]> CyberLeo.Net >> Repos - FreeBSD/releng/10.2.git/blob - sys/arm/ti/cpsw/if_cpsw.c
- Copy stable/10@285827 to releng/10.2 in preparation for 10.2-RC1
[FreeBSD/releng/10.2.git] / sys / arm / ti / cpsw / if_cpsw.c
1 /*-
2  * Copyright (c) 2012 Damjan Marion <dmarion@Freebsd.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26
27 /*
28  * TI Common Platform Ethernet Switch (CPSW) Driver
29  * Found in TI8148 "DaVinci" and AM335x "Sitara" SoCs.
30  *
31  * This controller is documented in the AM335x Technical Reference
32  * Manual, in the TMS320DM814x DaVinci Digital Video Processors TRM
33  * and in the TMS320C6452 3 Port Switch Ethernet Subsystem TRM.
34  *
35  * It is basically a single Ethernet port (port 0) wired internally to
36  * a 3-port store-and-forward switch connected to two independent
37  * "sliver" controllers (port 1 and port 2).  You can operate the
38  * controller in a variety of different ways by suitably configuring
39  * the slivers and the Address Lookup Engine (ALE) that routes packets
40  * between the ports.
41  *
42  * This code was developed and tested on a BeagleBone with
43  * an AM335x SoC.
44  */
45
46 #include <sys/cdefs.h>
47 __FBSDID("$FreeBSD$");
48
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/endian.h>
52 #include <sys/mbuf.h>
53 #include <sys/lock.h>
54 #include <sys/mutex.h>
55 #include <sys/kernel.h>
56 #include <sys/module.h>
57 #include <sys/socket.h>
58 #include <sys/sysctl.h>
59
60 #include <net/ethernet.h>
61 #include <net/bpf.h>
62 #include <net/if.h>
63 #include <net/if_arp.h>
64 #include <net/if_dl.h>
65 #include <net/if_media.h>
66 #include <net/if_types.h>
67 #include <net/if_var.h>
68 #include <net/if_vlan_var.h>
69
70 #include <netinet/in_systm.h>
71 #include <netinet/in.h>
72 #include <netinet/ip.h>
73
74 #include <sys/sockio.h>
75 #include <sys/bus.h>
76 #include <machine/bus.h>
77 #include <sys/rman.h>
78 #include <machine/resource.h>
79
80 #include <dev/mii/mii.h>
81 #include <dev/mii/miivar.h>
82
83 #include <dev/fdt/fdt_common.h>
84 #include <dev/ofw/ofw_bus.h>
85 #include <dev/ofw/ofw_bus_subr.h>
86
87 #include "if_cpswreg.h"
88 #include "if_cpswvar.h"
89  
90 #include <arm/ti/ti_scm.h>
91
92 #include "miibus_if.h"
93
94 /* Device probe/attach/detach. */
95 static int cpsw_probe(device_t);
96 static void cpsw_init_slots(struct cpsw_softc *);
97 static int cpsw_attach(device_t);
98 static void cpsw_free_slot(struct cpsw_softc *, struct cpsw_slot *);
99 static int cpsw_detach(device_t);
100
101 /* Device Init/shutdown. */
102 static void cpsw_init(void *);
103 static void cpsw_init_locked(void *);
104 static int cpsw_shutdown(device_t);
105 static void cpsw_shutdown_locked(struct cpsw_softc *);
106
107 /* Device Suspend/Resume. */
108 static int cpsw_suspend(device_t);
109 static int cpsw_resume(device_t);
110
111 /* Ioctl. */
112 static int cpsw_ioctl(struct ifnet *, u_long command, caddr_t data);
113
114 static int cpsw_miibus_readreg(device_t, int phy, int reg);
115 static int cpsw_miibus_writereg(device_t, int phy, int reg, int value);
116
117 /* Send/Receive packets. */
118 static void cpsw_intr_rx(void *arg);
119 static struct mbuf *cpsw_rx_dequeue(struct cpsw_softc *);
120 static void cpsw_rx_enqueue(struct cpsw_softc *);
121 static void cpsw_start(struct ifnet *);
122 static void cpsw_tx_enqueue(struct cpsw_softc *);
123 static int cpsw_tx_dequeue(struct cpsw_softc *);
124
125 /* Misc interrupts and watchdog. */
126 static void cpsw_intr_rx_thresh(void *);
127 static void cpsw_intr_misc(void *);
128 static void cpsw_tick(void *);
129 static void cpsw_ifmedia_sts(struct ifnet *, struct ifmediareq *);
130 static int cpsw_ifmedia_upd(struct ifnet *);
131 static void cpsw_tx_watchdog(struct cpsw_softc *);
132
133 /* ALE support */
134 static void cpsw_ale_read_entry(struct cpsw_softc *, uint16_t idx, uint32_t *ale_entry);
135 static void cpsw_ale_write_entry(struct cpsw_softc *, uint16_t idx, uint32_t *ale_entry);
136 static int cpsw_ale_mc_entry_set(struct cpsw_softc *, uint8_t portmap, uint8_t *mac);
137 static int cpsw_ale_update_addresses(struct cpsw_softc *, int purge);
138 static void cpsw_ale_dump_table(struct cpsw_softc *);
139
140 /* Statistics and sysctls. */
141 static void cpsw_add_sysctls(struct cpsw_softc *);
142 static void cpsw_stats_collect(struct cpsw_softc *);
143 static int cpsw_stats_sysctl(SYSCTL_HANDLER_ARGS);
144
145 /*
146  * Arbitrary limit on number of segments in an mbuf to be transmitted.
147  * Packets with more segments than this will be defragmented before
148  * they are queued.
149  */
150 #define CPSW_TXFRAGS 8
151
152
153 /*
154  * TODO: The CPSW subsystem (CPSW_SS) can drive two independent PHYs
155  * as separate Ethernet ports.  To properly support this, we should
156  * break this into two separate devices: a CPSW_SS device that owns
157  * the interrupts and actually talks to the CPSW hardware, and a
158  * separate CPSW Ethernet child device for each Ethernet port.  The RX
159  * interrupt, for example, would be part of CPSW_SS; it would receive
160  * a packet, note the input port, and then dispatch it to the child
161  * device's interface queue.  Similarly for transmit.
162  *
163  * It's not clear to me whether the device tree should be restructured
164  * with a cpsw_ss node and two child nodes.  That would allow specifying
165  * MAC addresses for each port, for example, but might be overkill.
166  *
167  * Unfortunately, I don't have hardware right now that supports two
168  * Ethernet ports via CPSW.
169  */
170
171 static device_method_t cpsw_methods[] = {
172         /* Device interface */
173         DEVMETHOD(device_probe,         cpsw_probe),
174         DEVMETHOD(device_attach,        cpsw_attach),
175         DEVMETHOD(device_detach,        cpsw_detach),
176         DEVMETHOD(device_shutdown,      cpsw_shutdown),
177         DEVMETHOD(device_suspend,       cpsw_suspend),
178         DEVMETHOD(device_resume,        cpsw_resume),
179         /* MII interface */
180         DEVMETHOD(miibus_readreg,       cpsw_miibus_readreg),
181         DEVMETHOD(miibus_writereg,      cpsw_miibus_writereg),
182         { 0, 0 }
183 };
184
185 static driver_t cpsw_driver = {
186         "cpsw",
187         cpsw_methods,
188         sizeof(struct cpsw_softc),
189 };
190
191 static devclass_t cpsw_devclass;
192
193 DRIVER_MODULE(cpsw, simplebus, cpsw_driver, cpsw_devclass, 0, 0);
194 DRIVER_MODULE(miibus, cpsw, miibus_driver, miibus_devclass, 0, 0);
195 MODULE_DEPEND(cpsw, ether, 1, 1, 1);
196 MODULE_DEPEND(cpsw, miibus, 1, 1, 1);
197
198 static struct resource_spec res_spec[] = {
199         { SYS_RES_MEMORY, 0, RF_ACTIVE },
200         { SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE },
201         { SYS_RES_IRQ, 1, RF_ACTIVE | RF_SHAREABLE },
202         { SYS_RES_IRQ, 2, RF_ACTIVE | RF_SHAREABLE },
203         { SYS_RES_IRQ, 3, RF_ACTIVE | RF_SHAREABLE },
204         { -1, 0 }
205 };
206
207 /* Number of entries here must match size of stats
208  * array in struct cpsw_softc. */
209 static struct cpsw_stat {
210         int     reg;
211         char *oid;
212 } cpsw_stat_sysctls[CPSW_SYSCTL_COUNT] = {
213         {0x00, "GoodRxFrames"},
214         {0x04, "BroadcastRxFrames"},
215         {0x08, "MulticastRxFrames"},
216         {0x0C, "PauseRxFrames"},
217         {0x10, "RxCrcErrors"},
218         {0x14, "RxAlignErrors"},
219         {0x18, "OversizeRxFrames"},
220         {0x1c, "RxJabbers"},
221         {0x20, "ShortRxFrames"},
222         {0x24, "RxFragments"},
223         {0x30, "RxOctets"},
224         {0x34, "GoodTxFrames"},
225         {0x38, "BroadcastTxFrames"},
226         {0x3c, "MulticastTxFrames"},
227         {0x40, "PauseTxFrames"},
228         {0x44, "DeferredTxFrames"},
229         {0x48, "CollisionsTxFrames"},
230         {0x4c, "SingleCollisionTxFrames"},
231         {0x50, "MultipleCollisionTxFrames"},
232         {0x54, "ExcessiveCollisions"},
233         {0x58, "LateCollisions"},
234         {0x5c, "TxUnderrun"},
235         {0x60, "CarrierSenseErrors"},
236         {0x64, "TxOctets"},
237         {0x68, "RxTx64OctetFrames"},
238         {0x6c, "RxTx65to127OctetFrames"},
239         {0x70, "RxTx128to255OctetFrames"},
240         {0x74, "RxTx256to511OctetFrames"},
241         {0x78, "RxTx512to1024OctetFrames"},
242         {0x7c, "RxTx1024upOctetFrames"},
243         {0x80, "NetOctets"},
244         {0x84, "RxStartOfFrameOverruns"},
245         {0x88, "RxMiddleOfFrameOverruns"},
246         {0x8c, "RxDmaOverruns"}
247 };
248
249 /*
250  * Basic debug support.
251  */
252
253 #define IF_DEBUG(sc)  if (sc->cpsw_if_flags & IFF_DEBUG)
254
255 static void
256 cpsw_debugf_head(const char *funcname)
257 {
258         int t = (int)(time_second % (24 * 60 * 60));
259
260         printf("%02d:%02d:%02d %s ", t / (60 * 60), (t / 60) % 60, t % 60, funcname);
261 }
262
263 #include <machine/stdarg.h>
264 static void
265 cpsw_debugf(const char *fmt, ...)
