]> CyberLeo.Net >> Repos - FreeBSD/releng/10.2.git/blob - contrib/ntp/sntp/libevent/test/regress_util.c
- Copy stable/10@285827 to releng/10.2 in preparation for 10.2-RC1
[FreeBSD/releng/10.2.git] / contrib / ntp / sntp / libevent / test / regress_util.c
1 /*
2  * Copyright (c) 2009-2012 Nick Mathewson and Niels Provos
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  * 3. The name of the author may not be used to endorse or promote products
13  *    derived from this software without specific prior written permission.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 #include "../util-internal.h"
27
28 #ifdef _WIN32
29 #include <winsock2.h>
30 #include <windows.h>
31 #include <ws2tcpip.h>
32 #endif
33
34 #include "event2/event-config.h"
35
36 #include <sys/types.h>
37
38 #ifndef _WIN32
39 #include <sys/socket.h>
40 #include <netinet/in.h>
41 #include <arpa/inet.h>
42 #include <unistd.h>
43 #endif
44 #ifdef EVENT__HAVE_NETINET_IN6_H
45 #include <netinet/in6.h>
46 #endif
47 #ifdef EVENT__HAVE_SYS_WAIT_H
48 #include <sys/wait.h>
49 #endif
50 #include <signal.h>
51 #include <stdio.h>
52 #include <stdlib.h>
53 #include <string.h>
54
55 #include "event2/event.h"
56 #include "event2/util.h"
57 #include "../ipv6-internal.h"
58 #include "../log-internal.h"
59 #include "../strlcpy-internal.h"
60 #include "../mm-internal.h"
61 #include "../time-internal.h"
62
63 #include "regress.h"
64
65 enum entry_status { NORMAL, CANONICAL, BAD };
66
67 /* This is a big table of results we expect from generating and parsing */
68 static struct ipv4_entry {
69         const char *addr;
70         ev_uint32_t res;
71         enum entry_status status;
72 } ipv4_entries[] = {
73         { "1.2.3.4", 0x01020304u, CANONICAL },
74         { "255.255.255.255", 0xffffffffu, CANONICAL },
75         { "256.0.0.0", 0, BAD },
76         { "ABC", 0, BAD },
77         { "1.2.3.4.5", 0, BAD },
78         { "176.192.208.244", 0xb0c0d0f4, CANONICAL },
79         { NULL, 0, BAD },
80 };
81
82 static struct ipv6_entry {
83         const char *addr;
84         ev_uint32_t res[4];
85         enum entry_status status;
86 } ipv6_entries[] = {
87         { "::", { 0, 0, 0, 0, }, CANONICAL },
88         { "0:0:0:0:0:0:0:0", { 0, 0, 0, 0, }, NORMAL },
89         { "::1", { 0, 0, 0, 1, }, CANONICAL },
90         { "::1.2.3.4", { 0, 0, 0, 0x01020304, }, CANONICAL },
91         { "ffff:1::", { 0xffff0001u, 0, 0, 0, }, CANONICAL },
92         { "ffff:0000::", { 0xffff0000u, 0, 0, 0, }, NORMAL },
93         { "ffff::1234", { 0xffff0000u, 0, 0, 0x1234, }, CANONICAL },
94         { "0102::1.2.3.4", {0x01020000u, 0, 0, 0x01020304u }, NORMAL },
95         { "::9:c0a8:1:1", { 0, 0, 0x0009c0a8u, 0x00010001u }, CANONICAL },
96         { "::ffff:1.2.3.4", { 0, 0, 0x000ffffu, 0x01020304u }, CANONICAL },
97         { "FFFF::", { 0xffff0000u, 0, 0, 0 }, NORMAL },
98         { "foobar.", { 0, 0, 0, 0 }, BAD },
99         { "foobar", { 0, 0, 0, 0 }, BAD },
100         { "fo:obar", { 0, 0, 0, 0 }, BAD },
101         { "ffff", { 0, 0, 0, 0 }, BAD },
102         { "fffff::", { 0, 0, 0, 0 }, BAD },
103         { "fffff::", { 0, 0, 0, 0 }, BAD },
104         { "::1.0.1.1000", { 0, 0, 0, 0 }, BAD },
105         { "1:2:33333:4::", { 0, 0, 0, 0 }, BAD },
106         { "1:2:3:4:5:6:7:8:9", { 0, 0, 0, 0 }, BAD },
107         { "1::2::3", { 0, 0, 0, 0 }, BAD },
108         { ":::1", { 0, 0, 0, 0 }, BAD },
109         { NULL, { 0, 0, 0, 0,  }, BAD },
110 };
111
112 static void
113 regress_ipv4_parse(void *ptr)
114 {
115         int i;
116         for (i = 0; ipv4_entries[i].addr; ++i) {
117                 char written[128];
118                 struct ipv4_entry *ent = &ipv4_entries[i];
119                 struct in_addr in;
120                 int r;
121                 r = evutil_inet_pton(AF_INET, ent->addr, &in);
122                 if (r == 0) {
123                         if (ent->status != BAD) {
124                                 TT_FAIL(("%s did not parse, but it's a good address!",
125                                         ent->addr));
126                         }
127                         continue;
128                 }
129                 if (ent->status == BAD) {
130                         TT_FAIL(("%s parsed, but we expected an error", ent->addr));
131                         continue;
132                 }
133                 if (ntohl(in.s_addr) != ent->res) {
134                         TT_FAIL(("%s parsed to %lx, but we expected %lx", ent->addr,
135                                 (unsigned long)ntohl(in.s_addr),
136                                 (unsigned long)ent->res));
137                         continue;
138                 }
139                 if (ent->status == CANONICAL) {
140                         const char *w = evutil_inet_ntop(AF_INET, &in, written,
141                                                                                          sizeof(written));
142                         if (!w) {
143                                 TT_FAIL(("Tried to write out %s; got NULL.", ent->addr));
144                                 continue;
145                         }
146                         if (strcmp(written, ent->addr)) {
147                                 TT_FAIL(("Tried to write out %s; got %s",
148                                         ent->addr, written));
149                                 continue;
150                         }
151                 }
152
153         }
154
155 }
156
157 static void
158 regress_ipv6_parse(void *ptr)
159 {
160 #ifdef AF_INET6
161         int i, j;
162
163         for (i = 0; ipv6_entries[i].addr; ++i) {
164                 char written[128];
165                 struct ipv6_entry *ent = &ipv6_entries[i];
166                 struct in6_addr in6;
167                 int r;
168                 r = evutil_inet_pton(AF_INET6, ent->addr, &in6);
169                 if (r == 0) {
170                         if (ent->status != BAD)
171                                 TT_FAIL(("%s did not parse, but it's a good address!",
172                                         ent->addr));
173                         continue;
174                 }
175                 if (ent->status == BAD) {
176                         TT_FAIL(("%s parsed, but we expected an error", ent->addr));
177                         continue;
178                 }
179                 for (j = 0; j < 4; ++j) {
180                         /* Can't use s6_addr32 here; some don't have it. */
