]> CyberLeo.Net >> Repos - FreeBSD/releng/10.2.git/blob - contrib/ntp/ntpd/ntp_control.c
- Copy stable/10@285827 to releng/10.2 in preparation for 10.2-RC1
[FreeBSD/releng/10.2.git] / contrib / ntp / ntpd / ntp_control.c
1 /*
2  * ntp_control.c - respond to mode 6 control messages and send async
3  *                 traps.  Provides service to ntpq and others.
4  */
5
6 /*
7  * $FreeBSD: stable/10/contrib/ntp/ntpd/ntp_control.c 276072 2014-12-22 19:07:16Z delphij $
8  */
9
10 #ifdef HAVE_CONFIG_H
11 # include <config.h>
12 #endif
13
14 #include <stdio.h>
15 #include <ctype.h>
16 #include <signal.h>
17 #include <sys/stat.h>
18 #ifdef HAVE_NETINET_IN_H
19 # include <netinet/in.h>
20 #endif
21 #include <arpa/inet.h>
22
23 #include "ntpd.h"
24 #include "ntp_io.h"
25 #include "ntp_refclock.h"
26 #include "ntp_control.h"
27 #include "ntp_unixtime.h"
28 #include "ntp_stdlib.h"
29 #include "ntp_config.h"
30 #include "ntp_crypto.h"
31 #include "ntp_assert.h"
32 #include "ntp_leapsec.h"
33 #include "ntp_md5.h"    /* provides OpenSSL digest API */
34 #include "lib_strbuf.h"
35 #ifdef KERNEL_PLL
36 # include "ntp_syscall.h"
37 #endif
38
39 extern size_t remoteconfig_cmdlength( const char *src_buf, const char *src_end );
40
41 #ifndef MIN
42 #define MIN(a, b) (((a) <= (b)) ? (a) : (b))
43 #endif
44
45 /*
46  * Structure to hold request procedure information
47  */
48
49 struct ctl_proc {
50         short control_code;             /* defined request code */
51 #define NO_REQUEST      (-1)
52         u_short flags;                  /* flags word */
53         /* Only one flag.  Authentication required or not. */
54 #define NOAUTH  0
55 #define AUTH    1
56         void (*handler) (struct recvbuf *, int); /* handle request */
57 };
58
59
60 /*
61  * Request processing routines
62  */
63 static  void    ctl_error       (u_char);
64 #ifdef REFCLOCK
65 static  u_short ctlclkstatus    (struct refclockstat *);
66 #endif
67 static  void    ctl_flushpkt    (u_char);
68 static  void    ctl_putdata     (const char *, unsigned int, int);
69 static  void    ctl_putstr      (const char *, const char *, size_t);
70 static  void    ctl_putdblf     (const char *, int, int, double);
71 #define ctl_putdbl(tag, d)      ctl_putdblf(tag, 1, 3, d)
72 #define ctl_putdbl6(tag, d)     ctl_putdblf(tag, 1, 6, d)
73 #define ctl_putsfp(tag, sfp)    ctl_putdblf(tag, 0, -1, \
74                                             FPTOD(sfp))
75 static  void    ctl_putuint     (const char *, u_long);
76 static  void    ctl_puthex      (const char *, u_long);
77 static  void    ctl_putint      (const char *, long);
78 static  void    ctl_putts       (const char *, l_fp *);
79 static  void    ctl_putadr      (const char *, u_int32,
80                                  sockaddr_u *);
81 static  void    ctl_putrefid    (const char *, u_int32);
82 static  void    ctl_putarray    (const char *, double *, int);
83 static  void    ctl_putsys      (int);
84 static  void    ctl_putpeer     (int, struct peer *);
85 static  void    ctl_putfs       (const char *, tstamp_t);
86 #ifdef REFCLOCK
87 static  void    ctl_putclock    (int, struct refclockstat *, int);
88 #endif  /* REFCLOCK */
89 static  const struct ctl_var *ctl_getitem(const struct ctl_var *,
90                                           char **);
91 static  u_short count_var       (const struct ctl_var *);
92 static  void    control_unspec  (struct recvbuf *, int);
93 static  void    read_status     (struct recvbuf *, int);
94 static  void    read_sysvars    (void);
95 static  void    read_peervars   (void);
96 static  void    read_variables  (struct recvbuf *, int);
97 static  void    write_variables (struct recvbuf *, int);
98 static  void    read_clockstatus(struct recvbuf *, int);
99 static  void    write_clockstatus(struct recvbuf *, int);
100 static  void    set_trap        (struct recvbuf *, int);
101 static  void    save_config     (struct recvbuf *, int);
102 static  void    configure       (struct recvbuf *, int);
103 static  void    send_mru_entry  (mon_entry *, int);
104 static  void    send_random_tag_value(int);
105 static  void    read_mru_list   (struct recvbuf *, int);
106 static  void    send_ifstats_entry(endpt *, u_int);
107 static  void    read_ifstats    (struct recvbuf *);
108 static  void    sockaddrs_from_restrict_u(sockaddr_u *, sockaddr_u *,
109                                           restrict_u *, int);
110 static  void    send_restrict_entry(restrict_u *, int, u_int);
111 static  void    send_restrict_list(restrict_u *, int, u_int *);
112 static  void    read_addr_restrictions(struct recvbuf *);
113 static  void    read_ordlist    (struct recvbuf *, int);
114 static  u_int32 derive_nonce    (sockaddr_u *, u_int32, u_int32);
115 static  void    generate_nonce  (struct recvbuf *, char *, size_t);
116 static  int     validate_nonce  (const char *, struct recvbuf *);
117 static  void    req_nonce       (struct recvbuf *, int);
118 static  void    unset_trap      (struct recvbuf *, int);
119 static  struct ctl_trap *ctlfindtrap(sockaddr_u *,
120                                      struct interface *);
121
122 static const struct ctl_proc control_codes[] = {
123         { CTL_OP_UNSPEC,                NOAUTH, control_unspec },
124         { CTL_OP_READSTAT,              NOAUTH, read_status },
125         { CTL_OP_READVAR,               NOAUTH, read_variables },
126         { CTL_OP_WRITEVAR,              AUTH,   write_variables },
127         { CTL_OP_READCLOCK,             NOAUTH, read_clockstatus },
128         { CTL_OP_WRITECLOCK,            NOAUTH, write_clockstatus },
129         { CTL_OP_SETTRAP,               NOAUTH, set_trap },
130         { CTL_OP_CONFIGURE,             AUTH,   configure },
131         { CTL_OP_SAVECONFIG,            AUTH,   save_config },
132         { CTL_OP_READ_MRU,              NOAUTH, read_mru_list },
133         { CTL_OP_READ_ORDLIST_A,        AUTH,   read_ordlist },
134         { CTL_OP_REQ_NONCE,             NOAUTH, req_nonce },
135         { CTL_OP_UNSETTRAP,             NOAUTH, unset_trap },
136         { NO_REQUEST,                   0,      NULL }
137 };
138
139 /*
140  * System variables we understand
141  */
142 #define CS_LEAP                 1
143 #define CS_STRATUM              2
144 #define CS_PRECISION            3
145 #define CS_ROOTDELAY            4
146 #define CS_ROOTDISPERSION       5
147 #define CS_REFID                6
148 #define CS_REFTIME              7
149 #define CS_POLL                 8
150 #define CS_PEERID               9
151 #define CS_OFFSET               10
152 #define CS_DRIFT                11
153 #define CS_JITTER               12
154 #define CS_ERROR                13
155 #define CS_CLOCK                14
156 #define CS_PROCESSOR            15
157 #define CS_SYSTEM               16
158 #define CS_VERSION              17
159 #define CS_STABIL               18
160 #define CS_VARLIST              19
161 #define CS_TAI                  20
162 #define CS_LEAPTAB              21
163 #define CS_LEAPEND              22
164 #define CS_RATE                 23
165 #define CS_MRU_ENABLED          24
166 #define CS_MRU_DEPTH            25
167 #define CS_MRU_DEEPEST          26
168 #define CS_MRU_MINDEPTH         27
169 #define CS_MRU_MAXAGE           28
170 #define CS_MRU_MAXDEPTH         29
171 #define CS_MRU_MEM              30
172 #define CS_MRU_MAXMEM           31
173 #define CS_SS_UPTIME            32
174 #define CS_SS_RESET             33
175 #define CS_SS_RECEIVED          34
176 #define CS_SS_THISVER           35
177 #define CS_SS_OLDVER            36
178 #define CS_SS_BADFORMAT         37
179 #define CS_SS_BADAUTH           38
180 #define CS_SS_DECLINED          39
181 #define CS_SS_RESTRICTED        40
182 #define CS_SS_LIMITED           41
183 #define CS_SS_KODSENT           42
184 #define CS_SS_PROCESSED         43
185 #define CS_PEERADR              44
186 #define CS_PEERMODE             45
187 #define CS_BCASTDELAY           46
188 #define CS_AUTHDELAY            47
189 #define CS_AUTHKEYS             48
190 #define CS_AUTHFREEK            49
191 #define CS_AUTHKLOOKUPS         50
192 #define CS_AUTHKNOTFOUND        51
193 #define CS_AUTHKUNCACHED        52
194 #define CS_AUTHKEXPIRED         53
195 #define CS_AUTHENCRYPTS         54
196 #define CS_AUTHDECRYPTS         55
197 #define CS_AUTHRESET            56
198 #define CS_K_OFFSET             57
199 #define CS_K_FREQ               58
200 #define CS_K_MAXERR             59
201 #define CS_K_ESTERR             60
202 #define CS_K_STFLAGS            61
203 #define CS_K_TIMECONST          62
204 #define CS_K_PRECISION          63
205 #define CS_K_FREQTOL            64
206 #define CS_K_PPS_FREQ           65
207 #define CS_K_PPS_STABIL         66
208 #define CS_K_PPS_JITTER         67
209 #define CS_K_PPS_CALIBDUR       68
210 #define CS_K_PPS_CALIBS         69
211 #define CS_K_PPS_CALIBERRS      70
212 #define CS_K_PPS_JITEXC         71
213 #define CS_K_PPS_STBEXC         72
214 #define CS_KERN_FIRST           CS_K_OFFSET
215 #define CS_KERN_LAST            CS_K_PPS_STBEXC
216 #define CS_IOSTATS_RESET        73
217 #define CS_TOTAL_RBUF           74
218 #define CS_FREE_RBUF            75
219 #define CS_USED_RBUF            76
220 #define CS_RBUF_LOWATER         77
221 #define CS_IO_DROPPED           78
222 #define CS_IO_IGNORED           79
223 #define CS_IO_RECEIVED          80
224 #define CS_IO_SENT              81
225 #define CS_IO_SENDFAILED        82
226 #define CS_IO_WAKEUPS           83
227 #define CS_IO_GOODWAKEUPS       84
228 #define CS_TIMERSTATS_RESET     85
229 #define CS_TIMER_OVERRUNS       86
230 #define CS_TIMER_XMTS           87
231 #define CS_FUZZ                 88
232 #define CS_WANDER_THRESH        89
233 #define CS_LEAPSMEARINTV        90
234 #define CS_LEAPSMEAROFFS        91
235 #define CS_MAX_NOAUTOKEY        CS_LEAPSMEAROFFS
236 #ifdef AUTOKEY
237 #define CS_FLAGS                (1 + CS_MAX_NOAUTOKEY)
238 #define CS_HOST                 (2 + CS_MAX_NOAUTOKEY)
239 #define CS_PUBLIC               (3 + CS_MAX_NOAUTOKEY)
240 #define CS_CERTIF               (4 + CS_MAX_NOAUTOKEY)
241 #define CS_SIGNATURE            (5 + CS_MAX_NOAUTOKEY)
242 #define CS_REVTIME              (6 + CS_MAX_NOAUTOKEY)
243 #define CS_IDENT                (7 + CS_MAX_NOAUTOKEY)
244 #define CS_DIGEST               (8 + CS_MAX_NOAUTOKEY)
245 #define CS_MAXCODE              CS_DIGEST
246 #else   /* !AUTOKEY follows */
247 #define CS_MAXCODE              CS_MAX_NOAUTOKEY
248 #endif  /* !AUTOKEY */
249
250 /*
251  * Peer variables we understand
252  */
253 #define CP_CONFIG               1
254 #define CP_AUTHENABLE           2
255 #define CP_AUTHENTIC            3
256 #define CP_SRCADR               4
257 #define CP_SRCPORT              5
258 #define CP_DSTADR               6
259 #define CP_DSTPORT              7
260 #define CP_LEAP                 8
261 #define CP_HMODE                9
262 #define CP_STRATUM              10
263 #define CP_PPOLL                11
264 #define CP_HPOLL                12
265 #define CP_PRECISION            13
266 #define CP_ROOTDELAY            14
267 #define CP_ROOTDISPERSION       15
268 #define CP_REFID                16
269 #define CP_REFTIME              17
270 #define CP_ORG                  18
271 #define CP_REC                  19
272 #define CP_XMT                  20
273 #define CP_REACH                21
274 #define CP_UNREACH              22
275 #define CP_TIMER                23
276 #define CP_DELAY                24
277 #define CP_OFFSET               25
278 #define CP_JITTER               26
279 #define CP_DISPERSION           27
280 #define CP_KEYID                28
281 #define CP_FILTDELAY            29
282 #define CP_FILTOFFSET           30
283 #define CP_PMODE                31
284 #define CP_RECEIVED             32
285 #define CP_SENT                 33
286 #define CP_FILTERROR            34
287 #define CP_FLASH                35
288 #define CP_TTL                  36
289 #define CP_VARLIST              37
290 #define CP_IN                   38
291 #define CP_OUT                  39
292 #define CP_RATE                 40
293 #define CP_BIAS                 41
294 #define CP_SRCHOST              42
295 #define CP_TIMEREC              43
296 #define CP_TIMEREACH            44
297 #define CP_BADAUTH              45
298 #define CP_BOGUSORG             46
299 #define CP_OLDPKT               47
300 #define CP_SELDISP              48
301 #define CP_SELBROKEN            49
302 #define CP_CANDIDATE            50
303 #define CP_MAX_NOAUTOKEY        CP_CANDIDATE
304 #ifdef AUTOKEY
305 #define CP_FLAGS                (1 + CP_MAX_NOAUTOKEY)
306 #define CP_HOST                 (2 + CP_MAX_NOAUTOKEY)
307 #define CP_VALID                (3 + CP_MAX_NOAUTOKEY)
308 #define CP_INITSEQ              (4 + CP_MAX_NOAUTOKEY)
309 #define CP_INITKEY              (5 + CP_MAX_NOAUTOKEY)
310 #define CP_INITTSP              (6 + CP_MAX_NOAUTOKEY)
311 #define CP_SIGNATURE            (7 + CP_MAX_NOAUTOKEY)
312 #define CP_IDENT                (8 + CP_MAX_NOAUTOKEY)
313 #define CP_MAXCODE              CP_IDENT
314 #else   /* !AUTOKEY follows */
315 #define CP_MAXCODE              CP_MAX_NOAUTOKEY
316 #endif  /* !AUTOKEY */
317
318 /*
319  * Clock variables we understand
320  */
321 #define CC_TYPE         1
322 #define CC_TIMECODE     2
323 #define CC_POLL         3
324 #define CC_NOREPLY      4
325 #define CC_BADFORMAT    5
326 #define CC_BADDATA      6
327 #define CC_FUDGETIME1   7
328 #define CC_FUDGETIME2   8
329 #define CC_FUDGEVAL1    9
330 #define CC_FUDGEVAL2    10
331 #define CC_FLAGS        11
332 #define CC_DEVICE       12
333 #define CC_VARLIST      13
334 #define CC_MAXCODE      CC_VARLIST
335
336 /*
337  * System variable values. The array can be indexed by the variable
338  * index to find the textual name.
339  */
340 static const struct ctl_var sys_var[] = {
341         { 0,            PADDING, "" },          /* 0 */
342         { CS_LEAP,      RW, "leap" },           /* 1 */
343         { CS_STRATUM,   RO, "stratum" },        /* 2 */
344         { CS_PRECISION, RO, "precision" },      /* 3 */
345         { CS_ROOTDELAY, RO, "rootdelay" },      /* 4 */
346         { CS_ROOTDISPERSION, RO, "rootdisp" },  /* 5 */
347         { CS_REFID,     RO, "refid" },          /* 6 */
348         { CS_REFTIME,   RO, "reftime" },        /* 7 */
349         { CS_POLL,      RO, "tc" },             /* 8 */
350         { CS_PEERID,    RO, "peer" },           /* 9 */
351         { CS_OFFSET,    RO, "offset" },         /* 10 */
352         { CS_DRIFT,     RO, "frequency" },      /* 11 */
353         { CS_JITTER,    RO, "sys_jitter" },     /* 12 */
354         { CS_ERROR,     RO, "clk_jitter" },     /* 13 */
355         { CS_CLOCK,     RO, "clock" },          /* 14 */
356         { CS_PROCESSOR, RO, "processor" },      /* 15 */
357         { CS_SYSTEM,    RO, "system" },         /* 16 */
358         { CS_VERSION,   RO, "version" },        /* 17 */
359         { CS_STABIL,    RO, "clk_wander" },     /* 18 */
360         { CS_VARLIST,   RO, "sys_var_list" },   /* 19 */
361         { CS_TAI,       RO, "tai" },            /* 20 */
362         { CS_LEAPTAB,   RO, "leapsec" },        /* 21 */
363         { CS_LEAPEND,   RO, "expire" },         /* 22 */
364         { CS_RATE,      RO, "mintc" },          /* 23 */
365         { CS_MRU_ENABLED,       RO, "mru_enabled" },    /* 24 */
366         { CS_MRU_DEPTH,         RO, "mru_depth" },      /* 25 */
367         { CS_MRU_DEEPEST,       RO, "mru_deepest" },    /* 26 */
368         { CS_MRU_MINDEPTH,      RO, "mru_mindepth" },   /* 27 */
369         { CS_MRU_MAXAGE,        RO, "mru_maxage" },     /* 28 */
370         { CS_MRU_MAXDEPTH,      RO, "mru_maxdepth" },   /* 29 */
371         { CS_MRU_MEM,           RO, "mru_mem" },        /* 30 */
372         { CS_MRU_MAXMEM,        RO, "mru_maxmem" },     /* 31 */
373         { CS_SS_UPTIME,         RO, "ss_uptime" },      /* 32 */
374         { CS_SS_RESET,          RO, "ss_reset" },       /* 33 */
375         { CS_SS_RECEIVED,       RO, "ss_received" },    /* 34 */
376         { CS_SS_THISVER,        RO, "ss_thisver" },     /* 35 */
377         { CS_SS_OLDVER,         RO, "ss_oldver" },      /* 36 */
378         { CS_SS_BADFORMAT,      RO, "ss_badformat" },   /* 37 */
379         { CS_SS_BADAUTH,        RO, "ss_badauth" },     /* 38 */
380         { CS_SS_DECLINED,       RO, "ss_declined" },    /* 39 */
381         { CS_SS_RESTRICTED,     RO, "ss_restricted" },  /* 40 */
382         { CS_SS_LIMITED,        RO, "ss_limited" },     /* 41 */
383         { CS_SS_KODSENT,        RO, "ss_kodsent" },     /* 42 */
384         { CS_SS_PROCESSED,      RO, "ss_processed" },   /* 43 */
385         { CS_PEERADR,           RO, "peeradr" },        /* 44 */
386         { CS_PEERMODE,          RO, "peermode" },       /* 45 */
387         { CS_BCASTDELAY,        RO, "bcastdelay" },     /* 46 */
388         { CS_AUTHDELAY,         RO, "authdelay" },      /* 47 */
389         { CS_AUTHKEYS,          RO, "authkeys" },       /* 48 */
390         { CS_AUTHFREEK,         RO, "authfreek" },      /* 49 */
391         { CS_AUTHKLOOKUPS,      RO, "authklookups" },   /* 50 */
392         { CS_AUTHKNOTFOUND,     RO, "authknotfound" },  /* 51 */
393         { CS_AUTHKUNCACHED,     RO, "authkuncached" },  /* 52 */
394         { CS_AUTHKEXPIRED,      RO, "authkexpired" },   /* 53 */
395         { CS_AUTHENCRYPTS,      RO, "authencrypts" },   /* 54 */
396         { CS_AUTHDECRYPTS,      RO, "authdecrypts" },   /* 55 */
397         { CS_AUTHRESET,         RO, "authreset" },      /* 56 */
398         { CS_K_OFFSET,          RO, "koffset" },        /* 57 */
399         { CS_K_FREQ,            RO, "kfreq" },          /* 58 */
400         { CS_K_MAXERR,          RO, "kmaxerr" },        /* 59 */
401         { CS_K_ESTERR,          RO, "kesterr" },        /* 60 */
402         { CS_K_STFLAGS,         RO, "kstflags" },       /* 61 */
403         { CS_K_TIMECONST,       RO, "ktimeconst" },     /* 62 */
404         { CS_K_PRECISION,       RO, "kprecis" },        /* 63 */
405         { CS_K_FREQTOL,         RO, "kfreqtol" },       /* 64 */
406         { CS_K_PPS_FREQ,        RO, "kppsfreq" },       /* 65 */
407         { CS_K_PPS_STABIL,      RO, "kppsstab" },       /* 66 */
408         { CS_K_PPS_JITTER,      RO, "kppsjitter" },     /* 67 */
409         { CS_K_PPS_CALIBDUR,    RO, "kppscalibdur" },   /* 68 */
410         { CS_K_PPS_CALIBS,      RO, "kppscalibs" },     /* 69 */
411         { CS_K_PPS_CALIBERRS,   RO, "kppscaliberrs" },  /* 70 */
412         { CS_K_PPS_JITEXC,      RO, "kppsjitexc" },     /* 71 */
413         { CS_K_PPS_STBEXC,      RO, "kppsstbexc" },     /* 72 */
414         { CS_IOSTATS_RESET,     RO, "iostats_reset" },  /* 73 */
415         { CS_TOTAL_RBUF,        RO, "total_rbuf" },     /* 74 */
416         { CS_FREE_RBUF,         RO, "free_rbuf" },      /* 75 */
417         { CS_USED_RBUF,         RO, "used_rbuf" },      /* 76 */
418         { CS_RBUF_LOWATER,      RO, "rbuf_lowater" },   /* 77 */
419         { CS_IO_DROPPED,        RO, "io_dropped" },     /* 78 */
420         { CS_IO_IGNORED,        RO, "io_ignored" },     /* 79 */
421         { CS_IO_RECEIVED,       RO, "io_received" },    /* 80 */
422         { CS_IO_SENT,           RO, "io_sent" },        /* 81 */
423         { CS_IO_SENDFAILED,     RO, "io_sendfailed" },  /* 82 */
424         { CS_IO_WAKEUPS,        RO, "io_wakeups" },     /* 83 */
425         { CS_IO_GOODWAKEUPS,    RO, "io_goodwakeups" }, /* 84 */
426         { CS_TIMERSTATS_RESET,  RO, "timerstats_reset" },/* 85 */
427         { CS_TIMER_OVERRUNS,    RO, "timer_overruns" }, /* 86 */
428         { CS_TIMER_XMTS,        RO, "timer_xmts" },     /* 87 */
429         { CS_FUZZ,              RO, "fuzz" },           /* 88 */
430         { CS_WANDER_THRESH,     RO, "clk_wander_threshold" }, /* 89 */
431 #ifdef LEAP_SMEAR
432         { CS_LEAPSMEARINTV,     RO, "leapsmearinterval" },    /* 90 */
433         { CS_LEAPSMEAROFFS,     RO, "leapsmearoffset" },      /* 91 */
434 #endif   /* LEAP_SMEAR */
435 #ifdef AUTOKEY
436         { CS_FLAGS,     RO, "flags" },          /* 1 + CS_MAX_NOAUTOKEY */