266 {
267         va_list ap;
268
269         va_start(ap, fmt);
270         vprintf(fmt, ap);
271         va_end(ap);
272         printf("\n");
273
274 }
275
276 #define CPSW_DEBUGF(a) do {                                     \
277         IF_DEBUG(sc) {                                          \
278                 cpsw_debugf_head(__func__);                     \
279                 cpsw_debugf a;                                  \
280         }                                                       \
281 } while (0)
282
283
284 /*
285  * Locking macros
286  */
287 #define CPSW_TX_LOCK(sc) do {                                   \
288                 mtx_assert(&(sc)->rx.lock, MA_NOTOWNED);                \
289                 mtx_lock(&(sc)->tx.lock);                               \
290 } while (0)
291
292 #define CPSW_TX_UNLOCK(sc)      mtx_unlock(&(sc)->tx.lock)
293 #define CPSW_TX_LOCK_ASSERT(sc) mtx_assert(&(sc)->tx.lock, MA_OWNED)
294
295 #define CPSW_RX_LOCK(sc) do {                                   \
296                 mtx_assert(&(sc)->tx.lock, MA_NOTOWNED);                \
297                 mtx_lock(&(sc)->rx.lock);                               \
298 } while (0)
299
300 #define CPSW_RX_UNLOCK(sc)              mtx_unlock(&(sc)->rx.lock)
301 #define CPSW_RX_LOCK_ASSERT(sc) mtx_assert(&(sc)->rx.lock, MA_OWNED)
302
303 #define CPSW_GLOBAL_LOCK(sc) do {                                       \
304                 if ((mtx_owned(&(sc)->tx.lock) ? 1 : 0) !=      \
305                     (mtx_owned(&(sc)->rx.lock) ? 1 : 0)) {              \
306                         panic("cpsw deadlock possibility detection!");  \
307                 }                                                       \
308                 mtx_lock(&(sc)->tx.lock);                               \
309                 mtx_lock(&(sc)->rx.lock);                               \
310 } while (0)
311
312 #define CPSW_GLOBAL_UNLOCK(sc) do {                                     \
313                 CPSW_RX_UNLOCK(sc);                             \
314                 CPSW_TX_UNLOCK(sc);                             \
315 } while (0)
316
317 #define CPSW_GLOBAL_LOCK_ASSERT(sc) do {                                \
318                 CPSW_TX_LOCK_ASSERT(sc);                                \
319                 CPSW_RX_LOCK_ASSERT(sc);                                \
320 } while (0)
321
322 /*
323  * Read/Write macros
324  */
325 #define cpsw_read_4(sc, reg)            bus_read_4(sc->res[0], reg)
326 #define cpsw_write_4(sc, reg, val)      bus_write_4(sc->res[0], reg, val)
327
328 #define cpsw_cpdma_bd_offset(i) (CPSW_CPPI_RAM_OFFSET + ((i)*16))
329
330 #define cpsw_cpdma_bd_paddr(sc, slot)                           \
331         BUS_SPACE_PHYSADDR(sc->res[0], slot->bd_offset)
332 #define cpsw_cpdma_read_bd(sc, slot, val)                               \
333         bus_read_region_4(sc->res[0], slot->bd_offset, (uint32_t *) val, 4)
334 #define cpsw_cpdma_write_bd(sc, slot, val)                              \
335         bus_write_region_4(sc->res[0], slot->bd_offset, (uint32_t *) val, 4)
336 #define cpsw_cpdma_write_bd_next(sc, slot, next_slot)                   \
337         cpsw_write_4(sc, slot->bd_offset, cpsw_cpdma_bd_paddr(sc, next_slot))
338 #define cpsw_cpdma_read_bd_flags(sc, slot)              \
339         bus_read_2(sc->res[0], slot->bd_offset + 14)
340 #define cpsw_write_hdp_slot(sc, queue, slot)                            \
341         cpsw_write_4(sc, (queue)->hdp_offset, cpsw_cpdma_bd_paddr(sc, slot))
342 #define CP_OFFSET (CPSW_CPDMA_TX_CP(0) - CPSW_CPDMA_TX_HDP(0))
343 #define cpsw_read_cp(sc, queue)                         \
344         cpsw_read_4(sc, (queue)->hdp_offset + CP_OFFSET) 
345 #define cpsw_write_cp(sc, queue, val)                           \
346         cpsw_write_4(sc, (queue)->hdp_offset + CP_OFFSET, (val))
347 #define cpsw_write_cp_slot(sc, queue, slot)             \
348         cpsw_write_cp(sc, queue, cpsw_cpdma_bd_paddr(sc, slot))
349
350 #if 0
351 /* XXX temporary function versions for debugging. */
352 static void
353 cpsw_write_hdp_slotX(struct cpsw_softc *sc, struct cpsw_queue *queue, struct cpsw_slot *slot)
354 {
355         uint32_t reg = queue->hdp_offset;
356         uint32_t v = cpsw_cpdma_bd_paddr(sc, slot);
357         CPSW_DEBUGF(("HDP <=== 0x%08x (was 0x%08x)", v, cpsw_read_4(sc, reg)));
358         cpsw_write_4(sc, reg, v);
359 }
360
361 static void
362 cpsw_write_cp_slotX(struct cpsw_softc *sc, struct cpsw_queue *queue, struct cpsw_slot *slot)
363 {
364         uint32_t v = cpsw_cpdma_bd_paddr(sc, slot);
365         CPSW_DEBUGF(("CP <=== 0x%08x (expecting 0x%08x)", v, cpsw_read_cp(sc, queue)));
366         cpsw_write_cp(sc, queue, v);
367 }
368 #endif
369
370 /*
371  * Expanded dump routines for verbose debugging.
372  */
373 static void
374 cpsw_dump_slot(struct cpsw_softc *sc, struct cpsw_slot *slot)
375 {
376         static const char *flags[] = {"SOP", "EOP", "Owner", "EOQ",
377             "TDownCmplt", "PassCRC", "Long", "Short", "MacCtl", "Overrun",
378             "PktErr1", "PortEn/PktErr0", "RxVlanEncap", "Port2", "Port1",
379             "Port0"};
380         struct cpsw_cpdma_bd bd;
381         const char *sep;
382         int i;
383
384         cpsw_cpdma_read_bd(sc, slot, &bd);
385         printf("BD Addr: 0x%08x   Next: 0x%08x\n", cpsw_cpdma_bd_paddr(sc, slot), bd.next);
386         printf("  BufPtr: 0x%08x   BufLen: 0x%08x\n", bd.bufptr, bd.buflen);
387         printf("  BufOff: 0x%08x   PktLen: 0x%08x\n", bd.bufoff, bd.pktlen);
388         printf("  Flags: ");
389         sep = "";
390         for (i = 0; i < 16; ++i) {
391                 if (bd.flags & (1 << (15 - i))) {
392                         printf("%s%s", sep, flags[i]);
393                         sep = ",";
394                 }
395         }
396         printf("\n");
397         if (slot->mbuf) {
398                 printf("  Ether:  %14D\n",
399                     (char *)(slot->mbuf->m_hdr.mh_data), " ");
400                 printf("  Packet: %16D\n",
401                     (char *)(slot->mbuf->m_hdr.mh_data) + 14, " ");
402         }
403 }
404
405 #define CPSW_DUMP_SLOT(cs, slot) do {                           \
406         IF_DEBUG(sc) {                                          \
407                 cpsw_dump_slot(sc, slot);                       \
408         }                                                       \
409 } while (0)
410
411
412 static void
413 cpsw_dump_queue(struct cpsw_softc *sc, struct cpsw_slots *q)
414 {
415         struct cpsw_slot *slot;
416         int i = 0;
417         int others = 0;
418
419         STAILQ_FOREACH(slot, q, next) {
420                 if (i > 4)
421                         ++others;
422                 else
423                         cpsw_dump_slot(sc, slot);
424                 ++i;
425         }
426         if (others)
427                 printf(" ... and %d more.\n", others);
428         printf("\n");
429 }
430
431 #define CPSW_DUMP_QUEUE(sc, q) do {                             \
432         IF_DEBUG(sc) {                                          \
433                 cpsw_dump_queue(sc, q);                         \
434         }                                                       \
435 } while (0)
436
437
438 /*
439  *
440  * Device Probe, Attach, Detach.
441  *
442  */
443
444 static int
445 cpsw_probe(device_t dev)
446 {
447
448         if (!ofw_bus_status_okay(dev))
449                 return (ENXIO);
450
451         if (!ofw_bus_is_compatible(dev, "ti,cpsw"))
452                 return (ENXIO);
453
454         device_set_desc(dev, "3-port Switch Ethernet Subsystem");
455         return (BUS_PROBE_DEFAULT);
456 }
457
458
459 static void
460 cpsw_init_slots(struct cpsw_softc *sc)
461 {
462         struct cpsw_slot *slot;
463         int i;
464
465         STAILQ_INIT(&sc->avail);
466
467         /* Put the slot descriptors onto the global avail list. */
468         for (i = 0; i < sizeof(sc->_slots) / sizeof(sc->_slots[0]); i++) {
469                 slot = &sc->_slots[i];
470                 slot->bd_offset = cpsw_cpdma_bd_offset(i);
471                 STAILQ_INSERT_TAIL(&sc->avail, slot, next);
472         }
473 }
474
475 /*
476  * bind an interrupt, add the relevant info to sc->interrupts
477  */
478 static int
479 cpsw_attach_interrupt(struct cpsw_softc *sc, struct resource *res, driver_intr_t *handler, const char *description)
480 {
481         void **pcookie;
482         int error;
483
484         sc->interrupts[sc->interrupt_count].res = res;
485         sc->interrupts[sc->interrupt_count].description = description;
486         pcookie = &sc->interrupts[sc->interrupt_count].ih_cookie;
487
488         error = bus_setup_intr(sc->dev, res, INTR_TYPE_NET | INTR_MPSAFE,
489             NULL, *handler, sc, pcookie);
490         if (error)
491                 device_printf(sc->dev,
492                     "could not setup %s\n", description);
493         else
494                 ++sc->interrupt_count;
495         return (error);
496 }
497
498 /*
499  * teardown everything in sc->interrupts.
500  */
501 static void
502 cpsw_detach_interrupts(struct cpsw_softc *sc)
503 {
504         int error;
505         int i;
506
507         for (i = 0; i < sizeof(sc->interrupts) / sizeof(sc->interrupts[0]); ++i) {
508                 if (!sc->interrupts[i].ih_cookie)
509                         continue;
510                 error = bus_teardown_intr(sc->dev,
511                     sc->interrupts[i].res, sc->interrupts[i].ih_cookie);
512                 if (error)
513                         device_printf(sc->dev, "could not release %s\n",
514                             sc->interrupts[i].description);
515                 sc->interrupts[i].ih_cookie = NULL;
516         }
517 }
518
519 static int
520 cpsw_add_slots(struct cpsw_softc *sc, struct cpsw_queue *queue, int requested)
521 {
522         const int max_slots = sizeof(sc->_slots) / sizeof(sc->_slots[0]);
523         struct cpsw_slot *slot;
524         int i;
525
526         if (requested < 0)
527                 requested = max_slots;
528
529         for (i = 0; i < requested; ++i) {
530                 slot = STAILQ_FIRST(&sc->avail);
531                 if (slot == NULL)
532                         return (0);
533                 if (bus_dmamap_create(sc->mbuf_dtag, 0, &slot->dmamap)) {
534                         if_printf(sc->ifp, "failed to create dmamap\n");
535                         return (ENOMEM);
536                 }
537                 STAILQ_REMOVE_HEAD(&sc->avail, next);
538                 STAILQ_INSERT_TAIL(&queue->avail, slot, next);
539                 ++queue->avail_queue_len;
540                 ++queue->queue_slots;
541         }
542         return (0);
543 }
544
545 static int
546 cpsw_attach(device_t dev)
547 {
548         bus_dma_segment_t segs[1];
549         struct cpsw_softc *sc = device_get_softc(dev);
550         struct mii_softc *miisc;
551         struct ifnet *ifp;
552         void *phy_sc;
553         int error, phy, nsegs;
554         uint32_t reg;
555
556         CPSW_DEBUGF((""));
557
558         getbinuptime(&sc->attach_uptime);
559         sc->dev = dev;
560         sc->node = ofw_bus_get_node(dev);
561
562         /* Get phy address from fdt */
563         if (fdt_get_phyaddr(sc->node, sc->dev, &phy, &phy_sc) != 0) {
564                 device_printf(dev, "failed to get PHY address from FDT\n");
565                 return (ENXIO);
566         }
567         /* Initialize mutexes */
568         mtx_init(&sc->tx.lock, device_get_nameunit(dev),
569             "cpsw TX lock", MTX_DEF);
570         mtx_init(&sc->rx.lock, device_get_nameunit(dev),
571             "cpsw RX lock", MTX_DEF);
572
573         /* Allocate IO and IRQ resources */
574         error = bus_alloc_resources(dev, res_spec, sc->res);
575         if (error) {
576                 device_printf(dev, "could not allocate resources\n");
577                 cpsw_detach(dev);
578                 return (ENXIO);
579         }
580
581         reg = cpsw_read_4(sc, CPSW_SS_IDVER);
582         device_printf(dev, "CPSW SS Version %d.%d (%d)\n", (reg >> 8 & 0x7),
583                 reg & 0xFF, (reg >> 11) & 0x1F);
584
585         cpsw_add_sysctls(sc);
586
587         /* Allocate a busdma tag and DMA safe memory for mbufs. */
588         error = bus_dma_tag_create(
589                 bus_get_dma_tag(sc->dev),       /* parent */
590                 1, 0,                           /* alignment, boundary */
591                 BUS_SPACE_MAXADDR_32BIT,        /* lowaddr */
592                 BUS_SPACE_MAXADDR,              /* highaddr */
593                 NULL, NULL,                     /* filtfunc, filtfuncarg */
594                 MCLBYTES, CPSW_TXFRAGS,         /* maxsize, nsegments */
595                 MCLBYTES, 0,                    /* maxsegsz, flags */
596                 NULL, NULL,                     /* lockfunc, lockfuncarg */
597                 &sc->mbuf_dtag);                /* dmatag */
598         if (error) {
599                 device_printf(dev, "bus_dma_tag_create failed\n");
600                 cpsw_detach(dev);
601                 return (error);
602         }
603
604         /* Allocate network interface */
605         ifp = sc->ifp = if_alloc(IFT_ETHER);
606         if (ifp == NULL) {
607                 device_printf(dev, "if_alloc() failed\n");
608                 cpsw_detach(dev);
609                 return (ENOMEM);
610         }
611
612         /* Allocate the null mbuf and pre-sync it. */
613         sc->null_mbuf = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
614         memset(sc->null_mbuf->m_hdr.mh_data, 0, sc->null_mbuf->m_ext.ext_size);
615         bus_dmamap_create(sc->mbuf_dtag, 0, &sc->null_mbuf_dmamap);
616         bus_dmamap_load_mbuf_sg(sc->mbuf_dtag, sc->null_mbuf_dmamap,
617             sc->null_mbuf, segs, &nsegs, BUS_DMA_NOWAIT);
618         bus_dmamap_sync(sc->mbuf_dtag, sc->null_mbuf_dmamap,
619             BUS_DMASYNC_PREWRITE);
620         sc->null_mbuf_paddr = segs[0].ds_addr;
621
622         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
623         ifp->if_softc = sc;
624         ifp->if_flags = IFF_SIMPLEX | IFF_MULTICAST | IFF_BROADCAST;
625         ifp->if_capabilities = IFCAP_VLAN_MTU | IFCAP_HWCSUM; //FIXME VLAN?