181                         ev_uint32_t u =
182                             ((ev_uint32_t)in6.s6_addr[j*4  ] << 24) |
183                             ((ev_uint32_t)in6.s6_addr[j*4+1] << 16) |
184                             ((ev_uint32_t)in6.s6_addr[j*4+2] << 8) |
185                             ((ev_uint32_t)in6.s6_addr[j*4+3]);
186                         if (u != ent->res[j]) {
187                                 TT_FAIL(("%s did not parse as expected.", ent->addr));
188                                 continue;
189                         }
190                 }
191                 if (ent->status == CANONICAL) {
192                         const char *w = evutil_inet_ntop(AF_INET6, &in6, written,
193                                                                                          sizeof(written));
194                         if (!w) {
195                                 TT_FAIL(("Tried to write out %s; got NULL.", ent->addr));
196                                 continue;
197                         }
198                         if (strcmp(written, ent->addr)) {
199                                 TT_FAIL(("Tried to write out %s; got %s", ent->addr, written));
200                                 continue;
201                         }
202                 }
203
204         }
205 #else
206         TT_BLATHER(("Skipping IPv6 address parsing."));
207 #endif
208 }
209
210 static struct sa_port_ent {
211         const char *parse;
212         int safamily;
213         const char *addr;
214         int port;
215 } sa_port_ents[] = {
216         { "[ffff::1]:1000", AF_INET6, "ffff::1", 1000 },
217         { "[ffff::1]", AF_INET6, "ffff::1", 0 },
218         { "[ffff::1", 0, NULL, 0 },
219         { "[ffff::1]:65599", 0, NULL, 0 },
220         { "[ffff::1]:0", 0, NULL, 0 },
221         { "[ffff::1]:-1", 0, NULL, 0 },
222         { "::1", AF_INET6, "::1", 0 },
223         { "1:2::1", AF_INET6, "1:2::1", 0 },
224         { "192.168.0.1:50", AF_INET, "192.168.0.1", 50 },
225         { "1.2.3.4", AF_INET, "1.2.3.4", 0 },
226         { NULL, 0, NULL, 0 },
227 };
228
229 static void
230 regress_sockaddr_port_parse(void *ptr)
231 {
232         struct sockaddr_storage ss;
233         int i, r;
234
235         for (i = 0; sa_port_ents[i].parse; ++i) {
236                 struct sa_port_ent *ent = &sa_port_ents[i];
237                 int len = sizeof(ss);
238                 memset(&ss, 0, sizeof(ss));
239                 r = evutil_parse_sockaddr_port(ent->parse, (struct sockaddr*)&ss, &len);
240                 if (r < 0) {
241                         if (ent->safamily)
242                                 TT_FAIL(("Couldn't parse %s!", ent->parse));
243                         continue;
244                 } else if (! ent->safamily) {
245                         TT_FAIL(("Shouldn't have been able to parse %s!", ent->parse));
246                         continue;
247                 }
248                 if (ent->safamily == AF_INET) {
249                         struct sockaddr_in sin;
250                         memset(&sin, 0, sizeof(sin));
251 #ifdef EVENT__HAVE_STRUCT_SOCKADDR_IN_SIN_LEN
252                         sin.sin_len = sizeof(sin);
253 #endif
254                         sin.sin_family = AF_INET;
255                         sin.sin_port = htons(ent->port);
256                         r = evutil_inet_pton(AF_INET, ent->addr, &sin.sin_addr);
257                         if (1 != r) {
258                                 TT_FAIL(("Couldn't parse ipv4 target %s.", ent->addr));
259                         } else if (memcmp(&sin, &ss, sizeof(sin))) {
260                                 TT_FAIL(("Parse for %s was not as expected.", ent->parse));
261                         } else if (len != sizeof(sin)) {
262                                 TT_FAIL(("Length for %s not as expected.",ent->parse));
263                         }
264                 } else {
265                         struct sockaddr_in6 sin6;
266                         memset(&sin6, 0, sizeof(sin6));
267 #ifdef EVENT__HAVE_STRUCT_SOCKADDR_IN6_SIN6_LEN
268                         sin6.sin6_len = sizeof(sin6);
269 #endif
270                         sin6.sin6_family = AF_INET6;
271                         sin6.sin6_port = htons(ent->port);
272                         r = evutil_inet_pton(AF_INET6, ent->addr, &sin6.sin6_addr);
273                         if (1 != r) {
274                                 TT_FAIL(("Couldn't parse ipv6 target %s.", ent->addr));
275                         } else if (memcmp(&sin6, &ss, sizeof(sin6))) {
276                                 TT_FAIL(("Parse for %s was not as expected.", ent->parse));
277                         } else if (len != sizeof(sin6)) {
278                                 TT_FAIL(("Length for %s not as expected.",ent->parse));
279                         }
280                 }
281         }
282 }
283
284
285 static void
286 regress_sockaddr_port_format(void *ptr)
287 {
288         struct sockaddr_storage ss;
289         int len;
290         const char *cp;
291         char cbuf[128];
292         int r;
293
294         len = sizeof(ss);
295         r = evutil_parse_sockaddr_port("192.168.1.1:80",
296             (struct sockaddr*)&ss, &len);
297         tt_int_op(r,==,0);
298         cp = evutil_format_sockaddr_port_(
299                 (struct sockaddr*)&ss, cbuf, sizeof(cbuf));
300         tt_ptr_op(cp,==,cbuf);
301         tt_str_op(cp,==,"192.168.1.1:80");
302
303         len = sizeof(ss);
304         r = evutil_parse_sockaddr_port("[ff00::8010]:999",
305             (struct sockaddr*)&ss, &len);
306         tt_int_op(r,==,0);
307         cp = evutil_format_sockaddr_port_(
308                 (struct sockaddr*)&ss, cbuf, sizeof(cbuf));
309         tt_ptr_op(cp,==,cbuf);
310         tt_str_op(cp,==,"[ff00::8010]:999");
311
312         ss.ss_family=99;
313         cp = evutil_format_sockaddr_port_(
314                 (struct sockaddr*)&ss, cbuf, sizeof(cbuf));
315         tt_ptr_op(cp,==,cbuf);
316         tt_str_op(cp,==,"<addr with socktype 99>");
317 end:
318         ;
319 }
320
321 static struct sa_pred_ent {
322         const char *parse;
323
324         int is_loopback;
325 } sa_pred_entries[] = {
326         { "127.0.0.1",   1 },
327         { "127.0.3.2",   1 },
328         { "128.1.2.3",   0 },
329         { "18.0.0.1",    0 },
330         { "129.168.1.1", 0 },
331
332         { "::1",         1 },
333         { "::0",         0 },