437         { CS_HOST,      RO, "host" },           /* 2 + CS_MAX_NOAUTOKEY */
438         { CS_PUBLIC,    RO, "update" },         /* 3 + CS_MAX_NOAUTOKEY */
439         { CS_CERTIF,    RO, "cert" },           /* 4 + CS_MAX_NOAUTOKEY */
440         { CS_SIGNATURE, RO, "signature" },      /* 5 + CS_MAX_NOAUTOKEY */
441         { CS_REVTIME,   RO, "until" },          /* 6 + CS_MAX_NOAUTOKEY */
442         { CS_IDENT,     RO, "ident" },          /* 7 + CS_MAX_NOAUTOKEY */
443         { CS_DIGEST,    RO, "digest" },         /* 8 + CS_MAX_NOAUTOKEY */
444 #endif  /* AUTOKEY */
445         { 0,            EOV, "" }               /* 87/95 */
446 };
447
448 static struct ctl_var *ext_sys_var = NULL;
449
450 /*
451  * System variables we print by default (in fuzzball order,
452  * more-or-less)
453  */
454 static const u_char def_sys_var[] = {
455         CS_VERSION,
456         CS_PROCESSOR,
457         CS_SYSTEM,
458         CS_LEAP,
459         CS_STRATUM,
460         CS_PRECISION,
461         CS_ROOTDELAY,
462         CS_ROOTDISPERSION,
463         CS_REFID,
464         CS_REFTIME,
465         CS_CLOCK,
466         CS_PEERID,
467         CS_POLL,
468         CS_RATE,
469         CS_OFFSET,
470         CS_DRIFT,
471         CS_JITTER,
472         CS_ERROR,
473         CS_STABIL,
474         CS_TAI,
475         CS_LEAPTAB,
476         CS_LEAPEND,
477         CS_LEAPSMEARINTV,
478         CS_LEAPSMEAROFFS,
479 #ifdef AUTOKEY
480         CS_HOST,
481         CS_IDENT,
482         CS_FLAGS,
483         CS_DIGEST,
484         CS_SIGNATURE,
485         CS_PUBLIC,
486         CS_CERTIF,
487 #endif  /* AUTOKEY */
488         0
489 };
490
491
492 /*
493  * Peer variable list
494  */
495 static const struct ctl_var peer_var[] = {
496         { 0,            PADDING, "" },          /* 0 */
497         { CP_CONFIG,    RO, "config" },         /* 1 */
498         { CP_AUTHENABLE, RO,    "authenable" }, /* 2 */
499         { CP_AUTHENTIC, RO, "authentic" },      /* 3 */
500         { CP_SRCADR,    RO, "srcadr" },         /* 4 */
501         { CP_SRCPORT,   RO, "srcport" },        /* 5 */
502         { CP_DSTADR,    RO, "dstadr" },         /* 6 */
503         { CP_DSTPORT,   RO, "dstport" },        /* 7 */
504         { CP_LEAP,      RO, "leap" },           /* 8 */
505         { CP_HMODE,     RO, "hmode" },          /* 9 */
506         { CP_STRATUM,   RO, "stratum" },        /* 10 */
507         { CP_PPOLL,     RO, "ppoll" },          /* 11 */
508         { CP_HPOLL,     RO, "hpoll" },          /* 12 */
509         { CP_PRECISION, RO, "precision" },      /* 13 */
510         { CP_ROOTDELAY, RO, "rootdelay" },      /* 14 */
511         { CP_ROOTDISPERSION, RO, "rootdisp" },  /* 15 */
512         { CP_REFID,     RO, "refid" },          /* 16 */
513         { CP_REFTIME,   RO, "reftime" },        /* 17 */
514         { CP_ORG,       RO, "org" },            /* 18 */
515         { CP_REC,       RO, "rec" },            /* 19 */
516         { CP_XMT,       RO, "xleave" },         /* 20 */
517         { CP_REACH,     RO, "reach" },          /* 21 */
518         { CP_UNREACH,   RO, "unreach" },        /* 22 */
519         { CP_TIMER,     RO, "timer" },          /* 23 */
520         { CP_DELAY,     RO, "delay" },          /* 24 */
521         { CP_OFFSET,    RO, "offset" },         /* 25 */
522         { CP_JITTER,    RO, "jitter" },         /* 26 */
523         { CP_DISPERSION, RO, "dispersion" },    /* 27 */
524         { CP_KEYID,     RO, "keyid" },          /* 28 */
525         { CP_FILTDELAY, RO, "filtdelay" },      /* 29 */
526         { CP_FILTOFFSET, RO, "filtoffset" },    /* 30 */
527         { CP_PMODE,     RO, "pmode" },          /* 31 */
528         { CP_RECEIVED,  RO, "received"},        /* 32 */
529         { CP_SENT,      RO, "sent" },           /* 33 */
530         { CP_FILTERROR, RO, "filtdisp" },       /* 34 */
531         { CP_FLASH,     RO, "flash" },          /* 35 */
532         { CP_TTL,       RO, "ttl" },            /* 36 */
533         { CP_VARLIST,   RO, "peer_var_list" },  /* 37 */
534         { CP_IN,        RO, "in" },             /* 38 */
535         { CP_OUT,       RO, "out" },            /* 39 */
536         { CP_RATE,      RO, "headway" },        /* 40 */
537         { CP_BIAS,      RO, "bias" },           /* 41 */
538         { CP_SRCHOST,   RO, "srchost" },        /* 42 */
539         { CP_TIMEREC,   RO, "timerec" },        /* 43 */
540         { CP_TIMEREACH, RO, "timereach" },      /* 44 */
541         { CP_BADAUTH,   RO, "badauth" },        /* 45 */
542         { CP_BOGUSORG,  RO, "bogusorg" },       /* 46 */
543         { CP_OLDPKT,    RO, "oldpkt" },         /* 47 */
544         { CP_SELDISP,   RO, "seldisp" },        /* 48 */
545         { CP_SELBROKEN, RO, "selbroken" },      /* 49 */
546         { CP_CANDIDATE, RO, "candidate" },      /* 50 */
547 #ifdef AUTOKEY
548         { CP_FLAGS,     RO, "flags" },          /* 1 + CP_MAX_NOAUTOKEY */
549         { CP_HOST,      RO, "host" },           /* 2 + CP_MAX_NOAUTOKEY */
550         { CP_VALID,     RO, "valid" },          /* 3 + CP_MAX_NOAUTOKEY */
551         { CP_INITSEQ,   RO, "initsequence" },   /* 4 + CP_MAX_NOAUTOKEY */
552         { CP_INITKEY,   RO, "initkey" },        /* 5 + CP_MAX_NOAUTOKEY */
553         { CP_INITTSP,   RO, "timestamp" },      /* 6 + CP_MAX_NOAUTOKEY */
554         { CP_SIGNATURE, RO, "signature" },      /* 7 + CP_MAX_NOAUTOKEY */
555         { CP_IDENT,     RO, "ident" },          /* 8 + CP_MAX_NOAUTOKEY */
556 #endif  /* AUTOKEY */
557         { 0,            EOV, "" }               /* 50/58 */
558 };
559
560
561 /*
562  * Peer variables we print by default
563  */
564 static const u_char def_peer_var[] = {
565         CP_SRCADR,
566         CP_SRCPORT,
567         CP_SRCHOST,
568         CP_DSTADR,
569         CP_DSTPORT,
570         CP_OUT,
571         CP_IN,
572         CP_LEAP,
573         CP_STRATUM,
574         CP_PRECISION,
575         CP_ROOTDELAY,
576         CP_ROOTDISPERSION,
577         CP_REFID,
578         CP_REFTIME,
579         CP_REC,
580         CP_REACH,
581         CP_UNREACH,
582         CP_HMODE,
583         CP_PMODE,
584         CP_HPOLL,
585         CP_PPOLL,
586         CP_RATE,
587         CP_FLASH,
588         CP_KEYID,
589         CP_TTL,
590         CP_OFFSET,
591         CP_DELAY,
592         CP_DISPERSION,
593         CP_JITTER,
594         CP_XMT,
595         CP_BIAS,
596         CP_FILTDELAY,
597         CP_FILTOFFSET,
598         CP_FILTERROR,
599 #ifdef AUTOKEY
600         CP_HOST,
601         CP_FLAGS,
602         CP_SIGNATURE,
603         CP_VALID,
604         CP_INITSEQ,
605         CP_IDENT,
606 #endif  /* AUTOKEY */
607         0
608 };
609
610
611 #ifdef REFCLOCK
612 /*
613  * Clock variable list
614  */
615 static const struct ctl_var clock_var[] = {
616         { 0,            PADDING, "" },          /* 0 */
617         { CC_TYPE,      RO, "type" },           /* 1 */
618         { CC_TIMECODE,  RO, "timecode" },       /* 2 */
619         { CC_POLL,      RO, "poll" },           /* 3 */
620         { CC_NOREPLY,   RO, "noreply" },        /* 4 */
621         { CC_BADFORMAT, RO, "badformat" },      /* 5 */
622         { CC_BADDATA,   RO, "baddata" },        /* 6 */
623         { CC_FUDGETIME1, RO, "fudgetime1" },    /* 7 */
624         { CC_FUDGETIME2, RO, "fudgetime2" },    /* 8 */
625         { CC_FUDGEVAL1, RO, "stratum" },        /* 9 */
626         { CC_FUDGEVAL2, RO, "refid" },          /* 10 */
627         { CC_FLAGS,     RO, "flags" },          /* 11 */
628         { CC_DEVICE,    RO, "device" },         /* 12 */
629         { CC_VARLIST,   RO, "clock_var_list" }, /* 13 */
630         { 0,            EOV, ""  }              /* 14 */
631 };
632
633
634 /*
635  * Clock variables printed by default
636  */
637 static const u_char def_clock_var[] = {
638         CC_DEVICE,
639         CC_TYPE,        /* won't be output if device = known */
640         CC_TIMECODE,
641         CC_POLL,
642         CC_NOREPLY,
643         CC_BADFORMAT,
644         CC_BADDATA,
645         CC_FUDGETIME1,
646         CC_FUDGETIME2,
647         CC_FUDGEVAL1,
648         CC_FUDGEVAL2,
649         CC_FLAGS,
650         0
651 };
652 #endif
653
654 /*
655  * MRU string constants shared by send_mru_entry() and read_mru_list().
656  */
657 static const char addr_fmt[] =          "addr.%d";
658 static const char last_fmt[] =          "last.%d";
659
660 /*
661  * System and processor definitions.
662  */
663 #ifndef HAVE_UNAME
664 # ifndef STR_SYSTEM
665 #  define               STR_SYSTEM      "UNIX"
666 # endif
667 # ifndef STR_PROCESSOR
668 #  define               STR_PROCESSOR   "unknown"
669 # endif
670
671 static const char str_system[] = STR_SYSTEM;
672 static const char str_processor[] = STR_PROCESSOR;
673 #else
674 # include <sys/utsname.h>
675 static struct utsname utsnamebuf;
676 #endif /* HAVE_UNAME */
677
678 /*
679  * Trap structures. We only allow a few of these, and send a copy of
680  * each async message to each live one. Traps time out after an hour, it
681  * is up to the trap receipient to keep resetting it to avoid being
682  * timed out.
683  */
684 /* ntp_request.c */
685 struct ctl_trap ctl_traps[CTL_MAXTRAPS];
686 int num_ctl_traps;
687
688 /*
689  * Type bits, for ctlsettrap() call.
690  */
691 #define TRAP_TYPE_CONFIG        0       /* used by configuration code */
692 #define TRAP_TYPE_PRIO          1       /* priority trap */
693 #define TRAP_TYPE_NONPRIO       2       /* nonpriority trap */
694
695
696 /*
697  * List relating reference clock types to control message time sources.
698  * Index by the reference clock type. This list will only be used iff
699  * the reference clock driver doesn't set peer->sstclktype to something
700  * different than CTL_SST_TS_UNSPEC.
701  */
702 #ifdef REFCLOCK
703 static const u_char clocktypes[] = {
704         CTL_SST_TS_NTP,         /* REFCLK_NONE (0) */
705         CTL_SST_TS_LOCAL,       /* REFCLK_LOCALCLOCK (1) */
706         CTL_SST_TS_UHF,         /* deprecated REFCLK_GPS_TRAK (2) */
707         CTL_SST_TS_HF,          /* REFCLK_WWV_PST (3) */
708         CTL_SST_TS_LF,          /* REFCLK_WWVB_SPECTRACOM (4) */
709         CTL_SST_TS_UHF,         /* REFCLK_TRUETIME (5) */
710         CTL_SST_TS_UHF,         /* REFCLK_IRIG_AUDIO (6) */
711         CTL_SST_TS_HF,          /* REFCLK_CHU (7) */
712         CTL_SST_TS_LF,          /* REFCLOCK_PARSE (default) (8) */
713         CTL_SST_TS_LF,          /* REFCLK_GPS_MX4200 (9) */
714         CTL_SST_TS_UHF,         /* REFCLK_GPS_AS2201 (10) */
715         CTL_SST_TS_UHF,         /* REFCLK_GPS_ARBITER (11) */
716         CTL_SST_TS_UHF,         /* REFCLK_IRIG_TPRO (12) */
717         CTL_SST_TS_ATOM,        /* REFCLK_ATOM_LEITCH (13) */
718         CTL_SST_TS_LF,          /* deprecated REFCLK_MSF_EES (14) */
719         CTL_SST_TS_NTP,         /* not used (15) */
720         CTL_SST_TS_UHF,         /* REFCLK_IRIG_BANCOMM (16) */
721         CTL_SST_TS_UHF,         /* REFCLK_GPS_DATU (17) */
722         CTL_SST_TS_TELEPHONE,   /* REFCLK_NIST_ACTS (18) */
723         CTL_SST_TS_HF,          /* REFCLK_WWV_HEATH (19) */
724         CTL_SST_TS_UHF,         /* REFCLK_GPS_NMEA (20) */
725         CTL_SST_TS_UHF,         /* REFCLK_GPS_VME (21) */
726         CTL_SST_TS_ATOM,        /* REFCLK_ATOM_PPS (22) */
727         CTL_SST_TS_NTP,         /* not used (23) */
728         CTL_SST_TS_NTP,         /* not used (24) */
729         CTL_SST_TS_NTP,         /* not used (25) */
730         CTL_SST_TS_UHF,         /* REFCLK_GPS_HP (26) */
731         CTL_SST_TS_LF,          /* REFCLK_ARCRON_MSF (27) */
732         CTL_SST_TS_UHF,         /* REFCLK_SHM (28) */
733         CTL_SST_TS_UHF,         /* REFCLK_PALISADE (29) */
734         CTL_SST_TS_UHF,         /* REFCLK_ONCORE (30) */
735         CTL_SST_TS_UHF,         /* REFCLK_JUPITER (31) */
736         CTL_SST_TS_LF,          /* REFCLK_CHRONOLOG (32) */
737         CTL_SST_TS_LF,          /* REFCLK_DUMBCLOCK (33) */
738         CTL_SST_TS_LF,          /* REFCLK_ULINK (34) */
739         CTL_SST_TS_LF,          /* REFCLK_PCF (35) */
740         CTL_SST_TS_HF,          /* REFCLK_WWV (36) */
741         CTL_SST_TS_LF,          /* REFCLK_FG (37) */
742         CTL_SST_TS_UHF,         /* REFCLK_HOPF_SERIAL (38) */
743         CTL_SST_TS_UHF,         /* REFCLK_HOPF_PCI (39) */
744         CTL_SST_TS_LF,          /* REFCLK_JJY (40) */
745         CTL_SST_TS_UHF,         /* REFCLK_TT560 (41) */
746         CTL_SST_TS_UHF,         /* REFCLK_ZYFER (42) */
747         CTL_SST_TS_UHF,         /* REFCLK_RIPENCC (43) */
748         CTL_SST_TS_UHF,         /* REFCLK_NEOCLOCK4X (44) */
749         CTL_SST_TS_UHF,         /* REFCLK_TSYNCPCI (45) */
750         CTL_SST_TS_UHF          /* REFCLK_GPSDJSON (46) */
751 };
752 #endif  /* REFCLOCK */
753
754
755 /*
756  * Keyid used for authenticating write requests.
757  */
758 keyid_t ctl_auth_keyid;
759
760 /*
761  * We keep track of the last error reported by the system internally
762  */
763 static  u_char ctl_sys_last_event;
764 static  u_char ctl_sys_num_events;
765
766
767 /*
768  * Statistic counters to keep track of requests and responses.
769  */
770 u_long ctltimereset;            /* time stats reset */
771 u_long numctlreq;               /* number of requests we've received */
772 u_long numctlbadpkts;           /* number of bad control packets */
773 u_long numctlresponses;         /* number of resp packets sent with data */
774 u_long numctlfrags;             /* number of fragments sent */
775 u_long numctlerrors;            /* number of error responses sent */
776 u_long numctltooshort;          /* number of too short input packets */
777 u_long numctlinputresp;         /* number of responses on input */
778 u_long numctlinputfrag;         /* number of fragments on input */
779 u_long numctlinputerr;          /* number of input pkts with err bit set */
780 u_long numctlbadoffset;         /* number of input pkts with nonzero offset */
781 u_long numctlbadversion;        /* number of input pkts with unknown version */
782 u_long numctldatatooshort;      /* data too short for count */
783 u_long numctlbadop;             /* bad op code found in packet */
784 u_long numasyncmsgs;            /* number of async messages we've sent */
785
786 /*
787  * Response packet used by these routines. Also some state information
788  * so that we can handle packet formatting within a common set of
789  * subroutines.  Note we try to enter data in place whenever possible,
790  * but the need to set the more bit correctly means we occasionally
791  * use the extra buffer and copy.
792  */
793 static struct ntp_control rpkt;
794 static u_char   res_version;
795 static u_char   res_opcode;
796 static associd_t res_associd;
797 static u_short  res_frags;      /* datagrams in this response */
798 static int      res_offset;     /* offset of payload in response */
799 static u_char * datapt;
800 static u_char * dataend;
801 static int      datalinelen;
802 static int      datasent;       /* flag to avoid initial ", " */
803 static int      datanotbinflag;
804 static sockaddr_u *rmt_addr;
805 static struct interface *lcl_inter;
806
807 static u_char   res_authenticate;
808 static u_char   res_authokay;
809 static keyid_t  res_keyid;
810
811 #define MAXDATALINELEN  (72)
812
813 static u_char   res_async;      /* sending async trap response? */
814
815 /*
816  * Pointers for saving state when decoding request packets
817  */
818 static  char *reqpt;
819 static  char *reqend;
820
821 #ifndef MIN
822 #define MIN(a, b) (((a) <= (b)) ? (a) : (b))
823 #endif
824
825 /*
826  * init_control - initialize request data
827  */
828 void
829 init_control(void)
830 {
831         size_t i;
832
833 #ifdef HAVE_UNAME
834         uname(&utsnamebuf);
835 #endif /* HAVE_UNAME */
836
837         ctl_clr_stats();
838
839         ctl_auth_keyid = 0;
840         ctl_sys_last_event = EVNT_UNSPEC;
841         ctl_sys_num_events = 0;
842
843         num_ctl_traps = 0;
844         for (i = 0; i < COUNTOF(ctl_traps); i++)
845                 ctl_traps[i].tr_flags = 0;
846 }
847
848
849 /*
850  * ctl_error - send an error response for the current request
851  */
852 static void
853 ctl_error(
854         u_char errcode
855         )
856 {
857         int             maclen;
858
859         numctlerrors++;
860         DPRINTF(3, ("sending control error %u\n", errcode));
861
862         /*
863          * Fill in the fields. We assume rpkt.sequence and rpkt.associd
864          * have already been filled in.
865          */
866         rpkt.r_m_e_op = (u_char)CTL_RESPONSE | CTL_ERROR |
867                         (res_opcode & CTL_OP_MASK);
868         rpkt.status = htons((u_short)(errcode << 8) & 0xff00);
869         rpkt.count = 0;
870
871         /*
872          * send packet and bump counters
873          */
874         if (res_authenticate && sys_authenticate) {
875                 maclen = authencrypt(res_keyid, (u_int32 *)&rpkt,
876                                      CTL_HEADER_LEN);
877                 sendpkt(rmt_addr, lcl_inter, -2, (void *)&rpkt,
878                         CTL_HEADER_LEN + maclen);
879         } else
880                 sendpkt(rmt_addr, lcl_inter, -3, (void *)&rpkt,
881                         CTL_HEADER_LEN);
882 }
883
884 /*
885  * save_config - Implements ntpq -c "saveconfig <filename>"
886  *               Writes current configuration including any runtime
887  *               changes by ntpq's :config or config-from-file
888  */
889 void
890 save_config(
891         struct recvbuf *rbufp,
892         int restrict_mask
893         )
894 {
895         char reply[128];
896 #ifdef SAVECONFIG
897         char filespec[128];
898         char filename[128];
899         char fullpath[512];
900         const char savedconfig_eq[] = "savedconfig=";
901         char savedconfig[sizeof(savedconfig_eq) + sizeof(filename)];
902         time_t now;
903         int fd;
904         FILE *fptr;
905 #endif
906
907         if (RES_NOMODIFY & restrict_mask) {
908                 snprintf(reply, sizeof(reply),
909                          "saveconfig prohibited by restrict ... nomodify");
910                 ctl_putdata(reply, strlen(reply), 0);
911                 ctl_flushpkt(0);
912                 NLOG(NLOG_SYSINFO)
913                         msyslog(LOG_NOTICE,
914                                 "saveconfig from %s rejected due to nomodify restriction",
915                                 stoa(&rbufp->recv_srcadr));
916                 sys_restricted++;
917                 return;
918         }
919
920 #ifdef SAVECONFIG
921         if (NULL == saveconfigdir) {
922                 snprintf(reply, sizeof(reply),
923                          "saveconfig prohibited, no saveconfigdir configured");
924                 ctl_putdata(reply, strlen(reply), 0);
925                 ctl_flushpkt(0);
926                 NLOG(NLOG_SYSINFO)
927                         msyslog(LOG_NOTICE,
928                                 "saveconfig from %s rejected, no saveconfigdir",
929                                 stoa(&rbufp->recv_srcadr));
930                 return;
931         }
932
933         if (0 == reqend - reqpt)
934                 return;
935
936         strlcpy(filespec, reqpt, sizeof(filespec));
937         time(&now);
938
939         /*
940          * allow timestamping of the saved config filename with
941          * strftime() format such as:
942          *   ntpq -c "saveconfig ntp-%Y%m%d-%H%M%S.conf"
943          * XXX: Nice feature, but not too safe.
944          */
945         if (0 == strftime(filename, sizeof(filename), filespec,
946                                localtime(&now)))
947                 strlcpy(filename, filespec, sizeof(filename));
948
949         /*
950          * Conceptually we should be searching for DIRSEP in filename,
951          * however Windows actually recognizes both forward and
952          * backslashes as equivalent directory separators at the API
953          * level.  On POSIX systems we could allow '\\' but such
954          * filenames are tricky to manipulate from a shell, so just
955          * reject both types of slashes on all platforms.
