]> CyberLeo.Net >> Repos - FreeBSD/releng/10.2.git/blob - lib/msun/src/e_jn.c
- Copy stable/10@285827 to releng/10.2 in preparation for 10.2-RC1
[FreeBSD/releng/10.2.git] / lib / msun / src / e_jn.c
1
2 /* @(#)e_jn.c 1.4 95/01/18 */
3 /*
4  * ====================================================
5  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6  *
7  * Developed at SunSoft, a Sun Microsystems, Inc. business.
8  * Permission to use, copy, modify, and distribute this
9  * software is freely granted, provided that this notice 
10  * is preserved.
11  * ====================================================
12  */
13
14 #include <sys/cdefs.h>
15 __FBSDID("$FreeBSD$");
16
17 /*
18  * __ieee754_jn(n, x), __ieee754_yn(n, x)
19  * floating point Bessel's function of the 1st and 2nd kind
20  * of order n
21  *          
22  * Special cases:
23  *      y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
24  *      y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
25  * Note 2. About jn(n,x), yn(n,x)
26  *      For n=0, j0(x) is called,
27  *      for n=1, j1(x) is called,
28  *      for n<x, forward recursion us used starting
29  *      from values of j0(x) and j1(x).
30  *      for n>x, a continued fraction approximation to
31  *      j(n,x)/j(n-1,x) is evaluated and then backward
32  *      recursion is used starting from a supposed value
33  *      for j(n,x). The resulting value of j(0,x) is
34  *      compared with the actual value to correct the
35  *      supposed value of j(n,x).
36  *
37  *      yn(n,x) is similar in all respects, except
38  *      that forward recursion is used for all
39  *      values of n>1.
40  *      
41  */
42
43 #include "math.h"
44 #include "math_private.h"
45
46 static const volatile double vone = 1, vzero = 0;
47
48 static const double
49 invsqrtpi=  5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
50 two   =  2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
51 one   =  1.00000000000000000000e+00; /* 0x3FF00000, 0x00000000 */
52
53 static const double zero  =  0.00000000000000000000e+00;
54
55 double
56 __ieee754_jn(int n, double x)
57 {
58         int32_t i,hx,ix,lx, sgn;
59         double a, b, temp, di;
60         double z, w;
61
62     /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
63      * Thus, J(-n,x) = J(n,-x)
64      */
65         EXTRACT_WORDS(hx,lx,x);
66         ix = 0x7fffffff&hx;
67     /* if J(n,NaN) is NaN */
68         if((ix|((u_int32_t)(lx|-lx))>>31)>0x7ff00000) return x+x;
69         if(n<0){                
70                 n = -n;
71                 x = -x;
72                 hx ^= 0x80000000;
73         }
74         if(n==0) return(__ieee754_j0(x));
75         if(n==1) return(__ieee754_j1(x));
76         sgn = (n&1)&(hx>>31);   /* even n -- 0, odd n -- sign(x) */
77         x = fabs(x);
78         if((ix|lx)==0||ix>=0x7ff00000)  /* if x is 0 or inf */
79             b = zero;
80         else if((double)n<=x) {   
81                 /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
82             if(ix>=0x52D00000) { /* x > 2**302 */
83     /* (x >> n**2) 
84      *      Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
85      *      Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
86      *      Let s=sin(x), c=cos(x), 
87      *          xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
88      *
89      *             n    sin(xn)*sqt2    cos(xn)*sqt2
90      *          ----------------------------------
91      *             0     s-c             c+s
92      *             1    -s-c            -c+s
93      *             2    -s+c            -c-s
94      *             3     s+c             c-s
95      */
96                 switch(n&3) {
97                     case 0: temp =  cos(x)+sin(x); break;
98                     case 1: temp = -cos(x)+sin(x); break;
99                     case 2: temp = -cos(x)-sin(x); break;
100                     case 3: temp =  cos(x)-sin(x); break;
101                 }
102                 b = invsqrtpi*temp/sqrt(x);
103             } else {    
104                 a = __ieee754_j0(x);
105                 b = __ieee754_j1(x);
106                 for(i=1;i<n;i++){
107                     temp = b;
108                     b = b*((double)(i+i)/x) - a; /* avoid underflow */
109                     a = temp;
110                 }
111             }
112         } else {
113             if(ix<0x3e100000) { /* x < 2**-29 */
114     /* x is tiny, return the first Taylor expansion of J(n,x) 
115      * J(n,x) = 1/n!*(x/2)^n  - ...
116      */
117                 if(n>33)        /* underflow */
118                     b = zero;
119                 else {
120                     temp = x*0.5; b = temp;
121                     for (a=one,i=2;i<=n;i++) {
122                         a *= (double)i;         /* a = n! */
123                         b *= temp;              /* b = (x/2)^n */
124                     }
125                     b = b/a;
126                 }
127             } else {
128                 /* use backward recurrence */
129                 /*                      x      x^2      x^2       
130                  *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
131                  *                      2n  - 2(n+1) - 2(n+2)
132                  *
133                  *                      1      1        1       
134                  *  (for large x)   =  ----  ------   ------   .....
