]> CyberLeo.Net >> Repos - FreeBSD/releng/10.2.git/blob - lib/msun/src/e_jnf.c
- Copy stable/10@285827 to releng/10.2 in preparation for 10.2-RC1
[FreeBSD/releng/10.2.git] / lib / msun / src / e_jnf.c
1 /* e_jnf.c -- float version of e_jn.c.
2  * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
3  */
4
5 /*
6  * ====================================================
7  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
8  *
9  * Developed at SunPro, a Sun Microsystems, Inc. business.
10  * Permission to use, copy, modify, and distribute this
11  * software is freely granted, provided that this notice
12  * is preserved.
13  * ====================================================
14  */
15
16 #include <sys/cdefs.h>
17 __FBSDID("$FreeBSD$");
18
19 /*
20  * See e_jn.c for complete comments.
21  */
22
23 #include "math.h"
24 #include "math_private.h"
25
26 static const volatile float vone = 1, vzero = 0;
27
28 static const float
29 two   =  2.0000000000e+00, /* 0x40000000 */
30 one   =  1.0000000000e+00; /* 0x3F800000 */
31
32 static const float zero  =  0.0000000000e+00;
33
34 float
35 __ieee754_jnf(int n, float x)
36 {
37         int32_t i,hx,ix, sgn;
38         float a, b, temp, di;
39         float z, w;
40
41     /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
42      * Thus, J(-n,x) = J(n,-x)
43      */
44         GET_FLOAT_WORD(hx,x);
45         ix = 0x7fffffff&hx;
46     /* if J(n,NaN) is NaN */
47         if(ix>0x7f800000) return x+x;
48         if(n<0){
49                 n = -n;
50                 x = -x;
51                 hx ^= 0x80000000;
52         }
53         if(n==0) return(__ieee754_j0f(x));
54         if(n==1) return(__ieee754_j1f(x));
55         sgn = (n&1)&(hx>>31);   /* even n -- 0, odd n -- sign(x) */
56         x = fabsf(x);
57         if(ix==0||ix>=0x7f800000)       /* if x is 0 or inf */
58             b = zero;
59         else if((float)n<=x) {
60                 /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
61             a = __ieee754_j0f(x);
62             b = __ieee754_j1f(x);
63             for(i=1;i<n;i++){
64                 temp = b;
65                 b = b*((float)(i+i)/x) - a; /* avoid underflow */
66                 a = temp;
67             }
68         } else {
69             if(ix<0x30800000) { /* x < 2**-29 */
70     /* x is tiny, return the first Taylor expansion of J(n,x)
71      * J(n,x) = 1/n!*(x/2)^n  - ...
72      */
73                 if(n>33)        /* underflow */
74                     b = zero;
75                 else {
76                     temp = x*(float)0.5; b = temp;
77                     for (a=one,i=2;i<=n;i++) {
78                         a *= (float)i;          /* a = n! */
79                         b *= temp;              /* b = (x/2)^n */
80                     }
81                     b = b/a;
82                 }
83             } else {
84                 /* use backward recurrence */
85                 /*                      x      x^2      x^2
86                  *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
87                  *                      2n  - 2(n+1) - 2(n+2)
88                  *
89                  *                      1      1        1
90                  *  (for large x)   =  ----  ------   ------   .....
91                  *                      2n   2(n+1)   2(n+2)
92                  *                      -- - ------ - ------ -
93                  *                       x     x         x
94                  *
95                  * Let w = 2n/x and h=2/x, then the above quotient
96                  * is equal to the continued fraction:
97                  *                  1
98                  *      = -----------------------
99                  *                     1
100                  *         w - -----------------
101                  *                        1
102                  *              w+h - ---------
103                  *                     w+2h - ...
104                  *
105                  * To determine how many terms needed, let
106                  * Q(0) = w, Q(1) = w(w+h) - 1,
107                  * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
108                  * When Q(k) > 1e4      good for single
109                  * When Q(k) > 1e9      good for double
110                  * When Q(k) > 1e17     good for quadruple
111                  */
112             /* determine k */
113                 float t,v;
114                 float q0,q1,h,tmp; int32_t k,m;
115                 w  = (n+n)/(float)x; h = (float)2.0/(float)x;
116                 q0 = w;  z = w+h; q1 = w*z - (float)1.0; k=1;
117                 while(q1<(float)1.0e9) {
118                         k += 1; z += h;
119                         tmp = z*q1 - q0;
120                         q0 = q1;
121                         q1 = tmp;
122                 }
123                 m = n+n;
124                 for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
125                 a = t;
126                 b = one;
127                 /*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
128                  *  Hence, if n*(log(2n/x)) > ...
129                  *  single 8.8722839355e+01
130                  *  double 7.09782712893383973096e+02
131                  *  long double 1.1356523406294143949491931077970765006170e+04
132                  *  then recurrent value may overflow and the result is
133                  *  likely underflow to zero
134                  */
135                 tmp = n;
136                 v = two/x;
137                 tmp = tmp*__ieee754_logf(fabsf(v*tmp));
138                 if(tmp<(float)8.8721679688e+01) {
139                     for(i=n-1,di=(float)(i+i);i>0;i--){
140                         temp = b;
141                         b *= di;
142                         b  = b/x - a;
143                         a = temp;
144                         di -= two;
145                     }
146                 } else {
147                     for(i=n-1,di=(float)(i+i);i>0;i--){
148                         temp = b;
149                         b *= di;
150                         b  = b/x - a;
151                         a = temp;
152                         di -= two;
153                     /* scale b to avoid spurious overflow */
154                         if(b>(float)1e10) {
155                             a /= b;
156                             t /= b;
157                             b  = one;
158                         }
159                     }
160                 }
161                 z = __ieee754_j0f(x);
162                 w = __ieee754_j1f(x);
163                 if (fabsf(z) >= fabsf(w))
164                     b = (t*z/b);
165                 else
166                     b = (t*w/a);
167             }
168         }
169         if(sgn==1) return -b; else return b;
170 }
171
172 float
173 __ieee754_ynf(int n, float x)
174 {
175         int32_t i,hx,ix,ib;
176         int32_t sign;
177         float a, b, temp;
178
179         GET_FLOAT_WORD(hx,x);
180         ix = 0x7fffffff&hx;
181         if(ix>0x7f800000) return x+x;
182         if(ix==0) return -one/vzero;
183         if(hx<0) return vzero/vzero;
184         sign = 1;
185         if(n<0){
186                 n = -n;
187                 sign = 1 - ((n&1)<<1);
188         }
189         if(n==0) return(__ieee754_y0f(x));
190         if(n==1) return(sign*__ieee754_y1f(x));
191         if(ix==0x7f800000) return zero;
192
193         a = __ieee754_y0f(x);
194         b = __ieee754_y1f(x);
195         /* quit if b is -inf */
196         GET_FLOAT_WORD(ib,b);
197         for(i=1;i<n&&ib!=0xff800000;i++){
198             temp = b;
199             b = ((float)(i+i)/x)*b - a;
200             GET_FLOAT_WORD(ib,b);
201             a = temp;
202         }
203         if(sign>0) return b; else return -b;
204 }