956          */
957         if (strchr(filename, '\\') || strchr(filename, '/')) {
958                 snprintf(reply, sizeof(reply),
959                          "saveconfig does not allow directory in filename");
960                 ctl_putdata(reply, strlen(reply), 0);
961                 ctl_flushpkt(0);
962                 msyslog(LOG_NOTICE,
963                         "saveconfig with path from %s rejected",
964                         stoa(&rbufp->recv_srcadr));
965                 return;
966         }
967
968         snprintf(fullpath, sizeof(fullpath), "%s%s",
969                  saveconfigdir, filename);
970
971         fd = open(fullpath, O_CREAT | O_TRUNC | O_WRONLY,
972                   S_IRUSR | S_IWUSR);
973         if (-1 == fd)
974                 fptr = NULL;
975         else
976                 fptr = fdopen(fd, "w");
977
978         if (NULL == fptr || -1 == dump_all_config_trees(fptr, 1)) {
979                 snprintf(reply, sizeof(reply),
980                          "Unable to save configuration to file %s",
981                          filename);
982                 msyslog(LOG_ERR,
983                         "saveconfig %s from %s failed", filename,
984                         stoa(&rbufp->recv_srcadr));
985         } else {
986                 snprintf(reply, sizeof(reply),
987                          "Configuration saved to %s", filename);
988                 msyslog(LOG_NOTICE,
989                         "Configuration saved to %s (requested by %s)",
990                         fullpath, stoa(&rbufp->recv_srcadr));
991                 /*
992                  * save the output filename in system variable
993                  * savedconfig, retrieved with:
994                  *   ntpq -c "rv 0 savedconfig"
995                  */
996                 snprintf(savedconfig, sizeof(savedconfig), "%s%s",
997                          savedconfig_eq, filename);
998                 set_sys_var(savedconfig, strlen(savedconfig) + 1, RO);
999         }
1000
1001         if (NULL != fptr)
1002                 fclose(fptr);
1003 #else   /* !SAVECONFIG follows */
1004         snprintf(reply, sizeof(reply),
1005                  "saveconfig unavailable, configured with --disable-saveconfig");
1006 #endif
1007
1008         ctl_putdata(reply, strlen(reply), 0);
1009         ctl_flushpkt(0);
1010 }
1011
1012
1013 /*
1014  * process_control - process an incoming control message
1015  */
1016 void
1017 process_control(
1018         struct recvbuf *rbufp,
1019         int restrict_mask
1020         )
1021 {
1022         struct ntp_control *pkt;
1023         int req_count;
1024         int req_data;
1025         const struct ctl_proc *cc;
1026         keyid_t *pkid;
1027         int properlen;
1028         size_t maclen;
1029
1030         DPRINTF(3, ("in process_control()\n"));
1031
1032         /*
1033          * Save the addresses for error responses
1034          */
1035         numctlreq++;
1036         rmt_addr = &rbufp->recv_srcadr;
1037         lcl_inter = rbufp->dstadr;
1038         pkt = (struct ntp_control *)&rbufp->recv_pkt;
1039
1040         /*
1041          * If the length is less than required for the header, or
1042          * it is a response or a fragment, ignore this.
1043          */
1044         if (rbufp->recv_length < (int)CTL_HEADER_LEN
1045             || (CTL_RESPONSE | CTL_MORE | CTL_ERROR) & pkt->r_m_e_op
1046             || pkt->offset != 0) {
1047                 DPRINTF(1, ("invalid format in control packet\n"));
1048                 if (rbufp->recv_length < (int)CTL_HEADER_LEN)
1049                         numctltooshort++;
1050                 if (CTL_RESPONSE & pkt->r_m_e_op)
1051                         numctlinputresp++;
1052                 if (CTL_MORE & pkt->r_m_e_op)
1053                         numctlinputfrag++;
1054                 if (CTL_ERROR & pkt->r_m_e_op)
1055                         numctlinputerr++;
1056                 if (pkt->offset != 0)
1057                         numctlbadoffset++;
1058                 return;
1059         }
1060         res_version = PKT_VERSION(pkt->li_vn_mode);
1061         if (res_version > NTP_VERSION || res_version < NTP_OLDVERSION) {
1062                 DPRINTF(1, ("unknown version %d in control packet\n",
1063                             res_version));
1064                 numctlbadversion++;
1065                 return;
1066         }
1067
1068         /*
1069          * Pull enough data from the packet to make intelligent
1070          * responses
1071          */
1072         rpkt.li_vn_mode = PKT_LI_VN_MODE(sys_leap, res_version,
1073                                          MODE_CONTROL);
1074         res_opcode = pkt->r_m_e_op;
1075         rpkt.sequence = pkt->sequence;
1076         rpkt.associd = pkt->associd;
1077         rpkt.status = 0;
1078         res_frags = 1;
1079         res_offset = 0;
1080         res_associd = htons(pkt->associd);
1081         res_async = FALSE;
1082         res_authenticate = FALSE;
1083         res_keyid = 0;
1084         res_authokay = FALSE;
1085         req_count = (int)ntohs(pkt->count);
1086         datanotbinflag = FALSE;
1087         datalinelen = 0;
1088         datasent = 0;
1089         datapt = rpkt.u.data;
1090         dataend = &rpkt.u.data[CTL_MAX_DATA_LEN];
1091
1092         if ((rbufp->recv_length & 0x3) != 0)
1093                 DPRINTF(3, ("Control packet length %d unrounded\n",
1094                             rbufp->recv_length));
1095
1096         /*
1097          * We're set up now. Make sure we've got at least enough
1098          * incoming data space to match the count.
1099          */
1100         req_data = rbufp->recv_length - CTL_HEADER_LEN;
1101         if (req_data < req_count || rbufp->recv_length & 0x3) {
1102                 ctl_error(CERR_BADFMT);
1103                 numctldatatooshort++;
1104                 return;
1105         }
1106
1107         properlen = req_count + CTL_HEADER_LEN;
1108         /* round up proper len to a 8 octet boundary */
1109
1110         properlen = (properlen + 7) & ~7;
1111         maclen = rbufp->recv_length - properlen;
1112         if ((rbufp->recv_length & 3) == 0 &&
1113             maclen >= MIN_MAC_LEN && maclen <= MAX_MAC_LEN &&
1114             sys_authenticate) {
1115                 res_authenticate = TRUE;
1116                 pkid = (void *)((char *)pkt + properlen);
1117                 res_keyid = ntohl(*pkid);
1118                 DPRINTF(3, ("recv_len %d, properlen %d, wants auth with keyid %08x, MAC length=%zu\n",
1119                             rbufp->recv_length, properlen, res_keyid,
1120                             maclen));
1121
1122                 if (!authistrusted(res_keyid))
1123                         DPRINTF(3, ("invalid keyid %08x\n", res_keyid));
1124                 else if (authdecrypt(res_keyid, (u_int32 *)pkt,
1125                                      rbufp->recv_length - maclen,
1126                                      maclen)) {
1127                         res_authokay = TRUE;
1128                         DPRINTF(3, ("authenticated okay\n"));
1129                 } else {
1130                         res_keyid = 0;
1131                         DPRINTF(3, ("authentication failed\n"));
1132                 }
1133         }
1134
1135         /*
1136          * Set up translate pointers
1137          */
1138         reqpt = (char *)pkt->u.data;
1139         reqend = reqpt + req_count;
1140
1141         /*
1142          * Look for the opcode processor
1143          */
1144         for (cc = control_codes; cc->control_code != NO_REQUEST; cc++) {
1145                 if (cc->control_code == res_opcode) {
1146                         DPRINTF(3, ("opcode %d, found command handler\n",
1147                                     res_opcode));
1148                         if (cc->flags == AUTH
1149                             && (!res_authokay
1150                                 || res_keyid != ctl_auth_keyid)) {
1151                                 ctl_error(CERR_PERMISSION);
1152                                 return;
1153                         }
1154                         (cc->handler)(rbufp, restrict_mask);
1155                         return;
1156                 }
1157         }
1158
1159         /*
1160          * Can't find this one, return an error.
1161          */
1162         numctlbadop++;
1163         ctl_error(CERR_BADOP);
1164         return;
1165 }
1166
1167
1168 /*
1169  * ctlpeerstatus - return a status word for this peer
1170  */
1171 u_short
1172 ctlpeerstatus(
1173         register struct peer *p
1174         )
1175 {
1176         u_short status;
1177
1178         status = p->status;
1179         if (FLAG_CONFIG & p->flags)
1180                 status |= CTL_PST_CONFIG;
1181         if (p->keyid)
1182                 status |= CTL_PST_AUTHENABLE;
1183         if (FLAG_AUTHENTIC & p->flags)
1184                 status |= CTL_PST_AUTHENTIC;
1185         if (p->reach)
1186                 status |= CTL_PST_REACH;
1187         if (MDF_TXONLY_MASK & p->cast_flags)
1188                 status |= CTL_PST_BCAST;
1189
1190         return CTL_PEER_STATUS(status, p->num_events, p->last_event);
1191 }
1192
1193
1194 /*
1195  * ctlclkstatus - return a status word for this clock
1196  */
1197 #ifdef REFCLOCK
1198 static u_short
1199 ctlclkstatus(
1200         struct refclockstat *pcs
1201         )
1202 {
1203         return CTL_PEER_STATUS(0, pcs->lastevent, pcs->currentstatus);
1204 }
1205 #endif
1206
1207
1208 /*
1209  * ctlsysstatus - return the system status word
1210  */
1211 u_short
1212 ctlsysstatus(void)
1213 {
1214         register u_char this_clock;
1215
1216         this_clock = CTL_SST_TS_UNSPEC;
1217 #ifdef REFCLOCK
1218         if (sys_peer != NULL) {
1219                 if (CTL_SST_TS_UNSPEC != sys_peer->sstclktype)
1220                         this_clock = sys_peer->sstclktype;
1221                 else if (sys_peer->refclktype < COUNTOF(clocktypes))
1222                         this_clock = clocktypes[sys_peer->refclktype];
1223         }
1224 #else /* REFCLOCK */
1225         if (sys_peer != 0)
1226                 this_clock = CTL_SST_TS_NTP;
1227 #endif /* REFCLOCK */
1228         return CTL_SYS_STATUS(sys_leap, this_clock, ctl_sys_num_events,
1229                               ctl_sys_last_event);
1230 }
1231
1232
1233 /*
1234  * ctl_flushpkt - write out the current packet and prepare
1235  *                another if necessary.
1236  */
1237 static void
1238 ctl_flushpkt(
1239         u_char more
1240         )
1241 {
1242         size_t i;
1243         int dlen;
1244         int sendlen;
1245         int maclen;
1246         int totlen;
1247         keyid_t keyid;
1248
1249         dlen = datapt - rpkt.u.data;
1250         if (!more && datanotbinflag && dlen + 2 < CTL_MAX_DATA_LEN) {
1251                 /*
1252                  * Big hack, output a trailing \r\n
1253                  */
1254                 *datapt++ = '\r';
1255                 *datapt++ = '\n';
1256                 dlen += 2;
1257         }
1258         sendlen = dlen + CTL_HEADER_LEN;
1259
1260         /*
1261          * Pad to a multiple of 32 bits
1262          */
1263         while (sendlen & 0x3) {
1264                 *datapt++ = '\0';
1265                 sendlen++;
1266         }
1267
1268         /*
1269          * Fill in the packet with the current info
1270          */
1271         rpkt.r_m_e_op = CTL_RESPONSE | more |
1272                         (res_opcode & CTL_OP_MASK);
1273         rpkt.count = htons((u_short)dlen);
1274         rpkt.offset = htons((u_short)res_offset);
1275         if (res_async) {
1276                 for (i = 0; i < COUNTOF(ctl_traps); i++) {
1277                         if (TRAP_INUSE & ctl_traps[i].tr_flags) {
1278                                 rpkt.li_vn_mode =
1279                                     PKT_LI_VN_MODE(
1280                                         sys_leap,
1281                                         ctl_traps[i].tr_version,
1282                                         MODE_CONTROL);
1283                                 rpkt.sequence =
1284                                     htons(ctl_traps[i].tr_sequence);
1285                                 sendpkt(&ctl_traps[i].tr_addr,
1286                                         ctl_traps[i].tr_localaddr, -4,
1287                                         (struct pkt *)&rpkt, sendlen);
1288                                 if (!more)
1289                                         ctl_traps[i].tr_sequence++;
1290                                 numasyncmsgs++;
1291                         }
1292                 }
1293         } else {
1294                 if (res_authenticate && sys_authenticate) {
1295                         totlen = sendlen;
1296                         /*
1297                          * If we are going to authenticate, then there
1298                          * is an additional requirement that the MAC
1299                          * begin on a 64 bit boundary.
1300                          */
1301                         while (totlen & 7) {
1302                                 *datapt++ = '\0';
1303                                 totlen++;
1304                         }
1305                         keyid = htonl(res_keyid);
1306                         memcpy(datapt, &keyid, sizeof(keyid));
1307                         maclen = authencrypt(res_keyid,
1308                                              (u_int32 *)&rpkt, totlen);
1309                         sendpkt(rmt_addr, lcl_inter, -5,
1310                                 (struct pkt *)&rpkt, totlen + maclen);
1311                 } else {
1312                         sendpkt(rmt_addr, lcl_inter, -6,
1313                                 (struct pkt *)&rpkt, sendlen);
1314                 }
1315                 if (more)
1316                         numctlfrags++;
1317                 else
1318                         numctlresponses++;
1319         }
1320
1321         /*
1322          * Set us up for another go around.
1323          */
1324         res_frags++;
1325         res_offset += dlen;
1326         datapt = rpkt.u.data;
1327 }
1328
1329
1330 /*
1331  * ctl_putdata - write data into the packet, fragmenting and starting
1332  * another if this one is full.
1333  */
1334 static void
1335 ctl_putdata(
1336         const char *dp,
1337         unsigned int dlen,
1338         int bin                 /* set to 1 when data is binary */
1339         )
1340 {
1341         int overhead;
1342         unsigned int currentlen;
1343
1344         overhead = 0;
1345         if (!bin) {
1346                 datanotbinflag = TRUE;
1347                 overhead = 3;
1348                 if (datasent) {
1349                         *datapt++ = ',';
1350                         datalinelen++;
1351                         if ((dlen + datalinelen + 1) >= MAXDATALINELEN) {
1352                                 *datapt++ = '\r';
1353                                 *datapt++ = '\n';
1354                                 datalinelen = 0;
1355                         } else {
1356                                 *datapt++ = ' ';
1357                                 datalinelen++;
1358                         }
1359                 }
1360         }
1361
1362         /*
1363          * Save room for trailing junk
1364          */
1365         while (dlen + overhead + datapt > dataend) {
1366                 /*
1367                  * Not enough room in this one, flush it out.
1368                  */
1369                 currentlen = MIN(dlen, (unsigned int)(dataend - datapt));
1370
1371                 memcpy(datapt, dp, currentlen);
1372
1373                 datapt += currentlen;
1374                 dp += currentlen;
1375                 dlen -= currentlen;
1376                 datalinelen += currentlen;
1377
1378                 ctl_flushpkt(CTL_MORE);
1379         }
1380
1381         memcpy(datapt, dp, dlen);
1382         datapt += dlen;
1383         datalinelen += dlen;
1384         datasent = TRUE;
1385 }
1386
1387
1388 /*
1389  * ctl_putstr - write a tagged string into the response packet
1390  *              in the form:
1391  *
1392  *              tag="data"
1393  *
1394  *              len is the data length excluding the NUL terminator,
1395  *              as in ctl_putstr("var", "value", strlen("value"));
1396  */
1397 static void
1398 ctl_putstr(
1399         const char *    tag,
1400         const char *    data,
1401         size_t          len
1402         )
1403 {
1404         char buffer[512];
1405         char *cp;
1406         size_t tl;
1407
1408         tl = strlen(tag);
1409         memcpy(buffer, tag, tl);
1410         cp = buffer + tl;
1411         if (len > 0) {
1412                 NTP_INSIST(tl + 3 + len <= sizeof(buffer));
1413                 *cp++ = '=';
1414                 *cp++ = '"';
1415                 memcpy(cp, data, len);
1416                 cp += len;
1417                 *cp++ = '"';
1418         }
1419         ctl_putdata(buffer, (u_int)(cp - buffer), 0);
1420 }
1421
1422
1423 /*
1424  * ctl_putunqstr - write a tagged string into the response packet
1425  *                 in the form:
1426  *
1427  *                 tag=data
1428  *
1429  *      len is the data length excluding the NUL terminator.
1430  *      data must not contain a comma or whitespace.
1431  */
1432 static void
1433 ctl_putunqstr(
1434         const char *    tag,
1435         const char *    data,
1436         size_t          len
1437         )
1438 {
1439         char buffer[512];
1440         char *cp;
1441         size_t tl;
1442
1443         tl = strlen(tag);
1444         memcpy(buffer, tag, tl);
1445         cp = buffer + tl;
1446         if (len > 0) {
1447                 NTP_INSIST(tl + 1 + len <= sizeof(buffer));
1448                 *cp++ = '=';
1449                 memcpy(cp, data, len);
1450                 cp += len;
1451         }
1452         ctl_putdata(buffer, (u_int)(cp - buffer), 0);
1453 }
1454
1455
1456 /*
1457  * ctl_putdblf - write a tagged, signed double into the response packet
1458  */
1459 static void
1460 ctl_putdblf(
1461         const char *    tag,
1462         int             use_f,
1463         int             precision,
1464         double          d
1465         )
1466 {
1467         char *cp;
1468         const char *cq;
1469         char buffer[200];
1470
1471         cp = buffer;
1472         cq = tag;
1473         while (*cq != '\0')
1474                 *cp++ = *cq++;
1475         *cp++ = '=';
1476         NTP_INSIST((size_t)(cp - buffer) < sizeof(buffer));
1477         snprintf(cp, sizeof(buffer) - (cp - buffer), use_f ? "%.*f" : "%.*g",
1478             precision, d);
1479         cp += strlen(cp);
1480         ctl_putdata(buffer, (unsigned)(cp - buffer), 0);
1481 }
1482
1483 /*
1484  * ctl_putuint - write a tagged unsigned integer into the response
1485  */
1486 static void
1487 ctl_putuint(
1488         const char *tag,
1489         u_long uval
1490         )
1491 {
1492         register char *cp;
1493         register const char *cq;
1494         char buffer[200];
1495
1496         cp = buffer;
1497         cq = tag;
1498         while (*cq != '\0')
1499                 *cp++ = *cq++;
1500
1501         *cp++ = '=';
1502         NTP_INSIST((cp - buffer) < (int)sizeof(buffer));
1503         snprintf(cp, sizeof(buffer) - (cp - buffer), "%lu", uval);
1504         cp += strlen(cp);
1505         ctl_putdata(buffer, (unsigned)( cp - buffer ), 0);
1506 }
1507
1508 /*
1509  * ctl_putcal - write a decoded calendar data into the response
1510  */
1511 static void
1512 ctl_putcal(
1513         const char *tag,
1514         const struct calendar *pcal
1515         )
1516 {
1517         char buffer[100];
1518         unsigned numch;
1519
1520         numch = snprintf(buffer, sizeof(buffer),
1521                         "%s=%04d%02d%02d%02d%02d",
1522                         tag,
1523                         pcal->year,
1524                         pcal->month,
1525                         pcal->monthday,
1526                         pcal->hour,
1527                         pcal->minute
1528                         );
1529         NTP_INSIST(numch < sizeof(buffer));
1530         ctl_putdata(buffer, numch, 0);
1531
1532         return;
1533 }
1534
1535 /*
1536  * ctl_putfs - write a decoded filestamp into the response
1537  */
1538 static void
1539 ctl_putfs(
1540         const char *tag,
1541         tstamp_t uval
1542         )
1543 {
1544         register char *cp;
1545         register const char *cq;
1546         char buffer[200];
1547         struct tm *tm = NULL;
1548         time_t fstamp;
1549
1550         cp = buffer;
1551         cq = tag;
1552         while (*cq != '\0')
1553                 *cp++ = *cq++;
1554
1555         *cp++ = '=';
1556         fstamp = uval - JAN_1970;
1557         tm = gmtime(&fstamp);
1558         if (NULL ==  tm)
1559                 return;
1560         NTP_INSIST((cp - buffer) < (int)sizeof(buffer));
1561         snprintf(cp, sizeof(buffer) - (cp - buffer),
1562                  "%04d%02d%02d%02d%02d", tm->tm_year + 1900,
1563                  tm->tm_mon + 1, tm->tm_mday, tm->tm_hour, tm->tm_min);
1564         cp += strlen(cp);
1565         ctl_putdata(buffer, (unsigned)( cp - buffer ), 0);
1566 }
1567
1568
1569 /*
1570  * ctl_puthex - write a tagged unsigned integer, in hex, into the
1571  * response
1572  */
1573 static void
1574 ctl_puthex(
1575         const char *tag,
1576         u_long uval
1577         )
1578 {
1579         register char *cp;
1580         register const char *cq;
1581         char buffer[200];
1582
1583         cp = buffer;
1584         cq = tag;
1585         while (*cq != '\0')
1586                 *cp++ = *cq++;
1587
1588         *cp++ = '=';
1589         NTP_INSIST((cp - buffer) < (int)sizeof(buffer));
1590         snprintf(cp, sizeof(buffer) - (cp - buffer), "0x%lx", uval);
1591         cp += strlen(cp);
1592         ctl_putdata(buffer,(unsigned)( cp - buffer ), 0);
1593 }
1594
1595
1596 /*
1597  * ctl_putint - write a tagged signed integer into the response
1598  */
1599 static void
1600 ctl_putint(
1601         const char *tag,
1602         long ival
1603         )
1604 {
1605         register char *cp;
1606         register const char *cq;
1607         char buffer[200];
1608
1609         cp = buffer;
1610         cq = tag;
1611         while (*cq != '\0')
1612                 *cp++ = *cq++;
1613
1614         *cp++ = '=';
1615         NTP_INSIST((cp - buffer) < (int)sizeof(buffer));
1616         snprintf(cp, sizeof(buffer) - (cp - buffer), "%ld", ival);
1617         cp += strlen(cp);
1618         ctl_putdata(buffer, (unsigned)( cp - buffer ), 0);
1619 }
1620
1621
1622 /*
1623  * ctl_putts - write a tagged timestamp, in hex, into the response
1624  */
1625 static void
1626 ctl_putts(
1627         const char *tag,
1628         l_fp *ts
1629         )
1630 {
1631         register char *cp;
1632         register const char *cq;
1633         char buffer[200];
1634
1635         cp = buffer;
1636         cq = tag;
1637         while (*cq != '\0')
1638                 *cp++ = *cq++;
1639
1640         *cp++ = '=';
1641         NTP_INSIST((size_t)(cp - buffer) < sizeof(buffer));
1642         snprintf(cp, sizeof(buffer) - (cp - buffer), "0x%08x.%08x",
1643                  (u_int)ts->l_ui, (u_int)ts->l_uf);
1644         cp += strlen(cp);
1645         ctl_putdata(buffer, (unsigned)( cp - buffer ), 0);
1646 }
1647
1648
1649 /*
1650  * ctl_putadr - write an IP address into the response
1651  */
1652 static void
1653 ctl_putadr(
1654         const char *tag,
1655         u_int32 addr32,
1656         sockaddr_u *addr
1657         )
1658 {
1659         register char *cp;
1660         register const char *cq;
1661         char buffer[200];
1662
1663         cp = buffer;
1664         cq = tag;
1665         while (*cq != '\0')
1666                 *cp++ = *cq++;
1667
1668         *cp++ = '=';
1669         if (NULL == addr)
1670                 cq = numtoa(addr32);
1671         else
1672                 cq = stoa(addr);
1673         NTP_INSIST((cp - buffer) < (int)sizeof(buffer));
1674         snprintf(cp, sizeof(buffer) - (cp - buffer), "%s", cq);
1675         cp += strlen(cp);
1676         ctl_putdata(buffer, (unsigned)(cp - buffer), 0);
1677 }
1678
1679
1680 /*
1681  * ctl_putrefid - send a u_int32 refid as printable text
1682  */
1683 static void
1684 ctl_putrefid(
1685         const char *    tag,
1686         u_int32         refid
1687         )
1688 {
1689         char    output[16];
1690         char *  optr;
1691         char *  oplim;
1692         char *  iptr;
1693         char *  iplim;
1694         char *  past_eq;
1695
1696         optr = output;
1697         oplim = output + sizeof(output);
1698         while (optr < oplim && '\0' != *tag)
1699                 *optr++ = *tag++;
1700         if (optr < oplim) {
1701                 *optr++ = '=';
1702                 past_eq = optr;
1703         }
1704         if (!(optr < oplim))
1705                 return;
1706         iptr = (char *)&refid;
1707         iplim = iptr + sizeof(refid);
1708         for ( ; optr < oplim && iptr < iplim && '\0' != *iptr;
1709              iptr++, optr++)
1710                 if (isprint((int)*iptr))
1711                         *optr = *iptr;
1712                 else
1713                         *optr = '.';
1714         if (!(optr <= oplim))
1715                 optr = past_eq;
1716         ctl_putdata(output, (u_int)(optr - output), FALSE);
1717 }
1718
1719
1720 /*
1721  * ctl_putarray - write a tagged eight element double array into the response
1722  */
1723 static void
1724 ctl_putarray(
1725         const char *tag,
1726         double *arr,
1727         int start
1728         )
1729 {
1730         register char *cp;
1731         register const char *cq;
1732         char buffer[200];
1733         int i;
1734         cp = buffer;
1735         cq = tag;
1736         while (*cq != '\0')
1737                 *cp++ = *cq++;
1738         *cp++ = '=';
1739         i = start;
1740         do {
1741                 if (i == 0)
1742                         i = NTP_SHIFT;
1743                 i--;
1744                 NTP_INSIST((cp - buffer) < (int)sizeof(buffer));
1745                 snprintf(cp, sizeof(buffer) - (cp - buffer),
1746                          " %.2f", arr[i] * 1e3);