334         { "f::1",        0 },
335         { "::501",       0 },
336         { NULL,          0 },
337
338 };
339
340 static void
341 test_evutil_sockaddr_predicates(void *ptr)
342 {
343         struct sockaddr_storage ss;
344         int r, i;
345
346         for (i=0; sa_pred_entries[i].parse; ++i) {
347                 struct sa_pred_ent *ent = &sa_pred_entries[i];
348                 int len = sizeof(ss);
349
350                 r = evutil_parse_sockaddr_port(ent->parse, (struct sockaddr*)&ss, &len);
351
352                 if (r<0) {
353                         TT_FAIL(("Couldn't parse %s!", ent->parse));
354                         continue;
355                 }
356
357                 /* sockaddr_is_loopback */
358                 if (ent->is_loopback != evutil_sockaddr_is_loopback_((struct sockaddr*)&ss)) {
359                         TT_FAIL(("evutil_sockaddr_loopback(%s) not as expected",
360                                 ent->parse));
361                 }
362         }
363 }
364
365 static void
366 test_evutil_strtoll(void *ptr)
367 {
368         const char *s;
369         char *endptr;
370
371         tt_want(evutil_strtoll("5000000000", NULL, 10) ==
372                 ((ev_int64_t)5000000)*1000);
373         tt_want(evutil_strtoll("-5000000000", NULL, 10) ==
374                 ((ev_int64_t)5000000)*-1000);
375         s = " 99999stuff";
376         tt_want(evutil_strtoll(s, &endptr, 10) == (ev_int64_t)99999);
377         tt_want(endptr == s+6);
378         tt_want(evutil_strtoll("foo", NULL, 10) == 0);
379  }
380
381 static void
382 test_evutil_snprintf(void *ptr)
383 {
384         char buf[16];
385         int r;
386         ev_uint64_t u64 = ((ev_uint64_t)1000000000)*200;
387         ev_int64_t i64 = -1 * (ev_int64_t) u64;
388         size_t size = 8000;
389         ev_ssize_t ssize = -9000;
390
391         r = evutil_snprintf(buf, sizeof(buf), "%d %d", 50, 100);
392         tt_str_op(buf, ==, "50 100");
393         tt_int_op(r, ==, 6);
394
395         r = evutil_snprintf(buf, sizeof(buf), "longish %d", 1234567890);
396         tt_str_op(buf, ==, "longish 1234567");
397         tt_int_op(r, ==, 18);
398
399         r = evutil_snprintf(buf, sizeof(buf), EV_U64_FMT, EV_U64_ARG(u64));
400         tt_str_op(buf, ==, "200000000000");
401         tt_int_op(r, ==, 12);
402
403         r = evutil_snprintf(buf, sizeof(buf), EV_I64_FMT, EV_I64_ARG(i64));
404         tt_str_op(buf, ==, "-200000000000");
405         tt_int_op(r, ==, 13);
406
407         r = evutil_snprintf(buf, sizeof(buf), EV_SIZE_FMT" "EV_SSIZE_FMT,
408             EV_SIZE_ARG(size), EV_SSIZE_ARG(ssize));
409         tt_str_op(buf, ==, "8000 -9000");
410         tt_int_op(r, ==, 10);
411
412       end:
413         ;
414 }
415
416 static void
417 test_evutil_casecmp(void *ptr)
418 {
419         tt_int_op(evutil_ascii_strcasecmp("ABC", "ABC"), ==, 0);
420         tt_int_op(evutil_ascii_strcasecmp("ABC", "abc"), ==, 0);
421         tt_int_op(evutil_ascii_strcasecmp("ABC", "abcd"), <, 0);
422         tt_int_op(evutil_ascii_strcasecmp("ABC", "abb"), >, 0);
423         tt_int_op(evutil_ascii_strcasecmp("ABCd", "abc"), >, 0);
424
425         tt_int_op(evutil_ascii_strncasecmp("Libevent", "LibEvEnT", 100), ==, 0);
426         tt_int_op(evutil_ascii_strncasecmp("Libevent", "LibEvEnT", 4), ==, 0);
427         tt_int_op(evutil_ascii_strncasecmp("Libevent", "LibEXXXX", 4), ==, 0);
428         tt_int_op(evutil_ascii_strncasecmp("Libevent", "LibE", 4), ==, 0);
429         tt_int_op(evutil_ascii_strncasecmp("Libe", "LibEvEnT", 4), ==, 0);
430         tt_int_op(evutil_ascii_strncasecmp("Lib", "LibEvEnT", 4), <, 0);
431         tt_int_op(evutil_ascii_strncasecmp("abc", "def", 99), <, 0);
432         tt_int_op(evutil_ascii_strncasecmp("Z", "qrst", 1), >, 0);
433 end:
434         ;
435 }
436
437 static void
438 test_evutil_rtrim(void *ptr)
439 {
440 #define TEST_TRIM(s, result) \
441         do {                                            \
442             if (cp) mm_free(cp);                        \
443             cp = mm_strdup(s);                          \
444             tt_assert(cp);                              \
445             evutil_rtrim_lws_(cp);                      \
446             tt_str_op(cp, ==, result);                  \
447         } while(0)
448
449         char *cp = NULL;
450         (void) ptr;
451
452         TEST_TRIM("", "");
453         TEST_TRIM("a", "a");
454         TEST_TRIM("abcdef ghi", "abcdef ghi");
455
456         TEST_TRIM(" ", "");
457         TEST_TRIM("  ", "");
458         TEST_TRIM("a ", "a");
459         TEST_TRIM("abcdef  gH       ", "abcdef  gH");
460
461         TEST_TRIM("\t\t", "");
462         TEST_TRIM(" \t", "");
463         TEST_TRIM("\t", "");
464         TEST_TRIM("a \t", "a");
465         TEST_TRIM("a\t ", "a");
466         TEST_TRIM("a\t", "a");
467         TEST_TRIM("abcdef  gH    \t  ", "abcdef  gH");
468
469 end:
470         if (cp)
471                 mm_free(cp);
472 }
473
474 static int logsev = 0;
475 static char *logmsg = NULL;
476
477 static void
478 logfn(int severity, const char *msg)
479 {
480         logsev = severity;
481         tt_want(msg);
482         if (msg) {
483                 if (logmsg)
484                         free(logmsg);
485                 logmsg = strdup(msg);
486         }
487 }
488
489 static int fatal_want_severity = 0;
490 static const char *fatal_want_message = NULL;
491 static void
492 fatalfn(int exitcode)
493 {
494         if (logsev != fatal_want_severity ||
495             !logmsg ||
496             strcmp(logmsg, fatal_want_message))
497                 exit(0);
498         else
499                 exit(exitcode);
500 }
501
502 #ifndef _WIN32
503 #define CAN_CHECK_ERR
504 static void
505 check_error_logging(void (*fn)(void), int wantexitcode,
506     int wantseverity, const char *wantmsg)
507 {
508         pid_t pid;
509         int status = 0, exitcode;
510         fatal_want_severity = wantseverity;
511         fatal_want_message = wantmsg;
512         if ((pid = regress_fork()) == 0) {
513                 /* child process */
514                 fn();
515                 exit(0); /* should be unreachable. */
516         } else {
517                 wait(&status);
518                 exitcode = WEXITSTATUS(status);
519                 tt_int_op(wantexitcode, ==, exitcode);
520         }
521 end:
522         ;
523 }
524
525 static void
526 errx_fn(void)
527 {