626         ifp->if_capenable = ifp->if_capabilities;
627
628         ifp->if_init = cpsw_init;
629         ifp->if_start = cpsw_start;
630         ifp->if_ioctl = cpsw_ioctl;
631
632         cpsw_init_slots(sc);
633
634         /* Allocate slots to TX and RX queues. */
635         STAILQ_INIT(&sc->rx.avail);
636         STAILQ_INIT(&sc->rx.active);
637         STAILQ_INIT(&sc->tx.avail);
638         STAILQ_INIT(&sc->tx.active);
639         // For now:  128 slots to TX, rest to RX.
640         // XXX TODO: start with 32/64 and grow dynamically based on demand.
641         if (cpsw_add_slots(sc, &sc->tx, 128) || cpsw_add_slots(sc, &sc->rx, -1)) {
642                 device_printf(dev, "failed to allocate dmamaps\n");
643                 cpsw_detach(dev);
644                 return (ENOMEM);
645         }
646         device_printf(dev, "Initial queue size TX=%d RX=%d\n",
647             sc->tx.queue_slots, sc->rx.queue_slots);
648
649         ifp->if_snd.ifq_drv_maxlen = sc->tx.queue_slots;
650         IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
651         IFQ_SET_READY(&ifp->if_snd);
652
653         sc->tx.hdp_offset = CPSW_CPDMA_TX_HDP(0);
654         sc->rx.hdp_offset = CPSW_CPDMA_RX_HDP(0);
655
656         /* Get high part of MAC address from control module (mac_id0_hi) */
657         /* TODO: Get MAC ID1 as well as MAC ID0. */
658         ti_scm_reg_read_4(0x634, &reg);
659         sc->mac_addr[0] = reg & 0xFF;
660         sc->mac_addr[1] = (reg >>  8) & 0xFF;
661         sc->mac_addr[2] = (reg >> 16) & 0xFF;
662         sc->mac_addr[3] = (reg >> 24) & 0xFF;
663
664         /* Get low part of MAC address from control module (mac_id0_lo) */
665         ti_scm_reg_read_4(0x630, &reg);
666         sc->mac_addr[4] = reg & 0xFF;
667         sc->mac_addr[5] = (reg >>  8) & 0xFF;
668
669         /* Initialze MDIO - ENABLE, PREAMBLE=0, FAULTENB, CLKDIV=0xFF */
670         /* TODO Calculate MDCLK=CLK/(CLKDIV+1) */
671         cpsw_write_4(sc, MDIOCONTROL, 1 << 30 | 1 << 18 | 0xFF);
672
673         /* Clear ALE */
674         cpsw_write_4(sc, CPSW_ALE_CONTROL, 1 << 30);
675
676         /* Attach PHY(s) */
677         error = mii_attach(dev, &sc->miibus, ifp, cpsw_ifmedia_upd,
678             cpsw_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, 0);
679         if (error) {
680                 device_printf(dev, "attaching PHYs failed\n");
681                 cpsw_detach(dev);
682                 return (error);
683         }
684         sc->mii = device_get_softc(sc->miibus);
685
686         /* Tell the MAC where to find the PHY so autoneg works */
687         miisc = LIST_FIRST(&sc->mii->mii_phys);
688
689         /* Select PHY and enable interrupts */
690         cpsw_write_4(sc, MDIOUSERPHYSEL0, 1 << 6 | (miisc->mii_phy & 0x1F));
691         
692         /* Note: We don't use sc->res[3] (TX interrupt) */
693         if (cpsw_attach_interrupt(sc, sc->res[1],
694                 cpsw_intr_rx_thresh, "CPSW RX threshold interrupt") ||
695             cpsw_attach_interrupt(sc, sc->res[2],
696                 cpsw_intr_rx, "CPSW RX interrupt") ||
697             cpsw_attach_interrupt(sc, sc->res[4],
698                 cpsw_intr_misc, "CPSW misc interrupt")) {
699                 cpsw_detach(dev);
700                 return (ENXIO);
701         }
702
703         ether_ifattach(ifp, sc->mac_addr);
704         callout_init(&sc->watchdog.callout, 0);
705
706         return (0);
707 }
708
709 static void
710 cpsw_free_slot(struct cpsw_softc *sc, struct cpsw_slot *slot)
711 {
712         int error;
713
714         if (slot->dmamap) {
715                 error = bus_dmamap_destroy(sc->mbuf_dtag, slot->dmamap);
716                 KASSERT(error == 0, ("Mapping still active"));
717                 slot->dmamap = NULL;
718         }
719         if (slot->mbuf) {
720                 m_freem(slot->mbuf);
721                 slot->mbuf = NULL;
722         }
723 }
724
725 static int
726 cpsw_detach(device_t dev)
727 {
728         struct cpsw_softc *sc = device_get_softc(dev);
729         int error, i;
730
731         CPSW_DEBUGF((""));
732
733         /* Stop controller and free TX queue */
734         if (device_is_attached(dev)) {
735                 ether_ifdetach(sc->ifp);
736                 CPSW_GLOBAL_LOCK(sc);
737                 cpsw_shutdown_locked(sc);
738                 CPSW_GLOBAL_UNLOCK(sc);
739                 callout_drain(&sc->watchdog.callout);
740         }
741
742         bus_generic_detach(dev);
743         if (sc->miibus)
744                 device_delete_child(dev, sc->miibus);
745
746         /* Stop and release all interrupts */
747         cpsw_detach_interrupts(sc);
748
749         /* Free dmamaps and mbufs */
750         for (i = 0; i < sizeof(sc->_slots) / sizeof(sc->_slots[0]); ++i)
751                 cpsw_free_slot(sc, &sc->_slots[i]);
752         if (sc->null_mbuf_dmamap) {
753                 error = bus_dmamap_destroy(sc->mbuf_dtag, sc->null_mbuf_dmamap);
754                 KASSERT(error == 0, ("Mapping still active"));
755         }
756         if (sc->null_mbuf)
757                 m_freem(sc->null_mbuf);
758
759         /* Free DMA tag */
760         error = bus_dma_tag_destroy(sc->mbuf_dtag);
761         KASSERT(error == 0, ("Unable to destroy DMA tag"));
762
763         /* Free IO memory handler */
764         bus_release_resources(dev, res_spec, sc->res);
765
766         if (sc->ifp != NULL)
767                 if_free(sc->ifp);
768
769         /* Destroy mutexes */
770         mtx_destroy(&sc->rx.lock);
771         mtx_destroy(&sc->tx.lock);
772
773         return (0);
774 }
775
776 /*
777  *
778  * Init/Shutdown.