1747                 cp += strlen(cp);
1748         } while (i != start);
1749         ctl_putdata(buffer, (unsigned)(cp - buffer), 0);
1750 }
1751
1752
1753 /*
1754  * ctl_putsys - output a system variable
1755  */
1756 static void
1757 ctl_putsys(
1758         int varid
1759         )
1760 {
1761         l_fp tmp;
1762         char str[256];
1763         u_int u;
1764         double kb;
1765         double dtemp;
1766         const char *ss;
1767 #ifdef AUTOKEY
1768         struct cert_info *cp;
1769 #endif  /* AUTOKEY */
1770 #ifdef KERNEL_PLL
1771         static struct timex ntx;
1772         static u_long ntp_adjtime_time;
1773
1774         static const double to_ms =
1775 # ifdef STA_NANO
1776                 1.0e-6; /* nsec to msec */
1777 # else
1778                 1.0e-3; /* usec to msec */
1779 # endif
1780
1781         /*
1782          * CS_K_* variables depend on up-to-date output of ntp_adjtime()
1783          */
1784         if (CS_KERN_FIRST <= varid && varid <= CS_KERN_LAST &&
1785             current_time != ntp_adjtime_time) {
1786                 ZERO(ntx);
1787                 if (ntp_adjtime(&ntx) < 0)
1788                         msyslog(LOG_ERR, "ntp_adjtime() for mode 6 query failed: %m");
1789                 else
1790                         ntp_adjtime_time = current_time;
1791         }
1792 #endif  /* KERNEL_PLL */
1793
1794         switch (varid) {
1795
1796         case CS_LEAP:
1797                 ctl_putuint(sys_var[CS_LEAP].text, sys_leap);
1798                 break;
1799
1800         case CS_STRATUM:
1801                 ctl_putuint(sys_var[CS_STRATUM].text, sys_stratum);
1802                 break;
1803
1804         case CS_PRECISION:
1805                 ctl_putint(sys_var[CS_PRECISION].text, sys_precision);
1806                 break;
1807
1808         case CS_ROOTDELAY:
1809                 ctl_putdbl(sys_var[CS_ROOTDELAY].text, sys_rootdelay *
1810                            1e3);
1811                 break;
1812
1813         case CS_ROOTDISPERSION:
1814                 ctl_putdbl(sys_var[CS_ROOTDISPERSION].text,
1815                            sys_rootdisp * 1e3);
1816                 break;
1817
1818         case CS_REFID:
1819                 if (sys_stratum > 1 && sys_stratum < STRATUM_UNSPEC)
1820                         ctl_putadr(sys_var[varid].text, sys_refid, NULL);
1821                 else
1822                         ctl_putrefid(sys_var[varid].text, sys_refid);
1823                 break;
1824
1825         case CS_REFTIME:
1826                 ctl_putts(sys_var[CS_REFTIME].text, &sys_reftime);
1827                 break;
1828
1829         case CS_POLL:
1830                 ctl_putuint(sys_var[CS_POLL].text, sys_poll);
1831                 break;
1832
1833         case CS_PEERID:
1834                 if (sys_peer == NULL)
1835                         ctl_putuint(sys_var[CS_PEERID].text, 0);
1836                 else
1837                         ctl_putuint(sys_var[CS_PEERID].text,
1838                                     sys_peer->associd);
1839                 break;
1840
1841         case CS_PEERADR:
1842                 if (sys_peer != NULL && sys_peer->dstadr != NULL)
1843                         ss = sptoa(&sys_peer->srcadr);
1844                 else
1845                         ss = "0.0.0.0:0";
1846                 ctl_putunqstr(sys_var[CS_PEERADR].text, ss, strlen(ss));
1847                 break;
1848
1849         case CS_PEERMODE:
1850                 u = (sys_peer != NULL)
1851                         ? sys_peer->hmode
1852                         : MODE_UNSPEC;
1853                 ctl_putuint(sys_var[CS_PEERMODE].text, u);
1854                 break;
1855
1856         case CS_OFFSET:
1857                 ctl_putdbl6(sys_var[CS_OFFSET].text, last_offset * 1e3);
1858                 break;
1859
1860         case CS_DRIFT:
1861                 ctl_putdbl(sys_var[CS_DRIFT].text, drift_comp * 1e6);
1862                 break;
1863
1864         case CS_JITTER:
1865                 ctl_putdbl6(sys_var[CS_JITTER].text, sys_jitter * 1e3);
1866                 break;
1867
1868         case CS_ERROR:
1869                 ctl_putdbl(sys_var[CS_ERROR].text, clock_jitter * 1e3);
1870                 break;
1871
1872         case CS_CLOCK:
1873                 get_systime(&tmp);
1874                 ctl_putts(sys_var[CS_CLOCK].text, &tmp);
1875                 break;
1876
1877         case CS_PROCESSOR:
1878 #ifndef HAVE_UNAME
1879                 ctl_putstr(sys_var[CS_PROCESSOR].text, str_processor,
1880                            sizeof(str_processor) - 1);
1881 #else
1882                 ctl_putstr(sys_var[CS_PROCESSOR].text,
1883                            utsnamebuf.machine, strlen(utsnamebuf.machine));
1884 #endif /* HAVE_UNAME */
1885                 break;
1886
1887         case CS_SYSTEM:
1888 #ifndef HAVE_UNAME
1889                 ctl_putstr(sys_var[CS_SYSTEM].text, str_system,
1890                            sizeof(str_system) - 1);
1891 #else
1892                 snprintf(str, sizeof(str), "%s/%s", utsnamebuf.sysname,
1893                          utsnamebuf.release);
1894                 ctl_putstr(sys_var[CS_SYSTEM].text, str, strlen(str));
1895 #endif /* HAVE_UNAME */
1896                 break;
1897
1898         case CS_VERSION:
1899                 ctl_putstr(sys_var[CS_VERSION].text, Version,
1900                            strlen(Version));
1901                 break;
1902
1903         case CS_STABIL:
1904                 ctl_putdbl(sys_var[CS_STABIL].text, clock_stability *
1905                            1e6);
1906                 break;
1907
1908         case CS_VARLIST:
1909         {
1910                 char buf[CTL_MAX_DATA_LEN];
1911                 //buffPointer, firstElementPointer, buffEndPointer
1912                 char *buffp, *buffend;
1913                 int firstVarName;
1914                 const char *ss1;
1915                 int len;
1916                 const struct ctl_var *k;
1917
1918                 buffp = buf;
1919                 buffend = buf + sizeof(buf);
1920                 if (buffp + strlen(sys_var[CS_VARLIST].text) + 4 > buffend)
1921                         break;  /* really long var name */
1922
1923                 snprintf(buffp, sizeof(buf), "%s=\"",sys_var[CS_VARLIST].text);
1924                 buffp += strlen(buffp);
1925                 firstVarName = TRUE;
1926                 for (k = sys_var; !(k->flags & EOV); k++) {
1927                         if (k->flags & PADDING)
1928                                 continue;
1929                         len = strlen(k->text);
1930                         if (buffp + len + 1 >= buffend)
1931                                 break;
1932                         if (!firstVarName)
1933                                 *buffp++ = ',';
1934                         else
1935                                 firstVarName = FALSE;
1936                         memcpy(buffp, k->text, len);
1937                         buffp += len;
1938                 }
1939
1940                 for (k = ext_sys_var; k && !(k->flags & EOV); k++) {
1941                         if (k->flags & PADDING)
1942                                 continue;
1943                         if (NULL == k->text)
1944                                 continue;
1945                         ss1 = strchr(k->text, '=');
1946                         if (NULL == ss1)
1947                                 len = strlen(k->text);
1948                         else
1949                                 len = ss1 - k->text;
1950                         if (buffp + len + 1 >= buffend)
1951                                 break;
1952                         if (firstVarName) {
1953                                 *buffp++ = ',';
1954                                 firstVarName = FALSE;
1955                         }
1956                         memcpy(buffp, k->text,(unsigned)len);
1957                         buffp += len;
1958                 }
1959                 if (buffp + 2 >= buffend)
1960                         break;
1961
1962                 *buffp++ = '"';
1963                 *buffp = '\0';
1964
1965                 ctl_putdata(buf, (unsigned)( buffp - buf ), 0);
1966                 break;
1967         }
1968
1969         case CS_TAI:
1970                 if (sys_tai > 0)
1971                         ctl_putuint(sys_var[CS_TAI].text, sys_tai);
1972                 break;
1973
1974         case CS_LEAPTAB:
1975         {
1976                 leap_signature_t lsig;
1977                 leapsec_getsig(&lsig);
1978                 if (lsig.ttime > 0)
1979                         ctl_putfs(sys_var[CS_LEAPTAB].text, lsig.ttime);
1980                 break;
1981         }
1982
1983         case CS_LEAPEND:
1984         {
1985                 leap_signature_t lsig;
1986                 leapsec_getsig(&lsig);
1987                 if (lsig.etime > 0)
1988                         ctl_putfs(sys_var[CS_LEAPEND].text, lsig.etime);
1989                 break;
1990         }
1991
1992 #ifdef LEAP_SMEAR
1993         case CS_LEAPSMEARINTV:
1994                 if (leap_smear_intv > 0)
1995                         ctl_putuint(sys_var[CS_LEAPSMEARINTV].text, leap_smear_intv);
1996                 break;
1997
1998         case CS_LEAPSMEAROFFS:
1999                 if (leap_smear_intv > 0)
2000                         ctl_putdbl(sys_var[CS_LEAPSMEAROFFS].text,
2001                                    leap_smear.doffset * 1e3);
2002                 break;
2003 #endif  /* LEAP_SMEAR */
2004
2005         case CS_RATE:
2006                 ctl_putuint(sys_var[CS_RATE].text, ntp_minpoll);
2007                 break;
2008
2009         case CS_MRU_ENABLED:
2010                 ctl_puthex(sys_var[varid].text, mon_enabled);
2011                 break;
2012
2013         case CS_MRU_DEPTH:
2014                 ctl_putuint(sys_var[varid].text, mru_entries);
2015                 break;
2016
2017         case CS_MRU_MEM:
2018                 kb = mru_entries * (sizeof(mon_entry) / 1024.);
2019                 u = (u_int)kb;
2020                 if (kb - u >= 0.5)
2021                         u++;
2022                 ctl_putuint(sys_var[varid].text, u);
2023                 break;
2024
2025         case CS_MRU_DEEPEST:
2026                 ctl_putuint(sys_var[varid].text, mru_peakentries);
2027                 break;
2028
2029         case CS_MRU_MINDEPTH:
2030                 ctl_putuint(sys_var[varid].text, mru_mindepth);
2031                 break;
2032
2033         case CS_MRU_MAXAGE:
2034                 ctl_putint(sys_var[varid].text, mru_maxage);
2035                 break;
2036
2037         case CS_MRU_MAXDEPTH:
2038                 ctl_putuint(sys_var[varid].text, mru_maxdepth);
2039                 break;
2040
2041         case CS_MRU_MAXMEM:
2042                 kb = mru_maxdepth * (sizeof(mon_entry) / 1024.);
2043                 u = (u_int)kb;
2044                 if (kb - u >= 0.5)
2045                         u++;
2046                 ctl_putuint(sys_var[varid].text, u);
2047                 break;
2048
2049         case CS_SS_UPTIME:
2050                 ctl_putuint(sys_var[varid].text, current_time);
2051                 break;
2052
2053         case CS_SS_RESET:
2054                 ctl_putuint(sys_var[varid].text,
2055                             current_time - sys_stattime);
2056                 break;
2057
2058         case CS_SS_RECEIVED:
2059                 ctl_putuint(sys_var[varid].text, sys_received);
2060                 break;
2061
2062         case CS_SS_THISVER:
2063                 ctl_putuint(sys_var[varid].text, sys_newversion);
2064                 break;
2065
2066         case CS_SS_OLDVER:
2067                 ctl_putuint(sys_var[varid].text, sys_oldversion);
2068                 break;
2069
2070         case CS_SS_BADFORMAT:
2071                 ctl_putuint(sys_var[varid].text, sys_badlength);
2072                 break;
2073
2074         case CS_SS_BADAUTH:
2075                 ctl_putuint(sys_var[varid].text, sys_badauth);
2076                 break;
2077
2078         case CS_SS_DECLINED:
2079                 ctl_putuint(sys_var[varid].text, sys_declined);
2080                 break;
2081
2082         case CS_SS_RESTRICTED:
2083                 ctl_putuint(sys_var[varid].text, sys_restricted);
2084                 break;
2085
2086         case CS_SS_LIMITED:
2087                 ctl_putuint(sys_var[varid].text, sys_limitrejected);
2088                 break;
2089
2090         case CS_SS_KODSENT:
2091                 ctl_putuint(sys_var[varid].text, sys_kodsent);
2092                 break;
2093
2094         case CS_SS_PROCESSED:
2095                 ctl_putuint(sys_var[varid].text, sys_processed);
2096                 break;
2097
2098         case CS_BCASTDELAY:
2099                 ctl_putdbl(sys_var[varid].text, sys_bdelay * 1e3);
2100                 break;
2101
2102         case CS_AUTHDELAY:
2103                 LFPTOD(&sys_authdelay, dtemp);
2104                 ctl_putdbl(sys_var[varid].text, dtemp * 1e3);
2105                 break;
2106
2107         case CS_AUTHKEYS:
2108                 ctl_putuint(sys_var[varid].text, authnumkeys);
2109                 break;
2110
2111         case CS_AUTHFREEK:
2112                 ctl_putuint(sys_var[varid].text, authnumfreekeys);
2113                 break;
2114
2115         case CS_AUTHKLOOKUPS:
2116                 ctl_putuint(sys_var[varid].text, authkeylookups);
2117                 break;
2118
2119         case CS_AUTHKNOTFOUND:
2120                 ctl_putuint(sys_var[varid].text, authkeynotfound);
2121                 break;
2122
2123         case CS_AUTHKUNCACHED:
2124                 ctl_putuint(sys_var[varid].text, authkeyuncached);
2125                 break;
2126
2127         case CS_AUTHKEXPIRED:
2128                 ctl_putuint(sys_var[varid].text, authkeyexpired);
2129                 break;
2130
2131         case CS_AUTHENCRYPTS:
2132                 ctl_putuint(sys_var[varid].text, authencryptions);
2133                 break;
2134
2135         case CS_AUTHDECRYPTS:
2136                 ctl_putuint(sys_var[varid].text, authdecryptions);
2137                 break;
2138
2139         case CS_AUTHRESET:
2140                 ctl_putuint(sys_var[varid].text,
2141                             current_time - auth_timereset);
2142                 break;
2143
2144                 /*
2145                  * CTL_IF_KERNLOOP() puts a zero if the kernel loop is
2146                  * unavailable, otherwise calls putfunc with args.
2147                  */
2148 #ifndef KERNEL_PLL
2149 # define        CTL_IF_KERNLOOP(putfunc, args)  \
2150                 ctl_putint(sys_var[varid].text, 0)
2151 #else
2152 # define        CTL_IF_KERNLOOP(putfunc, args)  \
2153                 putfunc args
2154 #endif
2155
2156                 /*
2157                  * CTL_IF_KERNPPS() puts a zero if either the kernel
2158                  * loop is unavailable, or kernel hard PPS is not
2159                  * active, otherwise calls putfunc with args.
2160                  */
2161 #ifndef KERNEL_PLL
2162 # define        CTL_IF_KERNPPS(putfunc, args)   \
2163                 ctl_putint(sys_var[varid].text, 0)
2164 #else
2165 # define        CTL_IF_KERNPPS(putfunc, args)                   \
2166                 if (0 == ntx.shift)                             \
2167                         ctl_putint(sys_var[varid].text, 0);     \
2168                 else                                            \
2169                         putfunc args    /* no trailing ; */
2170 #endif
2171
2172         case CS_K_OFFSET:
2173                 CTL_IF_KERNLOOP(
2174                         ctl_putdblf,
2175                         (sys_var[varid].text, 0, -1, to_ms * ntx.offset)
2176                 );
2177                 break;
2178
2179         case CS_K_FREQ:
2180                 CTL_IF_KERNLOOP(
2181                         ctl_putsfp,
2182                         (sys_var[varid].text, ntx.freq)
2183                 );
2184                 break;
2185
2186         case CS_K_MAXERR:
2187                 CTL_IF_KERNLOOP(
2188                         ctl_putdblf,
2189                         (sys_var[varid].text, 0, 6,
2190                          to_ms * ntx.maxerror)
2191                 );
2192                 break;
2193
2194         case CS_K_ESTERR:
2195                 CTL_IF_KERNLOOP(
2196                         ctl_putdblf,
2197                         (sys_var[varid].text, 0, 6,
2198                          to_ms * ntx.esterror)
2199                 );
2200                 break;
2201
2202         case CS_K_STFLAGS:
2203 #ifndef KERNEL_PLL
2204                 ss = "";
2205 #else
2206                 ss = k_st_flags(ntx.status);
2207 #endif
2208                 ctl_putstr(sys_var[varid].text, ss, strlen(ss));
2209                 break;
2210
2211         case CS_K_TIMECONST:
2212                 CTL_IF_KERNLOOP(
2213                         ctl_putint,
2214                         (sys_var[varid].text, ntx.constant)
2215                 );
2216                 break;
2217
2218         case CS_K_PRECISION:
2219                 CTL_IF_KERNLOOP(
2220                         ctl_putdblf,
2221                         (sys_var[varid].text, 0, 6,
2222                             to_ms * ntx.precision)
2223                 );
2224                 break;
2225
2226         case CS_K_FREQTOL:
2227                 CTL_IF_KERNLOOP(
2228                         ctl_putsfp,
2229                         (sys_var[varid].text, ntx.tolerance)
2230                 );
2231                 break;
2232
2233         case CS_K_PPS_FREQ:
2234                 CTL_IF_KERNPPS(
2235                         ctl_putsfp,
2236                         (sys_var[varid].text, ntx.ppsfreq)
2237                 );
2238                 break;
2239
2240         case CS_K_PPS_STABIL:
2241                 CTL_IF_KERNPPS(
2242                         ctl_putsfp,
2243                         (sys_var[varid].text, ntx.stabil)
2244                 );
2245                 break;
2246
2247         case CS_K_PPS_JITTER:
2248                 CTL_IF_KERNPPS(
2249                         ctl_putdbl,
2250                         (sys_var[varid].text, to_ms * ntx.jitter)
2251                 );
2252                 break;
2253
2254         case CS_K_PPS_CALIBDUR:
2255                 CTL_IF_KERNPPS(
2256                         ctl_putint,
2257                         (sys_var[varid].text, 1 << ntx.shift)
2258                 );
2259                 break;
2260
2261         case CS_K_PPS_CALIBS:
2262                 CTL_IF_KERNPPS(
2263                         ctl_putint,
2264                         (sys_var[varid].text, ntx.calcnt)
2265                 );
2266                 break;
2267
2268         case CS_K_PPS_CALIBERRS:
2269                 CTL_IF_KERNPPS(
2270                         ctl_putint,
2271                         (sys_var[varid].text, ntx.errcnt)
2272                 );
2273                 break;
2274
2275         case CS_K_PPS_JITEXC:
2276                 CTL_IF_KERNPPS(
2277                         ctl_putint,
2278                         (sys_var[varid].text, ntx.jitcnt)
2279                 );
2280                 break;
2281
2282         case CS_K_PPS_STBEXC:
2283                 CTL_IF_KERNPPS(
2284                         ctl_putint,
2285                         (sys_var[varid].text, ntx.stbcnt)
2286                 );
2287                 break;
2288
2289         case CS_IOSTATS_RESET:
2290                 ctl_putuint(sys_var[varid].text,
2291                             current_time - io_timereset);
2292                 break;
2293
2294         case CS_TOTAL_RBUF:
2295                 ctl_putuint(sys_var[varid].text, total_recvbuffs());
2296                 break;
2297
2298         case CS_FREE_RBUF:
2299                 ctl_putuint(sys_var[varid].text, free_recvbuffs());
2300                 break;
2301
2302         case CS_USED_RBUF:
2303                 ctl_putuint(sys_var[varid].text, full_recvbuffs());
2304                 break;
2305
2306         case CS_RBUF_LOWATER:
2307                 ctl_putuint(sys_var[varid].text, lowater_additions());
2308                 break;
2309
2310         case CS_IO_DROPPED:
2311                 ctl_putuint(sys_var[varid].text, packets_dropped);
2312                 break;
2313
2314         case CS_IO_IGNORED:
2315                 ctl_putuint(sys_var[varid].text, packets_ignored);
2316                 break;
2317
2318         case CS_IO_RECEIVED:
2319                 ctl_putuint(sys_var[varid].text, packets_received);
2320                 break;
2321
2322         case CS_IO_SENT:
2323                 ctl_putuint(sys_var[varid].text, packets_sent);
2324                 break;
2325
2326         case CS_IO_SENDFAILED:
2327                 ctl_putuint(sys_var[varid].text, packets_notsent);
2328                 break;
2329
2330         case CS_IO_WAKEUPS:
2331                 ctl_putuint(sys_var[varid].text, handler_calls);
2332                 break;
2333
2334         case CS_IO_GOODWAKEUPS:
2335                 ctl_putuint(sys_var[varid].text, handler_pkts);
2336                 break;
2337
2338         case CS_TIMERSTATS_RESET:
2339                 ctl_putuint(sys_var[varid].text,
2340                             current_time - timer_timereset);
2341                 break;
2342
2343         case CS_TIMER_OVERRUNS:
2344                 ctl_putuint(sys_var[varid].text, alarm_overflow);
2345                 break;
2346
2347         case CS_TIMER_XMTS:
2348                 ctl_putuint(sys_var[varid].text, timer_xmtcalls);
2349                 break;
2350
2351         case CS_FUZZ:
2352                 ctl_putdbl(sys_var[varid].text, sys_fuzz * 1e3);
2353                 break;
2354         case CS_WANDER_THRESH:
2355                 ctl_putdbl(sys_var[varid].text, wander_threshold * 1e6);
2356                 break;
2357 #ifdef AUTOKEY
2358         case CS_FLAGS:
2359                 if (crypto_flags)
2360                         ctl_puthex(sys_var[CS_FLAGS].text,
2361                             crypto_flags);
2362                 break;
2363
2364         case CS_DIGEST:
2365                 if (crypto_flags) {
2366                         strlcpy(str, OBJ_nid2ln(crypto_nid),
2367                             COUNTOF(str));
2368                         ctl_putstr(sys_var[CS_DIGEST].text, str,
2369                             strlen(str));
2370                 }
2371                 break;
2372
2373         case CS_SIGNATURE:
2374                 if (crypto_flags) {
2375                         const EVP_MD *dp;
2376
2377                         dp = EVP_get_digestbynid(crypto_flags >> 16);
2378                         strlcpy(str, OBJ_nid2ln(EVP_MD_pkey_type(dp)),
2379                             COUNTOF(str));
2380                         ctl_putstr(sys_var[CS_SIGNATURE].text, str,
2381                             strlen(str));
2382                 }
2383                 break;
2384
2385         case CS_HOST:
2386                 if (hostval.ptr != NULL)
2387                         ctl_putstr(sys_var[CS_HOST].text, hostval.ptr,
2388                             strlen(hostval.ptr));
2389                 break;
2390
2391         case CS_IDENT:
2392                 if (sys_ident != NULL)
2393                         ctl_putstr(sys_var[CS_IDENT].text, sys_ident,
2394                             strlen(sys_ident));
2395                 break;
2396
2397         case CS_CERTIF:
2398                 for (cp = cinfo; cp != NULL; cp = cp->link) {
2399                         snprintf(str, sizeof(str), "%s %s 0x%x",
2400                             cp->subject, cp->issuer, cp->flags);
2401                         ctl_putstr(sys_var[CS_CERTIF].text, str,
2402                             strlen(str));
2403                         ctl_putcal(sys_var[CS_REVTIME].text, &(cp->last));
2404                 }
2405                 break;
2406
2407         case CS_PUBLIC:
2408                 if (hostval.tstamp != 0)
2409                         ctl_putfs(sys_var[CS_PUBLIC].text,
2410                             ntohl(hostval.tstamp));
2411                 break;
2412 #endif  /* AUTOKEY */
2413         }
2414 }
2415
2416
2417 /*
2418  * ctl_putpeer - output a peer variable
2419  */
2420 static void
2421 ctl_putpeer(
2422         int id,
2423         struct peer *p
2424         )
2425 {
2426         char buf[CTL_MAX_DATA_LEN];
2427         char *s;
2428         char *t;
2429         char *be;
2430         int i;
2431         const struct ctl_var *k;
2432 #ifdef AUTOKEY
2433         struct autokey *ap;
2434         const EVP_MD *dp;
2435         const char *str;
2436 #endif  /* AUTOKEY */
2437
2438         switch (id) {
2439
2440         case CP_CONFIG:
2441                 ctl_putuint(peer_var[id].text,
2442                             !(FLAG_PREEMPT & p->flags));
2443                 break;
2444
2445         case CP_AUTHENABLE:
2446                 ctl_putuint(peer_var[id].text, !(p->keyid));
2447                 break;
2448
2449         case CP_AUTHENTIC:
2450                 ctl_putuint(peer_var[id].text,
2451                             !!(FLAG_AUTHENTIC & p->flags));
2452                 break;
2453
2454         case CP_SRCADR:
2455                 ctl_putadr(peer_var[id].text, 0, &p->srcadr);
2456                 break;
2457
2458         case CP_SRCPORT:
2459                 ctl_putuint(peer_var[id].text, SRCPORT(&p->srcadr));
2460                 break;
2461
2462         case CP_SRCHOST:
2463                 if (p->hostname != NULL)
2464                         ctl_putstr(peer_var[id].text, p->hostname,
2465                                    strlen(p->hostname));
2466                 break;
2467
2468         case CP_DSTADR:
2469                 ctl_putadr(peer_var[id].text, 0,
2470                            (p->dstadr != NULL)
2471                                 ? &p->dstadr->sin
2472                                 : NULL);
2473                 break;
2474
2475         case CP_DSTPORT:
2476                 ctl_putuint(peer_var[id].text,
2477                             (p->dstadr != NULL)
2478                                 ? SRCPORT(&p->dstadr->sin)
2479                                 : 0);
2480                 break;
2481
2482         case CP_IN:
2483                 if (p->r21 > 0.)