528         event_errx(2, "Fatal error; too many kumquats (%d)", 5);
529 }
530
531 static void
532 err_fn(void)
533 {
534         errno = ENOENT;
535         event_err(5,"Couldn't open %s", "/very/bad/file");
536 }
537
538 static void
539 sock_err_fn(void)
540 {
541         evutil_socket_t fd = socket(AF_INET, SOCK_STREAM, 0);
542 #ifdef _WIN32
543         EVUTIL_SET_SOCKET_ERROR(WSAEWOULDBLOCK);
544 #else
545         errno = EAGAIN;
546 #endif
547         event_sock_err(20, fd, "Unhappy socket");
548 }
549 #endif
550
551 static void
552 test_evutil_log(void *ptr)
553 {
554         evutil_socket_t fd = -1;
555         char buf[128];
556
557         event_set_log_callback(logfn);
558         event_set_fatal_callback(fatalfn);
559 #define RESET() do {                            \
560                 logsev = 0;     \
561                 if (logmsg) free(logmsg);       \
562                 logmsg = NULL;                  \
563         } while (0)
564 #define LOGEQ(sev,msg) do {                     \
565                 tt_int_op(logsev,==,sev);       \
566                 tt_assert(logmsg != NULL);      \
567                 tt_str_op(logmsg,==,msg);       \
568         } while (0)
569
570 #ifdef CAN_CHECK_ERR
571         /* We need to disable these tests for now.  Previously, the logging
572          * module didn't enforce the requirement that a fatal callback
573          * actually exit.  Now, it exits no matter what, so if we wan to
574          * reinstate these tests, we'll need to fork for each one. */
575         check_error_logging(errx_fn, 2, EVENT_LOG_ERR,
576             "Fatal error; too many kumquats (5)");
577         RESET();
578 #endif
579
580         event_warnx("Far too many %s (%d)", "wombats", 99);
581         LOGEQ(EVENT_LOG_WARN, "Far too many wombats (99)");
582         RESET();
583
584         event_msgx("Connecting lime to coconut");
585         LOGEQ(EVENT_LOG_MSG, "Connecting lime to coconut");
586         RESET();
587
588         event_debug(("A millisecond passed! We should log that!"));
589 #ifdef USE_DEBUG
590         LOGEQ(EVENT_LOG_DEBUG, "A millisecond passed! We should log that!");
591 #else
592         tt_int_op(logsev,==,0);
593         tt_ptr_op(logmsg,==,NULL);
594 #endif
595         RESET();
596
597         /* Try with an errno. */
598         errno = ENOENT;
599         event_warn("Couldn't open %s", "/bad/file");
600         evutil_snprintf(buf, sizeof(buf),
601             "Couldn't open /bad/file: %s",strerror(ENOENT));
602         LOGEQ(EVENT_LOG_WARN,buf);
603         RESET();
604
605 #ifdef CAN_CHECK_ERR
606         evutil_snprintf(buf, sizeof(buf),
607             "Couldn't open /very/bad/file: %s",strerror(ENOENT));
608         check_error_logging(err_fn, 5, EVENT_LOG_ERR, buf);
609         RESET();
610 #endif
611
612         /* Try with a socket errno. */
613         fd = socket(AF_INET, SOCK_STREAM, 0);
614 #ifdef _WIN32
615         evutil_snprintf(buf, sizeof(buf),
616             "Unhappy socket: %s",
617             evutil_socket_error_to_string(WSAEWOULDBLOCK));
618         EVUTIL_SET_SOCKET_ERROR(WSAEWOULDBLOCK);
619 #else
620         evutil_snprintf(buf, sizeof(buf),
621             "Unhappy socket: %s", strerror(EAGAIN));
622         errno = EAGAIN;
623 #endif
624         event_sock_warn(fd, "Unhappy socket");
625         LOGEQ(EVENT_LOG_WARN, buf);
626         RESET();
627
628 #ifdef CAN_CHECK_ERR
629         check_error_logging(sock_err_fn, 20, EVENT_LOG_ERR, buf);
630         RESET();
631 #endif
632
633 #undef RESET
634 #undef LOGEQ
635 end:
636         if (logmsg)
637                 free(logmsg);
638         if (fd >= 0)
639                 evutil_closesocket(fd);
640 }
641
642 static void
643 test_evutil_strlcpy(void *arg)
644 {
645         char buf[8];
646
647         /* Successful case. */
648         tt_int_op(5, ==, strlcpy(buf, "Hello", sizeof(buf)));
649         tt_str_op(buf, ==, "Hello");
650
651         /* Overflow by a lot. */
652         tt_int_op(13, ==, strlcpy(buf, "pentasyllabic", sizeof(buf)));
653         tt_str_op(buf, ==, "pentasy");
654
655         /* Overflow by exactly one. */
656         tt_int_op(8, ==, strlcpy(buf, "overlong", sizeof(buf)));
657         tt_str_op(buf, ==, "overlon");
658 end:
659         ;
660 }
661
662 struct example_struct {
663         const char *a;
664         const char *b;
665         long c;
666 };
667
668 static void
669 test_evutil_upcast(void *arg)
670 {
671         struct example_struct es1;
672         const char **cp;
673         es1.a = "World";
674         es1.b = "Hello";
675         es1.c = -99;
676
677         tt_int_op(evutil_offsetof(struct example_struct, b), ==, sizeof(char*));
678
679         cp = &es1.b;
680         tt_ptr_op(EVUTIL_UPCAST(cp, struct example_struct, b), ==, &es1);
681
682 end:
683         ;
684 }
685
686 static void
687 test_evutil_integers(void *arg)
688 {
689         ev_int64_t i64;
690         ev_uint64_t u64;
691         ev_int32_t i32;
692         ev_uint32_t u32;
693         ev_int16_t i16;
694         ev_uint16_t u16;
695         ev_int8_t  i8;
696         ev_uint8_t  u8;
697
698         void *ptr;
699         ev_intptr_t iptr;
700         ev_uintptr_t uptr;
701
702         ev_ssize_t ssize;
703
704         tt_int_op(sizeof(u64), ==, 8);
705         tt_int_op(sizeof(i64), ==, 8);
706         tt_int_op(sizeof(u32), ==, 4);
707         tt_int_op(sizeof(i32), ==, 4);
708         tt_int_op(sizeof(u16), ==, 2);
709         tt_int_op(sizeof(i16), ==, 2);
710         tt_int_op(sizeof(u8), ==,  1);
711         tt_int_op(sizeof(i8), ==,  1);
712
713         tt_int_op(sizeof(ev_ssize_t), ==, sizeof(size_t));
714         tt_int_op(sizeof(ev_intptr_t), >=, sizeof(void *));
715         tt_int_op(sizeof(ev_uintptr_t), ==, sizeof(intptr_t));
716
717         u64 = 1000000000;
718         u64 *= 1000000000;
719         tt_assert(u64 / 1000000000 == 1000000000);
720         i64 = -1000000000;
721         i64 *= 1000000000;
722         tt_assert(i64 / 1000000000 == -1000000000);
723
724         u64 = EV_UINT64_MAX;
725         i64 = EV_INT64_MAX;
726         tt_assert(u64 > 0);
727         tt_assert(i64 > 0);
728         u64++;
729 /*      i64++; */
730         tt_assert(u64 == 0);
731 /*      tt_assert(i64 == EV_INT64_MIN); */
732 /*      tt_assert(i64 < 0); */
733
734         u32 = EV_UINT32_MAX;
735         i32 = EV_INT32_MAX;
736         tt_assert(u32 > 0);
737         tt_assert(i32 > 0);
738         u32++;
739 /*      i32++; */