779  *
780  */
781
782 static void
783 cpsw_reset(struct cpsw_softc *sc)
784 {
785         int i;
786
787         /* Reset RMII/RGMII wrapper. */
788         cpsw_write_4(sc, CPSW_WR_SOFT_RESET, 1);
789         while (cpsw_read_4(sc, CPSW_WR_SOFT_RESET) & 1)
790                 ;
791
792         /* Disable TX and RX interrupts for all cores. */
793         for (i = 0; i < 3; ++i) {
794                 cpsw_write_4(sc, CPSW_WR_C_RX_THRESH_EN(i), 0x00);
795                 cpsw_write_4(sc, CPSW_WR_C_TX_EN(i), 0x00);
796                 cpsw_write_4(sc, CPSW_WR_C_RX_EN(i), 0x00);
797                 cpsw_write_4(sc, CPSW_WR_C_MISC_EN(i), 0x00);
798         }
799
800         /* Reset CPSW subsystem. */
801         cpsw_write_4(sc, CPSW_SS_SOFT_RESET, 1);
802         while (cpsw_read_4(sc, CPSW_SS_SOFT_RESET) & 1)
803                 ;
804
805         /* Reset Sliver port 1 and 2 */
806         for (i = 0; i < 2; i++) {
807                 /* Reset */
808                 cpsw_write_4(sc, CPSW_SL_SOFT_RESET(i), 1);
809                 while (cpsw_read_4(sc, CPSW_SL_SOFT_RESET(i)) & 1)
810                         ;
811         }
812
813         /* Reset DMA controller. */
814         cpsw_write_4(sc, CPSW_CPDMA_SOFT_RESET, 1);
815         while (cpsw_read_4(sc, CPSW_CPDMA_SOFT_RESET) & 1)
816                 ;
817
818         /* Disable TX & RX DMA */
819         cpsw_write_4(sc, CPSW_CPDMA_TX_CONTROL, 0);
820         cpsw_write_4(sc, CPSW_CPDMA_RX_CONTROL, 0);
821
822         /* Clear all queues. */
823         for (i = 0; i < 8; i++) {
824                 cpsw_write_4(sc, CPSW_CPDMA_TX_HDP(i), 0);
825                 cpsw_write_4(sc, CPSW_CPDMA_RX_HDP(i), 0);
826                 cpsw_write_4(sc, CPSW_CPDMA_TX_CP(i), 0);
827                 cpsw_write_4(sc, CPSW_CPDMA_RX_CP(i), 0);
828         }
829
830         /* Clear all interrupt Masks */
831         cpsw_write_4(sc, CPSW_CPDMA_RX_INTMASK_CLEAR, 0xFFFFFFFF);
832         cpsw_write_4(sc, CPSW_CPDMA_TX_INTMASK_CLEAR, 0xFFFFFFFF);
833 }
834
835 static void
836 cpsw_init(void *arg)
837 {
838         struct cpsw_softc *sc = arg;
839
840         CPSW_DEBUGF((""));
841         CPSW_GLOBAL_LOCK(sc);
842         cpsw_init_locked(arg);
843         CPSW_GLOBAL_UNLOCK(sc);
844 }
845
846 static void
847 cpsw_init_locked(void *arg)
848 {
849         struct ifnet *ifp;
850         struct cpsw_softc *sc = arg;
851         struct cpsw_slot *slot;
852         uint32_t i;
853
854         CPSW_DEBUGF((""));
855         ifp = sc->ifp;
856         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
857                 return;
858
859         getbinuptime(&sc->init_uptime);
860
861         /* Reset the controller. */
862         cpsw_reset(sc);
863
864         /* Enable ALE */
865         cpsw_write_4(sc, CPSW_ALE_CONTROL, 1 << 31 | 1 << 4);
866
867         /* Init Sliver port 1 and 2 */
868         for (i = 0; i < 2; i++) {
869                 /* Set Slave Mapping */
870                 cpsw_write_4(sc, CPSW_SL_RX_PRI_MAP(i), 0x76543210);
871                 cpsw_write_4(sc, CPSW_PORT_P_TX_PRI_MAP(i + 1), 0x33221100);
872                 cpsw_write_4(sc, CPSW_SL_RX_MAXLEN(i), 0x5f2);
873                 /* Set MACCONTROL for ports 0,1: IFCTL_B(16), IFCTL_A(15),
874                    GMII_EN(5), FULLDUPLEX(1) */
875                 /* TODO: Docs claim that IFCTL_B and IFCTL_A do the same thing? */
876                 /* Huh?  Docs call bit 0 "Loopback" some places, "FullDuplex" others. */
877                 cpsw_write_4(sc, CPSW_SL_MACCONTROL(i), 1 << 15 | 1 << 5 | 1);
878         }
879
880         /* Set Host Port Mapping */
881         cpsw_write_4(sc, CPSW_PORT_P0_CPDMA_TX_PRI_MAP, 0x76543210);
882         cpsw_write_4(sc, CPSW_PORT_P0_CPDMA_RX_CH_MAP, 0);
883
884         /* Initialize ALE: all ports set to forwarding(3), initialize addrs */
885         for (i = 0; i < 3; i++)
886                 cpsw_write_4(sc, CPSW_ALE_PORTCTL(i), 3);
887         cpsw_ale_update_addresses(sc, 1);
888
889         cpsw_write_4(sc, CPSW_SS_PTYPE, 0);
890
891         /* Enable statistics for ports 0, 1 and 2 */
892         cpsw_write_4(sc, CPSW_SS_STAT_PORT_EN, 7);
893
894         /* Experiment:  Turn off flow control */
895         /* This seems to fix the watchdog resets that have plagued
896            earlier versions of this driver; I'm not yet sure if there
897            are negative effects yet. */
898         cpsw_write_4(sc, CPSW_SS_FLOW_CONTROL, 0);
899
900         /* Make IP hdr aligned with 4 */
901         cpsw_write_4(sc, CPSW_CPDMA_RX_BUFFER_OFFSET, 2);
902
903         /* Initialize RX Buffer Descriptors */
904         cpsw_write_4(sc, CPSW_CPDMA_RX_FREEBUFFER(0), 0);
905
906         /* Enable TX & RX DMA */
907         cpsw_write_4(sc, CPSW_CPDMA_TX_CONTROL, 1);
908         cpsw_write_4(sc, CPSW_CPDMA_RX_CONTROL, 1);
909
910         /* Enable Interrupts for core 0 */
911         cpsw_write_4(sc, CPSW_WR_C_RX_THRESH_EN(0), 0xFF);
912         cpsw_write_4(sc, CPSW_WR_C_RX_EN(0), 0xFF);
913         cpsw_write_4(sc, CPSW_WR_C_MISC_EN(0), 0x3F);
914
915         /* Enable host Error Interrupt */
916         cpsw_write_4(sc, CPSW_CPDMA_DMA_INTMASK_SET, 3);
917
918         /* Enable interrupts for RX Channel 0 */
919         cpsw_write_4(sc, CPSW_CPDMA_RX_INTMASK_SET, 1);
920
921         /* Initialze MDIO - ENABLE, PREAMBLE=0, FAULTENB, CLKDIV=0xFF */
922         /* TODO Calculate MDCLK=CLK/(CLKDIV+1) */
923         cpsw_write_4(sc, MDIOCONTROL, 1 << 30 | 1 << 18 | 0xFF);
924
925         /* Select MII in GMII_SEL, Internal Delay mode */
926         //ti_scm_reg_write_4(0x650, 0);
927
928         /* Initialize active queues. */
929         slot = STAILQ_FIRST(&sc->tx.active);
930         if (slot != NULL)
931                 cpsw_write_hdp_slot(sc, &sc->tx, slot);
932         slot = STAILQ_FIRST(&sc->rx.active);
933         if (slot != NULL)
934                 cpsw_write_hdp_slot(sc, &sc->rx, slot);
935         cpsw_rx_enqueue(sc);
936
937         /* Activate network interface */
938         sc->rx.running = 1;
939         sc->tx.running = 1;
940         sc->watchdog.timer = 0;
941         callout_reset(&sc->watchdog.callout, hz, cpsw_tick, sc);
942         sc->ifp->if_drv_flags |= IFF_DRV_RUNNING;
943         sc->ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
944
945 }
946
947 static int
948 cpsw_shutdown(device_t dev)
949 {
950         struct cpsw_softc *sc = device_get_softc(dev);
951
952         CPSW_DEBUGF((""));
953         CPSW_GLOBAL_LOCK(sc);
954         cpsw_shutdown_locked(sc);
955         CPSW_GLOBAL_UNLOCK(sc);
956         return (0);
957 }
958
959 static void
960 cpsw_rx_teardown_locked(struct cpsw_softc *sc)
961 {
962         struct mbuf *received, *next;
963         int i = 0;
964
965         CPSW_DEBUGF(("starting RX teardown"));
966         cpsw_write_4(sc, CPSW_CPDMA_RX_TEARDOWN, 0);
967         for (;;) {
968                 received = cpsw_rx_dequeue(sc);
969                 CPSW_GLOBAL_UNLOCK(sc);
970                 while (received != NULL) {
971                         next = received->m_nextpkt;
972                         received->m_nextpkt = NULL;
973                         (*sc->ifp->if_input)(sc->ifp, received);
974                         received = next;
975                 }
976                 CPSW_GLOBAL_LOCK(sc);
977                 if (!sc->rx.running) {
978                         CPSW_DEBUGF(("finished RX teardown (%d retries)", i));
979                         return;
980                 }
981                 if (++i > 10) {
982                         if_printf(sc->ifp, "Unable to cleanly shutdown receiver\n");
983                         return;
984                 }
985                 DELAY(10);
986         }
987 }
988
989 static void
990 cpsw_tx_teardown_locked(struct cpsw_softc *sc)
991 {
992         int i = 0;
993
994         CPSW_DEBUGF(("starting TX teardown"));
995         cpsw_write_4(sc, CPSW_CPDMA_TX_TEARDOWN, 0);
996         cpsw_tx_dequeue(sc);
997         while (sc->tx.running && ++i < 10) {
998                 DELAY(10);
999                 cpsw_tx_dequeue(sc);
1000         }
1001         if (sc->tx.running)
1002                 if_printf(sc->ifp, "Unable to cleanly shutdown transmitter\n");
1003         CPSW_DEBUGF(("finished TX teardown (%d retries, %d idle buffers)",
1004             i, sc->tx.active_queue_len));
1005 }
1006
1007 static void
1008 cpsw_shutdown_locked(struct cpsw_softc *sc)
1009 {
1010         struct ifnet *ifp;
1011
1012         CPSW_DEBUGF((""));
1013         CPSW_GLOBAL_LOCK_ASSERT(sc);
1014         ifp = sc->ifp;
1015
1016         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1017                 return;
1018
1019         /* Disable interface */
1020         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1021         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1022
1023         /* Stop ticker */
1024         callout_stop(&sc->watchdog.callout);
1025
1026         /* Tear down the RX/TX queues. */
1027         cpsw_rx_teardown_locked(sc);
1028         cpsw_tx_teardown_locked(sc);
1029
1030         /* Capture stats before we reset controller. */
1031         cpsw_stats_collect(sc);
1032
1033         cpsw_reset(sc);
1034 }
1035
1036 /*
1037  *  Suspend/Resume.
1038  */
1039
1040 static int
1041 cpsw_suspend(device_t dev)
1042 {
1043         struct cpsw_softc *sc = device_get_softc(dev);
1044
1045         CPSW_DEBUGF((""));
1046         CPSW_GLOBAL_LOCK(sc);
1047         cpsw_shutdown_locked(sc);
1048         CPSW_GLOBAL_UNLOCK(sc);
1049         return (0);
1050 }
1051
1052 static int
1053 cpsw_resume(device_t dev)
1054 {
1055         struct cpsw_softc *sc = device_get_softc(dev);
1056
1057         CPSW_DEBUGF(("UNIMPLEMENTED"));
1058         return (0);
1059 }
1060
1061 /*
1062  *
1063  *  IOCTL
1064  *
1065  */
1066
1067 static void
1068 cpsw_set_promisc(struct cpsw_softc *sc, int set)
1069 {
1070         /*
1071          * Enabling promiscuous mode requires two bits of work: First,
1072          * ALE_BYPASS needs to be enabled.  That disables the ALE
1073          * forwarding logic and causes every packet to be sent to the
1074          * host port.  That makes us promiscuous wrt received packets.
1075          *
1076          * With ALE forwarding disabled, the transmitter needs to set
1077          * an explicit output port on every packet to route it to the
1078          * correct egress.  This should be doable for systems such as
1079          * BeagleBone where only one egress port is actually wired to
1080          * a PHY.  If you have both egress ports wired up, life gets a
1081          * lot more interesting.
1082          *
1083          * Hmmm.... NetBSD driver uses ALE_BYPASS always and doesn't
1084          * seem to set explicit egress ports.  Does that mean they
1085          * are always promiscuous?