2484                         ctl_putdbl(peer_var[id].text, p->r21 / 1e3);
2485                 break;
2486
2487         case CP_OUT:
2488                 if (p->r34 > 0.)
2489                         ctl_putdbl(peer_var[id].text, p->r34 / 1e3);
2490                 break;
2491
2492         case CP_RATE:
2493                 ctl_putuint(peer_var[id].text, p->throttle);
2494                 break;
2495
2496         case CP_LEAP:
2497                 ctl_putuint(peer_var[id].text, p->leap);
2498                 break;
2499
2500         case CP_HMODE:
2501                 ctl_putuint(peer_var[id].text, p->hmode);
2502                 break;
2503
2504         case CP_STRATUM:
2505                 ctl_putuint(peer_var[id].text, p->stratum);
2506                 break;
2507
2508         case CP_PPOLL:
2509                 ctl_putuint(peer_var[id].text, p->ppoll);
2510                 break;
2511
2512         case CP_HPOLL:
2513                 ctl_putuint(peer_var[id].text, p->hpoll);
2514                 break;
2515
2516         case CP_PRECISION:
2517                 ctl_putint(peer_var[id].text, p->precision);
2518                 break;
2519
2520         case CP_ROOTDELAY:
2521                 ctl_putdbl(peer_var[id].text, p->rootdelay * 1e3);
2522                 break;
2523
2524         case CP_ROOTDISPERSION:
2525                 ctl_putdbl(peer_var[id].text, p->rootdisp * 1e3);
2526                 break;
2527
2528         case CP_REFID:
2529 #ifdef REFCLOCK
2530                 if (p->flags & FLAG_REFCLOCK) {
2531                         ctl_putrefid(peer_var[id].text, p->refid);
2532                         break;
2533                 }
2534 #endif
2535                 if (p->stratum > 1 && p->stratum < STRATUM_UNSPEC)
2536                         ctl_putadr(peer_var[id].text, p->refid,
2537                                    NULL);
2538                 else
2539                         ctl_putrefid(peer_var[id].text, p->refid);
2540                 break;
2541
2542         case CP_REFTIME:
2543                 ctl_putts(peer_var[id].text, &p->reftime);
2544                 break;
2545
2546         case CP_ORG:
2547                 ctl_putts(peer_var[id].text, &p->aorg);
2548                 break;
2549
2550         case CP_REC:
2551                 ctl_putts(peer_var[id].text, &p->dst);
2552                 break;
2553
2554         case CP_XMT:
2555                 if (p->xleave)
2556                         ctl_putdbl(peer_var[id].text, p->xleave * 1e3);
2557                 break;
2558
2559         case CP_BIAS:
2560                 if (p->bias != 0.)
2561                         ctl_putdbl(peer_var[id].text, p->bias * 1e3);
2562                 break;
2563
2564         case CP_REACH:
2565                 ctl_puthex(peer_var[id].text, p->reach);
2566                 break;
2567
2568         case CP_FLASH:
2569                 ctl_puthex(peer_var[id].text, p->flash);
2570                 break;
2571
2572         case CP_TTL:
2573 #ifdef REFCLOCK
2574                 if (p->flags & FLAG_REFCLOCK) {
2575                         ctl_putuint(peer_var[id].text, p->ttl);
2576                         break;
2577                 }
2578 #endif
2579                 if (p->ttl > 0 && p->ttl < COUNTOF(sys_ttl))
2580                         ctl_putint(peer_var[id].text,
2581                                    sys_ttl[p->ttl]);
2582                 break;
2583
2584         case CP_UNREACH:
2585                 ctl_putuint(peer_var[id].text, p->unreach);
2586                 break;
2587
2588         case CP_TIMER:
2589                 ctl_putuint(peer_var[id].text,
2590                             p->nextdate - current_time);
2591                 break;
2592
2593         case CP_DELAY:
2594                 ctl_putdbl(peer_var[id].text, p->delay * 1e3);
2595                 break;
2596
2597         case CP_OFFSET:
2598                 ctl_putdbl(peer_var[id].text, p->offset * 1e3);
2599                 break;
2600
2601         case CP_JITTER:
2602                 ctl_putdbl(peer_var[id].text, p->jitter * 1e3);
2603                 break;
2604
2605         case CP_DISPERSION:
2606                 ctl_putdbl(peer_var[id].text, p->disp * 1e3);
2607                 break;
2608
2609         case CP_KEYID:
2610                 if (p->keyid > NTP_MAXKEY)
2611                         ctl_puthex(peer_var[id].text, p->keyid);
2612                 else
2613                         ctl_putuint(peer_var[id].text, p->keyid);
2614                 break;
2615
2616         case CP_FILTDELAY:
2617                 ctl_putarray(peer_var[id].text, p->filter_delay,
2618                              p->filter_nextpt);
2619                 break;
2620
2621         case CP_FILTOFFSET:
2622                 ctl_putarray(peer_var[id].text, p->filter_offset,
2623                              p->filter_nextpt);
2624                 break;
2625
2626         case CP_FILTERROR:
2627                 ctl_putarray(peer_var[id].text, p->filter_disp,
2628                              p->filter_nextpt);
2629                 break;
2630
2631         case CP_PMODE:
2632                 ctl_putuint(peer_var[id].text, p->pmode);
2633                 break;
2634
2635         case CP_RECEIVED:
2636                 ctl_putuint(peer_var[id].text, p->received);
2637                 break;
2638
2639         case CP_SENT:
2640                 ctl_putuint(peer_var[id].text, p->sent);
2641                 break;
2642
2643         case CP_VARLIST:
2644                 s = buf;
2645                 be = buf + sizeof(buf);
2646                 if (strlen(peer_var[id].text) + 4 > sizeof(buf))
2647                         break;  /* really long var name */
2648
2649                 snprintf(s, sizeof(buf), "%s=\"", peer_var[id].text);
2650                 s += strlen(s);
2651                 t = s;
2652                 for (k = peer_var; !(EOV & k->flags); k++) {
2653                         if (PADDING & k->flags)
2654                                 continue;
2655                         i = strlen(k->text);
2656                         if (s + i + 1 >= be)
2657                                 break;
2658                         if (s != t)
2659                                 *s++ = ',';
2660                         memcpy(s, k->text, i);
2661                         s += i;
2662                 }
2663                 if (s + 2 < be) {
2664                         *s++ = '"';
2665                         *s = '\0';
2666                         ctl_putdata(buf, (u_int)(s - buf), 0);
2667                 }
2668                 break;
2669
2670         case CP_TIMEREC:
2671                 ctl_putuint(peer_var[id].text,
2672                             current_time - p->timereceived);
2673                 break;
2674
2675         case CP_TIMEREACH:
2676                 ctl_putuint(peer_var[id].text,
2677                             current_time - p->timereachable);
2678                 break;
2679
2680         case CP_BADAUTH:
2681                 ctl_putuint(peer_var[id].text, p->badauth);
2682                 break;
2683
2684         case CP_BOGUSORG:
2685                 ctl_putuint(peer_var[id].text, p->bogusorg);
2686                 break;
2687
2688         case CP_OLDPKT:
2689                 ctl_putuint(peer_var[id].text, p->oldpkt);
2690                 break;
2691
2692         case CP_SELDISP:
2693                 ctl_putuint(peer_var[id].text, p->seldisptoolarge);
2694                 break;
2695
2696         case CP_SELBROKEN:
2697                 ctl_putuint(peer_var[id].text, p->selbroken);
2698                 break;
2699
2700         case CP_CANDIDATE:
2701                 ctl_putuint(peer_var[id].text, p->status);
2702                 break;
2703 #ifdef AUTOKEY
2704         case CP_FLAGS:
2705                 if (p->crypto)
2706                         ctl_puthex(peer_var[id].text, p->crypto);
2707                 break;
2708
2709         case CP_SIGNATURE:
2710                 if (p->crypto) {
2711                         dp = EVP_get_digestbynid(p->crypto >> 16);
2712                         str = OBJ_nid2ln(EVP_MD_pkey_type(dp));
2713                         ctl_putstr(peer_var[id].text, str, strlen(str));
2714                 }
2715                 break;
2716
2717         case CP_HOST:
2718                 if (p->subject != NULL)
2719                         ctl_putstr(peer_var[id].text, p->subject,
2720                             strlen(p->subject));
2721                 break;
2722
2723         case CP_VALID:          /* not used */
2724                 break;
2725
2726         case CP_INITSEQ:
2727                 if (NULL == (ap = p->recval.ptr))
2728                         break;
2729
2730                 ctl_putint(peer_var[CP_INITSEQ].text, ap->seq);
2731                 ctl_puthex(peer_var[CP_INITKEY].text, ap->key);
2732                 ctl_putfs(peer_var[CP_INITTSP].text,
2733                           ntohl(p->recval.tstamp));
2734                 break;
2735
2736         case CP_IDENT:
2737                 if (p->ident != NULL)
2738                         ctl_putstr(peer_var[id].text, p->ident,
2739                             strlen(p->ident));
2740                 break;
2741
2742
2743 #endif  /* AUTOKEY */
2744         }
2745 }
2746
2747
2748 #ifdef REFCLOCK
2749 /*
2750  * ctl_putclock - output clock variables
2751  */
2752 static void
2753 ctl_putclock(
2754         int id,
2755         struct refclockstat *pcs,
2756         int mustput
2757         )
2758 {
2759         char buf[CTL_MAX_DATA_LEN];
2760         char *s, *t, *be;
2761         const char *ss;
2762         int i;
2763         const struct ctl_var *k;
2764
2765         switch (id) {
2766
2767         case CC_TYPE:
2768                 if (mustput || pcs->clockdesc == NULL
2769                     || *(pcs->clockdesc) == '\0') {
2770                         ctl_putuint(clock_var[id].text, pcs->type);
2771                 }
2772                 break;
2773         case CC_TIMECODE:
2774                 ctl_putstr(clock_var[id].text,
2775                            pcs->p_lastcode,
2776                            (unsigned)pcs->lencode);
2777                 break;
2778
2779         case CC_POLL:
2780                 ctl_putuint(clock_var[id].text, pcs->polls);
2781                 break;
2782
2783         case CC_NOREPLY:
2784                 ctl_putuint(clock_var[id].text,
2785                             pcs->noresponse);
2786                 break;
2787
2788         case CC_BADFORMAT:
2789                 ctl_putuint(clock_var[id].text,
2790                             pcs->badformat);
2791                 break;
2792
2793         case CC_BADDATA:
2794                 ctl_putuint(clock_var[id].text,
2795                             pcs->baddata);
2796                 break;
2797
2798         case CC_FUDGETIME1:
2799                 if (mustput || (pcs->haveflags & CLK_HAVETIME1))
2800                         ctl_putdbl(clock_var[id].text,
2801                                    pcs->fudgetime1 * 1e3);
2802                 break;
2803
2804         case CC_FUDGETIME2:
2805                 if (mustput || (pcs->haveflags & CLK_HAVETIME2))
2806                         ctl_putdbl(clock_var[id].text,
2807                                    pcs->fudgetime2 * 1e3);
2808                 break;
2809
2810         case CC_FUDGEVAL1:
2811                 if (mustput || (pcs->haveflags & CLK_HAVEVAL1))
2812                         ctl_putint(clock_var[id].text,
2813                                    pcs->fudgeval1);
2814                 break;
2815
2816         case CC_FUDGEVAL2:
2817                 if (mustput || (pcs->haveflags & CLK_HAVEVAL2)) {
2818                         if (pcs->fudgeval1 > 1)
2819                                 ctl_putadr(clock_var[id].text,
2820                                            pcs->fudgeval2, NULL);
2821                         else
2822                                 ctl_putrefid(clock_var[id].text,
2823                                              pcs->fudgeval2);
2824                 }
2825                 break;
2826
2827         case CC_FLAGS:
2828                 ctl_putuint(clock_var[id].text, pcs->flags);
2829                 break;
2830
2831         case CC_DEVICE:
2832                 if (pcs->clockdesc == NULL ||
2833                     *(pcs->clockdesc) == '\0') {
2834                         if (mustput)
2835                                 ctl_putstr(clock_var[id].text,
2836                                            "", 0);
2837                 } else {
2838                         ctl_putstr(clock_var[id].text,
2839                                    pcs->clockdesc,
2840                                    strlen(pcs->clockdesc));
2841                 }
2842                 break;
2843
2844         case CC_VARLIST:
2845                 s = buf;
2846                 be = buf + sizeof(buf);
2847                 if (strlen(clock_var[CC_VARLIST].text) + 4 >
2848                     sizeof(buf))
2849                         break;  /* really long var name */
2850
2851                 snprintf(s, sizeof(buf), "%s=\"",
2852                          clock_var[CC_VARLIST].text);
2853                 s += strlen(s);
2854                 t = s;
2855
2856                 for (k = clock_var; !(EOV & k->flags); k++) {
2857                         if (PADDING & k->flags)
2858                                 continue;
2859
2860                         i = strlen(k->text);
2861                         if (s + i + 1 >= be)
2862                                 break;
2863
2864                         if (s != t)
2865                                 *s++ = ',';
2866                         memcpy(s, k->text, i);
2867                         s += i;
2868                 }
2869
2870                 for (k = pcs->kv_list; k && !(EOV & k->flags); k++) {
2871                         if (PADDING & k->flags)
2872                                 continue;
2873
2874                         ss = k->text;
2875                         if (NULL == ss)
2876                                 continue;
2877
2878                         while (*ss && *ss != '=')
2879                                 ss++;
2880                         i = ss - k->text;
2881                         if (s + i + 1 >= be)
2882                                 break;
2883
2884                         if (s != t)
2885                                 *s++ = ',';
2886                         memcpy(s, k->text, (unsigned)i);
2887                         s += i;
2888                         *s = '\0';
2889                 }
2890                 if (s + 2 >= be)
2891                         break;
2892
2893                 *s++ = '"';
2894                 *s = '\0';
2895                 ctl_putdata(buf, (unsigned)(s - buf), 0);
2896                 break;
2897         }
2898 }
2899 #endif
2900
2901
2902
2903 /*
2904  * ctl_getitem - get the next data item from the incoming packet
2905  */
2906 static const struct ctl_var *
2907 ctl_getitem(
2908         const struct ctl_var *var_list,
2909         char **data
2910         )
2911 {
2912         static const struct ctl_var eol = { 0, EOV, NULL };
2913         static char buf[128];
2914         static u_long quiet_until;
2915         const struct ctl_var *v;
2916         const char *pch;
2917         char *cp;
2918         char *tp;
2919
2920         /*
2921          * Delete leading commas and white space
2922          */
2923         while (reqpt < reqend && (*reqpt == ',' ||
2924                                   isspace((unsigned char)*reqpt)))
2925                 reqpt++;
2926         if (reqpt >= reqend)
2927                 return NULL;
2928
2929         if (NULL == var_list)
2930                 return &eol;
2931
2932         /*
2933          * Look for a first character match on the tag.  If we find
2934          * one, see if it is a full match.
2935          */
2936         v = var_list;
2937         cp = reqpt;
2938         for (v = var_list; !(EOV & v->flags); v++) {
2939                 if (!(PADDING & v->flags) && *cp == *(v->text)) {
2940                         pch = v->text;
2941                         while ('\0' != *pch && '=' != *pch && cp < reqend
2942                                && *cp == *pch) {
2943                                 cp++;
2944                                 pch++;
2945                         }
2946                         if ('\0' == *pch || '=' == *pch) {
2947                                 while (cp < reqend && isspace((u_char)*cp))
2948                                         cp++;
2949                                 if (cp == reqend || ',' == *cp) {
2950                                         buf[0] = '\0';
2951                                         *data = buf;
2952                                         if (cp < reqend)
2953                                                 cp++;
2954                                         reqpt = cp;
2955                                         return v;
2956                                 }
2957                                 if ('=' == *cp) {
2958                                         cp++;
2959                                         tp = buf;
2960                                         while (cp < reqend && isspace((u_char)*cp))
2961                                                 cp++;
2962                                         while (cp < reqend && *cp != ',') {
2963                                                 *tp++ = *cp++;
2964                                                 if ((size_t)(tp - buf) >= sizeof(buf)) {
2965                                                         ctl_error(CERR_BADFMT);
2966                                                         numctlbadpkts++;
2967                                                         NLOG(NLOG_SYSEVENT)
2968                                                                 if (quiet_until <= current_time) {
2969                                                                         quiet_until = current_time + 300;
2970                                                                         msyslog(LOG_WARNING,
2971 "Possible 'ntpdx' exploit from %s#%u (possibly spoofed)", stoa(rmt_addr), SRCPORT(rmt_addr));
2972                                                                 }
2973                                                         return NULL;
2974                                                 }
2975                                         }
2976                                         if (cp < reqend)
2977                                                 cp++;
2978                                         *tp-- = '\0';
2979                                         while (tp >= buf && isspace((u_char)*tp))
2980                                                 *tp-- = '\0';
2981                                         reqpt = cp;
2982                                         *data = buf;
2983                                         return v;
2984                                 }
2985                         }
2986                         cp = reqpt;
2987                 }
2988         }
2989         return v;
2990 }
2991
2992
2993 /*
2994  * control_unspec - response to an unspecified op-code
2995  */
2996 /*ARGSUSED*/
2997 static void
2998 control_unspec(
2999         struct recvbuf *rbufp,
3000         int restrict_mask
3001         )
3002 {
3003         struct peer *peer;
3004
3005         /*
3006          * What is an appropriate response to an unspecified op-code?
3007          * I return no errors and no data, unless a specified assocation
3008          * doesn't exist.
3009          */
3010         if (res_associd) {
3011                 peer = findpeerbyassoc(res_associd);
3012                 if (NULL == peer) {
3013                         ctl_error(CERR_BADASSOC);
3014                         return;
3015                 }
3016                 rpkt.status = htons(ctlpeerstatus(peer));
3017         } else
3018                 rpkt.status = htons(ctlsysstatus());
3019         ctl_flushpkt(0);
3020 }
3021
3022
3023 /*
3024  * read_status - return either a list of associd's, or a particular
3025  * peer's status.
3026  */
3027 /*ARGSUSED*/
3028 static void
3029 read_status(
3030         struct recvbuf *rbufp,
3031         int restrict_mask
3032         )
3033 {
3034         struct peer *peer;
3035         const u_char *cp;
3036         size_t n;
3037         /* a_st holds association ID, status pairs alternating */
3038         u_short a_st[CTL_MAX_DATA_LEN / sizeof(u_short)];
3039
3040 #ifdef DEBUG
3041         if (debug > 2)
3042                 printf("read_status: ID %d\n", res_associd);
3043 #endif
3044         /*
3045          * Two choices here. If the specified association ID is
3046          * zero we return all known assocation ID's.  Otherwise
3047          * we return a bunch of stuff about the particular peer.
