]> CyberLeo.Net >> Repos - FreeBSD/releng/10.2.git/blob - contrib/llvm/tools/lldb/source/Plugins/Process/gdb-remote/GDBRemoteRegisterContext.cpp
- Copy stable/10@285827 to releng/10.2 in preparation for 10.2-RC1
[FreeBSD/releng/10.2.git] / contrib / llvm / tools / lldb / source / Plugins / Process / gdb-remote / GDBRemoteRegisterContext.cpp
1 //===-- GDBRemoteRegisterContext.cpp ----------------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "GDBRemoteRegisterContext.h"
11
12 // C Includes
13 // C++ Includes
14 // Other libraries and framework includes
15 #include "lldb/Core/DataBufferHeap.h"
16 #include "lldb/Core/DataExtractor.h"
17 #include "lldb/Core/RegisterValue.h"
18 #include "lldb/Core/Scalar.h"
19 #include "lldb/Core/StreamString.h"
20 #ifndef LLDB_DISABLE_PYTHON
21 #include "lldb/Interpreter/PythonDataObjects.h"
22 #endif
23 #include "lldb/Target/ExecutionContext.h"
24 #include "lldb/Utility/Utils.h"
25 // Project includes
26 #include "Utility/StringExtractorGDBRemote.h"
27 #include "ProcessGDBRemote.h"
28 #include "ProcessGDBRemoteLog.h"
29 #include "ThreadGDBRemote.h"
30 #include "Utility/ARM_GCC_Registers.h"
31 #include "Utility/ARM_DWARF_Registers.h"
32
33 using namespace lldb;
34 using namespace lldb_private;
35
36 //----------------------------------------------------------------------
37 // GDBRemoteRegisterContext constructor
38 //----------------------------------------------------------------------
39 GDBRemoteRegisterContext::GDBRemoteRegisterContext
40 (
41     ThreadGDBRemote &thread,
42     uint32_t concrete_frame_idx,
43     GDBRemoteDynamicRegisterInfo &reg_info,
44     bool read_all_at_once
45 ) :
46     RegisterContext (thread, concrete_frame_idx),
47     m_reg_info (reg_info),
48     m_reg_valid (),
49     m_reg_data (),
50     m_read_all_at_once (read_all_at_once)
51 {
52     // Resize our vector of bools to contain one bool for every register.
53     // We will use these boolean values to know when a register value
54     // is valid in m_reg_data.
55     m_reg_valid.resize (reg_info.GetNumRegisters());
56
57     // Make a heap based buffer that is big enough to store all registers
58     DataBufferSP reg_data_sp(new DataBufferHeap (reg_info.GetRegisterDataByteSize(), 0));
59     m_reg_data.SetData (reg_data_sp);
60     m_reg_data.SetByteOrder(thread.GetProcess()->GetByteOrder());
61 }
62
63 //----------------------------------------------------------------------
64 // Destructor
65 //----------------------------------------------------------------------
66 GDBRemoteRegisterContext::~GDBRemoteRegisterContext()
67 {
68 }
69
70 void
71 GDBRemoteRegisterContext::InvalidateAllRegisters ()
72 {
73     SetAllRegisterValid (false);
74 }
75
76 void
77 GDBRemoteRegisterContext::SetAllRegisterValid (bool b)
78 {
79     std::vector<bool>::iterator pos, end = m_reg_valid.end();
80     for (pos = m_reg_valid.begin(); pos != end; ++pos)
81         *pos = b;
82 }
83
84 size_t
85 GDBRemoteRegisterContext::GetRegisterCount ()
86 {
87     return m_reg_info.GetNumRegisters ();
88 }
89
90 const RegisterInfo *
91 GDBRemoteRegisterContext::GetRegisterInfoAtIndex (size_t reg)
92 {
93     return m_reg_info.GetRegisterInfoAtIndex (reg);
94 }
95
96 size_t
97 GDBRemoteRegisterContext::GetRegisterSetCount ()
98 {
99     return m_reg_info.GetNumRegisterSets ();
100 }
101
102
103
104 const RegisterSet *
105 GDBRemoteRegisterContext::GetRegisterSet (size_t reg_set)
106 {
107     return m_reg_info.GetRegisterSet (reg_set);
108 }
109
110
111
112 bool
113 GDBRemoteRegisterContext::ReadRegister (const RegisterInfo *reg_info, RegisterValue &value)
114 {
115     // Read the register
116     if (ReadRegisterBytes (reg_info, m_reg_data))
117     {
118         const bool partial_data_ok = false;
119         Error error (value.SetValueFromData(reg_info, m_reg_data, reg_info->byte_offset, partial_data_ok));
120         return error.Success();
121     }
122     return false;
123 }
124
125 bool
126 GDBRemoteRegisterContext::PrivateSetRegisterValue (uint32_t reg, StringExtractor &response)
127 {
128     const RegisterInfo *reg_info = GetRegisterInfoAtIndex (reg);
129     if (reg_info == NULL)
130         return false;
131
132     // Invalidate if needed
133     InvalidateIfNeeded(false);
134
135     const uint32_t reg_byte_size = reg_info->byte_size;
136     const size_t bytes_copied = response.GetHexBytes (const_cast<uint8_t*>(m_reg_data.PeekData(reg_info->byte_offset, reg_byte_size)), reg_byte_size, '\xcc');
137     bool success = bytes_copied == reg_byte_size;
138     if (success)
139     {
140         SetRegisterIsValid(reg, true);
141     }
142     else if (bytes_copied > 0)
143     {
144         // Only set register is valid to false if we copied some bytes, else
145         // leave it as it was.
146         SetRegisterIsValid(reg, false);
147     }
148     return success;
149 }
150
151 // Helper function for GDBRemoteRegisterContext::ReadRegisterBytes().