740         tt_assert(u32 == 0);
741 /*      tt_assert(i32 == EV_INT32_MIN); */
742 /*      tt_assert(i32 < 0); */
743
744         u16 = EV_UINT16_MAX;
745         i16 = EV_INT16_MAX;
746         tt_assert(u16 > 0);
747         tt_assert(i16 > 0);
748         u16++;
749 /*      i16++; */
750         tt_assert(u16 == 0);
751 /*      tt_assert(i16 == EV_INT16_MIN); */
752 /*      tt_assert(i16 < 0); */
753
754         u8 = EV_UINT8_MAX;
755         i8 = EV_INT8_MAX;
756         tt_assert(u8 > 0);
757         tt_assert(i8 > 0);
758         u8++;
759 /*      i8++;*/
760         tt_assert(u8 == 0);
761 /*      tt_assert(i8 == EV_INT8_MIN); */
762 /*      tt_assert(i8 < 0); */
763
764 /*
765         ssize = EV_SSIZE_MAX;
766         tt_assert(ssize > 0);
767         ssize++;
768         tt_assert(ssize < 0);
769         tt_assert(ssize == EV_SSIZE_MIN);
770 */
771
772         ptr = &ssize;
773         iptr = (ev_intptr_t)ptr;
774         uptr = (ev_uintptr_t)ptr;
775         ptr = (void *)iptr;
776         tt_assert(ptr == &ssize);
777         ptr = (void *)uptr;
778         tt_assert(ptr == &ssize);
779
780         iptr = -1;
781         tt_assert(iptr < 0);
782 end:
783         ;
784 }
785
786 struct evutil_addrinfo *
787 ai_find_by_family(struct evutil_addrinfo *ai, int family)
788 {
789         while (ai) {
790                 if (ai->ai_family == family)
791                         return ai;
792                 ai = ai->ai_next;
793         }
794         return NULL;
795 }
796
797 struct evutil_addrinfo *
798 ai_find_by_protocol(struct evutil_addrinfo *ai, int protocol)
799 {
800         while (ai) {
801                 if (ai->ai_protocol == protocol)
802                         return ai;
803                 ai = ai->ai_next;
804         }
805         return NULL;
806 }
807
808
809 int
810 test_ai_eq_(const struct evutil_addrinfo *ai, const char *sockaddr_port,
811     int socktype, int protocol, int line)
812 {
813         struct sockaddr_storage ss;
814         int slen = sizeof(ss);
815         int gotport;
816         char buf[128];
817         memset(&ss, 0, sizeof(ss));
818         if (socktype > 0)
819                 tt_int_op(ai->ai_socktype, ==, socktype);
820         if (protocol > 0)
821                 tt_int_op(ai->ai_protocol, ==, protocol);
822
823         if (evutil_parse_sockaddr_port(
824                     sockaddr_port, (struct sockaddr*)&ss, &slen)<0) {
825                 TT_FAIL(("Couldn't parse expected address %s on line %d",
826                         sockaddr_port, line));
827                 return -1;
828         }
829         if (ai->ai_family != ss.ss_family) {
830                 TT_FAIL(("Address family %d did not match %d on line %d",
831                         ai->ai_family, ss.ss_family, line));
832                 return -1;
833         }
834         if (ai->ai_addr->sa_family == AF_INET) {
835                 struct sockaddr_in *sin = (struct sockaddr_in*)ai->ai_addr;
836                 evutil_inet_ntop(AF_INET, &sin->sin_addr, buf, sizeof(buf));
837                 gotport = ntohs(sin->sin_port);
838                 if (ai->ai_addrlen != sizeof(struct sockaddr_in)) {
839                         TT_FAIL(("Addr size mismatch on line %d", line));
840                         return -1;
841                 }
842         } else {
843                 struct sockaddr_in6 *sin6 = (struct sockaddr_in6*)ai->ai_addr;
844                 evutil_inet_ntop(AF_INET6, &sin6->sin6_addr, buf, sizeof(buf));
845                 gotport = ntohs(sin6->sin6_port);
846                 if (ai->ai_addrlen != sizeof(struct sockaddr_in6)) {
847                         TT_FAIL(("Addr size mismatch on line %d", line));
848                         return -1;
849                 }
850         }
851         if (evutil_sockaddr_cmp(ai->ai_addr, (struct sockaddr*)&ss, 1)) {
852                 TT_FAIL(("Wanted %s, got %s:%d on line %d", sockaddr_port,
853                         buf, gotport, line));
854                 return -1;
855         } else {
856                 TT_BLATHER(("Wanted %s, got %s:%d on line %d", sockaddr_port,
857                         buf, gotport, line));
858         }
859         return 0;
860 end:
861         TT_FAIL(("Test failed on line %d", line));
862         return -1;
863 }
864
865 static void
866 test_evutil_rand(void *arg)
867 {
868         char buf1[32];
869         char buf2[32];
870         int counts[256];
871         int i, j, k, n=0;
872         struct evutil_weakrand_state seed = { 12346789U };
873
874         memset(buf2, 0, sizeof(buf2));
875         memset(counts, 0, sizeof(counts));
876
877         for (k=0;k<32;++k) {
878                 /* Try a few different start and end points; try to catch
879                  * the various misaligned cases of arc4random_buf */
880                 int startpoint = evutil_weakrand_(&seed) % 4;
881                 int endpoint = 32 - (evutil_weakrand_(&seed) % 4);
882
883                 memset(buf2, 0, sizeof(buf2));
884
885                 /* Do 6 runs over buf1, or-ing the result into buf2 each
886                  * time, to make sure we're setting each byte that we mean
887                  * to set. */
888                 for (i=0;i<8;++i) {
889                         memset(buf1, 0, sizeof(buf1));
890                         evutil_secure_rng_get_bytes(buf1 + startpoint,
891                             endpoint-startpoint);
892                         n += endpoint - startpoint;
893                         for (j=0; j<32; ++j) {
894                                 if (j >= startpoint && j < endpoint) {
895                                         buf2[j] |= buf1[j];
896                                         ++counts[(unsigned char)buf1[j]];
897                                 } else {
898                                         tt_assert(buf1[j] == 0);
899                                         tt_int_op(buf1[j], ==, 0);
900
901                                 }
902                         }
903                 }
904
905                 /* This will give a false positive with P=(256**8)==(2**64)
906                  * for each character. */
907                 for (j=startpoint;j<endpoint;++j) {
908                         tt_int_op(buf2[j], !=, 0);
909                 }
910         }
911
912         evutil_weakrand_seed_(&seed, 0);
913         for (i = 0; i < 10000; ++i) {
914                 ev_int32_t r = evutil_weakrand_range_(&seed, 9999);