3048          */
3049         if (res_associd) {
3050                 peer = findpeerbyassoc(res_associd);
3051                 if (NULL == peer) {
3052                         ctl_error(CERR_BADASSOC);
3053                         return;
3054                 }
3055                 rpkt.status = htons(ctlpeerstatus(peer));
3056                 if (res_authokay)
3057                         peer->num_events = 0;
3058                 /*
3059                  * For now, output everything we know about the
3060                  * peer. May be more selective later.
3061                  */
3062                 for (cp = def_peer_var; *cp != 0; cp++)
3063                         ctl_putpeer((int)*cp, peer);
3064                 ctl_flushpkt(0);
3065                 return;
3066         }
3067         n = 0;
3068         rpkt.status = htons(ctlsysstatus());
3069         for (peer = peer_list; peer != NULL; peer = peer->p_link) {
3070                 a_st[n++] = htons(peer->associd);
3071                 a_st[n++] = htons(ctlpeerstatus(peer));
3072                 /* two entries each loop iteration, so n + 1 */
3073                 if (n + 1 >= COUNTOF(a_st)) {
3074                         ctl_putdata((void *)a_st, n * sizeof(a_st[0]),
3075                                     1);
3076                         n = 0;
3077                 }
3078         }
3079         if (n)
3080                 ctl_putdata((void *)a_st, n * sizeof(a_st[0]), 1);
3081         ctl_flushpkt(0);
3082 }
3083
3084
3085 /*
3086  * read_peervars - half of read_variables() implementation
3087  */
3088 static void
3089 read_peervars(void)
3090 {
3091         const struct ctl_var *v;
3092         struct peer *peer;
3093         const u_char *cp;
3094         size_t i;
3095         char *  valuep;
3096         u_char  wants[CP_MAXCODE + 1];
3097         u_int   gotvar;
3098
3099         /*
3100          * Wants info for a particular peer. See if we know
3101          * the guy.
3102          */
3103         peer = findpeerbyassoc(res_associd);
3104         if (NULL == peer) {
3105                 ctl_error(CERR_BADASSOC);
3106                 return;
3107         }
3108         rpkt.status = htons(ctlpeerstatus(peer));
3109         if (res_authokay)
3110                 peer->num_events = 0;
3111         ZERO(wants);
3112         gotvar = 0;
3113         while (NULL != (v = ctl_getitem(peer_var, &valuep))) {
3114                 if (v->flags & EOV) {
3115                         ctl_error(CERR_UNKNOWNVAR);
3116                         return;
3117                 }
3118                 NTP_INSIST(v->code < COUNTOF(wants));
3119                 wants[v->code] = 1;
3120                 gotvar = 1;
3121         }
3122         if (gotvar) {
3123                 for (i = 1; i < COUNTOF(wants); i++)
3124                         if (wants[i])
3125                                 ctl_putpeer(i, peer);
3126         } else
3127                 for (cp = def_peer_var; *cp != 0; cp++)
3128                         ctl_putpeer((int)*cp, peer);
3129         ctl_flushpkt(0);
3130 }
3131
3132
3133 /*
3134  * read_sysvars - half of read_variables() implementation
3135  */
3136 static void
3137 read_sysvars(void)
3138 {
3139         const struct ctl_var *v;
3140         struct ctl_var *kv;
3141         u_int   n;
3142         u_int   gotvar;
3143         const u_char *cs;
3144         char *  valuep;
3145         const char * pch;
3146         u_char *wants;
3147         size_t  wants_count;
3148
3149         /*
3150          * Wants system variables. Figure out which he wants
3151          * and give them to him.
3152          */
3153         rpkt.status = htons(ctlsysstatus());
3154         if (res_authokay)
3155                 ctl_sys_num_events = 0;
3156         wants_count = CS_MAXCODE + 1 + count_var(ext_sys_var);
3157         wants = emalloc_zero(wants_count);
3158         gotvar = 0;
3159         while (NULL != (v = ctl_getitem(sys_var, &valuep))) {
3160                 if (!(EOV & v->flags)) {
3161                         NTP_INSIST(v->code < wants_count);
3162                         wants[v->code] = 1;
3163                         gotvar = 1;
3164                 } else {
3165                         v = ctl_getitem(ext_sys_var, &valuep);
3166                         NTP_INSIST(v != NULL);
3167                         if (EOV & v->flags) {
3168                                 ctl_error(CERR_UNKNOWNVAR);
3169                                 free(wants);
3170                                 return;
3171                         }
3172                         n = v->code + CS_MAXCODE + 1;
3173                         NTP_INSIST(n < wants_count);
3174                         wants[n] = 1;
3175                         gotvar = 1;
3176                 }
3177         }
3178         if (gotvar) {
3179                 for (n = 1; n <= CS_MAXCODE; n++)
3180                         if (wants[n])
3181                                 ctl_putsys(n);
3182                 for (n = 0; n + CS_MAXCODE + 1 < wants_count; n++)
3183                         if (wants[n + CS_MAXCODE + 1]) {
3184                                 pch = ext_sys_var[n].text;
3185                                 ctl_putdata(pch, strlen(pch), 0);
3186                         }
3187         } else {
3188                 for (cs = def_sys_var; *cs != 0; cs++)
3189                         ctl_putsys((int)*cs);
3190                 for (kv = ext_sys_var; kv && !(EOV & kv->flags); kv++)
3191                         if (DEF & kv->flags)
3192                                 ctl_putdata(kv->text, strlen(kv->text),
3193                                             0);
3194         }
3195         free(wants);
3196         ctl_flushpkt(0);
3197 }
3198
3199
3200 /*
3201  * read_variables - return the variables the caller asks for
3202  */
3203 /*ARGSUSED*/
3204 static void
3205 read_variables(
3206         struct recvbuf *rbufp,
3207         int restrict_mask
3208         )
3209 {
3210         if (res_associd)
3211                 read_peervars();
3212         else
3213                 read_sysvars();
3214 }
3215
3216
3217 /*
3218  * write_variables - write into variables. We only allow leap bit
3219  * writing this way.
3220  */
3221 /*ARGSUSED*/
3222 static void
3223 write_variables(
3224         struct recvbuf *rbufp,
3225         int restrict_mask
3226         )
3227 {
3228         const struct ctl_var *v;
3229         int ext_var;
3230         char *valuep;
3231         long val;
3232         size_t octets;
3233         char *vareqv;
3234         const char *t;
3235         char *tt;
3236
3237         val = 0;
3238         /*
3239          * If he's trying to write into a peer tell him no way
3240          */
3241         if (res_associd != 0) {
3242                 ctl_error(CERR_PERMISSION);
3243                 return;
3244         }
3245
3246         /*
3247          * Set status
3248          */
3249         rpkt.status = htons(ctlsysstatus());
3250
3251         /*
3252          * Look through the variables. Dump out at the first sign of
3253          * trouble.
3254          */
3255         while ((v = ctl_getitem(sys_var, &valuep)) != 0) {
3256                 ext_var = 0;
3257                 if (v->flags & EOV) {
3258                         if ((v = ctl_getitem(ext_sys_var, &valuep)) !=
3259                             0) {
3260                                 if (v->flags & EOV) {
3261                                         ctl_error(CERR_UNKNOWNVAR);
3262                                         return;
3263                                 }
3264                                 ext_var = 1;
3265                         } else {
3266                                 break;
3267                         }
3268                 }
3269                 if (!(v->flags & CAN_WRITE)) {
3270                         ctl_error(CERR_PERMISSION);
3271                         return;
3272                 }
3273                 if (!ext_var && (*valuep == '\0' || !atoint(valuep,
3274                                                             &val))) {
3275                         ctl_error(CERR_BADFMT);
3276                         return;
3277                 }
3278                 if (!ext_var && (val & ~LEAP_NOTINSYNC) != 0) {
3279                         ctl_error(CERR_BADVALUE);
3280                         return;
3281                 }
3282
3283                 if (ext_var) {
3284                         octets = strlen(v->text) + strlen(valuep) + 2;
3285                         vareqv = emalloc(octets);
3286                         tt = vareqv;
3287                         t = v->text;
3288                         while (*t && *t != '=')
3289                                 *tt++ = *t++;
3290                         *tt++ = '=';
3291                         memcpy(tt, valuep, 1 + strlen(valuep));
3292                         set_sys_var(vareqv, 1 + strlen(vareqv), v->flags);
3293                         free(vareqv);
3294                 } else {
3295                         ctl_error(CERR_UNSPEC); /* really */
3296                         return;
3297                 }
3298         }
3299
3300         /*
3301          * If we got anything, do it. xxx nothing to do ***
3302          */
3303         /*
3304           if (leapind != ~0 || leapwarn != ~0) {
3305           if (!leap_setleap((int)leapind, (int)leapwarn)) {
3306           ctl_error(CERR_PERMISSION);
3307           return;
3308           }
3309           }
3310         */
3311         ctl_flushpkt(0);
3312 }
3313
3314
3315 /*
3316  * configure() processes ntpq :config/config-from-file, allowing
3317  *              generic runtime reconfiguration.
3318  */
3319 static void configure(
3320         struct recvbuf *rbufp,
3321         int restrict_mask
3322         )
3323 {
3324         size_t data_count;
3325         int retval;
3326
3327         /* I haven't yet implemented changes to an existing association.
3328          * Hence check if the association id is 0
3329          */
3330         if (res_associd != 0) {
3331                 ctl_error(CERR_BADVALUE);
3332                 return;
3333         }
3334
3335         if (RES_NOMODIFY & restrict_mask) {
3336                 snprintf(remote_config.err_msg,
3337                          sizeof(remote_config.err_msg),
3338                          "runtime configuration prohibited by restrict ... nomodify");
3339                 ctl_putdata(remote_config.err_msg,
3340                             strlen(remote_config.err_msg), 0);
3341                 ctl_flushpkt(0);
3342                 NLOG(NLOG_SYSINFO)
3343                         msyslog(LOG_NOTICE,
3344                                 "runtime config from %s rejected due to nomodify restriction",
3345                                 stoa(&rbufp->recv_srcadr));
3346                 sys_restricted++;
3347                 return;
3348         }
3349
3350         /* Initialize the remote config buffer */
3351         data_count = remoteconfig_cmdlength(reqpt, reqend);
3352
3353         if (data_count > sizeof(remote_config.buffer) - 2) {
3354                 snprintf(remote_config.err_msg,
3355                          sizeof(remote_config.err_msg),
3356                          "runtime configuration failed: request too long");
3357                 ctl_putdata(remote_config.err_msg,
3358                             strlen(remote_config.err_msg), 0);
3359                 ctl_flushpkt(0);
3360                 msyslog(LOG_NOTICE,
3361                         "runtime config from %s rejected: request too long",
3362                         stoa(&rbufp->recv_srcadr));
3363                 return;
3364         }
3365         /* Bug 2853 -- check if all characters were acceptable */
3366         if (data_count != (size_t)(reqend - reqpt)) {
3367                 snprintf(remote_config.err_msg,
3368                          sizeof(remote_config.err_msg),
3369                          "runtime configuration failed: request contains an unprintable character");
3370                 ctl_putdata(remote_config.err_msg,
3371                             strlen(remote_config.err_msg), 0);
3372                 ctl_flushpkt(0);
3373                 msyslog(LOG_NOTICE,
3374                         "runtime config from %s rejected: request contains an unprintable character: %0x",
3375                         stoa(&rbufp->recv_srcadr),
3376                         reqpt[data_count]);
3377                 return;
3378         }
3379
3380         memcpy(remote_config.buffer, reqpt, data_count);
3381         /* The buffer has no trailing linefeed or NUL right now. For
3382          * logging, we do not want a newline, so we do that first after
3383          * adding the necessary NUL byte.
3384          */
3385         remote_config.buffer[data_count] = '\0';
3386         DPRINTF(1, ("Got Remote Configuration Command: %s\n",
3387                 remote_config.buffer));
3388         msyslog(LOG_NOTICE, "%s config: %s",
3389                 stoa(&rbufp->recv_srcadr),
3390                 remote_config.buffer);
3391
3392         /* Now we have to make sure there is a NL/NUL sequence at the
3393          * end of the buffer before we parse it.
3394          */
3395         remote_config.buffer[data_count++] = '\n';
3396         remote_config.buffer[data_count] = '\0';
3397         remote_config.pos = 0;
3398         remote_config.err_pos = 0;
3399         remote_config.no_errors = 0;
3400         config_remotely(&rbufp->recv_srcadr);
3401
3402         /*
3403          * Check if errors were reported. If not, output 'Config
3404          * Succeeded'.  Else output the error count.  It would be nice
3405          * to output any parser error messages.
3406          */
3407         if (0 == remote_config.no_errors) {
3408                 retval = snprintf(remote_config.err_msg,
3409                                   sizeof(remote_config.err_msg),
3410                                   "Config Succeeded");
3411                 if (retval > 0)
3412                         remote_config.err_pos += retval;
3413         }
3414
3415         ctl_putdata(remote_config.err_msg, remote_config.err_pos, 0);
3416         ctl_flushpkt(0);
3417
3418         DPRINTF(1, ("Reply: %s\n", remote_config.err_msg));
3419
3420         if (remote_config.no_errors > 0)
3421                 msyslog(LOG_NOTICE, "%d error in %s config",
3422                         remote_config.no_errors,
3423                         stoa(&rbufp->recv_srcadr));
3424 }
3425
3426
3427 /*
3428  * derive_nonce - generate client-address-specific nonce value
3429  *                associated with a given timestamp.
3430  */
3431 static u_int32 derive_nonce(
3432         sockaddr_u *    addr,
3433         u_int32         ts_i,
3434         u_int32         ts_f
3435         )
3436 {
3437         static u_int32  salt[4];
3438         static u_long   last_salt_update;
3439         union d_tag {
3440                 u_char  digest[EVP_MAX_MD_SIZE];
3441                 u_int32 extract;
3442         }               d;
3443         EVP_MD_CTX      ctx;
3444         u_int           len;
3445
3446         while (!salt[0] || current_time - last_salt_update >= 3600) {
3447                 salt[0] = ntp_random();
3448                 salt[1] = ntp_random();
3449                 salt[2] = ntp_random();
3450                 salt[3] = ntp_random();
3451                 last_salt_update = current_time;
3452         }
3453
3454         EVP_DigestInit(&ctx, EVP_get_digestbynid(NID_md5));
3455         EVP_DigestUpdate(&ctx, salt, sizeof(salt));
3456         EVP_DigestUpdate(&ctx, &ts_i, sizeof(ts_i));
3457         EVP_DigestUpdate(&ctx, &ts_f, sizeof(ts_f));
3458         if (IS_IPV4(addr))
3459                 EVP_DigestUpdate(&ctx, &SOCK_ADDR4(addr),
3460                                  sizeof(SOCK_ADDR4(addr)));
3461         else
3462                 EVP_DigestUpdate(&ctx, &SOCK_ADDR6(addr),
3463                                  sizeof(SOCK_ADDR6(addr)));
3464         EVP_DigestUpdate(&ctx, &NSRCPORT(addr), sizeof(NSRCPORT(addr)));
3465         EVP_DigestUpdate(&ctx, salt, sizeof(salt));
3466         EVP_DigestFinal(&ctx, d.digest, &len);
3467
3468         return d.extract;
3469 }
3470
3471
3472 /*
3473  * generate_nonce - generate client-address-specific nonce string.
3474  */
3475 static void generate_nonce(
3476         struct recvbuf *        rbufp,
3477         char *                  nonce,
3478         size_t                  nonce_octets
3479         )
3480 {
3481         u_int32 derived;
3482
3483         derived = derive_nonce(&rbufp->recv_srcadr,
3484                                rbufp->recv_time.l_ui,
3485                                rbufp->recv_time.l_uf);
3486         snprintf(nonce, nonce_octets, "%08x%08x%08x",
3487                  rbufp->recv_time.l_ui, rbufp->recv_time.l_uf, derived);
3488 }
3489
3490
3491 /*
3492  * validate_nonce - validate client-address-specific nonce string.
3493  *
3494  * Returns TRUE if the local calculation of the nonce matches the
3495  * client-provided value and the timestamp is recent enough.
3496  */
3497 static int validate_nonce(
3498         const char *            pnonce,
3499         struct recvbuf *        rbufp
3500         )
3501 {
3502         u_int   ts_i;
3503         u_int   ts_f;
3504         l_fp    ts;
3505         l_fp    now_delta;
3506         u_int   supposed;
3507         u_int   derived;
3508
3509         if (3 != sscanf(pnonce, "%08x%08x%08x", &ts_i, &ts_f, &supposed))
3510                 return FALSE;
3511
3512         ts.l_ui = (u_int32)ts_i;
3513         ts.l_uf = (u_int32)ts_f;
3514         derived = derive_nonce(&rbufp->recv_srcadr, ts.l_ui, ts.l_uf);
3515         get_systime(&now_delta);
3516         L_SUB(&now_delta, &ts);
3517
3518         return (supposed == derived && now_delta.l_ui < 16);
3519 }
3520
3521
3522 /*
3523  * send_random_tag_value - send a randomly-generated three character
3524  *                         tag prefix, a '.', an index, a '=' and a
3525  *                         random integer value.
3526  *
3527  * To try to force clients to ignore unrecognized tags in mrulist,
3528  * reslist, and ifstats responses, the first and last rows are spiced
3529  * with randomly-generated tag names with correct .# index.  Make it
3530  * three characters knowing that none of the currently-used subscripted
3531  * tags have that length, avoiding the need to test for
3532  * tag collision.
3533  */
3534 static void
3535 send_random_tag_value(
3536         int     indx
3537         )
3538 {
3539         int     noise;
3540         char    buf[32];
3541
3542         noise = rand() ^ (rand() << 16);
3543         buf[0] = 'a' + noise % 26;
3544         noise >>= 5;
3545         buf[1] = 'a' + noise % 26;
3546         noise >>= 5;
3547         buf[2] = 'a' + noise % 26;
3548         noise >>= 5;
3549         buf[3] = '.';
3550         snprintf(&buf[4], sizeof(buf) - 4, "%d", indx);
3551         ctl_putuint(buf, noise);
3552 }
3553
3554
3555 /*
3556  * Send a MRU list entry in response to a "ntpq -c mrulist" operation.
3557  *
3558  * To keep clients honest about not depending on the order of values,
3559  * and thereby avoid being locked into ugly workarounds to maintain
3560  * backward compatibility later as new fields are added to the response,
3561  * the order is random.
3562  */
3563 static void
3564 send_mru_entry(
3565         mon_entry *     mon,
3566         int             count
3567         )
3568 {
3569         const char first_fmt[] =        "first.%d";
3570         const char ct_fmt[] =           "ct.%d";
3571         const char mv_fmt[] =           "mv.%d";
3572         const char rs_fmt[] =           "rs.%d";
3573         char    tag[32];
3574         u_char  sent[6]; /* 6 tag=value pairs */
3575         u_int32 noise;
3576         u_int   which;
3577         u_int   remaining;
3578         const char * pch;
3579
3580         remaining = COUNTOF(sent);
3581         ZERO(sent);
3582         noise = (u_int32)(rand() ^ (rand() << 16));
3583         while (remaining > 0) {
3584                 which = (noise & 7) % COUNTOF(sent);
3585                 noise >>= 3;
3586                 while (sent[which])
3587                         which = (which + 1) % COUNTOF(sent);
3588
3589                 switch (which) {
3590
3591                 case 0:
3592                         snprintf(tag, sizeof(tag), addr_fmt, count);
3593                         pch = sptoa(&mon->rmtadr);
3594                         ctl_putunqstr(tag, pch, strlen(pch));
3595                         break;
3596
3597                 case 1:
3598                         snprintf(tag, sizeof(tag), last_fmt, count);
3599                         ctl_putts(tag, &mon->last);
3600                         break;
3601
3602                 case 2:
3603                         snprintf(tag, sizeof(tag), first_fmt, count);
3604                         ctl_putts(tag, &mon->first);
3605                         break;
3606
3607                 case 3:
3608                         snprintf(tag, sizeof(tag), ct_fmt, count);
3609                         ctl_putint(tag, mon->count);
3610                         break;
3611
3612                 case 4:
3613                         snprintf(tag, sizeof(tag), mv_fmt, count);
3614                         ctl_putuint(tag, mon->vn_mode);
3615                         break;
3616
3617                 case 5:
3618                         snprintf(tag, sizeof(tag), rs_fmt, count);
3619                         ctl_puthex(tag, mon->flags);
3620                         break;
3621                 }
3622                 sent[which] = TRUE;
3623                 remaining--;
3624         }
3625 }
3626
3627
3628 /*
3629  * read_mru_list - supports ntpq's mrulist command.
3630  *
3631  * The challenge here is to match ntpdc's monlist functionality without
3632  * being limited to hundreds of entries returned total, and without
3633  * requiring state on the server.  If state were required, ntpq's
3634  * mrulist command would require authentication.
3635  *
3636  * The approach was suggested by Ry Jones.  A finite and variable number
3637  * of entries are retrieved per request, to avoid having responses with
3638  * such large numbers of packets that socket buffers are overflowed and
3639  * packets lost.  The entries are retrieved oldest-first, taking into
3640  * account that the MRU list will be changing between each request.  We
3641  * can expect to see duplicate entries for addresses updated in the MRU
3642  * list during the fetch operation.  In the end, the client can assemble
3643  * a close approximation of the MRU list at the point in time the last
3644  * response was sent by ntpd.  The only difference is it may be longer,
3645  * containing some number of oldest entries which have since been
3646  * reclaimed.  If necessary, the protocol could be extended to zap those
3647  * from the client snapshot at the end, but so far that doesn't seem
3648  * useful.
3649  *
3650  * To accomodate the changing MRU list, the starting point for requests
3651  * after the first request is supplied as a series of last seen
3652  * timestamps and associated addresses, the newest ones the client has
3653  * received.  As long as at least one of those entries hasn't been
3654  * bumped to the head of the MRU list, ntpd can pick up at that point.
3655  * Otherwise, the request is failed and it is up to ntpq to back up and
3656  * provide the next newest entry's timestamps and addresses, conceivably
3657  * backing up all the way to the starting point.
3658  *
3659  * input parameters:
3660  *      nonce=          Regurgitated nonce retrieved by the client
3661  *                      previously using CTL_OP_REQ_NONCE, demonstrating
3662  *                      ability to receive traffic sent to its address.
3663  *      frags=          Limit on datagrams (fragments) in response.  Used
3664  *                      by newer ntpq versions instead of limit= when
3665  *                      retrieving multiple entries.
3666  *      limit=          Limit on MRU entries returned.  One of frags= or
3667  *                      limit= must be provided.
3668  *                      limit=1 is a special case:  Instead of fetching
3669  *                      beginning with the supplied starting point's
3670  *                      newer neighbor, fetch the supplied entry, and
3671  *                      in that case the #.last timestamp can be zero.
3672  *                      This enables fetching a single entry by IP
3673  *                      address.  When limit is not one and frags= is
3674  *                      provided, the fragment limit controls.
3675  *      mincount=       (decimal) Return entries with count >= mincount.
3676  *      laddr=          Return entries associated with the server's IP
3677  *                      address given.  No port specification is needed,
3678  *                      and any supplied is ignored.
3679  *      resall=         0x-prefixed hex restrict bits which must all be
3680  *                      lit for an MRU entry to be included.
3681  *                      Has precedence over any resany=.
3682  *      resany=         0x-prefixed hex restrict bits, at least one of
3683  *                      which must be list for an MRU entry to be
3684  *                      included.
3685  *      last.0=         0x-prefixed hex l_fp timestamp of newest entry
3686  *                      which client previously received.
