyID:
5390           addFloat(ElemOffset, ElemTy, 128);
5391           break;
5392         case llvm::Type::PointerTyID:
5393           if (ElemOffset % 64 == 0) {
5394             pad(ElemOffset);
5395             Elems.push_back(ElemTy);
5396             Size += 64;
5397           }
5398           break;
5399         default:
5400           break;
5401         }
5402       }
5403     }
5404
5405     // Check if Ty is a usable substitute for the coercion type.
5406     bool isUsableType(llvm::StructType *Ty) const {
5407       if (Ty->getNumElements() != Elems.size())
5408         return false;
5409       for (unsigned i = 0, e = Elems.size(); i != e; ++i)
5410         if (Elems[i] != Ty->getElementType(i))
5411           return false;
5412       return true;
5413     }
5414
5415     // Get the coercion type as a literal struct type.
5416     llvm::Type *getType() const {
5417       if (Elems.size() == 1)
5418         return Elems.front();
5419       else
5420         return llvm::StructType::get(Context, Elems);
5421     }
5422   };
5423 };
5424 } // end anonymous namespace
5425
5426 ABIArgInfo
5427 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
5428   if (Ty->isVoidType())
5429     return ABIArgInfo::getIgnore();
5430
5431   uint64_t Size = getContext().getTypeSize(Ty);
5432
5433   // Anything too big to fit in registers is passed with an explicit indirect
5434   // pointer / sret pointer.
5435   if (Size > SizeLimit)
5436     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
5437
5438   // Treat an enum type as its underlying type.
5439   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5440     Ty = EnumTy->getDecl()->getIntegerType();
5441
5442   // Integer types smaller than a register are extended.
5443   if (Size < 64 && Ty->isIntegerType())
5444     return ABIArgInfo::getExtend();
5445
5446   // Other non-aggregates go in registers.
5447   if (!isAggregateTypeForABI(Ty))
5448     return ABIArgInfo::getDirect();
5449
5450   // If a C++ object has either a non-trivial copy constructor or a non-trivial
5451   // destructor, it is passed with an explicit indirect pointer / sret pointer.
5452   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
5453     return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
5454
5455   // This is a small aggregate type that should be passed in registers.
5456   // Build a coercion type from the LLVM struct type.
5457   llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
5458   if (!StrTy)
5459     return ABIArgInfo::getDirect();
5460
5461   CoerceBuilder CB(getVMContext(), getDataLayout());
5462   CB.addStruct(0, StrTy);
5463   CB.pad(llvm::RoundUpToAlignment(CB.DL.getTypeSizeInBits(StrTy), 64));
5464
5465   // Try to use the original type for coercion.
5466   llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
5467
5468   if (CB.InReg)
5469     return ABIArgInfo::getDirectInReg(CoerceTy);
5470   else
5471     return ABIArgInfo::getDirect(CoerceTy);
5472 }
5473
5474 llvm::Value *SparcV9ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5475                                        CodeGenFunction &CGF) const {
5476   ABIArgInfo AI = classifyType(Ty, 16 * 8);
5477   llvm::Type *ArgTy = CGT.ConvertType(Ty);
5478   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
5479     AI.setCoerceToType(ArgTy);
5480
5481   llvm::Type *BPP = CGF.Int8PtrPtrTy;
5482   CGBuilderTy &Builder = CGF.Builder;
5483   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
5484   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
5485   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
5486   llvm::Value *ArgAddr;
5487   unsigned Stride;
5488
5489   switch (AI.getKind()) {
5490   case ABIArgInfo::Expand:
5491     llvm_unreachable("Unsupported ABI kind for va_arg");
5492
5493   case ABIArgInfo::Extend:
5494     Stride = 8;
5495     ArgAddr = Builder
5496       .CreateConstGEP1_32(Addr, 8 - getDataLayout().getTypeAllocSize(ArgTy),
5497                           "extend");
5498     break;
5499
5500   case ABIArgInfo::Direct:
5501     Stride = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
5502     ArgAddr = Addr;
5503     break;
5504
5505   case ABIArgInfo::Indirect:
5506     Stride = 8;
5507     ArgAddr = Builder.CreateBitCast(Addr,
5508                                     llvm::PointerType::getUnqual(ArgPtrTy),
5509                                     "indirect");
5510     ArgAddr = Builder.CreateLoad(ArgAddr, "indirect.arg");
5511     break;
5512
5513   case ABIArgInfo::Ignore:
5514     return llvm::UndefValue::get(ArgPtrTy);
5515   }
5516
5517   // Update VAList.