152 bool
153 GDBRemoteRegisterContext::GetPrimordialRegister(const lldb_private::RegisterInfo *reg_info,
154                                                 GDBRemoteCommunicationClient &gdb_comm)
155 {
156     const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
157     StringExtractorGDBRemote response;
158     if (gdb_comm.ReadRegister(m_thread.GetProtocolID(), reg, response))
159         return PrivateSetRegisterValue (reg, response);
160     return false;
161 }
162
163 bool
164 GDBRemoteRegisterContext::ReadRegisterBytes (const RegisterInfo *reg_info, DataExtractor &data)
165 {
166     ExecutionContext exe_ctx (CalculateThread());
167
168     Process *process = exe_ctx.GetProcessPtr();
169     Thread *thread = exe_ctx.GetThreadPtr();
170     if (process == NULL || thread == NULL)
171         return false;
172
173     GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote());
174
175     InvalidateIfNeeded(false);
176
177     const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
178
179     if (!GetRegisterIsValid(reg))
180     {
181         if (m_read_all_at_once)
182         {
183             StringExtractorGDBRemote response;
184             if (!gdb_comm.ReadAllRegisters(m_thread.GetProtocolID(), response))
185                 return false;
186             if (response.IsNormalResponse())
187                 if (response.GetHexBytes ((void *)m_reg_data.GetDataStart(), m_reg_data.GetByteSize(), '\xcc') == m_reg_data.GetByteSize())
188                     SetAllRegisterValid (true);
189         }
190         else if (reg_info->value_regs)
191         {
192             // Process this composite register request by delegating to the constituent
193             // primordial registers.
194             
195             // Index of the primordial register.
196             bool success = true;
197             for (uint32_t idx = 0; success; ++idx)
198             {
199                 const uint32_t prim_reg = reg_info->value_regs[idx];
200                 if (prim_reg == LLDB_INVALID_REGNUM)
201                     break;
202                 // We have a valid primordial regsiter as our constituent.
203                 // Grab the corresponding register info.
204                 const RegisterInfo *prim_reg_info = GetRegisterInfoAtIndex(prim_reg);
205                 if (prim_reg_info == NULL)
206                     success = false;
207                 else
208                 {
209                     // Read the containing register if it hasn't already been read
210                     if (!GetRegisterIsValid(prim_reg))
211                         success = GetPrimordialRegister(prim_reg_info, gdb_comm);
212                 }
213             }
214
215             if (success)
216             {
217                 // If we reach this point, all primordial register requests have succeeded.
218                 // Validate this composite register.
219                 SetRegisterIsValid (reg_info, true);
220             }
221         }
222         else
223         {
224             // Get each register individually
225             GetPrimordialRegister(reg_info, gdb_comm);
226         }
227
228         // Make sure we got a valid register value after reading it
229         if (!GetRegisterIsValid(reg))
230             return false;
231     }
232
233     if (&data != &m_reg_data)
234     {
235         // If we aren't extracting into our own buffer (which
236         // only happens when this function is called from
237         // ReadRegisterValue(uint32_t, Scalar&)) then
238         // we transfer bytes from our buffer into the data
239         // buffer that was passed in
240         data.SetByteOrder (m_reg_data.GetByteOrder());
241         data.SetData (m_reg_data, reg_info->byte_offset, reg_info->byte_size);
242     }
243     return true;
244 }
245
246 bool
247 GDBRemoteRegisterContext::WriteRegister (const RegisterInfo *reg_info,
248                                          const RegisterValue &value)
249 {
250     DataExtractor data;
251     if (value.GetData (data))
252         return WriteRegisterBytes (reg_info, data, 0);
253     return false;
254 }
255
256 // Helper function for GDBRemoteRegisterContext::WriteRegisterBytes().
257 bool
258 GDBRemoteRegisterContext::SetPrimordialRegister(const lldb_private::RegisterInfo *reg_info,
259                                                 GDBRemoteCommunicationClient &gdb_comm)
260 {
261     StreamString packet;
262     StringExtractorGDBRemote response;
263     const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
264     packet.Printf ("P%x=", reg);
265     packet.PutBytesAsRawHex8 (m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size),
266                               reg_info->byte_size,
267                               lldb::endian::InlHostByteOrder(),
268                               lldb::endian::InlHostByteOrder());
269
270     if (gdb_comm.GetThreadSuffixSupported())
271         packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID());
272
273     // Invalidate just this register
274     SetRegisterIsValid(reg, false);
275     if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(),
276                                               packet.GetString().size(),
277                                               response,
278                                               false) == GDBRemoteCommunication::PacketResult::Success)
279     {
280         if (response.IsOKResponse())
281             return true;
282     }
283     return false;
284 }
285
286 void
287 GDBRemoteRegisterContext::SyncThreadState(Process *process)
288 {
289     // NB.  We assume our caller has locked the sequence mutex.
290     
291     GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *) process)->GetGDBRemote());
292     if (!gdb_comm.GetSyncThreadStateSupported())
293         return;
294
295     StreamString packet;
296     StringExtractorGDBRemote response;
297     packet.Printf ("QSyncThreadState:%4.4" PRIx64 ";", m_thread.GetProtocolID());
298     if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(),
299                                               packet.GetString().size(),
300                                               response,
301                                               false) == GDBRemoteCommunication::PacketResult::Success)
302     {
303         if (response.IsOKResponse())
304             InvalidateAllRegisters();
305     }
306 }
307
308 bool
309 GDBRemoteRegisterContext::WriteRegisterBytes (const lldb_private::RegisterInfo *reg_info, DataExtractor &data, uint32_t data_offset)
310 {
311     ExecutionContext exe_ctx (CalculateThread());
312
313     Process *process = exe_ctx.GetProcessPtr();
314     Thread *thread = exe_ctx.GetThreadPtr();
315     if (process == NULL || thread == NULL)
316         return false;
317
318     GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote());
319 // FIXME: This check isn't right because IsRunning checks the Public state, but this
320 // is work you need to do - for instance in ShouldStop & friends - before the public
321 // state has been changed.
322 //    if (gdb_comm.IsRunning())
323 //        return false;
324
325     // Grab a pointer to where we are going to put this register
326     uint8_t *dst = const_cast<uint8_t*>(m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size));
327
328     if (dst == NULL)
329         return false;
330
331
332     if (data.CopyByteOrderedData (data_offset,                  // src offset
333                                   reg_info->byte_size,          // src length
334                                   dst,                          // dst
335                                   reg_info->byte_size,          // dst length
336                                   m_reg_data.GetByteOrder()))   // dst byte order
337     {
338         Mutex::Locker locker;
339         if (gdb_comm.GetSequenceMutex (locker, "Didn't get sequence mutex for write register."))