3687  *      addr.0=         text of newest entry's IP address and port,
3688  *                      IPv6 addresses in bracketed form: [::]:123
3689  *      last.1=         timestamp of 2nd newest entry client has.
3690  *      addr.1=         address of 2nd newest entry.
3691  *      [...]
3692  *
3693  * ntpq provides as many last/addr pairs as will fit in a single request
3694  * packet, except for the first request in a MRU fetch operation.
3695  *
3696  * The response begins with a new nonce value to be used for any
3697  * followup request.  Following the nonce is the next newer entry than
3698  * referred to by last.0 and addr.0, if the "0" entry has not been
3699  * bumped to the front.  If it has, the first entry returned will be the
3700  * next entry newer than referred to by last.1 and addr.1, and so on.
3701  * If none of the referenced entries remain unchanged, the request fails
3702  * and ntpq backs up to the next earlier set of entries to resync.
3703  *
3704  * Except for the first response, the response begins with confirmation
3705  * of the entry that precedes the first additional entry provided:
3706  *
3707  *      last.older=     hex l_fp timestamp matching one of the input
3708  *                      .last timestamps, which entry now precedes the
3709  *                      response 0. entry in the MRU list.
3710  *      addr.older=     text of address corresponding to older.last.
3711  *
3712  * And in any case, a successful response contains sets of values
3713  * comprising entries, with the oldest numbered 0 and incrementing from
3714  * there:
3715  *
3716  *      addr.#          text of IPv4 or IPv6 address and port
3717  *      last.#          hex l_fp timestamp of last receipt
3718  *      first.#         hex l_fp timestamp of first receipt
3719  *      ct.#            count of packets received
3720  *      mv.#            mode and version
3721  *      rs.#            restriction mask (RES_* bits)
3722  *
3723  * Note the code currently assumes there are no valid three letter
3724  * tags sent with each row, and needs to be adjusted if that changes.
3725  *
3726  * The client should accept the values in any order, and ignore .#
3727  * values which it does not understand, to allow a smooth path to
3728  * future changes without requiring a new opcode.  Clients can rely
3729  * on all *.0 values preceding any *.1 values, that is all values for
3730  * a given index number are together in the response.
3731  *
3732  * The end of the response list is noted with one or two tag=value
3733  * pairs.  Unconditionally:
3734  *
3735  *      now=            0x-prefixed l_fp timestamp at the server marking
3736  *                      the end of the operation.
3737  *
3738  * If any entries were returned, now= is followed by:
3739  *
3740  *      last.newest=    hex l_fp identical to last.# of the prior
3741  *                      entry.
3742  */
3743 static void read_mru_list(
3744         struct recvbuf *rbufp,
3745         int restrict_mask
3746         )
3747 {
3748         const char              nonce_text[] =          "nonce";
3749         const char              frags_text[] =          "frags";
3750         const char              limit_text[] =          "limit";
3751         const char              mincount_text[] =       "mincount";
3752         const char              resall_text[] =         "resall";
3753         const char              resany_text[] =         "resany";
3754         const char              maxlstint_text[] =      "maxlstint";
3755         const char              laddr_text[] =          "laddr";
3756         const char              resaxx_fmt[] =          "0x%hx";
3757         u_int                   limit;
3758         u_short                 frags;
3759         u_short                 resall;
3760         u_short                 resany;
3761         int                     mincount;
3762         u_int                   maxlstint;
3763         sockaddr_u              laddr;
3764         struct interface *      lcladr;
3765         u_int                   count;
3766         u_int                   ui;
3767         u_int                   uf;
3768         l_fp                    last[16];
3769         sockaddr_u              addr[COUNTOF(last)];
3770         char                    buf[128];
3771         struct ctl_var *        in_parms;
3772         const struct ctl_var *  v;
3773         char *                  val;
3774         const char *            pch;
3775         char *                  pnonce;
3776         int                     nonce_valid;
3777         size_t                  i;
3778         int                     priors;
3779         u_short                 hash;
3780         mon_entry *             mon;
3781         mon_entry *             prior_mon;
3782         l_fp                    now;
3783
3784         if (RES_NOMRULIST & restrict_mask) {
3785                 ctl_error(CERR_PERMISSION);
3786                 NLOG(NLOG_SYSINFO)
3787                         msyslog(LOG_NOTICE,
3788                                 "mrulist from %s rejected due to nomrulist restriction",
3789                                 stoa(&rbufp->recv_srcadr));
3790                 sys_restricted++;
3791                 return;
3792         }
3793         /*
3794          * fill in_parms var list with all possible input parameters.
3795          */
3796         in_parms = NULL;
3797         set_var(&in_parms, nonce_text, sizeof(nonce_text), 0);
3798         set_var(&in_parms, frags_text, sizeof(frags_text), 0);
3799         set_var(&in_parms, limit_text, sizeof(limit_text), 0);
3800         set_var(&in_parms, mincount_text, sizeof(mincount_text), 0);
3801         set_var(&in_parms, resall_text, sizeof(resall_text), 0);
3802         set_var(&in_parms, resany_text, sizeof(resany_text), 0);
3803         set_var(&in_parms, maxlstint_text, sizeof(maxlstint_text), 0);
3804         set_var(&in_parms, laddr_text, sizeof(laddr_text), 0);
3805         for (i = 0; i < COUNTOF(last); i++) {
3806                 snprintf(buf, sizeof(buf), last_fmt, (int)i);
3807                 set_var(&in_parms, buf, strlen(buf) + 1, 0);
3808                 snprintf(buf, sizeof(buf), addr_fmt, (int)i);
3809                 set_var(&in_parms, buf, strlen(buf) + 1, 0);
3810         }
3811
3812         /* decode input parms */
3813         pnonce = NULL;
3814         frags = 0;
3815         limit = 0;
3816         mincount = 0;
3817         resall = 0;
3818         resany = 0;
3819         maxlstint = 0;
3820         lcladr = NULL;
3821         priors = 0;
3822         ZERO(last);
3823         ZERO(addr);
3824
3825         while (NULL != (v = ctl_getitem(in_parms, &val)) &&
3826                !(EOV & v->flags)) {
3827                 int si;
3828
3829                 if (!strcmp(nonce_text, v->text)) {
3830                         if (NULL != pnonce)
3831                                 free(pnonce);
3832                         pnonce = estrdup(val);
3833                 } else if (!strcmp(frags_text, v->text)) {
3834                         sscanf(val, "%hu", &frags);
3835                 } else if (!strcmp(limit_text, v->text)) {
3836                         sscanf(val, "%u", &limit);
3837                 } else if (!strcmp(mincount_text, v->text)) {
3838                         if (1 != sscanf(val, "%d", &mincount) ||
3839                             mincount < 0)
3840                                 mincount = 0;
3841                 } else if (!strcmp(resall_text, v->text)) {
3842                         sscanf(val, resaxx_fmt, &resall);
3843                 } else if (!strcmp(resany_text, v->text)) {
3844                         sscanf(val, resaxx_fmt, &resany);
3845                 } else if (!strcmp(maxlstint_text, v->text)) {
3846                         sscanf(val, "%u", &maxlstint);
3847                 } else if (!strcmp(laddr_text, v->text)) {
3848                         if (decodenetnum(val, &laddr))
3849                                 lcladr = getinterface(&laddr, 0);
3850                 } else if (1 == sscanf(v->text, last_fmt, &si) &&
3851                            (size_t)si < COUNTOF(last)) {
3852                         if (2 == sscanf(val, "0x%08x.%08x", &ui, &uf)) {
3853                                 last[si].l_ui = ui;
3854                                 last[si].l_uf = uf;
3855                                 if (!SOCK_UNSPEC(&addr[si]) &&
3856                                     si == priors)
3857                                         priors++;
3858                         }
3859                 } else if (1 == sscanf(v->text, addr_fmt, &si) &&
3860                            (size_t)si < COUNTOF(addr)) {
3861                         if (decodenetnum(val, &addr[si])
3862                             && last[si].l_ui && last[si].l_uf &&
3863                             si == priors)
3864                                 priors++;
3865                 }
3866         }
3867         free_varlist(in_parms);
3868         in_parms = NULL;
3869
3870         /* return no responses until the nonce is validated */
3871         if (NULL == pnonce)
3872                 return;
3873
3874         nonce_valid = validate_nonce(pnonce, rbufp);
3875         free(pnonce);
3876         if (!nonce_valid)
3877                 return;
3878
3879         if ((0 == frags && !(0 < limit && limit <= MRU_ROW_LIMIT)) ||
3880             frags > MRU_FRAGS_LIMIT) {
3881                 ctl_error(CERR_BADVALUE);
3882                 return;
3883         }
3884
3885         /*
3886          * If either frags or limit is not given, use the max.
3887          */
3888         if (0 != frags && 0 == limit)
3889                 limit = UINT_MAX;
3890         else if (0 != limit && 0 == frags)
3891                 frags = MRU_FRAGS_LIMIT;
3892
3893         /*
3894          * Find the starting point if one was provided.
3895          */
3896         mon = NULL;
3897         for (i = 0; i < (size_t)priors; i++) {
3898                 hash = MON_HASH(&addr[i]);
3899                 for (mon = mon_hash[hash];
3900                      mon != NULL;
3901                      mon = mon->hash_next)
3902                         if (ADDR_PORT_EQ(&mon->rmtadr, &addr[i]))
3903                                 break;
3904                 if (mon != NULL) {
3905                         if (L_ISEQU(&mon->last, &last[i]))
3906                                 break;
3907                         mon = NULL;
3908                 }
3909         }
3910
3911         /* If a starting point was provided... */
3912         if (priors) {
3913                 /* and none could be found unmodified... */
3914                 if (NULL == mon) {
3915                         /* tell ntpq to try again with older entries */
3916                         ctl_error(CERR_UNKNOWNVAR);
3917                         return;
3918                 }
3919                 /* confirm the prior entry used as starting point */
3920                 ctl_putts("last.older", &mon->last);
3921                 pch = sptoa(&mon->rmtadr);
3922                 ctl_putunqstr("addr.older", pch, strlen(pch));
3923
3924                 /*
3925                  * Move on to the first entry the client doesn't have,
3926                  * except in the special case of a limit of one.  In
3927                  * that case return the starting point entry.
3928                  */
3929                 if (limit > 1)
3930                         mon = PREV_DLIST(mon_mru_list, mon, mru);
3931         } else {        /* start with the oldest */
3932                 mon = TAIL_DLIST(mon_mru_list, mru);
3933         }
3934
3935         /*
3936          * send up to limit= entries in up to frags= datagrams
3937          */
3938         get_systime(&now);
3939         generate_nonce(rbufp, buf, sizeof(buf));
3940         ctl_putunqstr("nonce", buf, strlen(buf));
3941         prior_mon = NULL;
3942         for (count = 0;
3943              mon != NULL && res_frags < frags && count < limit;
3944              mon = PREV_DLIST(mon_mru_list, mon, mru)) {
3945
3946                 if (mon->count < mincount)
3947                         continue;
3948                 if (resall && resall != (resall & mon->flags))
3949                         continue;
3950                 if (resany && !(resany & mon->flags))
3951                         continue;
3952                 if (maxlstint > 0 && now.l_ui - mon->last.l_ui >
3953                     maxlstint)
3954                         continue;
3955                 if (lcladr != NULL && mon->lcladr != lcladr)
3956                         continue;
3957
3958                 send_mru_entry(mon, count);
3959                 if (!count)
3960                         send_random_tag_value(0);
3961                 count++;
3962                 prior_mon = mon;
3963         }
3964
3965         /*
3966          * If this batch completes the MRU list, say so explicitly with
3967          * a now= l_fp timestamp.
3968          */
3969         if (NULL == mon) {
3970                 if (count > 1)
3971                         send_random_tag_value(count - 1);
3972                 ctl_putts("now", &now);
3973                 /* if any entries were returned confirm the last */
3974                 if (prior_mon != NULL)
3975                         ctl_putts("last.newest", &prior_mon->last);
3976         }
3977         ctl_flushpkt(0);
3978 }
3979
3980
3981 /*
3982  * Send a ifstats entry in response to a "ntpq -c ifstats" request.
3983  *
3984  * To keep clients honest about not depending on the order of values,
3985  * and thereby avoid being locked into ugly workarounds to maintain
3986  * backward compatibility later as new fields are added to the response,
3987  * the order is random.
3988  */
3989 static void
3990 send_ifstats_entry(
3991         endpt * la,
3992         u_int   ifnum
3993         )
3994 {
3995         const char addr_fmtu[] =        "addr.%u";
3996         const char bcast_fmt[] =        "bcast.%u";
3997         const char en_fmt[] =           "en.%u";        /* enabled */
3998         const char name_fmt[] =         "name.%u";
3999         const char flags_fmt[] =        "flags.%u";
4000         const char tl_fmt[] =           "tl.%u";        /* ttl */
4001         const char mc_fmt[] =           "mc.%u";        /* mcast count */
4002         const char rx_fmt[] =           "rx.%u";
4003         const char tx_fmt[] =           "tx.%u";
4004         const char txerr_fmt[] =        "txerr.%u";
4005         const char pc_fmt[] =           "pc.%u";        /* peer count */
4006         const char up_fmt[] =           "up.%u";        /* uptime */
4007         char    tag[32];
4008         u_char  sent[IFSTATS_FIELDS]; /* 12 tag=value pairs */
4009         int     noisebits;
4010         u_int32 noise;
4011         u_int   which;
4012         u_int   remaining;
4013         const char *pch;
4014
4015         remaining = COUNTOF(sent);
4016         ZERO(sent);
4017         noise = 0;
4018         noisebits = 0;
4019         while (remaining > 0) {
4020                 if (noisebits < 4) {
4021                         noise = rand() ^ (rand() << 16);
4022                         noisebits = 31;
4023                 }
4024                 which = (noise & 0xf) % COUNTOF(sent);
4025                 noise >>= 4;
4026                 noisebits -= 4;
4027
4028                 while (sent[which])
4029                         which = (which + 1) % COUNTOF(sent);
4030
4031                 switch (which) {
4032
4033                 case 0:
4034                         snprintf(tag, sizeof(tag), addr_fmtu, ifnum);
4035                         pch = sptoa(&la->sin);
4036                         ctl_putunqstr(tag, pch, strlen(pch));
4037                         break;
4038
4039                 case 1:
4040                         snprintf(tag, sizeof(tag), bcast_fmt, ifnum);
4041                         if (INT_BCASTOPEN & la->flags)
4042                                 pch = sptoa(&la->bcast);
4043                         else
4044                                 pch = "";
4045                         ctl_putunqstr(tag, pch, strlen(pch));
4046                         break;
4047
4048                 case 2:
4049                         snprintf(tag, sizeof(tag), en_fmt, ifnum);
4050                         ctl_putint(tag, !la->ignore_packets);
4051                         break;
4052
4053                 case 3:
4054                         snprintf(tag, sizeof(tag), name_fmt, ifnum);
4055                         ctl_putstr(tag, la->name, strlen(la->name));
4056                         break;
4057
4058                 case 4:
4059                         snprintf(tag, sizeof(tag), flags_fmt, ifnum);
4060                         ctl_puthex(tag, (u_int)la->flags);
4061                         break;
4062
4063                 case 5:
4064                         snprintf(tag, sizeof(tag), tl_fmt, ifnum);
4065                         ctl_putint(tag, la->last_ttl);
4066                         break;
4067
4068                 case 6:
4069                         snprintf(tag, sizeof(tag), mc_fmt, ifnum);
4070                         ctl_putint(tag, la->num_mcast);
4071                         break;
4072
4073                 case 7:
4074                         snprintf(tag, sizeof(tag), rx_fmt, ifnum);
4075                         ctl_putint(tag, la->received);
4076                         break;
4077
4078                 case 8:
4079                         snprintf(tag, sizeof(tag), tx_fmt, ifnum);
4080                         ctl_putint(tag, la->sent);
4081                         break;
4082
4083                 case 9:
4084                         snprintf(tag, sizeof(tag), txerr_fmt, ifnum);
4085                         ctl_putint(tag, la->notsent);
4086                         break;
4087
4088                 case 10:
4089                         snprintf(tag, sizeof(tag), pc_fmt, ifnum);
4090                         ctl_putuint(tag, la->peercnt);
4091                         break;
4092
4093                 case 11:
4094                         snprintf(tag, sizeof(tag), up_fmt, ifnum);
4095                         ctl_putuint(tag, current_time - la->starttime);
4096                         break;
4097                 }
4098                 sent[which] = TRUE;
4099                 remaining--;
4100         }
4101         send_random_tag_value((int)ifnum);
4102 }
4103
4104
4105 /*
4106  * read_ifstats - send statistics for each local address, exposed by
4107  *                ntpq -c ifstats
4108  */
4109 static void
4110 read_ifstats(
4111         struct recvbuf *        rbufp
4112         )
4113 {
4114         u_int   ifidx;
4115         endpt * la;
4116
4117         /*
4118          * loop over [0..sys_ifnum] searching ep_list for each
4119          * ifnum in turn.
4120          */
4121         for (ifidx = 0; ifidx < sys_ifnum; ifidx++) {
4122                 for (la = ep_list; la != NULL; la = la->elink)
4123                         if (ifidx == la->ifnum)
4124                                 break;
4125                 if (NULL == la)
4126                         continue;
4127                 /* return stats for one local address */
4128                 send_ifstats_entry(la, ifidx);
4129         }
4130         ctl_flushpkt(0);
4131 }
4132
4133 static void
4134 sockaddrs_from_restrict_u(
4135         sockaddr_u *    psaA,
4136         sockaddr_u *    psaM,
4137         restrict_u *    pres,
4138         int             ipv6
4139         )
4140 {
4141         ZERO(*psaA);
4142         ZERO(*psaM);
4143         if (!ipv6) {
4144                 psaA->sa.sa_family = AF_INET;
4145                 psaA->sa4.sin_addr.s_addr = htonl(pres->u.v4.addr);
4146                 psaM->sa.sa_family = AF_INET;
4147                 psaM->sa4.sin_addr.s_addr = htonl(pres->u.v4.mask);
4148         } else {
4149                 psaA->sa.sa_family = AF_INET6;
4150                 memcpy(&psaA->sa6.sin6_addr, &pres->u.v6.addr,
4151                        sizeof(psaA->sa6.sin6_addr));
4152                 psaM->sa.sa_family = AF_INET6;
4153                 memcpy(&psaM->sa6.sin6_addr, &pres->u.v6.mask,
4154                        sizeof(psaA->sa6.sin6_addr));
4155         }
4156 }
4157
4158
4159 /*
4160  * Send a restrict entry in response to a "ntpq -c reslist" request.
4161  *
4162  * To keep clients honest about not depending on the order of values,
4163  * and thereby avoid being locked into ugly workarounds to maintain
4164  * backward compatibility later as new fields are added to the response,
4165  * the order is random.
4166  */
4167 static void
4168 send_restrict_entry(
4169         restrict_u *    pres,
4170         int             ipv6,
4171         u_int           idx
4172         )
4173 {
4174         const char addr_fmtu[] =        "addr.%u";
4175         const char mask_fmtu[] =        "mask.%u";
4176         const char hits_fmt[] =         "hits.%u";
4177         const char flags_fmt[] =        "flags.%u";
4178         char            tag[32];
4179         u_char          sent[RESLIST_FIELDS]; /* 4 tag=value pairs */
4180         int             noisebits;
4181         u_int32         noise;
4182         u_int           which;
4183         u_int           remaining;
4184         sockaddr_u      addr;
4185         sockaddr_u      mask;
4186         const char *    pch;
4187         char *          buf;
4188         const char *    match_str;
4189         const char *    access_str;
4190
4191         sockaddrs_from_restrict_u(&addr, &mask, pres, ipv6);
4192         remaining = COUNTOF(sent);
4193         ZERO(sent);
4194         noise = 0;
4195         noisebits = 0;
4196         while (remaining > 0) {
4197                 if (noisebits < 2) {
4198                         noise = rand() ^ (rand() << 16);
4199                         noisebits = 31;
4200                 }
4201                 which = (noise & 0x3) % COUNTOF(sent);
4202                 noise >>= 2;
4203                 noisebits -= 2;
4204
4205                 while (sent[which])
4206                         which = (which + 1) % COUNTOF(sent);
4207
4208                 switch (which) {
4209
4210                 case 0:
4211                         snprintf(tag, sizeof(tag), addr_fmtu, idx);
4212                         pch = stoa(&addr);
4213                         ctl_putunqstr(tag, pch, strlen(pch));
4214                         break;
4215
4216                 case 1:
4217                         snprintf(tag, sizeof(tag), mask_fmtu, idx);
4218                         pch = stoa(&mask);
4219                         ctl_putunqstr(tag, pch, strlen(pch));
4220                         break;
4221
4222                 case 2:
4223                         snprintf(tag, sizeof(tag), hits_fmt, idx);
4224                         ctl_putuint(tag, pres->count);
4225                         break;
4226
4227                 case 3:
4228                         snprintf(tag, sizeof(tag), flags_fmt, idx);
4229                         match_str = res_match_flags(pres->mflags);
4230                         access_str = res_access_flags(pres->flags);
4231                         if ('\0' == match_str[0]) {
4232                                 pch = access_str;
4233                         } else {
4234                                 LIB_GETBUF(buf);
4235                                 snprintf(buf, LIB_BUFLENGTH, "%s %s",
4236                                          match_str, access_str);
4237                                 pch = buf;
4238                         }
4239                         ctl_putunqstr(tag, pch, strlen(pch));
4240                         break;
4241                 }
4242                 sent[which] = TRUE;
4243                 remaining--;
4244         }
4245         send_random_tag_value((int)idx);
4246 }
4247
4248
4249 static void
4250 send_restrict_list(
4251         restrict_u *    pres,
4252         int             ipv6,
4253         u_int *         pidx
4254         )
4255 {
4256         for ( ; pres != NULL; pres = pres->link) {
4257                 send_restrict_entry(pres, ipv6, *pidx);
4258                 (*pidx)++;
4259         }
4260 }
4261
4262
4263 /*
4264  * read_addr_restrictions - returns IPv4 and IPv6 access control lists
4265  */
4266 static void
4267 read_addr_restrictions(
4268         struct recvbuf *        rbufp
4269 )
4270 {
4271         u_int idx;
4272
4273         idx = 0;
4274         send_restrict_list(restrictlist4, FALSE, &idx);
4275         send_restrict_list(restrictlist6, TRUE, &idx);
4276         ctl_flushpkt(0);
4277 }
4278
4279
4280 /*
4281  * read_ordlist - CTL_OP_READ_ORDLIST_A for ntpq -c ifstats & reslist
4282  */
4283 static void
4284 read_ordlist(
4285         struct recvbuf *        rbufp,
4286         int                     restrict_mask
4287         )
4288 {
4289         const char ifstats_s[] = "ifstats";
4290         const size_t ifstats_chars = COUNTOF(ifstats_s) - 1;
4291         const char addr_rst_s[] = "addr_restrictions";
4292         const size_t a_r_chars = COUNTOF(addr_rst_s) - 1;
4293         struct ntp_control *    cpkt;
4294         u_short                 qdata_octets;
4295
4296         /*
4297          * CTL_OP_READ_ORDLIST_A was first named CTL_OP_READ_IFSTATS and
4298          * used only for ntpq -c ifstats.  With the addition of reslist
4299          * the same opcode was generalized to retrieve ordered lists
4300          * which require authentication.  The request data is empty or
4301          * contains "ifstats" (not null terminated) to retrieve local
4302          * addresses and associated stats.  It is "addr_restrictions"
4303          * to retrieve the IPv4 then IPv6 remote address restrictions,
4304          * which are access control lists.  Other request data return
4305          * CERR_UNKNOWNVAR.