1086          */
1087         if (set) {
1088                 printf("Promiscuous mode unimplemented\n");
1089         }
1090 }
1091
1092 static void
1093 cpsw_set_allmulti(struct cpsw_softc *sc, int set)
1094 {
1095         if (set) {
1096                 printf("All-multicast mode unimplemented\n");
1097         }
1098 }
1099
1100 static int
1101 cpsw_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1102 {
1103         struct cpsw_softc *sc = ifp->if_softc;
1104         struct ifreq *ifr = (struct ifreq *)data;
1105         int error;
1106         uint32_t changed;
1107
1108         error = 0;
1109
1110         switch (command) {
1111         case SIOCSIFFLAGS:
1112                 CPSW_GLOBAL_LOCK(sc);
1113                 if (ifp->if_flags & IFF_UP) {
1114                         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1115                                 changed = ifp->if_flags ^ sc->cpsw_if_flags;
1116                                 CPSW_DEBUGF(("SIOCSIFFLAGS: UP & RUNNING (changed=0x%x)", changed));
1117                                 if (changed & IFF_PROMISC)
1118                                         cpsw_set_promisc(sc,
1119                                             ifp->if_flags & IFF_PROMISC);
1120                                 if (changed & IFF_ALLMULTI)
1121                                         cpsw_set_allmulti(sc,
1122                                             ifp->if_flags & IFF_ALLMULTI);
1123                         } else {
1124                                 CPSW_DEBUGF(("SIOCSIFFLAGS: UP but not RUNNING; starting up"));
1125                                 cpsw_init_locked(sc);
1126                         }
1127                 } else if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1128                         CPSW_DEBUGF(("SIOCSIFFLAGS: not UP but RUNNING; shutting down"));
1129                         cpsw_shutdown_locked(sc);
1130                 }
1131
1132                 sc->cpsw_if_flags = ifp->if_flags;
1133                 CPSW_GLOBAL_UNLOCK(sc);
1134                 break;
1135         case SIOCADDMULTI:
1136                 cpsw_ale_update_addresses(sc, 0);
1137                 break;
1138         case SIOCDELMULTI:
1139                 /* Ugh.  DELMULTI doesn't provide the specific address
1140                    being removed, so the best we can do is remove
1141                    everything and rebuild it all. */
1142                 cpsw_ale_update_addresses(sc, 1);
1143                 break;
1144         case SIOCGIFMEDIA:
1145         case SIOCSIFMEDIA:
1146                 error = ifmedia_ioctl(ifp, ifr, &sc->mii->mii_media, command);
1147                 break;
1148         default:
1149                 error = ether_ioctl(ifp, command, data);
1150         }
1151         return (error);
1152 }
1153
1154 /*
1155  *
1156  * MIIBUS
1157  *
1158  */
1159 static int
1160 cpsw_miibus_ready(struct cpsw_softc *sc)
1161 {
1162         uint32_t r, retries = CPSW_MIIBUS_RETRIES;
1163
1164         while (--retries) {
1165                 r = cpsw_read_4(sc, MDIOUSERACCESS0);
1166                 if ((r & 1 << 31) == 0)
1167                         return 1;
1168                 DELAY(CPSW_MIIBUS_DELAY);
1169         }
1170         return 0;
1171 }
1172
1173 static int
1174 cpsw_miibus_readreg(device_t dev, int phy, int reg)
1175 {
1176         struct cpsw_softc *sc = device_get_softc(dev);
1177         uint32_t cmd, r;
1178
1179         if (!cpsw_miibus_ready(sc)) {
1180                 device_printf(dev, "MDIO not ready to read\n");
1181                 return 0;
1182         }
1183
1184         /* Set GO, reg, phy */
1185         cmd = 1 << 31 | (reg & 0x1F) << 21 | (phy & 0x1F) << 16;
1186         cpsw_write_4(sc, MDIOUSERACCESS0, cmd);
1187
1188         if (!cpsw_miibus_ready(sc)) {
1189                 device_printf(dev, "MDIO timed out during read\n");
1190                 return 0;
1191         }
1192
1193         r = cpsw_read_4(sc, MDIOUSERACCESS0);
1194         if((r & 1 << 29) == 0) {
1195                 device_printf(dev, "Failed to read from PHY.\n");
1196                 r = 0;
1197         }
1198         return (r & 0xFFFF);
1199 }
1200
1201 static int
1202 cpsw_miibus_writereg(device_t dev, int phy, int reg, int value)
1203 {
1204         struct cpsw_softc *sc = device_get_softc(dev);
1205         uint32_t cmd;
1206
1207         if (!cpsw_miibus_ready(sc)) {
1208                 device_printf(dev, "MDIO not ready to write\n");
1209                 return 0;
1210         }
1211
1212         /* Set GO, WRITE, reg, phy, and value */
1213         cmd = 3 << 30 | (reg & 0x1F) << 21 | (phy & 0x1F) << 16
1214             | (value & 0xFFFF);
1215         cpsw_write_4(sc, MDIOUSERACCESS0, cmd);
1216
1217         if (!cpsw_miibus_ready(sc)) {
1218                 device_printf(dev, "MDIO timed out during write\n");
1219                 return 0;
1220         }
1221
1222         if((cpsw_read_4(sc, MDIOUSERACCESS0) & (1 << 29)) == 0)
1223                 device_printf(dev, "Failed to write to PHY.\n");
1224
1225         return 0;
1226 }
1227
1228 /*
1229  *
1230  * Transmit/Receive Packets.
1231  *
1232  */
1233
1234
1235 static void
1236 cpsw_intr_rx(void *arg)
1237 {
1238         struct cpsw_softc *sc = arg;
1239         struct mbuf *received, *next;
1240
1241         CPSW_RX_LOCK(sc);
1242         received = cpsw_rx_dequeue(sc);
1243         cpsw_rx_enqueue(sc);
1244         cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 1);
1245         CPSW_RX_UNLOCK(sc);
1246         
1247         while (received != NULL) {
1248                 next = received->m_nextpkt;
1249                 received->m_nextpkt = NULL;
1250                 (*sc->ifp->if_input)(sc->ifp, received);
1251                 received = next;
1252         }
1253 }
1254
1255 static struct mbuf *
1256 cpsw_rx_dequeue(struct cpsw_softc *sc)
1257 {
1258         struct cpsw_cpdma_bd bd;
1259         struct cpsw_slot *slot;
1260         struct ifnet *ifp;
1261         struct mbuf *mb_head, *mb_tail;
1262         int removed = 0;
1263
1264         ifp = sc->ifp;
1265         mb_head = mb_tail = NULL;
1266
1267         /* Pull completed packets off hardware RX queue. */
1268         while ((slot = STAILQ_FIRST(&sc->rx.active)) != NULL) {
1269                 cpsw_cpdma_read_bd(sc, slot, &bd);
1270                 if (bd.flags & CPDMA_BD_OWNER)
1271                         break; /* Still in use by hardware */
1272
1273                 CPSW_DEBUGF(("Removing received packet from RX queue"));
1274                 ++removed;
1275                 STAILQ_REMOVE_HEAD(&sc->rx.active, next);
1276                 STAILQ_INSERT_TAIL(&sc->rx.avail, slot, next);
1277
1278                 bus_dmamap_sync(sc->mbuf_dtag, slot->dmamap, BUS_DMASYNC_POSTREAD);
1279                 bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
1280
1281                 if (bd.flags & CPDMA_BD_TDOWNCMPLT) {
1282                         CPSW_DEBUGF(("RX teardown in progress"));
1283                         m_freem(slot->mbuf);
1284                         slot->mbuf = NULL;
1285                         cpsw_write_cp(sc, &sc->rx, 0xfffffffc);
1286                         sc->rx.running = 0;
1287                         break;
1288                 }
1289
1290                 cpsw_write_cp_slot(sc, &sc->rx, slot);
1291
1292                 /* Set up mbuf */
1293                 /* TODO: track SOP/EOP bits to assemble a full mbuf
1294                    out of received fragments. */
1295                 slot->mbuf->m_hdr.mh_data += bd.bufoff;
1296                 slot->mbuf->m_hdr.mh_len = bd.pktlen - 4;
1297                 slot->mbuf->m_pkthdr.len = bd.pktlen - 4;
1298                 slot->mbuf->m_flags |= M_PKTHDR;
1299                 slot->mbuf->m_pkthdr.rcvif = ifp;
1300                 slot->mbuf->m_nextpkt = NULL;
1301
1302                 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) {
1303                         /* check for valid CRC by looking into pkt_err[5:4] */
1304                         if ((bd.flags & CPDMA_BD_PKT_ERR_MASK) == 0) {
1305                                 slot->mbuf->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1306                                 slot->mbuf->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1307                                 slot->mbuf->m_pkthdr.csum_data = 0xffff;
1308                         }
1309                 }
1310
1311                 /* Add mbuf to packet list to be returned. */
1312                 if (mb_tail) {
1313                         mb_tail->m_nextpkt = slot->mbuf;
1314                 } else {
1315                         mb_head = slot->mbuf;
1316                 }
1317                 mb_tail = slot->mbuf;
1318                 slot->mbuf = NULL;
1319         }
1320
1321         if (removed != 0) {
1322                 sc->rx.queue_removes += removed;
1323                 sc->rx.active_queue_len -= removed;
1324                 sc->rx.avail_queue_len += removed;
1325                 if (sc->rx.avail_queue_len > sc->rx.max_avail_queue_len)
1326                         sc->rx.max_avail_queue_len = sc->rx.avail_queue_len;
1327         }
1328         return (mb_head);
1329 }
1330
1331 static void
1332 cpsw_rx_enqueue(struct cpsw_softc *sc)
1333 {
1334         bus_dma_segment_t seg[1];
1335         struct cpsw_cpdma_bd bd;
1336         struct ifnet *ifp = sc->ifp;
1337         struct cpsw_slots tmpqueue = STAILQ_HEAD_INITIALIZER(tmpqueue);
1338         struct cpsw_slot *slot, *prev_slot = NULL;
1339         struct cpsw_slot *last_old_slot, *first_new_slot;
1340         int error, nsegs, added = 0;
1341
1342         /* Register new mbufs with hardware. */
1343         while ((slot = STAILQ_FIRST(&sc->rx.avail)) != NULL) {
1344                 if (slot->mbuf == NULL) {
1345                         slot->mbuf = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1346                         if (slot->mbuf == NULL) {
1347                                 if_printf(sc->ifp, "Unable to fill RX queue\n");
1348                                 break;
1349                         }
1350                         slot->mbuf->m_len =
1351                             slot->mbuf->m_pkthdr.len =
1352                             slot->mbuf->m_ext.ext_size;
1353                 }
1354
1355                 error = bus_dmamap_load_mbuf_sg(sc->mbuf_dtag, slot->dmamap,
1356                     slot->mbuf, seg, &nsegs, BUS_DMA_NOWAIT);
1357
1358                 KASSERT(nsegs == 1, ("More than one segment (nsegs=%d)", nsegs));
1359                 KASSERT(error == 0, ("DMA error (error=%d)", error));
1360                 if (error != 0 || nsegs != 1) {
1361                         if_printf(ifp,
1362                             "%s: Can't prep RX buf for DMA (nsegs=%d, error=%d)\n",
1363                             __func__, nsegs, error);
1364                         bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
1365                         m_freem(slot->mbuf);
1366                         slot->mbuf = NULL;
1367                         break;
1368                 }
1369
1370                 bus_dmamap_sync(sc->mbuf_dtag, slot->dmamap, BUS_DMASYNC_PREREAD);
1371
1372                 /* Create and submit new rx descriptor*/
1373                 bd.next = 0;
1374                 bd.bufptr = seg->ds_addr;
1375                 bd.bufoff = 0;
1376                 bd.buflen = MCLBYTES - 1;
1377                 bd.pktlen = bd.buflen;
1378                 bd.flags = CPDMA_BD_OWNER;
1379                 cpsw_cpdma_write_bd(sc, slot, &bd);
1380                 ++added;
1381
1382                 if (prev_slot != NULL)
1383                         cpsw_cpdma_write_bd_next(sc, prev_slot, slot);
1384                 prev_slot = slot;
1385                 STAILQ_REMOVE_HEAD(&sc->rx.avail, next);
1386                 sc->rx.avail_queue_len--;
1387                 STAILQ_INSERT_TAIL(&tmpqueue, slot, next);
1388         }
1389
1390         if (added == 0)