340         {
341             const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported();
342             ProcessSP process_sp (m_thread.GetProcess());
343             if (thread_suffix_supported || static_cast<ProcessGDBRemote *>(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetProtocolID()))
344             {
345                 StreamString packet;
346                 StringExtractorGDBRemote response;
347                 
348                 if (m_read_all_at_once)
349                 {
350                     // Set all registers in one packet
351                     packet.PutChar ('G');
352                     packet.PutBytesAsRawHex8 (m_reg_data.GetDataStart(),
353                                               m_reg_data.GetByteSize(),
354                                               lldb::endian::InlHostByteOrder(),
355                                               lldb::endian::InlHostByteOrder());
356
357                     if (thread_suffix_supported)
358                         packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID());
359
360                     // Invalidate all register values
361                     InvalidateIfNeeded (true);
362
363                     if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(),
364                                                               packet.GetString().size(),
365                                                               response,
366                                                               false) == GDBRemoteCommunication::PacketResult::Success)
367                     {
368                         SetAllRegisterValid (false);
369                         if (response.IsOKResponse())
370                         {
371                             return true;
372                         }
373                     }
374                 }
375                 else
376                 {
377                     bool success = true;
378
379                     if (reg_info->value_regs)
380                     {
381                         // This register is part of another register. In this case we read the actual
382                         // register data for any "value_regs", and once all that data is read, we will
383                         // have enough data in our register context bytes for the value of this register
384                         
385                         // Invalidate this composite register first.
386                         
387                         for (uint32_t idx = 0; success; ++idx)
388                         {
389                             const uint32_t reg = reg_info->value_regs[idx];
390                             if (reg == LLDB_INVALID_REGNUM)
391                                 break;
392                             // We have a valid primordial regsiter as our constituent.
393                             // Grab the corresponding register info.
394                             const RegisterInfo *value_reg_info = GetRegisterInfoAtIndex(reg);
395                             if (value_reg_info == NULL)
396                                 success = false;
397                             else
398                                 success = SetPrimordialRegister(value_reg_info, gdb_comm);
399                         }
400                     }
401                     else
402                     {
403                         // This is an actual register, write it
404                         success = SetPrimordialRegister(reg_info, gdb_comm);
405                     }
406
407                     // Check if writing this register will invalidate any other register values?
408                     // If so, invalidate them
409                     if (reg_info->invalidate_regs)
410                     {
411                         for (uint32_t idx = 0, reg = reg_info->invalidate_regs[0];
412                              reg != LLDB_INVALID_REGNUM;
413                              reg = reg_info->invalidate_regs[++idx])
414                         {
415                             SetRegisterIsValid(reg, false);
416                         }
417                     }
418                     
419                     return success;
420                 }
421             }
422         }
423         else
424         {
425             Log *log (ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet (GDBR_LOG_THREAD | GDBR_LOG_PACKETS));
426             if (log)
427             {
428                 if (log->GetVerbose())
429                 {
430                     StreamString strm;
431                     gdb_comm.DumpHistory(strm);
432                     log->Printf("error: failed to get packet sequence mutex, not sending write register for \"%s\":\n%s", reg_info->name, strm.GetData());
433                 }
434                 else
435                     log->Printf("error: failed to get packet sequence mutex, not sending write register for \"%s\"", reg_info->name);
436             }
437         }
438     }
439     return false;
440 }
441
442 bool
443 GDBRemoteRegisterContext::ReadAllRegisterValues (lldb_private::RegisterCheckpoint &reg_checkpoint)
444 {
445     ExecutionContext exe_ctx (CalculateThread());
446     
447     Process *process = exe_ctx.GetProcessPtr();
448     Thread *thread = exe_ctx.GetThreadPtr();
449     if (process == NULL || thread == NULL)
450         return false;
451     
452     GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote());
453
454     uint32_t save_id = 0;
455     if (gdb_comm.SaveRegisterState(thread->GetProtocolID(), save_id))
456     {
457         reg_checkpoint.SetID(save_id);
458         reg_checkpoint.GetData().reset();
459         return true;
460     }
461     else
462     {
463         reg_checkpoint.SetID(0); // Invalid save ID is zero
464         return ReadAllRegisterValues(reg_checkpoint.GetData());
465     }
466 }
467
468 bool
469 GDBRemoteRegisterContext::WriteAllRegisterValues (const lldb_private::RegisterCheckpoint &reg_checkpoint)
470 {
471     uint32_t save_id = reg_checkpoint.GetID();
472     if (save_id != 0)
473     {
474         ExecutionContext exe_ctx (CalculateThread());
475         
476         Process *process = exe_ctx.GetProcessPtr();
477         Thread *thread = exe_ctx.GetThreadPtr();
478         if (process == NULL || thread == NULL)
479             return false;
480         
481         GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote());
482         
483         return gdb_comm.RestoreRegisterState(m_thread.GetProtocolID(), save_id);
484     }
485     else
486     {
487         return WriteAllRegisterValues(reg_checkpoint.GetData());
488     }
489 }
490
491 bool
492 GDBRemoteRegisterContext::ReadAllRegisterValues (lldb::DataBufferSP &data_sp)
493 {
494     ExecutionContext exe_ctx (CalculateThread());
495
496     Process *process = exe_ctx.GetProcessPtr();
497     Thread *thread = exe_ctx.GetThreadPtr();
498     if (process == NULL || thread == NULL)
499         return false;
500
501     GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote());
502
503     StringExtractorGDBRemote response;
504
505     Mutex::Locker locker;
506     if (gdb_comm.GetSequenceMutex (locker, "Didn't get sequence mutex for read all registers."))