5518   Addr = Builder.CreateConstGEP1_32(Addr, Stride, "ap.next");
5519   Builder.CreateStore(Addr, VAListAddrAsBPP);
5520
5521   return Builder.CreatePointerCast(ArgAddr, ArgPtrTy, "arg.addr");
5522 }
5523
5524 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
5525   FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
5526   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
5527        it != ie; ++it)
5528     it->info = classifyType(it->type, 16 * 8);
5529 }
5530
5531 namespace {
5532 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
5533 public:
5534   SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
5535     : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {}
5536
5537   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
5538     return 14;
5539   }
5540
5541   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5542                                llvm::Value *Address) const;
5543 };
5544 } // end anonymous namespace
5545
5546 bool
5547 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5548                                                 llvm::Value *Address) const {
5549   // This is calculated from the LLVM and GCC tables and verified
5550   // against gcc output.  AFAIK all ABIs use the same encoding.
5551
5552   CodeGen::CGBuilderTy &Builder = CGF.Builder;
5553
5554   llvm::IntegerType *i8 = CGF.Int8Ty;
5555   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
5556   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
5557
5558   // 0-31: the 8-byte general-purpose registers
5559   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
5560
5561   // 32-63: f0-31, the 4-byte floating-point registers
5562   AssignToArrayRange(Builder, Address, Four8, 32, 63);
5563
5564   //   Y   = 64
5565   //   PSR = 65
5566   //   WIM = 66
5567   //   TBR = 67
5568   //   PC  = 68
5569   //   NPC = 69
5570   //   FSR = 70
5571   //   CSR = 71
5572   AssignToArrayRange(Builder, Address, Eight8, 64, 71);
5573    
5574   // 72-87: d0-15, the 8-byte floating-point registers
5575   AssignToArrayRange(Builder, Address, Eight8, 72, 87);
5576
5577   return false;
5578 }
5579
5580
5581 //===----------------------------------------------------------------------===//
5582 // Xcore ABI Implementation
5583 //===----------------------------------------------------------------------===//
5584 namespace {
5585 class XCoreABIInfo : public DefaultABIInfo {
5586 public:
5587   XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
5588   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5589                                  CodeGenFunction &CGF) const;
5590 };
5591
5592 class XcoreTargetCodeGenInfo : public TargetCodeGenInfo {
5593 public:
5594   XcoreTargetCodeGenInfo(CodeGenTypes &CGT)
5595     :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {}
5596 };
5597 } // End anonymous namespace.
5598
5599 llvm::Value *XCoreABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5600                                      CodeGenFunction &CGF) const {
5601   CGBuilderTy &Builder = CGF.Builder;
5602
5603   // Get the VAList.
5604   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr,
5605                                                        CGF.Int8PtrPtrTy);
5606   llvm::Value *AP = Builder.CreateLoad(VAListAddrAsBPP);
5607
5608   // Handle the argument.
5609   ABIArgInfo AI = classifyArgumentType(Ty);
5610   llvm::Type *ArgTy = CGT.ConvertType(Ty);
5611   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
5612     AI.setCoerceToType(ArgTy);
5613   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
5614   llvm::Value *Val;
5615   uint64_t ArgSize = 0;
5616   switch (AI.getKind()) {
5617   case ABIArgInfo::Expand:
5618     llvm_unreachable("Unsupported ABI kind for va_arg");
5619   case ABIArgInfo::Ignore:
5620     Val = llvm::UndefValue::get(ArgPtrTy);
5621     ArgSize = 0;
5622     break;
5623   case ABIArgInfo::Extend:
5624   case ABIArgInfo::Direct:
5625     Val = Builder.CreatePointerCast(AP, ArgPtrTy);
5626     ArgSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
5627     if (ArgSize < 4)
5628       ArgSize = 4;
5629     break;
5630   case ABIArgInfo::Indirect:
5631     llvm::Value *ArgAddr;
5632     ArgAddr = Builder.CreateBitCast(AP, llvm::PointerType::getUnqual(ArgPtrTy));
5633     ArgAddr = Builder.CreateLoad(ArgAddr);
5634     Val = Builder.CreatePointerCast(ArgAddr, ArgPtrTy);
5635     ArgSize = 4;
5636     break;
5637   }
5638
5639   // Increment the VAList.