915                 tt_int_op(0, <=, r);
916                 tt_int_op(r, <, 9999);
917         }
918
919         /* for (i=0;i<256;++i) { printf("%3d %2d\n", i, counts[i]); } */
920 end:
921         ;
922 }
923
924 static void
925 test_evutil_getaddrinfo(void *arg)
926 {
927         struct evutil_addrinfo *ai = NULL, *a;
928         struct evutil_addrinfo hints;
929         int r;
930
931         /* Try using it as a pton. */
932         memset(&hints, 0, sizeof(hints));
933         hints.ai_family = PF_UNSPEC;
934         hints.ai_socktype = SOCK_STREAM;
935         r = evutil_getaddrinfo("1.2.3.4", "8080", &hints, &ai);
936         tt_int_op(r, ==, 0);
937         tt_assert(ai);
938         tt_ptr_op(ai->ai_next, ==, NULL); /* no ambiguity */
939         test_ai_eq(ai, "1.2.3.4:8080", SOCK_STREAM, IPPROTO_TCP);
940         evutil_freeaddrinfo(ai);
941         ai = NULL;
942
943         memset(&hints, 0, sizeof(hints));
944         hints.ai_family = PF_UNSPEC;
945         hints.ai_protocol = IPPROTO_UDP;
946         r = evutil_getaddrinfo("1001:b0b::f00f", "4321", &hints, &ai);
947         tt_int_op(r, ==, 0);
948         tt_assert(ai);
949         tt_ptr_op(ai->ai_next, ==, NULL); /* no ambiguity */
950         test_ai_eq(ai, "[1001:b0b::f00f]:4321", SOCK_DGRAM, IPPROTO_UDP);
951         evutil_freeaddrinfo(ai);
952         ai = NULL;
953
954         /* Try out the behavior of nodename=NULL */
955         memset(&hints, 0, sizeof(hints));
956         hints.ai_family = PF_INET;
957         hints.ai_protocol = IPPROTO_TCP;
958         hints.ai_flags = EVUTIL_AI_PASSIVE; /* as if for bind */
959         r = evutil_getaddrinfo(NULL, "9999", &hints, &ai);
960         tt_int_op(r,==,0);
961         tt_assert(ai);
962         tt_ptr_op(ai->ai_next, ==, NULL);
963         test_ai_eq(ai, "0.0.0.0:9999", SOCK_STREAM, IPPROTO_TCP);
964         evutil_freeaddrinfo(ai);
965         ai = NULL;
966         hints.ai_flags = 0; /* as if for connect */
967         r = evutil_getaddrinfo(NULL, "9998", &hints, &ai);
968         tt_assert(ai);
969         tt_int_op(r,==,0);
970         test_ai_eq(ai, "127.0.0.1:9998", SOCK_STREAM, IPPROTO_TCP);
971         tt_ptr_op(ai->ai_next, ==, NULL);
972         evutil_freeaddrinfo(ai);
973         ai = NULL;
974
975         hints.ai_flags = 0; /* as if for connect */
976         hints.ai_family = PF_INET6;
977         r = evutil_getaddrinfo(NULL, "9997", &hints, &ai);
978         tt_assert(ai);
979         tt_int_op(r,==,0);
980         tt_ptr_op(ai->ai_next, ==, NULL);
981         test_ai_eq(ai, "[::1]:9997", SOCK_STREAM, IPPROTO_TCP);
982         evutil_freeaddrinfo(ai);
983         ai = NULL;
984
985         hints.ai_flags = EVUTIL_AI_PASSIVE; /* as if for bind. */
986         hints.ai_family = PF_INET6;
987         r = evutil_getaddrinfo(NULL, "9996", &hints, &ai);
988         tt_assert(ai);
989         tt_int_op(r,==,0);
990         tt_ptr_op(ai->ai_next, ==, NULL);
991         test_ai_eq(ai, "[::]:9996", SOCK_STREAM, IPPROTO_TCP);
992         evutil_freeaddrinfo(ai);
993         ai = NULL;
994
995         /* Now try an unspec one. We should get a v6 and a v4. */
996         hints.ai_family = PF_UNSPEC;
997         r = evutil_getaddrinfo(NULL, "9996", &hints, &ai);
998         tt_assert(ai);
999         tt_int_op(r,==,0);
1000         a = ai_find_by_family(ai, PF_INET6);
1001         tt_assert(a);
1002         test_ai_eq(a, "[::]:9996", SOCK_STREAM, IPPROTO_TCP);
1003         a = ai_find_by_family(ai, PF_INET);
1004         tt_assert(a);
1005         test_ai_eq(a, "0.0.0.0:9996", SOCK_STREAM, IPPROTO_TCP);
1006         evutil_freeaddrinfo(ai);
1007         ai = NULL;
1008
1009         /* Try out AI_NUMERICHOST: successful case.  Also try
1010          * multiprotocol. */
1011         memset(&hints, 0, sizeof(hints));
1012         hints.ai_family = PF_UNSPEC;
1013         hints.ai_flags = EVUTIL_AI_NUMERICHOST;
1014         r = evutil_getaddrinfo("1.2.3.4", NULL, &hints, &ai);
1015         tt_int_op(r, ==, 0);
1016         a = ai_find_by_protocol(ai, IPPROTO_TCP);
1017         tt_assert(a);
1018         test_ai_eq(a, "1.2.3.4", SOCK_STREAM, IPPROTO_TCP);
1019         a = ai_find_by_protocol(ai, IPPROTO_UDP);
1020         tt_assert(a);
1021         test_ai_eq(a, "1.2.3.4", SOCK_DGRAM, IPPROTO_UDP);
1022         evutil_freeaddrinfo(ai);
1023         ai = NULL;
1024
1025         /* Try the failing case of AI_NUMERICHOST */
1026         memset(&hints, 0, sizeof(hints));
1027         hints.ai_family = PF_UNSPEC;
1028         hints.ai_flags = EVUTIL_AI_NUMERICHOST;
1029         r = evutil_getaddrinfo("www.google.com", "80", &hints, &ai);
1030         tt_int_op(r, ==, EVUTIL_EAI_NONAME);
1031         tt_ptr_op(ai, ==, NULL);
1032
1033         /* Try symbolic service names wit AI_NUMERICSERV */
1034         memset(&hints, 0, sizeof(hints));
1035         hints.ai_family = PF_UNSPEC;
1036         hints.ai_socktype = SOCK_STREAM;
1037         hints.ai_flags = EVUTIL_AI_NUMERICSERV;
1038         r = evutil_getaddrinfo("1.2.3.4", "http", &hints, &ai);
1039         tt_int_op(r,==,EVUTIL_EAI_NONAME);
1040
1041         /* Try symbolic service names */
1042         memset(&hints, 0, sizeof(hints));
1043         hints.ai_family = PF_UNSPEC;
1044         hints.ai_socktype = SOCK_STREAM;
1045         r = evutil_getaddrinfo("1.2.3.4", "http", &hints, &ai);
1046         if (r!=0) {
1047                 TT_DECLARE("SKIP", ("Symbolic service names seem broken."));
1048         } else {
1049                 tt_assert(ai);
1050                 test_ai_eq(ai, "1.2.3.4:80", SOCK_STREAM, IPPROTO_TCP);
1051                 evutil_freeaddrinfo(ai);
1052                 ai = NULL;
1053         }
1054
1055 end:
1056         if (ai)
1057                 evutil_freeaddrinfo(ai);
1058 }
1059
1060 static void
1061 test_evutil_getaddrinfo_live(void *arg)
1062 {
1063         struct evutil_addrinfo *ai = NULL;
1064         struct evutil_addrinfo hints;
1065
1066         struct sockaddr_in6 *sin6;
1067         struct sockaddr_in *sin;
1068         char buf[128];
1069         const char *cp;
1070         int r;
1071
1072         /* Now do some actual lookups. */
1073         memset(&hints, 0, sizeof(hints));
1074         hints.ai_family = PF_INET;
1075         hints.ai_protocol = IPPROTO_TCP;
1076         hints.ai_socktype = SOCK_STREAM;
1077         r = evutil_getaddrinfo("www.google.com", "80", &hints, &ai);
1078         if (r != 0) {