507     {
508         SyncThreadState(process);
509         
510         char packet[32];
511         const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported();
512         ProcessSP process_sp (m_thread.GetProcess());
513         if (thread_suffix_supported || static_cast<ProcessGDBRemote *>(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetProtocolID()))
514         {
515             int packet_len = 0;
516             if (thread_suffix_supported)
517                 packet_len = ::snprintf (packet, sizeof(packet), "g;thread:%4.4" PRIx64, m_thread.GetProtocolID());
518             else
519                 packet_len = ::snprintf (packet, sizeof(packet), "g");
520             assert (packet_len < ((int)sizeof(packet) - 1));
521
522             if (gdb_comm.SendPacketAndWaitForResponse(packet, packet_len, response, false) == GDBRemoteCommunication::PacketResult::Success)
523             {
524                 if (response.IsErrorResponse())
525                     return false;
526
527                 std::string &response_str = response.GetStringRef();
528                 if (isxdigit(response_str[0]))
529                 {
530                     response_str.insert(0, 1, 'G');
531                     if (thread_suffix_supported)
532                     {
533                         char thread_id_cstr[64];
534                         ::snprintf (thread_id_cstr, sizeof(thread_id_cstr), ";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID());
535                         response_str.append (thread_id_cstr);
536                     }
537                     data_sp.reset (new DataBufferHeap (response_str.c_str(), response_str.size()));
538                     return true;
539                 }
540             }
541         }
542     }
543     else
544     {
545         Log *log (ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet (GDBR_LOG_THREAD | GDBR_LOG_PACKETS));
546         if (log)
547         {
548             if (log->GetVerbose())
549             {
550                 StreamString strm;
551                 gdb_comm.DumpHistory(strm);
552                 log->Printf("error: failed to get packet sequence mutex, not sending read all registers:\n%s", strm.GetData());
553             }
554             else
555                 log->Printf("error: failed to get packet sequence mutex, not sending read all registers");
556         }
557     }
558
559     data_sp.reset();
560     return false;
561 }
562
563 bool
564 GDBRemoteRegisterContext::WriteAllRegisterValues (const lldb::DataBufferSP &data_sp)
565 {
566     if (!data_sp || data_sp->GetBytes() == NULL || data_sp->GetByteSize() == 0)
567         return false;
568
569     ExecutionContext exe_ctx (CalculateThread());
570
571     Process *process = exe_ctx.GetProcessPtr();
572     Thread *thread = exe_ctx.GetThreadPtr();
573     if (process == NULL || thread == NULL)
574         return false;
575
576     GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote());
577
578     StringExtractorGDBRemote response;
579     Mutex::Locker locker;
580     if (gdb_comm.GetSequenceMutex (locker, "Didn't get sequence mutex for write all registers."))
581     {
582         const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported();
583         ProcessSP process_sp (m_thread.GetProcess());
584         if (thread_suffix_supported || static_cast<ProcessGDBRemote *>(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetProtocolID()))
585         {
586             // The data_sp contains the entire G response packet including the
587             // G, and if the thread suffix is supported, it has the thread suffix
588             // as well.
589             const char *G_packet = (const char *)data_sp->GetBytes();
590             size_t G_packet_len = data_sp->GetByteSize();
591             if (gdb_comm.SendPacketAndWaitForResponse (G_packet,
592                                                        G_packet_len,
593                                                        response,
594                                                        false) == GDBRemoteCommunication::PacketResult::Success)
595             {
596                 if (response.IsOKResponse())
597                     return true;
598                 else if (response.IsErrorResponse())
599                 {
600                     uint32_t num_restored = 0;
601                     // We need to manually go through all of the registers and
602                     // restore them manually
603
604                     response.GetStringRef().assign (G_packet, G_packet_len);
605                     response.SetFilePos(1); // Skip the leading 'G'
606                     DataBufferHeap buffer (m_reg_data.GetByteSize(), 0);
607                     DataExtractor restore_data (buffer.GetBytes(),
608                                                 buffer.GetByteSize(),
609                                                 m_reg_data.GetByteOrder(),
610                                                 m_reg_data.GetAddressByteSize());
611
612                     const uint32_t bytes_extracted = response.GetHexBytes ((void *)restore_data.GetDataStart(),
613                                                                            restore_data.GetByteSize(),
614                                                                            '\xcc');
615
616                     if (bytes_extracted < restore_data.GetByteSize())
617                         restore_data.SetData(restore_data.GetDataStart(), bytes_extracted, m_reg_data.GetByteOrder());
618
619                     //ReadRegisterBytes (const RegisterInfo *reg_info, RegisterValue &value, DataExtractor &data)
620                     const RegisterInfo *reg_info;
621                     // We have to march the offset of each register along in the
622                     // buffer to make sure we get the right offset.
623                     uint32_t reg_byte_offset = 0;
624                     for (uint32_t reg_idx=0; (reg_info = GetRegisterInfoAtIndex (reg_idx)) != NULL; ++reg_idx, reg_byte_offset += reg_info->byte_size)
625                     {
626                         const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
627
628                         // Skip composite registers.
629                         if (reg_info->value_regs)
630                             continue;
631
632                         // Only write down the registers that need to be written
633                         // if we are going to be doing registers individually.
634                         bool write_reg = true;
635                         const uint32_t reg_byte_size = reg_info->byte_size;
636
637                         const char *restore_src = (const char *)restore_data.PeekData(reg_byte_offset, reg_byte_size);
638                         if (restore_src)
639                         {
640                             if (GetRegisterIsValid(reg))
641                             {
642                                 const char *current_src = (const char *)m_reg_data.PeekData(reg_byte_offset, reg_byte_size);
643                                 if (current_src)
644                                     write_reg = memcmp (current_src, restore_src, reg_byte_size) != 0;
645                             }
646
647                             if (write_reg)
648                             {
649                                 StreamString packet;
650                                 packet.Printf ("P%x=", reg);
651                                 packet.PutBytesAsRawHex8 (restore_src,
652                                                           reg_byte_size,
653                                                           lldb::endian::InlHostByteOrder(),
654                                                           lldb::endian::InlHostByteOrder());
655
656                                 if (thread_suffix_supported)
657                                     packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID());
658
659                                 SetRegisterIsValid(reg, false);
660                                 if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(),
661                                                                           packet.GetString().size(),
662                                                                           response,
663                                                                           false) == GDBRemoteCommunication::PacketResult::Success)
664                                 {
665                                     if (response.IsOKResponse())
666                                         ++num_restored;
667                                 }
668                             }
669                         }
670                     }
671                     return num_restored > 0;
672                 }
673             }
674         }
675     }
676     else
677     {
678         Log *log (ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet (GDBR_LOG_THREAD | GDBR_LOG_PACKETS));
679         if (log)
680         {
681             if (log->GetVerbose())
682             {
683                 StreamString strm;
684                 gdb_comm.DumpHistory(strm);
685                 log->Printf("error: failed to get packet sequence mutex, not sending write all registers:\n%s", strm.GetData());
686             }
687             else
688                 log->Printf("error: failed to get packet sequence mutex, not sending write all registers");
689         }
690     }
691     return false;
692 }
693
694
695 uint32_t
696 GDBRemoteRegisterContext::ConvertRegisterKindToRegisterNumber (uint32_t kind, uint32_t num)
697 {
698     return m_reg_info.ConvertRegisterKindToRegisterNumber (kind, num);
699 }
700
701
702 void
703 GDBRemoteDynamicRegisterInfo::HardcodeARMRegisters(bool from_scratch)
704 {
705     // For Advanced SIMD and VFP register mapping.