135                  *                      2n   2(n+1)   2(n+2)
136                  *                      -- - ------ - ------ - 
137                  *                       x     x         x
138                  *
139                  * Let w = 2n/x and h=2/x, then the above quotient
140                  * is equal to the continued fraction:
141                  *                  1
142                  *      = -----------------------
143                  *                     1
144                  *         w - -----------------
145                  *                        1
146                  *              w+h - ---------
147                  *                     w+2h - ...
148                  *
149                  * To determine how many terms needed, let
150                  * Q(0) = w, Q(1) = w(w+h) - 1,
151                  * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
152                  * When Q(k) > 1e4      good for single 
153                  * When Q(k) > 1e9      good for double 
154                  * When Q(k) > 1e17     good for quadruple 
155                  */
156             /* determine k */
157                 double t,v;
158                 double q0,q1,h,tmp; int32_t k,m;
159                 w  = (n+n)/(double)x; h = 2.0/(double)x;
160                 q0 = w;  z = w+h; q1 = w*z - 1.0; k=1;
161                 while(q1<1.0e9) {
162                         k += 1; z += h;
163                         tmp = z*q1 - q0;
164                         q0 = q1;
165                         q1 = tmp;
166                 }
167                 m = n+n;
168                 for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
169                 a = t;
170                 b = one;
171                 /*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
172                  *  Hence, if n*(log(2n/x)) > ...
173                  *  single 8.8722839355e+01
174                  *  double 7.09782712893383973096e+02
175                  *  long double 1.1356523406294143949491931077970765006170e+04
176                  *  then recurrent value may overflow and the result is
177                  *  likely underflow to zero
178                  */
179                 tmp = n;
180                 v = two/x;
181                 tmp = tmp*__ieee754_log(fabs(v*tmp));
182                 if(tmp<7.09782712893383973096e+02) {
183                     for(i=n-1,di=(double)(i+i);i>0;i--){
184                         temp = b;
185                         b *= di;
186                         b  = b/x - a;
187                         a = temp;
188                         di -= two;
189                     }
190                 } else {
191                     for(i=n-1,di=(double)(i+i);i>0;i--){
192                         temp = b;
193                         b *= di;
194                         b  = b/x - a;
195                         a = temp;
196                         di -= two;
197                     /* scale b to avoid spurious overflow */
198                         if(b>1e100) {
199                             a /= b;
200                             t /= b;
201                             b  = one;
202                         }
203                     }
204                 }
205                 z = __ieee754_j0(x);
206                 w = __ieee754_j1(x);
207                 if (fabs(z) >= fabs(w))
208                     b = (t*z/b);
209                 else
210                     b = (t*w/a);
211             }
212         }
213         if(sgn==1) return -b; else return b;
214 }
215
216 double
217 __ieee754_yn(int n, double x)
218 {
219         int32_t i,hx,ix,lx;
220         int32_t sign;
221         double a, b, temp;
222
223         EXTRACT_WORDS(hx,lx,x);
224         ix = 0x7fffffff&hx;
225         /* yn(n,NaN) = NaN */
226         if((ix|((u_int32_t)(lx|-lx))>>31)>0x7ff00000) return x+x;
227         /* yn(n,+-0) = -inf and raise divide-by-zero exception. */
228         if((ix|lx)==0) return -one/vzero;
229         /* yn(n,x<0) = NaN and raise invalid exception. */
230         if(hx<0) return vzero/vzero;
231         sign = 1;
232         if(n<0){
233                 n = -n;
234                 sign = 1 - ((n&1)<<1);
235         }
236         if(n==0) return(__ieee754_y0(x));
237         if(n==1) return(sign*__ieee754_y1(x));
238         if(ix==0x7ff00000) return zero;
239         if(ix>=0x52D00000) { /* x > 2**302 */
240     /* (x >> n**2) 
241      *      Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
242      *      Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
243      *      Let s=sin(x), c=cos(x), 
244      *          xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
245      *
246      *             n    sin(xn)*sqt2    cos(xn)*sqt2
247      *          ----------------------------------
248      *             0     s-c             c+s
249      *             1    -s-c            -c+s
250      *             2    -s+c            -c-s
251      *             3     s+c             c-s
252      */
253                 switch(n&3) {
254                     case 0: temp =  sin(x)-cos(x); break;
255                     case 1: temp = -sin(x)-cos(x); break;
256                     case 2: temp = -sin(x)+cos(x); break;
257                     case 3: temp =  sin(x)+cos(x); break;
258                 }
259                 b = invsqrtpi*temp/sqrt(x);
260         } else {
261             u_int32_t high;
262             a = __ieee754_y0(x);
263             b = __ieee754_y1(x);
264         /* quit if b is -inf */
265             GET_HIGH_WORD(high,b);
266             for(i=1;i<n&&high!=0xfff00000;i++){
267                 temp = b;
268                 b = ((double)(i+i)/x)*b - a;
269                 GET_HIGH_WORD(high,b);
270                 a = temp;
271             }
272         }
273         if(sign>0) return b; else return -b;
274 }