5640   if (ArgSize) {
5641     llvm::Value *APN = Builder.CreateConstGEP1_32(AP, ArgSize);
5642     Builder.CreateStore(APN, VAListAddrAsBPP);
5643   }
5644   return Val;
5645 }
5646
5647 //===----------------------------------------------------------------------===//
5648 // Driver code
5649 //===----------------------------------------------------------------------===//
5650
5651 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
5652   if (TheTargetCodeGenInfo)
5653     return *TheTargetCodeGenInfo;
5654
5655   const llvm::Triple &Triple = getTarget().getTriple();
5656   switch (Triple.getArch()) {
5657   default:
5658     return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types));
5659
5660   case llvm::Triple::le32:
5661     return *(TheTargetCodeGenInfo = new PNaClTargetCodeGenInfo(Types));
5662   case llvm::Triple::mips:
5663   case llvm::Triple::mipsel:
5664     return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, true));
5665
5666   case llvm::Triple::mips64:
5667   case llvm::Triple::mips64el:
5668     return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, false));
5669
5670   case llvm::Triple::aarch64:
5671     return *(TheTargetCodeGenInfo = new AArch64TargetCodeGenInfo(Types));
5672
5673   case llvm::Triple::arm:
5674   case llvm::Triple::thumb:
5675     {
5676       ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
5677       if (strcmp(getTarget().getABI(), "apcs-gnu") == 0)
5678         Kind = ARMABIInfo::APCS;
5679       else if (CodeGenOpts.FloatABI == "hard" ||
5680                (CodeGenOpts.FloatABI != "soft" &&
5681                 Triple.getEnvironment() == llvm::Triple::GNUEABIHF))
5682         Kind = ARMABIInfo::AAPCS_VFP;
5683
5684       switch (Triple.getOS()) {
5685         case llvm::Triple::NaCl:
5686           return *(TheTargetCodeGenInfo =
5687                    new NaClARMTargetCodeGenInfo(Types, Kind));
5688         default:
5689           return *(TheTargetCodeGenInfo =
5690                    new ARMTargetCodeGenInfo(Types, Kind));
5691       }
5692     }
5693
5694   case llvm::Triple::ppc:
5695     return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types));
5696   case llvm::Triple::ppc64:
5697     if (Triple.isOSBinFormatELF())
5698       return *(TheTargetCodeGenInfo = new PPC64_SVR4_TargetCodeGenInfo(Types));
5699     else
5700       return *(TheTargetCodeGenInfo = new PPC64TargetCodeGenInfo(Types));
5701   case llvm::Triple::ppc64le:
5702     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
5703     return *(TheTargetCodeGenInfo = new PPC64_SVR4_TargetCodeGenInfo(Types));
5704
5705   case llvm::Triple::nvptx:
5706   case llvm::Triple::nvptx64:
5707     return *(TheTargetCodeGenInfo = new NVPTXTargetCodeGenInfo(Types));
5708
5709   case llvm::Triple::msp430:
5710     return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types));
5711
5712   case llvm::Triple::systemz:
5713     return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo(Types));
5714
5715   case llvm::Triple::tce:
5716     return *(TheTargetCodeGenInfo = new TCETargetCodeGenInfo(Types));
5717
5718   case llvm::Triple::x86: {
5719     bool IsDarwinVectorABI = Triple.isOSDarwin();
5720     bool IsSmallStructInRegABI =
5721         X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
5722     bool IsWin32FloatStructABI = (Triple.getOS() == llvm::Triple::Win32);
5723
5724     if (Triple.getOS() == llvm::Triple::Win32) {
5725       return *(TheTargetCodeGenInfo =
5726                new WinX86_32TargetCodeGenInfo(Types,
5727                                               IsDarwinVectorABI, IsSmallStructInRegABI,
5728                                               IsWin32FloatStructABI,
5729                                               CodeGenOpts.NumRegisterParameters));
5730     } else {
5731       return *(TheTargetCodeGenInfo =
5732                new X86_32TargetCodeGenInfo(Types,
5733                                            IsDarwinVectorABI, IsSmallStructInRegABI,
5734                                            IsWin32FloatStructABI,
5735                                            CodeGenOpts.NumRegisterParameters));
5736     }
5737   }
5738
5739   case llvm::Triple::x86_64: {
5740     bool HasAVX = strcmp(getTarget().getABI(), "avx") == 0;
5741
5742     switch (Triple.getOS()) {
5743     case llvm::Triple::Win32:
5744     case llvm::Triple::MinGW32:
5745     case llvm::Triple::Cygwin:
5746       return *(TheTargetCodeGenInfo = new WinX86_64TargetCodeGenInfo(Types));
5747     case llvm::Triple::NaCl:
5748       return *(TheTargetCodeGenInfo = new NaClX86_64TargetCodeGenInfo(Types,
5749                                                                       HasAVX));
5750     default:
5751       return *(TheTargetCodeGenInfo = new X86_64TargetCodeGenInfo(Types,
5752                                                                   HasAVX));
5753     }
5754   }
5755   case llvm::Triple::hexagon:
5756     return *(TheTargetCodeGenInfo = new HexagonTargetCodeGenInfo(Types));
5757   case llvm::Triple::sparcv9:
5758     return *(TheTargetCodeGenInfo = new SparcV9TargetCodeGenInfo(Types));
5759   case llvm::Triple::xcore:
5760     return *(TheTargetCodeGenInfo = new XcoreTargetCodeGenInfo(Types));
5761
5762   }
5763 }