706     static uint32_t g_d0_regs[] =  { 26, 27, LLDB_INVALID_REGNUM }; // (s0, s1)
707     static uint32_t g_d1_regs[] =  { 28, 29, LLDB_INVALID_REGNUM }; // (s2, s3)
708     static uint32_t g_d2_regs[] =  { 30, 31, LLDB_INVALID_REGNUM }; // (s4, s5)
709     static uint32_t g_d3_regs[] =  { 32, 33, LLDB_INVALID_REGNUM }; // (s6, s7)
710     static uint32_t g_d4_regs[] =  { 34, 35, LLDB_INVALID_REGNUM }; // (s8, s9)
711     static uint32_t g_d5_regs[] =  { 36, 37, LLDB_INVALID_REGNUM }; // (s10, s11)
712     static uint32_t g_d6_regs[] =  { 38, 39, LLDB_INVALID_REGNUM }; // (s12, s13)
713     static uint32_t g_d7_regs[] =  { 40, 41, LLDB_INVALID_REGNUM }; // (s14, s15)
714     static uint32_t g_d8_regs[] =  { 42, 43, LLDB_INVALID_REGNUM }; // (s16, s17)
715     static uint32_t g_d9_regs[] =  { 44, 45, LLDB_INVALID_REGNUM }; // (s18, s19)
716     static uint32_t g_d10_regs[] = { 46, 47, LLDB_INVALID_REGNUM }; // (s20, s21)
717     static uint32_t g_d11_regs[] = { 48, 49, LLDB_INVALID_REGNUM }; // (s22, s23)
718     static uint32_t g_d12_regs[] = { 50, 51, LLDB_INVALID_REGNUM }; // (s24, s25)
719     static uint32_t g_d13_regs[] = { 52, 53, LLDB_INVALID_REGNUM }; // (s26, s27)
720     static uint32_t g_d14_regs[] = { 54, 55, LLDB_INVALID_REGNUM }; // (s28, s29)
721     static uint32_t g_d15_regs[] = { 56, 57, LLDB_INVALID_REGNUM }; // (s30, s31)
722     static uint32_t g_q0_regs[] =  { 26, 27, 28, 29, LLDB_INVALID_REGNUM }; // (d0, d1) -> (s0, s1, s2, s3)
723     static uint32_t g_q1_regs[] =  { 30, 31, 32, 33, LLDB_INVALID_REGNUM }; // (d2, d3) -> (s4, s5, s6, s7)
724     static uint32_t g_q2_regs[] =  { 34, 35, 36, 37, LLDB_INVALID_REGNUM }; // (d4, d5) -> (s8, s9, s10, s11)
725     static uint32_t g_q3_regs[] =  { 38, 39, 40, 41, LLDB_INVALID_REGNUM }; // (d6, d7) -> (s12, s13, s14, s15)
726     static uint32_t g_q4_regs[] =  { 42, 43, 44, 45, LLDB_INVALID_REGNUM }; // (d8, d9) -> (s16, s17, s18, s19)
727     static uint32_t g_q5_regs[] =  { 46, 47, 48, 49, LLDB_INVALID_REGNUM }; // (d10, d11) -> (s20, s21, s22, s23)
728     static uint32_t g_q6_regs[] =  { 50, 51, 52, 53, LLDB_INVALID_REGNUM }; // (d12, d13) -> (s24, s25, s26, s27)
729     static uint32_t g_q7_regs[] =  { 54, 55, 56, 57, LLDB_INVALID_REGNUM }; // (d14, d15) -> (s28, s29, s30, s31)
730     static uint32_t g_q8_regs[] =  { 59, 60, LLDB_INVALID_REGNUM }; // (d16, d17)
731     static uint32_t g_q9_regs[] =  { 61, 62, LLDB_INVALID_REGNUM }; // (d18, d19)
732     static uint32_t g_q10_regs[] = { 63, 64, LLDB_INVALID_REGNUM }; // (d20, d21)
733     static uint32_t g_q11_regs[] = { 65, 66, LLDB_INVALID_REGNUM }; // (d22, d23)
734     static uint32_t g_q12_regs[] = { 67, 68, LLDB_INVALID_REGNUM }; // (d24, d25)
735     static uint32_t g_q13_regs[] = { 69, 70, LLDB_INVALID_REGNUM }; // (d26, d27)
736     static uint32_t g_q14_regs[] = { 71, 72, LLDB_INVALID_REGNUM }; // (d28, d29)
737     static uint32_t g_q15_regs[] = { 73, 74, LLDB_INVALID_REGNUM }; // (d30, d31)
738
739     // This is our array of composite registers, with each element coming from the above register mappings.