4306          */
4307         cpkt = (struct ntp_control *)&rbufp->recv_pkt;
4308         qdata_octets = ntohs(cpkt->count);
4309         if (0 == qdata_octets || (ifstats_chars == qdata_octets &&
4310             !memcmp(ifstats_s, cpkt->u.data, ifstats_chars))) {
4311                 read_ifstats(rbufp);
4312                 return;
4313         }
4314         if (a_r_chars == qdata_octets &&
4315             !memcmp(addr_rst_s, cpkt->u.data, a_r_chars)) {
4316                 read_addr_restrictions(rbufp);
4317                 return;
4318         }
4319         ctl_error(CERR_UNKNOWNVAR);
4320 }
4321
4322
4323 /*
4324  * req_nonce - CTL_OP_REQ_NONCE for ntpq -c mrulist prerequisite.
4325  */
4326 static void req_nonce(
4327         struct recvbuf *        rbufp,
4328         int                     restrict_mask
4329         )
4330 {
4331         char    buf[64];
4332
4333         generate_nonce(rbufp, buf, sizeof(buf));
4334         ctl_putunqstr("nonce", buf, strlen(buf));
4335         ctl_flushpkt(0);
4336 }
4337
4338
4339 /*
4340  * read_clockstatus - return clock radio status
4341  */
4342 /*ARGSUSED*/
4343 static void
4344 read_clockstatus(
4345         struct recvbuf *rbufp,
4346         int restrict_mask
4347         )
4348 {
4349 #ifndef REFCLOCK
4350         /*
4351          * If no refclock support, no data to return
4352          */
4353         ctl_error(CERR_BADASSOC);
4354 #else
4355         const struct ctl_var *  v;
4356         int                     i;
4357         struct peer *           peer;
4358         char *                  valuep;
4359         u_char *                wants;
4360         size_t                  wants_alloc;
4361         int                     gotvar;
4362         const u_char *          cc;
4363         struct ctl_var *        kv;
4364         struct refclockstat     cs;
4365
4366         if (res_associd != 0) {
4367                 peer = findpeerbyassoc(res_associd);
4368         } else {
4369                 /*
4370                  * Find a clock for this jerk.  If the system peer
4371                  * is a clock use it, else search peer_list for one.
4372                  */
4373                 if (sys_peer != NULL && (FLAG_REFCLOCK &
4374                     sys_peer->flags))
4375                         peer = sys_peer;
4376                 else
4377                         for (peer = peer_list;
4378                              peer != NULL;
4379                              peer = peer->p_link)
4380                                 if (FLAG_REFCLOCK & peer->flags)
4381                                         break;
4382         }
4383         if (NULL == peer || !(FLAG_REFCLOCK & peer->flags)) {
4384                 ctl_error(CERR_BADASSOC);
4385                 return;
4386         }
4387         /*
4388          * If we got here we have a peer which is a clock. Get his
4389          * status.
4390          */
4391         cs.kv_list = NULL;
4392         refclock_control(&peer->srcadr, NULL, &cs);
4393         kv = cs.kv_list;
4394         /*
4395          * Look for variables in the packet.
4396          */
4397         rpkt.status = htons(ctlclkstatus(&cs));
4398         wants_alloc = CC_MAXCODE + 1 + count_var(kv);
4399         wants = emalloc_zero(wants_alloc);
4400         gotvar = FALSE;
4401         while (NULL != (v = ctl_getitem(clock_var, &valuep))) {
4402                 if (!(EOV & v->flags)) {
4403                         wants[v->code] = TRUE;
4404                         gotvar = TRUE;
4405                 } else {
4406                         v = ctl_getitem(kv, &valuep);
4407                         NTP_INSIST(NULL != v);
4408                         if (EOV & v->flags) {
4409                                 ctl_error(CERR_UNKNOWNVAR);
4410                                 free(wants);
4411                                 free_varlist(cs.kv_list);
4412                                 return;
4413                         }
4414                         wants[CC_MAXCODE + 1 + v->code] = TRUE;
4415                         gotvar = TRUE;
4416                 }
4417         }
4418
4419         if (gotvar) {
4420                 for (i = 1; i <= CC_MAXCODE; i++)
4421                         if (wants[i])
4422                                 ctl_putclock(i, &cs, TRUE);
4423                 if (kv != NULL)
4424                         for (i = 0; !(EOV & kv[i].flags); i++)
4425                                 if (wants[i + CC_MAXCODE + 1])
4426                                         ctl_putdata(kv[i].text,
4427                                                     strlen(kv[i].text),
4428                                                     FALSE);
4429         } else {
4430                 for (cc = def_clock_var; *cc != 0; cc++)
4431                         ctl_putclock((int)*cc, &cs, FALSE);
4432                 for ( ; kv != NULL && !(EOV & kv->flags); kv++)
4433                         if (DEF & kv->flags)
4434                                 ctl_putdata(kv->text, strlen(kv->text),
4435                                             FALSE);
4436         }
4437
4438         free(wants);
4439         free_varlist(cs.kv_list);
4440
4441         ctl_flushpkt(0);
4442 #endif
4443 }
4444
4445
4446 /*
4447  * write_clockstatus - we don't do this
4448  */
4449 /*ARGSUSED*/
4450 static void
4451 write_clockstatus(
4452         struct recvbuf *rbufp,
4453         int restrict_mask
4454         )
4455 {
4456         ctl_error(CERR_PERMISSION);
4457 }
4458
4459 /*
4460  * Trap support from here on down. We send async trap messages when the
4461  * upper levels report trouble. Traps can by set either by control
4462  * messages or by configuration.
4463  */
4464 /*
4465  * set_trap - set a trap in response to a control message
4466  */
4467 static void
4468 set_trap(
4469         struct recvbuf *rbufp,
4470         int restrict_mask
4471         )
4472 {
4473         int traptype;
4474
4475         /*
4476          * See if this guy is allowed
4477          */
4478         if (restrict_mask & RES_NOTRAP) {
4479                 ctl_error(CERR_PERMISSION);
4480                 return;
4481         }
4482
4483         /*
4484          * Determine his allowed trap type.
4485          */
4486         traptype = TRAP_TYPE_PRIO;
4487         if (restrict_mask & RES_LPTRAP)
4488                 traptype = TRAP_TYPE_NONPRIO;
4489
4490         /*
4491          * Call ctlsettrap() to do the work.  Return
4492          * an error if it can't assign the trap.
4493          */
4494         if (!ctlsettrap(&rbufp->recv_srcadr, rbufp->dstadr, traptype,
4495                         (int)res_version))
4496                 ctl_error(CERR_NORESOURCE);
4497         ctl_flushpkt(0);
4498 }
4499
4500
4501 /*
4502  * unset_trap - unset a trap in response to a control message
4503  */
4504 static void
4505 unset_trap(
4506         struct recvbuf *rbufp,
4507         int restrict_mask
4508         )
4509 {
4510         int traptype;
4511
4512         /*
4513          * We don't prevent anyone from removing his own trap unless the
4514          * trap is configured. Note we also must be aware of the
4515          * possibility that restriction flags were changed since this
4516          * guy last set his trap. Set the trap type based on this.
4517          */
4518         traptype = TRAP_TYPE_PRIO;
4519         if (restrict_mask & RES_LPTRAP)
4520                 traptype = TRAP_TYPE_NONPRIO;
4521
4522         /*
4523          * Call ctlclrtrap() to clear this out.
4524          */
4525         if (!ctlclrtrap(&rbufp->recv_srcadr, rbufp->dstadr, traptype))
4526                 ctl_error(CERR_BADASSOC);
4527         ctl_flushpkt(0);
4528 }
4529
4530
4531 /*
4532  * ctlsettrap - called to set a trap
4533  */
4534 int
4535 ctlsettrap(
4536         sockaddr_u *raddr,
4537         struct interface *linter,
4538         int traptype,
4539         int version
4540         )
4541 {
4542         size_t n;
4543         struct ctl_trap *tp;
4544         struct ctl_trap *tptouse;
4545
4546         /*
4547          * See if we can find this trap.  If so, we only need update
4548          * the flags and the time.
4549          */
4550         if ((tp = ctlfindtrap(raddr, linter)) != NULL) {
4551                 switch (traptype) {
4552
4553                 case TRAP_TYPE_CONFIG:
4554                         tp->tr_flags = TRAP_INUSE|TRAP_CONFIGURED;
4555                         break;
4556
4557                 case TRAP_TYPE_PRIO:
4558                         if (tp->tr_flags & TRAP_CONFIGURED)
4559                                 return (1); /* don't change anything */
4560                         tp->tr_flags = TRAP_INUSE;
4561                         break;
4562
4563                 case TRAP_TYPE_NONPRIO:
4564                         if (tp->tr_flags & TRAP_CONFIGURED)
4565                                 return (1); /* don't change anything */
4566                         tp->tr_flags = TRAP_INUSE|TRAP_NONPRIO;
4567                         break;
4568                 }
4569                 tp->tr_settime = current_time;
4570                 tp->tr_resets++;
4571                 return (1);
4572         }
4573
4574         /*
4575          * First we heard of this guy.  Try to find a trap structure
4576          * for him to use, clearing out lesser priority guys if we
4577          * have to. Clear out anyone who's expired while we're at it.
4578          */
4579         tptouse = NULL;
4580         for (n = 0; n < COUNTOF(ctl_traps); n++) {
4581                 tp = &ctl_traps[n];
4582                 if ((TRAP_INUSE & tp->tr_flags) &&
4583                     !(TRAP_CONFIGURED & tp->tr_flags) &&
4584                     ((tp->tr_settime + CTL_TRAPTIME) > current_time)) {
4585                         tp->tr_flags = 0;
4586                         num_ctl_traps--;
4587                 }
4588                 if (!(TRAP_INUSE & tp->tr_flags)) {
4589                         tptouse = tp;
4590                 } else if (!(TRAP_CONFIGURED & tp->tr_flags)) {
4591                         switch (traptype) {
4592
4593                         case TRAP_TYPE_CONFIG:
4594                                 if (tptouse == NULL) {
4595                                         tptouse = tp;
4596                                         break;
4597                                 }
4598                                 if ((TRAP_NONPRIO & tptouse->tr_flags) &&
4599                                     !(TRAP_NONPRIO & tp->tr_flags))
4600                                         break;
4601
4602                                 if (!(TRAP_NONPRIO & tptouse->tr_flags)
4603                                     && (TRAP_NONPRIO & tp->tr_flags)) {
4604                                         tptouse = tp;
4605                                         break;
4606                                 }
4607                                 if (tptouse->tr_origtime <
4608                                     tp->tr_origtime)
4609                                         tptouse = tp;
4610                                 break;
4611
4612                         case TRAP_TYPE_PRIO:
4613                                 if ( TRAP_NONPRIO & tp->tr_flags) {
4614                                         if (tptouse == NULL ||
4615                                             ((TRAP_INUSE &
4616                                               tptouse->tr_flags) &&
4617                                              tptouse->tr_origtime <
4618                                              tp->tr_origtime))
4619                                                 tptouse = tp;
4620                                 }
4621                                 break;
4622
4623                         case TRAP_TYPE_NONPRIO:
4624                                 break;
4625                         }
4626                 }
4627         }
4628
4629         /*
4630          * If we don't have room for him return an error.
4631          */
4632         if (tptouse == NULL)
4633                 return (0);
4634
4635         /*
4636          * Set up this structure for him.
4637          */
4638         tptouse->tr_settime = tptouse->tr_origtime = current_time;
4639         tptouse->tr_count = tptouse->tr_resets = 0;
4640         tptouse->tr_sequence = 1;
4641         tptouse->tr_addr = *raddr;
4642         tptouse->tr_localaddr = linter;
4643         tptouse->tr_version = (u_char) version;
4644         tptouse->tr_flags = TRAP_INUSE;
4645         if (traptype == TRAP_TYPE_CONFIG)
4646                 tptouse->tr_flags |= TRAP_CONFIGURED;
4647         else if (traptype == TRAP_TYPE_NONPRIO)
4648                 tptouse->tr_flags |= TRAP_NONPRIO;
4649         num_ctl_traps++;
4650         return (1);
4651 }
4652
4653
4654 /*
4655  * ctlclrtrap - called to clear a trap
4656  */
4657 int
4658 ctlclrtrap(
4659         sockaddr_u *raddr,
4660         struct interface *linter,
4661         int traptype
4662         )
4663 {
4664         register struct ctl_trap *tp;
4665
4666         if ((tp = ctlfindtrap(raddr, linter)) == NULL)
4667                 return (0);
4668
4669         if (tp->tr_flags & TRAP_CONFIGURED
4670             && traptype != TRAP_TYPE_CONFIG)
4671                 return (0);
4672
4673         tp->tr_flags = 0;
4674         num_ctl_traps--;
4675         return (1);
4676 }
4677
4678
4679 /*
4680  * ctlfindtrap - find a trap given the remote and local addresses
4681  */
4682 static struct ctl_trap *
4683 ctlfindtrap(
4684         sockaddr_u *raddr,
4685         struct interface *linter
4686         )
4687 {
4688         size_t  n;
4689
4690         for (n = 0; n < COUNTOF(ctl_traps); n++)
4691                 if ((ctl_traps[n].tr_flags & TRAP_INUSE)
4692                     && ADDR_PORT_EQ(raddr, &ctl_traps[n].tr_addr)
4693                     && (linter == ctl_traps[n].tr_localaddr))
4694                         return &ctl_traps[n];
4695
4696         return NULL;
4697 }
4698
4699
4700 /*
4701  * report_event - report an event to the trappers
4702  */
4703 void
4704 report_event(
4705         int     err,            /* error code */
4706         struct peer *peer,      /* peer structure pointer */
4707         const char *str         /* protostats string */
4708         )
4709 {
4710         char    statstr[NTP_MAXSTRLEN];
4711         int     i;
4712         size_t  len;
4713
4714         /*
4715          * Report the error to the protostats file, system log and
4716          * trappers.
4717          */
4718         if (peer == NULL) {
4719
4720                 /*
4721                  * Discard a system report if the number of reports of
4722                  * the same type exceeds the maximum.
4723                  */
4724                 if (ctl_sys_last_event != (u_char)err)
4725                         ctl_sys_num_events= 0;
4726                 if (ctl_sys_num_events >= CTL_SYS_MAXEVENTS)
4727                         return;
4728
4729                 ctl_sys_last_event = (u_char)err;
4730                 ctl_sys_num_events++;
4731                 snprintf(statstr, sizeof(statstr),
4732                     "0.0.0.0 %04x %02x %s",
4733                     ctlsysstatus(), err, eventstr(err));
4734                 if (str != NULL) {
4735                         len = strlen(statstr);
4736                         snprintf(statstr + len, sizeof(statstr) - len,
4737                             " %s", str);
4738                 }
4739                 NLOG(NLOG_SYSEVENT)
4740                         msyslog(LOG_INFO, "%s", statstr);
4741         } else {
4742
4743                 /*
4744                  * Discard a peer report if the number of reports of
4745                  * the same type exceeds the maximum for that peer.
4746                  */
4747                 const char *    src;
4748                 u_char          errlast;
4749
4750                 errlast = (u_char)err & ~PEER_EVENT;
4751                 if (peer->last_event == errlast)
4752                         peer->num_events = 0;
4753                 if (peer->num_events >= CTL_PEER_MAXEVENTS)
4754                         return;
4755
4756                 peer->last_event = errlast;
4757                 peer->num_events++;
4758                 if (ISREFCLOCKADR(&peer->srcadr))
4759                         src = refnumtoa(&peer->srcadr);
4760                 else
4761                         src = stoa(&peer->srcadr);
4762
4763                 snprintf(statstr, sizeof(statstr),
4764                     "%s %04x %02x %s", src,
4765                     ctlpeerstatus(peer), err, eventstr(err));
4766                 if (str != NULL) {
4767                         len = strlen(statstr);
4768                         snprintf(statstr + len, sizeof(statstr) - len,
4769                             " %s", str);
4770                 }
4771                 NLOG(NLOG_PEEREVENT)
4772                         msyslog(LOG_INFO, "%s", statstr);
4773         }
4774         record_proto_stats(statstr);
4775 #if DEBUG
4776         if (debug)
4777                 printf("event at %lu %s\n", current_time, statstr);
4778 #endif
4779
4780         /*
4781          * If no trappers, return.
4782          */
4783         if (num_ctl_traps <= 0)
4784                 return;
4785
4786         /*
4787          * Set up the outgoing packet variables
4788          */
4789         res_opcode = CTL_OP_ASYNCMSG;
4790         res_offset = 0;
4791         res_async = TRUE;
4792         res_authenticate = FALSE;
4793         datapt = rpkt.u.data;
4794         dataend = &rpkt.u.data[CTL_MAX_DATA_LEN];
4795         if (!(err & PEER_EVENT)) {
4796                 rpkt.associd = 0;
4797                 rpkt.status = htons(ctlsysstatus());
4798
4799                 /* Include the core system variables and the list. */
4800                 for (i = 1; i <= CS_VARLIST; i++)
4801                         ctl_putsys(i);
4802         } else {
4803                 NTP_INSIST(peer != NULL);
4804                 rpkt.associd = htons(peer->associd);
4805                 rpkt.status = htons(ctlpeerstatus(peer));
4806
4807                 /* Dump it all. Later, maybe less. */
4808                 for (i = 1; i <= CP_MAX_NOAUTOKEY; i++)
4809                         ctl_putpeer(i, peer);
4810 #ifdef REFCLOCK
4811                 /*
4812                  * for clock exception events: add clock variables to
4813                  * reflect info on exception
4814                  */
4815                 if (err == PEVNT_CLOCK) {
4816                         struct refclockstat cs;
4817                         struct ctl_var *kv;
4818
4819                         cs.kv_list = NULL;
4820                         refclock_control(&peer->srcadr, NULL, &cs);
4821
4822                         ctl_puthex("refclockstatus",
4823                                    ctlclkstatus(&cs));
4824
4825                         for (i = 1; i <= CC_MAXCODE; i++)
4826                                 ctl_putclock(i, &cs, FALSE);
4827                         for (kv = cs.kv_list;
4828                              kv != NULL && !(EOV & kv->flags);
4829                              kv++)
4830                                 if (DEF & kv->flags)
4831                                         ctl_putdata(kv->text,
4832                                                     strlen(kv->text),
4833                                                     FALSE);
4834                         free_varlist(cs.kv_list);
4835                 }
4836 #endif /* REFCLOCK */
4837         }
4838
4839         /*
4840          * We're done, return.
4841          */
4842         ctl_flushpkt(0);
4843 }
4844
4845
4846 /*
4847  * mprintf_event - printf-style varargs variant of report_event()
4848  */
4849 int
4850 mprintf_event(
4851         int             evcode,         /* event code */
4852         struct peer *   p,              /* may be NULL */
4853         const char *    fmt,            /* msnprintf format */
4854         ...
4855         )
4856 {
4857         va_list ap;
4858         int     rc;
4859         char    msg[512];
4860
4861         va_start(ap, fmt);
4862         rc = mvsnprintf(msg, sizeof(msg), fmt, ap);
4863         va_end(ap);
4864         report_event(evcode, p, msg);
4865
4866         return rc;
4867 }
4868
4869
4870 /*
4871  * ctl_clr_stats - clear stat counters
4872  */
4873 void
4874 ctl_clr_stats(void)
4875 {
4876         ctltimereset = current_time;
4877         numctlreq = 0;
4878         numctlbadpkts = 0;
4879         numctlresponses = 0;
4880         numctlfrags = 0;
4881         numctlerrors = 0;
4882         numctlfrags = 0;
4883         numctltooshort = 0;
4884         numctlinputresp = 0;
4885         numctlinputfrag = 0;
4886         numctlinputerr = 0;
4887         numctlbadoffset = 0;
4888         numctlbadversion = 0;
4889         numctldatatooshort = 0;
4890         numctlbadop = 0;
4891         numasyncmsgs = 0;
4892 }
4893
4894 static u_short
4895 count_var(
4896         const struct ctl_var *k
4897         )
4898 {
4899         u_int c;
4900
4901         if (NULL == k)
4902                 return 0;
4903
4904         c = 0;
4905         while (!(EOV & (k++)->flags))
4906                 c++;
4907
4908         NTP_ENSURE(c <= USHRT_MAX);
4909         return (u_short)c;
4910 }
4911
4912
4913 char *
4914 add_var(
4915         struct ctl_var **kv,
4916         u_long size,
4917         u_short def
4918         )
4919 {
4920         u_short         c;
4921         struct ctl_var *k;
4922         char *          buf;
4923
4924         c = count_var(*kv);
4925         *kv  = erealloc(*kv, (c + 2) * sizeof(**kv));
4926         k = *kv;
4927         buf = emalloc(size);
4928         k[c].code  = c;
4929         k[c].text  = buf;
4930         k[c].flags = def;
4931         k[c + 1].code  = 0;
4932         k[c + 1].text  = NULL;
4933         k[c + 1].flags = EOV;
4934
4935         return buf;
4936 }
4937
4938
4939 void
4940 set_var(
4941         struct ctl_var **kv,
4942         const char *data,
4943         u_long size,
4944         u_short def
4945         )
4946 {
4947         struct ctl_var *k;
4948         const char *s;
4949         const char *t;
4950         char *td;
4951
4952         if (NULL == data || !size)
4953                 return;
4954
4955         k = *kv;
4956         if (k != NULL) {
4957                 while (!(EOV & k->flags)) {
4958                         if (NULL == k->text)    {
4959                                 td = emalloc(size);
4960                                 memcpy(td, data, size);
4961                                 k->text = td;
4962                                 k->flags = def;
4963                                 return;
4964                         } else {
4965                                 s = data;
4966                                 t = k->text;
4967                                 while (*t != '=' && *s == *t) {
4968                                         s++;
4969                                         t++;
4970                                 }
4971                                 if (*s == *t && ((*t == '=') || !*t)) {
4972                                         td = erealloc((void *)(intptr_t)k->text, size);
4973                                         memcpy(td, data, size);
4974                                         k->text = td;
4975                                         k->flags = def;
4976                                         return;
4977                                 }
4978                         }
4979                         k++;
4980                 }
4981         }
4982         td = add_var(kv, size, def);
4983         memcpy(td, data, size);
4984 }
4985
4986
4987 void
4988 set_sys_var(
4989         const char *data,
4990         u_long size,
4991         u_short def
4992         )
4993 {
4994         set_var(&ext_sys_var, data, size, def);
4995 }
4996
4997
4998 /*
4999  * get_ext_sys_var() retrieves the value of a user-defined variable or
5000  * NULL if the variable has not been setvar'd.
5001  */
5002 const char *
5003 get_ext_sys_var(const char *tag)
5004 {
5005         struct ctl_var *        v;
5006         size_t                  c;
5007         const char *            val;
5008
5009         val = NULL;
5010         c = strlen(tag);
5011         for (v = ext_sys_var; !(EOV & v->flags); v++) {
5012                 if (NULL != v->text && !memcmp(tag, v->text, c)) {
5013                         if ('=' == v->text[c]) {
5014                                 val = v->text + c + 1;
5015                                 break;
5016                         } else if ('\0' == v->text[c]) {
5017                                 val = "";
5018                                 break;
5019                         }
5020                 }
5021         }
5022
5023         return val;
5024 }
5025
5026
5027 void
5028 free_varlist(
5029         struct ctl_var *kv
5030         )
5031 {
5032         struct ctl_var *k;
5033         if (kv) {
5034                 for (k = kv; !(k->flags & EOV); k++)
5035                         free((void *)(intptr_t)k->text);
5036                 free((void *)kv);
5037         }
5038 }