1391                 return;
1392
1393         CPSW_DEBUGF(("Adding %d buffers to RX queue", added));
1394
1395         /* Link new entries to hardware RX queue. */
1396         last_old_slot = STAILQ_LAST(&sc->rx.active, cpsw_slot, next);
1397         first_new_slot = STAILQ_FIRST(&tmpqueue);
1398         STAILQ_CONCAT(&sc->rx.active, &tmpqueue);
1399         if (first_new_slot == NULL) {
1400                 return;
1401         } else if (last_old_slot == NULL) {
1402                 /* Start a fresh queue. */
1403                 cpsw_write_hdp_slot(sc, &sc->rx, first_new_slot);
1404         } else {
1405                 /* Add buffers to end of current queue. */
1406                 cpsw_cpdma_write_bd_next(sc, last_old_slot, first_new_slot);
1407                 /* If underrun, restart queue. */
1408                 if (cpsw_cpdma_read_bd_flags(sc, last_old_slot) & CPDMA_BD_EOQ) {
1409                         cpsw_write_hdp_slot(sc, &sc->rx, first_new_slot);
1410                 }
1411         }
1412         sc->rx.queue_adds += added;
1413         sc->rx.active_queue_len += added;
1414         if (sc->rx.active_queue_len > sc->rx.max_active_queue_len) {
1415                 sc->rx.max_active_queue_len = sc->rx.active_queue_len;
1416         }
1417 }
1418
1419 static void
1420 cpsw_start(struct ifnet *ifp)
1421 {
1422         struct cpsw_softc *sc = ifp->if_softc;
1423
1424         CPSW_TX_LOCK(sc);
1425         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) && sc->tx.running) {
1426                 cpsw_tx_enqueue(sc);
1427                 cpsw_tx_dequeue(sc);
1428         }
1429         CPSW_TX_UNLOCK(sc);
1430 }
1431
1432 static void
1433 cpsw_tx_enqueue(struct cpsw_softc *sc)
1434 {
1435         bus_dma_segment_t segs[CPSW_TXFRAGS];
1436         struct cpsw_cpdma_bd bd;
1437         struct cpsw_slots tmpqueue = STAILQ_HEAD_INITIALIZER(tmpqueue);
1438         struct cpsw_slot *slot, *prev_slot = NULL;
1439         struct cpsw_slot *last_old_slot, *first_new_slot;
1440         struct mbuf *m0;
1441         int error, nsegs, seg, added = 0, padlen;
1442
1443         /* Pull pending packets from IF queue and prep them for DMA. */
1444         while ((slot = STAILQ_FIRST(&sc->tx.avail)) != NULL) {
1445                 IF_DEQUEUE(&sc->ifp->if_snd, m0);
1446                 if (m0 == NULL)
1447                         break;
1448
1449                 slot->mbuf = m0;
1450                 padlen = ETHER_MIN_LEN - slot->mbuf->m_pkthdr.len;
1451                 if (padlen < 0)
1452                         padlen = 0;
1453
1454                 /* Create mapping in DMA memory */
1455                 error = bus_dmamap_load_mbuf_sg(sc->mbuf_dtag, slot->dmamap,
1456                     slot->mbuf, segs, &nsegs, BUS_DMA_NOWAIT);
1457                 /* If the packet is too fragmented, try to simplify. */
1458                 if (error == EFBIG ||
1459                     (error == 0 &&
1460                         nsegs + (padlen > 0 ? 1 : 0) > sc->tx.avail_queue_len)) {
1461                         bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
1462                         if (padlen > 0) /* May as well add padding. */
1463                                 m_append(slot->mbuf, padlen,
1464                                     sc->null_mbuf->m_hdr.mh_data);
1465                         m0 = m_defrag(slot->mbuf, M_NOWAIT);
1466                         if (m0 == NULL) {
1467                                 if_printf(sc->ifp,
1468                                     "Can't defragment packet; dropping\n");
1469                                 m_freem(slot->mbuf);
1470                         } else {
1471                                 CPSW_DEBUGF(("Requeueing defragmented packet"));
1472                                 IF_PREPEND(&sc->ifp->if_snd, m0);
1473                         }
1474                         slot->mbuf = NULL;
1475                         continue;
1476                 }
1477                 if (error != 0) {
1478                         if_printf(sc->ifp,
1479                             "%s: Can't setup DMA (error=%d), dropping packet\n",
1480                             __func__, error);
1481                         bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
1482                         m_freem(slot->mbuf);
1483                         slot->mbuf = NULL;
1484                         break;
1485                 }
1486
1487                 bus_dmamap_sync(sc->mbuf_dtag, slot->dmamap,
1488                                 BUS_DMASYNC_PREWRITE);
1489
1490
1491                 CPSW_DEBUGF(("Queueing TX packet: %d segments + %d pad bytes",
1492                         nsegs, padlen));
1493
1494                 /* If there is only one segment, the for() loop
1495                  * gets skipped and the single buffer gets set up
1496                  * as both SOP and EOP. */
1497                 /* Start by setting up the first buffer */
1498                 bd.next = 0;
1499                 bd.bufptr = segs[0].ds_addr;
1500                 bd.bufoff = 0;
1501                 bd.buflen = segs[0].ds_len;
1502                 bd.pktlen = m_length(slot->mbuf, NULL) + padlen;
1503                 bd.flags =  CPDMA_BD_SOP | CPDMA_BD_OWNER;
1504                 for (seg = 1; seg < nsegs; ++seg) {
1505                         /* Save the previous buffer (which isn't EOP) */
1506                         cpsw_cpdma_write_bd(sc, slot, &bd);
1507                         if (prev_slot != NULL)
1508                                 cpsw_cpdma_write_bd_next(sc, prev_slot, slot);
1509                         prev_slot = slot;
1510                         STAILQ_REMOVE_HEAD(&sc->tx.avail, next);
1511                         sc->tx.avail_queue_len--;
1512                         STAILQ_INSERT_TAIL(&tmpqueue, slot, next);
1513                         ++added;
1514                         slot = STAILQ_FIRST(&sc->tx.avail);
1515
1516                         /* Setup next buffer (which isn't SOP) */
1517                         bd.next = 0;
1518                         bd.bufptr = segs[seg].ds_addr;
1519                         bd.bufoff = 0;
1520                         bd.buflen = segs[seg].ds_len;
1521                         bd.pktlen = 0;
1522                         bd.flags = CPDMA_BD_OWNER;
1523                 }
1524                 /* Save the final buffer. */
1525                 if (padlen <= 0)
1526                         bd.flags |= CPDMA_BD_EOP;
1527                 cpsw_cpdma_write_bd(sc, slot, &bd);
1528                 if (prev_slot != NULL)
1529                         cpsw_cpdma_write_bd_next(sc, prev_slot, slot);
1530                 prev_slot = slot;
1531                 STAILQ_REMOVE_HEAD(&sc->tx.avail, next);
1532                 sc->tx.avail_queue_len--;
1533                 STAILQ_INSERT_TAIL(&tmpqueue, slot, next);
1534                 ++added;
1535
1536                 if (padlen > 0) {
1537                         slot = STAILQ_FIRST(&sc->tx.avail);
1538                         STAILQ_REMOVE_HEAD(&sc->tx.avail, next);
1539                         sc->tx.avail_queue_len--;
1540                         STAILQ_INSERT_TAIL(&tmpqueue, slot, next);
1541                         ++added;
1542
1543                         /* Setup buffer of null pad bytes (definitely EOP) */
1544                         cpsw_cpdma_write_bd_next(sc, prev_slot, slot);
1545                         prev_slot = slot;
1546                         bd.next = 0;
1547                         bd.bufptr = sc->null_mbuf_paddr;
1548                         bd.bufoff = 0;
1549                         bd.buflen = padlen;
1550                         bd.pktlen = 0;
1551                         bd.flags = CPDMA_BD_EOP | CPDMA_BD_OWNER;
1552                         cpsw_cpdma_write_bd(sc, slot, &bd);
1553                         ++nsegs;
1554                 }
1555
1556                 if (nsegs > sc->tx.longest_chain)
1557                         sc->tx.longest_chain = nsegs;
1558
1559                 // TODO: Should we defer the BPF tap until
1560                 // after all packets are queued?
1561                 BPF_MTAP(sc->ifp, m0);
1562         }
1563
1564         /* Attach the list of new buffers to the hardware TX queue. */
1565         last_old_slot = STAILQ_LAST(&sc->tx.active, cpsw_slot, next);
1566         first_new_slot = STAILQ_FIRST(&tmpqueue);
1567         STAILQ_CONCAT(&sc->tx.active, &tmpqueue);
1568         if (first_new_slot == NULL) {
1569                 return;
1570         } else if (last_old_slot == NULL) {
1571                 /* Start a fresh queue. */
1572                 cpsw_write_hdp_slot(sc, &sc->tx, first_new_slot);
1573         } else {
1574                 /* Add buffers to end of current queue. */
1575                 cpsw_cpdma_write_bd_next(sc, last_old_slot, first_new_slot);
1576                 /* If underrun, restart queue. */
1577                 if (cpsw_cpdma_read_bd_flags(sc, last_old_slot) & CPDMA_BD_EOQ) {
1578                         cpsw_write_hdp_slot(sc, &sc->tx, first_new_slot);
1579                 }
1580         }
1581         sc->tx.queue_adds += added;
1582         sc->tx.active_queue_len += added;
1583         if (sc->tx.active_queue_len > sc->tx.max_active_queue_len) {
1584                 sc->tx.max_active_queue_len = sc->tx.active_queue_len;
1585         }
1586 }
1587
1588 static int
1589 cpsw_tx_dequeue(struct cpsw_softc *sc)
1590 {
1591         struct cpsw_slot *slot, *last_removed_slot = NULL;
1592         uint32_t flags, removed = 0;
1593
1594         slot = STAILQ_FIRST(&sc->tx.active);
1595         if (slot == NULL && cpsw_read_cp(sc, &sc->tx) == 0xfffffffc) {
1596                 CPSW_DEBUGF(("TX teardown of an empty queue"));
1597                 cpsw_write_cp(sc, &sc->tx, 0xfffffffc);
1598                 sc->tx.running = 0;
1599                 return (0);
1600         }
1601
1602         /* Pull completed buffers off the hardware TX queue. */
1603         while (slot != NULL) {
1604                 flags = cpsw_cpdma_read_bd_flags(sc, slot);
1605                 if (flags & CPDMA_BD_OWNER)
1606                         break; /* Hardware is still using this packet. */
1607
1608                 CPSW_DEBUGF(("TX removing completed packet"));
1609                 bus_dmamap_sync(sc->mbuf_dtag, slot->dmamap, BUS_DMASYNC_POSTWRITE);
1610                 bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
1611                 m_freem(slot->mbuf);
1612                 slot->mbuf = NULL;
1613
1614                 /* Dequeue any additional buffers used by this packet. */
1615                 while (slot != NULL && slot->mbuf == NULL) {
1616                         STAILQ_REMOVE_HEAD(&sc->tx.active, next);
1617                         STAILQ_INSERT_TAIL(&sc->tx.avail, slot, next);
1618                         ++removed;
1619                         last_removed_slot = slot;
1620                         slot = STAILQ_FIRST(&sc->tx.active);
1621                 }
1622
1623                 /* TearDown complete is only marked on the SOP for the packet. */
1624                 if (flags & CPDMA_BD_TDOWNCMPLT) {
1625                         CPSW_DEBUGF(("TX teardown in progress"));
1626                         cpsw_write_cp(sc, &sc->tx, 0xfffffffc);
1627                         // TODO: Increment a count of dropped TX packets
1628                         sc->tx.running = 0;
1629                         break;
1630                 }
1631         }
1632
1633         if (removed != 0) {
1634                 cpsw_write_cp_slot(sc, &sc->tx, last_removed_slot);
1635                 sc->tx.queue_removes += removed;
1636                 sc->tx.active_queue_len -= removed;
1637                 sc->tx.avail_queue_len += removed;
1638                 if (sc->tx.avail_queue_len > sc->tx.max_avail_queue_len)
1639                         sc->tx.max_avail_queue_len = sc->tx.avail_queue_len;
1640         }
1641         return (removed);
1642 }
1643
1644 /*
1645  *
1646  * Miscellaneous interrupts.