740     static uint32_t *g_composites[] = {
741         g_d0_regs, g_d1_regs,  g_d2_regs,  g_d3_regs,  g_d4_regs,  g_d5_regs,  g_d6_regs,  g_d7_regs,
742         g_d8_regs, g_d9_regs, g_d10_regs, g_d11_regs, g_d12_regs, g_d13_regs, g_d14_regs, g_d15_regs,
743         g_q0_regs, g_q1_regs,  g_q2_regs,  g_q3_regs,  g_q4_regs,  g_q5_regs,  g_q6_regs,  g_q7_regs,
744         g_q8_regs, g_q9_regs, g_q10_regs, g_q11_regs, g_q12_regs, g_q13_regs, g_q14_regs, g_q15_regs
745     };
746
747     static RegisterInfo g_register_infos[] = {
748 //   NAME    ALT    SZ  OFF  ENCODING          FORMAT          COMPILER             DWARF                GENERIC                 GDB    LLDB      VALUE REGS    INVALIDATE REGS
749 //   ======  ====== === ===  =============     ============    ===================  ===================  ======================  ===    ====      ==========    ===============
750     { "r0", "arg1",   4,   0, eEncodingUint,    eFormatHex,   { gcc_r0,              dwarf_r0,            LLDB_REGNUM_GENERIC_ARG1,0,      0 },        NULL,              NULL},
751     { "r1", "arg2",   4,   0, eEncodingUint,    eFormatHex,   { gcc_r1,              dwarf_r1,            LLDB_REGNUM_GENERIC_ARG2,1,      1 },        NULL,              NULL},
752     { "r2", "arg3",   4,   0, eEncodingUint,    eFormatHex,   { gcc_r2,              dwarf_r2,            LLDB_REGNUM_GENERIC_ARG3,2,      2 },        NULL,              NULL},
753     { "r3", "arg4",   4,   0, eEncodingUint,    eFormatHex,   { gcc_r3,              dwarf_r3,            LLDB_REGNUM_GENERIC_ARG4,3,      3 },        NULL,              NULL},
754     { "r4",   NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r4,              dwarf_r4,            LLDB_INVALID_REGNUM,     4,      4 },        NULL,              NULL},
755     { "r5",   NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r5,              dwarf_r5,            LLDB_INVALID_REGNUM,     5,      5 },        NULL,              NULL},
756     { "r6",   NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r6,              dwarf_r6,            LLDB_INVALID_REGNUM,     6,      6 },        NULL,              NULL},
757     { "r7",   "fp",   4,   0, eEncodingUint,    eFormatHex,   { gcc_r7,              dwarf_r7,            LLDB_REGNUM_GENERIC_FP,  7,      7 },        NULL,              NULL},
758     { "r8",   NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r8,              dwarf_r8,            LLDB_INVALID_REGNUM,     8,      8 },        NULL,              NULL},
759     { "r9",   NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r9,              dwarf_r9,            LLDB_INVALID_REGNUM,     9,      9 },        NULL,              NULL},
760     { "r10",  NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r10,             dwarf_r10,           LLDB_INVALID_REGNUM,    10,     10 },        NULL,              NULL},
761     { "r11",  NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r11,             dwarf_r11,           LLDB_INVALID_REGNUM,    11,     11 },        NULL,              NULL},
762     { "r12",  NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r12,             dwarf_r12,           LLDB_INVALID_REGNUM,    12,     12 },        NULL,              NULL},
763     { "sp",   "r13",  4,   0, eEncodingUint,    eFormatHex,   { gcc_sp,              dwarf_sp,            LLDB_REGNUM_GENERIC_SP, 13,     13 },        NULL,              NULL},
764     { "lr",   "r14",  4,   0, eEncodingUint,    eFormatHex,   { gcc_lr,              dwarf_lr,            LLDB_REGNUM_GENERIC_RA, 14,     14 },        NULL,              NULL},
765     { "pc",   "r15",  4,   0, eEncodingUint,    eFormatHex,   { gcc_pc,              dwarf_pc,            LLDB_REGNUM_GENERIC_PC, 15,     15 },        NULL,              NULL},
766     { "f0",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    16,     16 },        NULL,              NULL},
767     { "f1",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    17,     17 },        NULL,              NULL},
768     { "f2",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    18,     18 },        NULL,              NULL},
769     { "f3",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    19,     19 },        NULL,              NULL},
770     { "f4",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    20,     20 },        NULL,              NULL},
771     { "f5",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    21,     21 },        NULL,              NULL},
772     { "f6",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    22,     22 },        NULL,              NULL},
773     { "f7",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    23,     23 },        NULL,              NULL},
774     { "fps",  NULL,   4,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    24,     24 },        NULL,              NULL},
775     { "cpsr","flags", 4,   0, eEncodingUint,    eFormatHex,   { gcc_cpsr,            dwarf_cpsr,          LLDB_INVALID_REGNUM,    25,     25 },        NULL,              NULL},
776     { "s0",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s0,            LLDB_INVALID_REGNUM,    26,     26 },        NULL,              NULL},
777     { "s1",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s1,            LLDB_INVALID_REGNUM,    27,     27 },        NULL,              NULL},
778     { "s2",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s2,            LLDB_INVALID_REGNUM,    28,     28 },        NULL,              NULL},
779     { "s3",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s3,            LLDB_INVALID_REGNUM,    29,     29 },        NULL,              NULL},
780     { "s4",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s4,            LLDB_INVALID_REGNUM,    30,     30 },        NULL,              NULL},
781     { "s5",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s5,            LLDB_INVALID_REGNUM,    31,     31 },        NULL,              NULL},
782     { "s6",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s6,            LLDB_INVALID_REGNUM,    32,     32 },        NULL,              NULL},
783     { "s7",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s7,            LLDB_INVALID_REGNUM,    33,     33 },        NULL,              NULL},
784     { "s8",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s8,            LLDB_INVALID_REGNUM,    34,     34 },        NULL,              NULL},
785     { "s9",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s9,            LLDB_INVALID_REGNUM,    35,     35 },        NULL,              NULL},
786     { "s10",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s10,           LLDB_INVALID_REGNUM,    36,     36 },        NULL,              NULL},
787     { "s11",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s11,           LLDB_INVALID_REGNUM,    37,     37 },        NULL,              NULL},
788     { "s12",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s12,           LLDB_INVALID_REGNUM,    38,     38 },        NULL,              NULL},
789     { "s13",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s13,           LLDB_INVALID_REGNUM,    39,     39 },        NULL,              NULL},
790     { "s14",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s14,           LLDB_INVALID_REGNUM,    40,     40 },        NULL,              NULL},
791     { "s15",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s15,           LLDB_INVALID_REGNUM,    41,     41 },        NULL,              NULL},
792     { "s16",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s16,           LLDB_INVALID_REGNUM,    42,     42 },        NULL,              NULL},