1079                 TT_DECLARE("SKIP", ("Couldn't resolve www.google.com"));
1080         } else {
1081                 tt_assert(ai);
1082                 tt_int_op(ai->ai_family, ==, PF_INET);
1083                 tt_int_op(ai->ai_protocol, ==, IPPROTO_TCP);
1084                 tt_int_op(ai->ai_socktype, ==, SOCK_STREAM);
1085                 tt_int_op(ai->ai_addrlen, ==, sizeof(struct sockaddr_in));
1086                 sin = (struct sockaddr_in*)ai->ai_addr;
1087                 tt_int_op(sin->sin_family, ==, AF_INET);
1088                 tt_int_op(sin->sin_port, ==, htons(80));
1089                 tt_int_op(sin->sin_addr.s_addr, !=, 0xffffffff);
1090
1091                 cp = evutil_inet_ntop(AF_INET, &sin->sin_addr, buf, sizeof(buf));
1092                 TT_BLATHER(("www.google.com resolved to %s",
1093                         cp?cp:"<unwriteable>"));
1094                 evutil_freeaddrinfo(ai);
1095                 ai = NULL;
1096         }
1097
1098         hints.ai_family = PF_INET6;
1099         r = evutil_getaddrinfo("ipv6.google.com", "80", &hints, &ai);
1100         if (r != 0) {
1101                 TT_BLATHER(("Couldn't do an ipv6 lookup for ipv6.google.com"));
1102         } else {
1103                 tt_assert(ai);
1104                 tt_int_op(ai->ai_family, ==, PF_INET6);
1105                 tt_int_op(ai->ai_addrlen, ==, sizeof(struct sockaddr_in6));
1106                 sin6 = (struct sockaddr_in6*)ai->ai_addr;
1107                 tt_int_op(sin6->sin6_port, ==, htons(80));
1108
1109                 cp = evutil_inet_ntop(AF_INET6, &sin6->sin6_addr, buf,
1110                     sizeof(buf));
1111                 TT_BLATHER(("ipv6.google.com resolved to %s",
1112                         cp?cp:"<unwriteable>"));
1113         }
1114
1115 end:
1116         if (ai)
1117                 evutil_freeaddrinfo(ai);
1118 }
1119
1120 #ifdef _WIN32
1121 static void
1122 test_evutil_loadsyslib(void *arg)
1123 {
1124         HMODULE h=NULL;
1125
1126         h = evutil_load_windows_system_library_(TEXT("kernel32.dll"));
1127         tt_assert(h);
1128
1129 end:
1130         if (h)
1131                 CloseHandle(h);
1132
1133 }
1134 #endif
1135
1136 /** Test mm_malloc(). */
1137 static void
1138 test_event_malloc(void *arg)
1139 {
1140         void *p = NULL;
1141         (void)arg;
1142
1143         /* mm_malloc(0) should simply return NULL. */
1144 #ifndef EVENT__DISABLE_MM_REPLACEMENT
1145         errno = 0;
1146         p = mm_malloc(0);
1147         tt_assert(p == NULL);
1148         tt_int_op(errno, ==, 0);
1149 #endif
1150
1151         /* Trivial case. */
1152         errno = 0;
1153         p = mm_malloc(8);
1154         tt_assert(p != NULL);
1155         tt_int_op(errno, ==, 0);
1156         mm_free(p);
1157
1158  end:
1159         errno = 0;
1160         return;
1161 }
1162
1163 static void
1164 test_event_calloc(void *arg)
1165 {
1166         void *p = NULL;
1167         (void)arg;
1168
1169 #ifndef EVENT__DISABLE_MM_REPLACEMENT
1170         /* mm_calloc() should simply return NULL
1171          * if either argument is zero. */
1172         errno = 0;
1173         p = mm_calloc(0, 0);
1174         tt_assert(p == NULL);
1175         tt_int_op(errno, ==, 0);
1176         errno = 0;
1177         p = mm_calloc(0, 1);
1178         tt_assert(p == NULL);
1179         tt_int_op(errno, ==, 0);
1180         errno = 0;
1181         p = mm_calloc(1, 0);
1182         tt_assert(p == NULL);
1183         tt_int_op(errno, ==, 0);
1184 #endif
1185
1186         /* Trivial case. */
1187         errno = 0;
1188         p = mm_calloc(8, 8);
1189         tt_assert(p != NULL);
1190         tt_int_op(errno, ==, 0);
1191         mm_free(p);
1192         p = NULL;
1193
1194         /* mm_calloc() should set errno = ENOMEM and return NULL
1195          * in case of potential overflow. */
1196         errno = 0;
1197         p = mm_calloc(EV_SIZE_MAX/2, EV_SIZE_MAX/2 + 8);
1198         tt_assert(p == NULL);
1199         tt_int_op(errno, ==, ENOMEM);
1200
1201  end:
1202         errno = 0;
1203         if (p)
1204                 mm_free(p);
1205
1206         return;
1207 }
1208
1209 static void
1210 test_event_strdup(void *arg)
1211 {
1212         void *p = NULL;
1213         (void)arg;
1214
1215 #ifndef EVENT__DISABLE_MM_REPLACEMENT
1216         /* mm_strdup(NULL) should set errno = EINVAL and return NULL. */
1217         errno = 0;
1218         p = mm_strdup(NULL);
1219         tt_assert(p == NULL);
1220         tt_int_op(errno, ==, EINVAL);
1221 #endif
1222
1223         /* Trivial cases. */
1224
1225         errno = 0;
1226         p = mm_strdup("");
1227         tt_assert(p != NULL);
1228         tt_int_op(errno, ==, 0);
1229         tt_str_op(p, ==, "");
1230         mm_free(p);
1231
1232         errno = 0;
1233         p = mm_strdup("foo");
1234         tt_assert(p != NULL);
1235         tt_int_op(errno, ==, 0);
1236         tt_str_op(p, ==, "foo");
1237         mm_free(p);
1238
1239         /* XXX
1240          * mm_strdup(str) where str is a string of length EV_SIZE_MAX
1241          * should set errno = ENOMEM and return NULL. */
1242
1243  end:
1244         errno = 0;
1245         return;
1246 }
1247
1248 static void
1249 test_evutil_usleep(void *arg)
1250 {
1251         struct timeval tv1, tv2, tv3, diff1, diff2;
1252         const struct timeval quarter_sec = {0, 250*1000};
1253         const struct timeval tenth_sec = {0, 100*1000};
1254         long usec1, usec2;
1255
1256         evutil_gettimeofday(&tv1, NULL);
1257         evutil_usleep_(&quarter_sec);
1258         evutil_gettimeofday(&tv2, NULL);
1259         evutil_usleep_(&tenth_sec);
1260         evutil_gettimeofday(&tv3, NULL);
1261
1262         evutil_timersub(&tv2, &tv1, &diff1);
1263         evutil_timersub(&tv3, &tv2, &diff2);
1264         usec1 = diff1.tv_sec * 1000000 + diff1.tv_usec;
1265         usec2 = diff2.tv_sec * 1000000 + diff2.tv_usec;
1266
1267         tt_int_op(usec1, >, 200000);
1268         tt_int_op(usec1, <, 300000);
1269         tt_int_op(usec2, >,  80000);
1270         tt_int_op(usec2, <, 120000);
1271
1272 end:
1273         ;
1274 }
1275
1276 static void
1277 test_evutil_monotonic_res(void *data_)
1278 {
1279         /* Basic santity-test for monotonic timers.  What we'd really like
1280          * to do is make sure that they can't go backwards even when the
1281          * system clock goes backwards. But we haven't got a good way to
1282          * move the system clock backwards.