1647  *
1648  */
1649
1650 static void
1651 cpsw_intr_rx_thresh(void *arg)
1652 {
1653         struct cpsw_softc *sc = arg;
1654         uint32_t stat = cpsw_read_4(sc, CPSW_WR_C_RX_THRESH_STAT(0));
1655
1656         CPSW_DEBUGF(("stat=%x", stat));
1657         cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 0);
1658 }
1659
1660 static void
1661 cpsw_intr_misc_host_error(struct cpsw_softc *sc)
1662 {
1663         uint32_t intstat;
1664         uint32_t dmastat;
1665         int txerr, rxerr, txchan, rxchan;
1666
1667         printf("\n\n");
1668         device_printf(sc->dev,
1669             "HOST ERROR:  PROGRAMMING ERROR DETECTED BY HARDWARE\n");
1670         printf("\n\n");
1671         intstat = cpsw_read_4(sc, CPSW_CPDMA_DMA_INTSTAT_MASKED);
1672         device_printf(sc->dev, "CPSW_CPDMA_DMA_INTSTAT_MASKED=0x%x\n", intstat);
1673         dmastat = cpsw_read_4(sc, CPSW_CPDMA_DMASTATUS);
1674         device_printf(sc->dev, "CPSW_CPDMA_DMASTATUS=0x%x\n", dmastat);
1675
1676         txerr = (dmastat >> 20) & 15;
1677         txchan = (dmastat >> 16) & 7;
1678         rxerr = (dmastat >> 12) & 15;
1679         rxchan = (dmastat >> 8) & 7;
1680
1681         switch (txerr) {
1682         case 0: break;
1683         case 1: printf("SOP error on TX channel %d\n", txchan);
1684                 break;
1685         case 2: printf("Ownership bit not set on SOP buffer on TX channel %d\n", txchan);
1686                 break;
1687         case 3: printf("Zero Next Buffer but not EOP on TX channel %d\n", txchan);
1688                 break;
1689         case 4: printf("Zero Buffer Pointer on TX channel %d\n", txchan);
1690                 break;
1691         case 5: printf("Zero Buffer Length on TX channel %d\n", txchan);
1692                 break;
1693         case 6: printf("Packet length error on TX channel %d\n", txchan);
1694                 break;
1695         default: printf("Unknown error on TX channel %d\n", txchan);
1696                 break;
1697         }
1698
1699         if (txerr != 0) {
1700                 printf("CPSW_CPDMA_TX%d_HDP=0x%x\n",
1701                     txchan, cpsw_read_4(sc, CPSW_CPDMA_TX_HDP(txchan)));
1702                 printf("CPSW_CPDMA_TX%d_CP=0x%x\n",
1703                     txchan, cpsw_read_4(sc, CPSW_CPDMA_TX_CP(txchan)));
1704                 cpsw_dump_queue(sc, &sc->tx.active);
1705         }
1706
1707         switch (rxerr) {
1708         case 0: break;
1709         case 2: printf("Ownership bit not set on RX channel %d\n", rxchan);
1710                 break;
1711         case 4: printf("Zero Buffer Pointer on RX channel %d\n", rxchan);
1712                 break;
1713         case 5: printf("Zero Buffer Length on RX channel %d\n", rxchan);
1714                 break;
1715         case 6: printf("Buffer offset too big on RX channel %d\n", rxchan);
1716                 break;
1717         default: printf("Unknown RX error on RX channel %d\n", rxchan);
1718                 break;
1719         }
1720
1721         if (rxerr != 0) {
1722                 printf("CPSW_CPDMA_RX%d_HDP=0x%x\n",
1723                     rxchan, cpsw_read_4(sc,CPSW_CPDMA_RX_HDP(rxchan)));
1724                 printf("CPSW_CPDMA_RX%d_CP=0x%x\n",
1725                     rxchan, cpsw_read_4(sc, CPSW_CPDMA_RX_CP(rxchan)));
1726                 cpsw_dump_queue(sc, &sc->rx.active);
1727         }
1728
1729         printf("\nALE Table\n");
1730         cpsw_ale_dump_table(sc);
1731
1732         // XXX do something useful here??
1733         panic("CPSW HOST ERROR INTERRUPT");
1734
1735         // Suppress this interrupt in the future.
1736         cpsw_write_4(sc, CPSW_CPDMA_DMA_INTMASK_CLEAR, intstat);
1737         printf("XXX HOST ERROR INTERRUPT SUPPRESSED\n");
1738         // The watchdog will probably reset the controller
1739         // in a little while.  It will probably fail again.
1740 }
1741
1742 static void
1743 cpsw_intr_misc(void *arg)
1744 {
1745         struct cpsw_softc *sc = arg;
1746         uint32_t stat = cpsw_read_4(sc, CPSW_WR_C_MISC_STAT(0));
1747
1748         if (stat & 16)
1749                 CPSW_DEBUGF(("Time sync event interrupt unimplemented"));
1750         if (stat & 8)
1751                 cpsw_stats_collect(sc);
1752         if (stat & 4)
1753                 cpsw_intr_misc_host_error(sc);
1754         if (stat & 2)
1755                 CPSW_DEBUGF(("MDIO link change interrupt unimplemented"));
1756         if (stat & 1)
1757                 CPSW_DEBUGF(("MDIO operation completed interrupt unimplemented"));
1758         cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 3);
1759 }
1760
1761 /*
1762  *
1763  * Periodic Checks and Watchdog.
1764  *
1765  */
1766
1767 static void
1768 cpsw_tick(void *msc)
1769 {
1770         struct cpsw_softc *sc = msc;
1771
1772         /* Check for TX timeout */
1773         cpsw_tx_watchdog(sc);
1774
1775         /* Check for media type change */
1776         mii_tick(sc->mii);
1777         if(sc->cpsw_media_status != sc->mii->mii_media.ifm_media) {
1778                 printf("%s: media type changed (ifm_media=%x)\n", __func__, 
1779                         sc->mii->mii_media.ifm_media);
1780                 cpsw_ifmedia_upd(sc->ifp);
1781         }
1782
1783         /* Schedule another timeout one second from now */
1784         callout_reset(&sc->watchdog.callout, hz, cpsw_tick, sc);
1785 }
1786
1787 static void
1788 cpsw_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1789 {
1790         struct cpsw_softc *sc = ifp->if_softc;
1791         struct mii_data *mii;
1792
1793         CPSW_DEBUGF((""));
1794         CPSW_TX_LOCK(sc);
1795
1796         mii = sc->mii;
1797         mii_pollstat(mii);
1798
1799         ifmr->ifm_active = mii->mii_media_active;
1800         ifmr->ifm_status = mii->mii_media_status;
1801
1802         CPSW_TX_UNLOCK(sc);
1803 }
1804
1805 static int
1806 cpsw_ifmedia_upd(struct ifnet *ifp)
1807 {
1808         struct cpsw_softc *sc = ifp->if_softc;
1809
1810         CPSW_DEBUGF((""));
1811         if (ifp->if_flags & IFF_UP) {
1812                 CPSW_GLOBAL_LOCK(sc);
1813                 sc->cpsw_media_status = sc->mii->mii_media.ifm_media;
1814                 mii_mediachg(sc->mii);
1815                 cpsw_init_locked(sc);
1816                 CPSW_GLOBAL_UNLOCK(sc);
1817         }
1818
1819         return (0);
1820 }
1821
1822 static void
1823 cpsw_tx_watchdog_full_reset(struct cpsw_softc *sc)
1824 {
1825         cpsw_debugf_head("CPSW watchdog");
1826         if_printf(sc->ifp, "watchdog timeout\n");
1827         cpsw_shutdown_locked(sc);
1828         cpsw_init_locked(sc);
1829 }
1830
1831 static void
1832 cpsw_tx_watchdog(struct cpsw_softc *sc)
1833 {
1834         struct ifnet *ifp = sc->ifp;
1835
1836         CPSW_GLOBAL_LOCK(sc);
1837         if (sc->tx.active_queue_len == 0 || (ifp->if_flags & IFF_UP) == 0 ||
1838             (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || !sc->tx.running) {
1839                 sc->watchdog.timer = 0; /* Nothing to do. */
1840         } else if (sc->tx.queue_removes > sc->tx.queue_removes_at_last_tick) {
1841                 sc->watchdog.timer = 0;  /* Stuff done while we weren't looking. */
1842         } else if (cpsw_tx_dequeue(sc) > 0) {
1843                 sc->watchdog.timer = 0;  /* We just did something. */
1844         } else {
1845                 /* There was something to do but it didn't get done. */
1846                 ++sc->watchdog.timer;
1847                 if (sc->watchdog.timer > 2) {
1848                         sc->watchdog.timer = 0;
1849                         ++ifp->if_oerrors;
1850                         ++sc->watchdog.resets;
1851                         cpsw_tx_watchdog_full_reset(sc);
1852                 }
1853         }
1854         sc->tx.queue_removes_at_last_tick = sc->tx.queue_removes;
1855         CPSW_GLOBAL_UNLOCK(sc);
1856 }
1857
1858 /*
1859  *
1860  * ALE support routines.