793     { "s17",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s17,           LLDB_INVALID_REGNUM,    43,     43 },        NULL,              NULL},
794     { "s18",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s18,           LLDB_INVALID_REGNUM,    44,     44 },        NULL,              NULL},
795     { "s19",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s19,           LLDB_INVALID_REGNUM,    45,     45 },        NULL,              NULL},
796     { "s20",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s20,           LLDB_INVALID_REGNUM,    46,     46 },        NULL,              NULL},
797     { "s21",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s21,           LLDB_INVALID_REGNUM,    47,     47 },        NULL,              NULL},
798     { "s22",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s22,           LLDB_INVALID_REGNUM,    48,     48 },        NULL,              NULL},
799     { "s23",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s23,           LLDB_INVALID_REGNUM,    49,     49 },        NULL,              NULL},
800     { "s24",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s24,           LLDB_INVALID_REGNUM,    50,     50 },        NULL,              NULL},
801     { "s25",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s25,           LLDB_INVALID_REGNUM,    51,     51 },        NULL,              NULL},
802     { "s26",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s26,           LLDB_INVALID_REGNUM,    52,     52 },        NULL,              NULL},
803     { "s27",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s27,           LLDB_INVALID_REGNUM,    53,     53 },        NULL,              NULL},
804     { "s28",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s28,           LLDB_INVALID_REGNUM,    54,     54 },        NULL,              NULL},
805     { "s29",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s29,           LLDB_INVALID_REGNUM,    55,     55 },        NULL,              NULL},
806     { "s30",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s30,           LLDB_INVALID_REGNUM,    56,     56 },        NULL,              NULL},
807     { "s31",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s31,           LLDB_INVALID_REGNUM,    57,     57 },        NULL,              NULL},
808     { "fpscr",NULL,   4,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    58,     58 },        NULL,              NULL},
809     { "d16",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d16,           LLDB_INVALID_REGNUM,    59,     59 },        NULL,              NULL},
810     { "d17",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d17,           LLDB_INVALID_REGNUM,    60,     60 },        NULL,              NULL},
811     { "d18",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d18,           LLDB_INVALID_REGNUM,    61,     61 },        NULL,              NULL},
812     { "d19",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d19,           LLDB_INVALID_REGNUM,    62,     62 },        NULL,              NULL},
813     { "d20",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d20,           LLDB_INVALID_REGNUM,    63,     63 },        NULL,              NULL},
814     { "d21",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d21,           LLDB_INVALID_REGNUM,    64,     64 },        NULL,              NULL},
815     { "d22",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d22,           LLDB_INVALID_REGNUM,    65,     65 },        NULL,              NULL},
816     { "d23",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d23,           LLDB_INVALID_REGNUM,    66,     66 },        NULL,              NULL},
817     { "d24",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d24,           LLDB_INVALID_REGNUM,    67,     67 },        NULL,              NULL},
818     { "d25",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d25,           LLDB_INVALID_REGNUM,    68,     68 },        NULL,              NULL},
819     { "d26",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d26,           LLDB_INVALID_REGNUM,    69,     69 },        NULL,              NULL},
820     { "d27",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d27,           LLDB_INVALID_REGNUM,    70,     70 },        NULL,              NULL},
821     { "d28",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d28,           LLDB_INVALID_REGNUM,    71,     71 },        NULL,              NULL},
822     { "d29",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d29,           LLDB_INVALID_REGNUM,    72,     72 },        NULL,              NULL},
823     { "d30",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d30,           LLDB_INVALID_REGNUM,    73,     73 },        NULL,              NULL},
824     { "d31",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d31,           LLDB_INVALID_REGNUM,    74,     74 },        NULL,              NULL},
825     { "d0",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d0,            LLDB_INVALID_REGNUM,    75,     75 },   g_d0_regs,              NULL},
826     { "d1",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d1,            LLDB_INVALID_REGNUM,    76,     76 },   g_d1_regs,              NULL},
827     { "d2",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d2,            LLDB_INVALID_REGNUM,    77,     77 },   g_d2_regs,              NULL},
828     { "d3",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d3,            LLDB_INVALID_REGNUM,    78,     78 },   g_d3_regs,              NULL},
829     { "d4",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d4,            LLDB_INVALID_REGNUM,    79,     79 },   g_d4_regs,              NULL},
830     { "d5",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d5,            LLDB_INVALID_REGNUM,    80,     80 },   g_d5_regs,              NULL},
831     { "d6",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d6,            LLDB_INVALID_REGNUM,    81,     81 },   g_d6_regs,              NULL},
832     { "d7",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d7,            LLDB_INVALID_REGNUM,    82,     82 },   g_d7_regs,              NULL},
833     { "d8",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d8,            LLDB_INVALID_REGNUM,    83,     83 },   g_d8_regs,              NULL},
834     { "d9",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d9,            LLDB_INVALID_REGNUM,    84,     84 },   g_d9_regs,              NULL},
835     { "d10",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d10,           LLDB_INVALID_REGNUM,    85,     85 },  g_d10_regs,              NULL},
836     { "d11",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d11,           LLDB_INVALID_REGNUM,    86,     86 },  g_d11_regs,              NULL},
837     { "d12",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d12,           LLDB_INVALID_REGNUM,    87,     87 },  g_d12_regs,              NULL},
838     { "d13",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d13,           LLDB_INVALID_REGNUM,    88,     88 },  g_d13_regs,              NULL},
839     { "d14",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d14,           LLDB_INVALID_REGNUM,    89,     89 },  g_d14_regs,              NULL},
840     { "d15",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d15,           LLDB_INVALID_REGNUM,    90,     90 },  g_d15_regs,              NULL},
841     { "q0",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q0,    LLDB_INVALID_REGNUM,    91,     91 },   g_q0_regs,              NULL},
842     { "q1",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q1,    LLDB_INVALID_REGNUM,    92,     92 },   g_q1_regs,              NULL},