1283          */
1284         struct basic_test_data *data = data_;
1285         struct evutil_monotonic_timer timer;
1286         const int precise = strstr(data->setup_data, "precise") != NULL;
1287         const int fallback = strstr(data->setup_data, "fallback") != NULL;
1288         struct timeval tv[10], delay;
1289         int total_diff = 0;
1290
1291         int flags = 0, wantres, acceptdiff, i;
1292         if (precise)
1293                 flags |= EV_MONOT_PRECISE;
1294         if (fallback)
1295                 flags |= EV_MONOT_FALLBACK;
1296         if (precise || fallback) {
1297 #ifdef _WIN32
1298                 wantres = 10*1000;
1299                 acceptdiff = 1000;
1300 #else
1301                 wantres = 1000;
1302                 acceptdiff = 300;
1303 #endif
1304         } else {
1305                 wantres = 40*1000;
1306                 acceptdiff = 20*1000;
1307         }
1308
1309         TT_BLATHER(("Precise = %d", precise));
1310         TT_BLATHER(("Fallback = %d", fallback));
1311
1312         /* First, make sure we match up with usleep. */
1313
1314         delay.tv_sec = 0;
1315         delay.tv_usec = wantres;
1316
1317         tt_int_op(evutil_configure_monotonic_time_(&timer, flags), ==, 0);
1318
1319         for (i = 0; i < 10; ++i) {
1320                 evutil_gettime_monotonic_(&timer, &tv[i]);
1321                 evutil_usleep_(&delay);
1322         }
1323
1324         for (i = 0; i < 9; ++i) {
1325                 struct timeval diff;
1326                 tt_assert(evutil_timercmp(&tv[i], &tv[i+1], <));
1327                 evutil_timersub(&tv[i+1], &tv[i], &diff);
1328                 tt_int_op(diff.tv_sec, ==, 0);
1329                 total_diff += diff.tv_usec;
1330                 TT_BLATHER(("Difference = %d", (int)diff.tv_usec));
1331         }
1332         tt_int_op(abs(total_diff/9 - wantres), <, acceptdiff);
1333
1334 end:
1335         ;
1336 }
1337
1338 static void
1339 test_evutil_monotonic_prc(void *data_)
1340 {
1341         struct basic_test_data *data = data_;
1342         struct evutil_monotonic_timer timer;
1343         const int precise = strstr(data->setup_data, "precise") != NULL;
1344         const int fallback = strstr(data->setup_data, "fallback") != NULL;
1345         struct timeval tv[10];
1346         int total_diff = 0;
1347         int i, maxstep = 25*1000,flags=0;
1348         if (precise)
1349                 maxstep = 500;
1350         if (precise)
1351                 flags |= EV_MONOT_PRECISE;
1352         if (fallback)
1353                 flags |= EV_MONOT_FALLBACK;
1354         tt_int_op(evutil_configure_monotonic_time_(&timer, flags), ==, 0);
1355
1356         /* find out what precision we actually see. */
1357
1358         evutil_gettime_monotonic_(&timer, &tv[0]);
1359         for (i = 1; i < 10; ++i) {
1360                 do {
1361                         evutil_gettime_monotonic_(&timer, &tv[i]);
1362                 } while (evutil_timercmp(&tv[i-1], &tv[i], ==));
1363         }
1364
1365         total_diff = 0;
1366         for (i = 0; i < 9; ++i) {
1367                 struct timeval diff;
1368                 tt_assert(evutil_timercmp(&tv[i], &tv[i+1], <));
1369                 evutil_timersub(&tv[i+1], &tv[i], &diff);
1370                 tt_int_op(diff.tv_sec, ==, 0);
1371                 total_diff += diff.tv_usec;
1372                 TT_BLATHER(("Step difference = %d", (int)diff.tv_usec));
1373         }
1374         TT_BLATHER(("Average step difference = %d", total_diff / 9));
1375         tt_int_op(total_diff/9, <, maxstep);
1376
1377 end:
1378         ;
1379 }
1380
1381 struct testcase_t util_testcases[] = {
1382         { "ipv4_parse", regress_ipv4_parse, 0, NULL, NULL },
1383         { "ipv6_parse", regress_ipv6_parse, 0, NULL, NULL },
1384         { "sockaddr_port_parse", regress_sockaddr_port_parse, 0, NULL, NULL },
1385         { "sockaddr_port_format", regress_sockaddr_port_format, 0, NULL, NULL },
1386         { "sockaddr_predicates", test_evutil_sockaddr_predicates, 0,NULL,NULL },
1387         { "evutil_snprintf", test_evutil_snprintf, 0, NULL, NULL },
1388         { "evutil_strtoll", test_evutil_strtoll, 0, NULL, NULL },
1389         { "evutil_casecmp", test_evutil_casecmp, 0, NULL, NULL },
1390         { "evutil_rtrim", test_evutil_rtrim, 0, NULL, NULL },
1391         { "strlcpy", test_evutil_strlcpy, 0, NULL, NULL },
1392         { "log", test_evutil_log, TT_FORK, NULL, NULL },
1393         { "upcast", test_evutil_upcast, 0, NULL, NULL },
1394         { "integers", test_evutil_integers, 0, NULL, NULL },
1395         { "rand", test_evutil_rand, TT_FORK, NULL, NULL },
1396         { "getaddrinfo", test_evutil_getaddrinfo, TT_FORK, NULL, NULL },
1397         { "getaddrinfo_live", test_evutil_getaddrinfo_live, TT_FORK|TT_OFF_BY_DEFAULT, NULL, NULL },
1398 #ifdef _WIN32
1399         { "loadsyslib", test_evutil_loadsyslib, TT_FORK, NULL, NULL },
1400 #endif
1401         { "mm_malloc", test_event_malloc, 0, NULL, NULL },
1402         { "mm_calloc", test_event_calloc, 0, NULL, NULL },
1403         { "mm_strdup", test_event_strdup, 0, NULL, NULL },
1404         { "usleep", test_evutil_usleep, 0, NULL, NULL },
1405         { "monotonic_res", test_evutil_monotonic_res, 0, &basic_setup, (void*)"" },
1406         { "monotonic_res_precise", test_evutil_monotonic_res, TT_OFF_BY_DEFAULT, &basic_setup, (void*)"precise" },
1407         { "monotonic_res_fallback", test_evutil_monotonic_res, TT_OFF_BY_DEFAULT, &basic_setup, (void*)"fallback" },
1408         { "monotonic_prc", test_evutil_monotonic_prc, 0, &basic_setup, (void*)"" },
1409         { "monotonic_prc_precise", test_evutil_monotonic_prc, 0, &basic_setup, (void*)"precise" },
1410         { "monotonic_prc_fallback", test_evutil_monotonic_prc, 0, &basic_setup, (void*)"fallback" },
1411         END_OF_TESTCASES,
1412 };
1413