1861  *
1862  */
1863
1864 static void
1865 cpsw_ale_read_entry(struct cpsw_softc *sc, uint16_t idx, uint32_t *ale_entry)
1866 {
1867         cpsw_write_4(sc, CPSW_ALE_TBLCTL, idx & 1023);
1868         ale_entry[0] = cpsw_read_4(sc, CPSW_ALE_TBLW0);
1869         ale_entry[1] = cpsw_read_4(sc, CPSW_ALE_TBLW1);
1870         ale_entry[2] = cpsw_read_4(sc, CPSW_ALE_TBLW2);
1871 }
1872
1873 static void
1874 cpsw_ale_write_entry(struct cpsw_softc *sc, uint16_t idx, uint32_t *ale_entry)
1875 {
1876         cpsw_write_4(sc, CPSW_ALE_TBLW0, ale_entry[0]);
1877         cpsw_write_4(sc, CPSW_ALE_TBLW1, ale_entry[1]);
1878         cpsw_write_4(sc, CPSW_ALE_TBLW2, ale_entry[2]);
1879         cpsw_write_4(sc, CPSW_ALE_TBLCTL, 1 << 31 | (idx & 1023));
1880 }
1881
1882 static int
1883 cpsw_ale_remove_all_mc_entries(struct cpsw_softc *sc)
1884 {
1885         int i;
1886         uint32_t ale_entry[3];
1887
1888         /* First two entries are link address and broadcast. */
1889         for (i = 2; i < CPSW_MAX_ALE_ENTRIES; i++) {
1890                 cpsw_ale_read_entry(sc, i, ale_entry);
1891                 if (((ale_entry[1] >> 28) & 3) == 1 && /* Address entry */
1892                     ((ale_entry[1] >> 8) & 1) == 1) { /* MCast link addr */
1893                         ale_entry[0] = ale_entry[1] = ale_entry[2] = 0;
1894                         cpsw_ale_write_entry(sc, i, ale_entry);
1895                 }
1896         }
1897         return CPSW_MAX_ALE_ENTRIES;
1898 }
1899
1900 static int
1901 cpsw_ale_mc_entry_set(struct cpsw_softc *sc, uint8_t portmap, uint8_t *mac)
1902 {
1903         int free_index = -1, matching_index = -1, i;
1904         uint32_t ale_entry[3];
1905
1906         /* Find a matching entry or a free entry. */
1907         for (i = 0; i < CPSW_MAX_ALE_ENTRIES; i++) {
1908                 cpsw_ale_read_entry(sc, i, ale_entry);
1909
1910                 /* Entry Type[61:60] is 0 for free entry */ 
1911                 if (free_index < 0 && ((ale_entry[1] >> 28) & 3) == 0) {
1912                         free_index = i;
1913                 }
1914
1915                 if ((((ale_entry[1] >> 8) & 0xFF) == mac[0]) &&
1916                     (((ale_entry[1] >> 0) & 0xFF) == mac[1]) &&
1917                     (((ale_entry[0] >>24) & 0xFF) == mac[2]) &&
1918                     (((ale_entry[0] >>16) & 0xFF) == mac[3]) &&
1919                     (((ale_entry[0] >> 8) & 0xFF) == mac[4]) &&
1920                     (((ale_entry[0] >> 0) & 0xFF) == mac[5])) {
1921                         matching_index = i;
1922                         break;
1923                 }
1924         }
1925
1926         if (matching_index < 0) {
1927                 if (free_index < 0)
1928                         return (ENOMEM);
1929                 i = free_index;
1930         }
1931
1932         /* Set MAC address */
1933         ale_entry[0] = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];
1934         ale_entry[1] = mac[0] << 8 | mac[1];
1935
1936         /* Entry type[61:60] is addr entry(1), Mcast fwd state[63:62] is fw(3)*/
1937         ale_entry[1] |= 0xd0 << 24;
1938
1939         /* Set portmask [68:66] */
1940         ale_entry[2] = (portmap & 7) << 2;
1941
1942         cpsw_ale_write_entry(sc, i, ale_entry);
1943
1944         return 0;
1945 }
1946
1947 static void
1948 cpsw_ale_dump_table(struct cpsw_softc *sc) {
1949         int i;
1950         uint32_t ale_entry[3];
1951         for (i = 0; i < CPSW_MAX_ALE_ENTRIES; i++) {
1952                 cpsw_ale_read_entry(sc, i, ale_entry);
1953                 if (ale_entry[0] || ale_entry[1] || ale_entry[2]) {
1954                         printf("ALE[%4u] %08x %08x %08x ", i, ale_entry[0],
1955                                 ale_entry[1], ale_entry[2]);
1956                         printf("mac: %02x:%02x:%02x:%02x:%02x:%02x ",
1957                                 (ale_entry[1] >> 8) & 0xFF,
1958                                 (ale_entry[1] >> 0) & 0xFF,
1959                                 (ale_entry[0] >>24) & 0xFF,
1960                                 (ale_entry[0] >>16) & 0xFF,
1961                                 (ale_entry[0] >> 8) & 0xFF,
1962                                 (ale_entry[0] >> 0) & 0xFF);
1963                         printf(((ale_entry[1] >> 8) & 1) ? "mcast " : "ucast ");
1964                         printf("type: %u ", (ale_entry[1] >> 28) & 3);
1965                         printf("port: %u ", (ale_entry[2] >> 2) & 7);
1966                         printf("\n");
1967                 }
1968         }
1969         printf("\n");
1970 }
1971
1972 static int
1973 cpsw_ale_update_addresses(struct cpsw_softc *sc, int purge)
1974 {
1975         uint8_t *mac;
1976         uint32_t ale_entry[3];
1977         struct ifnet *ifp = sc->ifp;
1978         struct ifmultiaddr *ifma;
1979         int i;
1980
1981         /* Route incoming packets for our MAC address to Port 0 (host). */
1982         /* For simplicity, keep this entry at table index 0 in the ALE. */
1983         if_addr_rlock(ifp);
1984         mac = LLADDR((struct sockaddr_dl *)ifp->if_addr->ifa_addr);
1985         ale_entry[0] = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];
1986         ale_entry[1] = 0x10 << 24 | mac[0] << 8 | mac[1]; /* addr entry + mac */
1987         ale_entry[2] = 0; /* port = 0 */
1988         cpsw_ale_write_entry(sc, 0, ale_entry);
1989
1990         /* Set outgoing MAC Address for Ports 1 and 2. */
1991         for (i = 1; i < 3; ++i) {
1992                 cpsw_write_4(sc, CPSW_PORT_P_SA_HI(i),
1993                     mac[3] << 24 | mac[2] << 16 | mac[1] << 8 | mac[0]);
1994                 cpsw_write_4(sc, CPSW_PORT_P_SA_LO(i),
1995                     mac[5] << 8 | mac[4]);
1996         }
1997         if_addr_runlock(ifp);
1998
1999         /* Keep the broadcast address at table entry 1. */
2000         ale_entry[0] = 0xffffffff; /* Lower 32 bits of MAC */
2001         ale_entry[1] = 0xd000ffff; /* FW (3 << 30), Addr entry (1 << 24), upper 16 bits of Mac */ 
2002         ale_entry[2] = 0x0000001c; /* Forward to all ports */
2003         cpsw_ale_write_entry(sc, 1, ale_entry);
2004
2005         /* SIOCDELMULTI doesn't specify the particular address
2006            being removed, so we have to remove all and rebuild. */
2007         if (purge)
2008                 cpsw_ale_remove_all_mc_entries(sc);
2009
2010         /* Set other multicast addrs desired. */
2011         if_maddr_rlock(ifp);
2012         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2013                 if (ifma->ifma_addr->sa_family != AF_LINK)
2014                         continue;
2015                 cpsw_ale_mc_entry_set(sc, 7,
2016                     LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
2017         }
2018         if_maddr_runlock(ifp);
2019
2020         return (0);
2021 }
2022
2023 /*
2024  *
2025  * Statistics and Sysctls.
2026  *
2027  */
2028
2029 #if 0
2030 static void
2031 cpsw_stats_dump(struct cpsw_softc *sc)
2032 {
2033         int i;
2034         uint32_t r;
2035
2036         for (i = 0; i < CPSW_SYSCTL_COUNT; ++i) {
2037                 r = cpsw_read_4(sc, CPSW_STATS_OFFSET +
2038                     cpsw_stat_sysctls[i].reg);
2039                 CPSW_DEBUGF(("%s: %ju + %u = %ju", cpsw_stat_sysctls[i].oid,
2040                              (intmax_t)sc->shadow_stats[i], r,
2041                              (intmax_t)sc->shadow_stats[i] + r));
2042         }
2043 }
2044 #endif
2045
2046 static void
2047 cpsw_stats_collect(struct cpsw_softc *sc)
2048 {
2049         int i;
2050         uint32_t r;
2051
2052         CPSW_DEBUGF(("Controller shadow statistics updated."));
2053
2054         for (i = 0; i < CPSW_SYSCTL_COUNT; ++i) {
2055                 r = cpsw_read_4(sc, CPSW_STATS_OFFSET +
2056                     cpsw_stat_sysctls[i].reg);
2057                 sc->shadow_stats[i] += r;
2058                 cpsw_write_4(sc, CPSW_STATS_OFFSET + cpsw_stat_sysctls[i].reg, r);
2059         }
2060 }
2061
2062 static int
2063 cpsw_stats_sysctl(SYSCTL_HANDLER_ARGS)
2064 {
2065         struct cpsw_softc *sc;
2066         struct cpsw_stat *stat;
2067         uint64_t result;
2068
2069         sc = (struct cpsw_softc *)arg1;
2070         stat = &cpsw_stat_sysctls[oidp->oid_number];
2071         result = sc->shadow_stats[oidp->oid_number];
2072         result += cpsw_read_4(sc, CPSW_STATS_OFFSET + stat->reg);
2073         return (sysctl_handle_64(oidp, &result, 0, req));
2074 }
2075
2076 static int
2077 cpsw_stat_attached(SYSCTL_HANDLER_ARGS)
2078 {
2079         struct cpsw_softc *sc;
2080         struct bintime t;
2081         unsigned result;
2082
2083         sc = (struct cpsw_softc *)arg1;
2084         getbinuptime(&t);
2085         bintime_sub(&t, &sc->attach_uptime);
2086         result = t.sec;
2087         return (sysctl_handle_int(oidp, &result, 0, req));
2088 }
2089
2090 static int
2091 cpsw_stat_uptime(SYSCTL_HANDLER_ARGS)
2092 {
2093         struct cpsw_softc *sc;
2094         struct bintime t;
2095         unsigned result;
2096
2097         sc = (struct cpsw_softc *)arg1;
2098         if (sc->ifp->if_drv_flags & IFF_DRV_RUNNING) {
2099                 getbinuptime(&t);
2100                 bintime_sub(&t, &sc->init_uptime);
2101                 result = t.sec;
2102         } else
2103                 result = 0;
2104         return (sysctl_handle_int(oidp, &result, 0, req));
2105 }
2106
2107 static void
2108 cpsw_add_queue_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *node, struct cpsw_queue *queue)
2109 {
2110         struct sysctl_oid_list *parent;
2111
2112         parent = SYSCTL_CHILDREN(node);
2113         SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "totalBuffers",
2114             CTLFLAG_RD, &queue->queue_slots, 0,
2115             "Total buffers currently assigned to this queue");
2116         SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "activeBuffers",
2117             CTLFLAG_RD, &queue->active_queue_len, 0,
2118             "Buffers currently registered with hardware controller");
2119         SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "maxActiveBuffers",
2120             CTLFLAG_RD, &queue->max_active_queue_len, 0,
2121             "Max value of activeBuffers since last driver reset");
2122         SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "availBuffers",
2123             CTLFLAG_RD, &queue->avail_queue_len, 0,
2124             "Buffers allocated to this queue but not currently "
2125             "registered with hardware controller");
2126         SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "maxAvailBuffers",
2127             CTLFLAG_RD, &queue->max_avail_queue_len, 0,
2128             "Max value of availBuffers since last driver reset");
2129         SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "totalEnqueued",
2130             CTLFLAG_RD, &queue->queue_adds, 0,
2131             "Total buffers added to queue");
2132         SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "totalDequeued",
2133             CTLFLAG_RD, &queue->queue_removes, 0,
2134             "Total buffers removed from queue");
2135         SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "longestChain",
2136             CTLFLAG_RD, &queue->longest_chain, 0,
2137             "Max buffers used for a single packet");
2138 }
2139
2140 static void
2141 cpsw_add_watchdog_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *node, struct cpsw_softc *sc)
2142 {
2143         struct sysctl_oid_list *parent;
2144
2145         parent = SYSCTL_CHILDREN(node);
2146         SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "resets",
2147             CTLFLAG_RD, &sc->watchdog.resets, 0,
2148             "Total number of watchdog resets");
2149 }
2150
2151 static void
2152 cpsw_add_sysctls(struct cpsw_softc *sc)
2153 {
2154         struct sysctl_ctx_list *ctx;
2155         struct sysctl_oid *stats_node, *queue_node, *node;
2156         struct sysctl_oid_list *parent, *stats_parent, *queue_parent;
2157         int i;
2158
2159         ctx = device_get_sysctl_ctx(sc->dev);
2160         parent = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
2161
2162         SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, "attachedSecs",
2163             CTLTYPE_UINT | CTLFLAG_RD, sc, 0, cpsw_stat_attached, "IU",
2164             "Time since driver attach");
2165
2166         SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, "uptime",
2167             CTLTYPE_UINT | CTLFLAG_RD, sc, 0, cpsw_stat_uptime, "IU",
2168             "Seconds since driver init");
2169
2170         stats_node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats",
2171                                      CTLFLAG_RD, NULL, "CPSW Statistics");
2172         stats_parent = SYSCTL_CHILDREN(stats_node);
2173         for (i = 0; i < CPSW_SYSCTL_COUNT; ++i) {
2174                 SYSCTL_ADD_PROC(ctx, stats_parent, i,
2175                                 cpsw_stat_sysctls[i].oid,
2176                                 CTLTYPE_U64 | CTLFLAG_RD, sc, 0,
2177                                 cpsw_stats_sysctl, "IU",
2178                                 cpsw_stat_sysctls[i].oid);
2179         }
2180
2181         queue_node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "queue",
2182             CTLFLAG_RD, NULL, "CPSW Queue Statistics");
2183         queue_parent = SYSCTL_CHILDREN(queue_node);
2184
2185         node = SYSCTL_ADD_NODE(ctx, queue_parent, OID_AUTO, "tx",
2186             CTLFLAG_RD, NULL, "TX Queue Statistics");
2187         cpsw_add_queue_sysctls(ctx, node, &sc->tx);
2188
2189         node = SYSCTL_ADD_NODE(ctx, queue_parent, OID_AUTO, "rx",
2190             CTLFLAG_RD, NULL, "RX Queue Statistics");
2191         cpsw_add_queue_sysctls(ctx, node, &sc->rx);
2192
2193         node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "watchdog",
2194             CTLFLAG_RD, NULL, "Watchdog Statistics");
2195         cpsw_add_watchdog_sysctls(ctx, node, sc);
2196 }
2197