843     { "q2",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q2,    LLDB_INVALID_REGNUM,    93,     93 },   g_q2_regs,              NULL},
844     { "q3",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q3,    LLDB_INVALID_REGNUM,    94,     94 },   g_q3_regs,              NULL},
845     { "q4",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q4,    LLDB_INVALID_REGNUM,    95,     95 },   g_q4_regs,              NULL},
846     { "q5",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q5,    LLDB_INVALID_REGNUM,    96,     96 },   g_q5_regs,              NULL},
847     { "q6",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q6,    LLDB_INVALID_REGNUM,    97,     97 },   g_q6_regs,              NULL},
848     { "q7",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q7,    LLDB_INVALID_REGNUM,    98,     98 },   g_q7_regs,              NULL},
849     { "q8",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q8,    LLDB_INVALID_REGNUM,    99,     99 },   g_q8_regs,              NULL},
850     { "q9",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q9,    LLDB_INVALID_REGNUM,   100,    100 },   g_q9_regs,              NULL},
851     { "q10",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q10,   LLDB_INVALID_REGNUM,   101,    101 },  g_q10_regs,              NULL},
852     { "q11",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q11,   LLDB_INVALID_REGNUM,   102,    102 },  g_q11_regs,              NULL},
853     { "q12",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q12,   LLDB_INVALID_REGNUM,   103,    103 },  g_q12_regs,              NULL},
854     { "q13",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q13,   LLDB_INVALID_REGNUM,   104,    104 },  g_q13_regs,              NULL},
855     { "q14",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q14,   LLDB_INVALID_REGNUM,   105,    105 },  g_q14_regs,              NULL},
856     { "q15",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q15,   LLDB_INVALID_REGNUM,   106,    106 },  g_q15_regs,              NULL}
857     };
858
859     static const uint32_t num_registers = llvm::array_lengthof(g_register_infos);
860     static ConstString gpr_reg_set ("General Purpose Registers");
861     static ConstString sfp_reg_set ("Software Floating Point Registers");
862     static ConstString vfp_reg_set ("Floating Point Registers");
863     size_t i;
864     if (from_scratch)
865     {
866         // Calculate the offsets of the registers
867         // Note that the layout of the "composite" registers (d0-d15 and q0-q15) which comes after the
868         // "primordial" registers is important.  This enables us to calculate the offset of the composite
869         // register by using the offset of its first primordial register.  For example, to calculate the
870         // offset of q0, use s0's offset.
871         if (g_register_infos[2].byte_offset == 0)
872         {
873             uint32_t byte_offset = 0;
874             for (i=0; i<num_registers; ++i)
875             {
876                 // For primordial registers, increment the byte_offset by the byte_size to arrive at the
877                 // byte_offset for the next register.  Otherwise, we have a composite register whose
878                 // offset can be calculated by consulting the offset of its first primordial register.
879                 if (!g_register_infos[i].value_regs)
880                 {
881                     g_register_infos[i].byte_offset = byte_offset;
882                     byte_offset += g_register_infos[i].byte_size;
883                 }
884                 else
885                 {
886                     const uint32_t first_primordial_reg = g_register_infos[i].value_regs[0];
887                     g_register_infos[i].byte_offset = g_register_infos[first_primordial_reg].byte_offset;
888                 }
889             }
890         }
891         for (i=0; i<num_registers; ++i)
892         {
893             ConstString name;
894             ConstString alt_name;
895             if (g_register_infos[i].name && g_register_infos[i].name[0])
896                 name.SetCString(g_register_infos[i].name);
897             if (g_register_infos[i].alt_name && g_register_infos[i].alt_name[0])
898                 alt_name.SetCString(g_register_infos[i].alt_name);
899
900             if (i <= 15 || i == 25)
901                 AddRegister (g_register_infos[i], name, alt_name, gpr_reg_set);
902             else if (i <= 24)
903                 AddRegister (g_register_infos[i], name, alt_name, sfp_reg_set);
904             else
905                 AddRegister (g_register_infos[i], name, alt_name, vfp_reg_set);
906         }
907     }
908     else
909     {
910         // Add composite registers to our primordial registers, then.
911         const size_t num_composites = llvm::array_lengthof(g_composites);
912         const size_t num_dynamic_regs = GetNumRegisters();
913         const size_t num_common_regs = num_registers - num_composites;
914         RegisterInfo *g_comp_register_infos = g_register_infos + num_common_regs;
915
916         // First we need to validate that all registers that we already have match the non composite regs.
917         // If so, then we can add the registers, else we need to bail
918         bool match = true;
919         if (num_dynamic_regs == num_common_regs)
920         {
921             for (i=0; match && i<num_dynamic_regs; ++i)
922             {
923                 // Make sure all register names match
924                 if (m_regs[i].name && g_register_infos[i].name)
925                 {
926                     if (strcmp(m_regs[i].name, g_register_infos[i].name))
927                     {
928                         match = false;
929                         break;
930                     }
931                 }
932                 
933                 // Make sure all register byte sizes match
934                 if (m_regs[i].byte_size != g_register_infos[i].byte_size)
935                 {
936                     match = false;
937                     break;
938                 }
939             }
940         }
941         else
942         {
943             // Wrong number of registers.
944             match = false;
945         }
946         // If "match" is true, then we can add extra registers.
947         if (match)
948         {
949             for (i=0; i<num_composites; ++i)
950             {
951                 ConstString name;
952                 ConstString alt_name;
953                 const uint32_t first_primordial_reg = g_comp_register_infos[i].value_regs[0];
954                 const char *reg_name = g_register_infos[first_primordial_reg].name;
955                 if (reg_name && reg_name[0])
956                 {
957                     for (uint32_t j = 0; j < num_dynamic_regs; ++j)
958                     {
959                         const RegisterInfo *reg_info = GetRegisterInfoAtIndex(j);
960                         // Find a matching primordial register info entry.
961                         if (reg_info && reg_info->name && ::strcasecmp(reg_info->name, reg_name) == 0)
962                         {
963                             // The name matches the existing primordial entry.
964                             // Find and assign the offset, and then add this composite register entry.
965                             g_comp_register_infos[i].byte_offset = reg_info->byte_offset;
966                             name.SetCString(g_comp_register_infos[i].name);
967                             AddRegister(g_comp_register_infos[i], name, alt_name, vfp_reg_set);
968                         }
969                     }
970                 }
971             }
972         }
973     }
974 }