]> CyberLeo.Net >> Repos - FreeBSD/releng/10.2.git/blob - sys/cddl/contrib/opensolaris/uts/common/fs/zfs/vdev.c
- Copy stable/10@285827 to releng/10.2 in preparation for 10.2-RC1
[FreeBSD/releng/10.2.git] / sys / cddl / contrib / opensolaris / uts / common / fs / zfs / vdev.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
25  * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
26  * Copyright 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
27  */
28
29 #include <sys/zfs_context.h>
30 #include <sys/fm/fs/zfs.h>
31 #include <sys/spa.h>
32 #include <sys/spa_impl.h>
33 #include <sys/dmu.h>
34 #include <sys/dmu_tx.h>
35 #include <sys/vdev_impl.h>
36 #include <sys/uberblock_impl.h>
37 #include <sys/metaslab.h>
38 #include <sys/metaslab_impl.h>
39 #include <sys/space_map.h>
40 #include <sys/space_reftree.h>
41 #include <sys/zio.h>
42 #include <sys/zap.h>
43 #include <sys/fs/zfs.h>
44 #include <sys/arc.h>
45 #include <sys/zil.h>
46 #include <sys/dsl_scan.h>
47 #include <sys/trim_map.h>
48
49 SYSCTL_DECL(_vfs_zfs);
50 SYSCTL_NODE(_vfs_zfs, OID_AUTO, vdev, CTLFLAG_RW, 0, "ZFS VDEV");
51
52 /*
53  * Virtual device management.
54  */
55
56 /*
57  * The limit for ZFS to automatically increase a top-level vdev's ashift
58  * from logical ashift to physical ashift.
59  *
60  * Example: one or more 512B emulation child vdevs
61  *          child->vdev_ashift = 9 (512 bytes)
62  *          child->vdev_physical_ashift = 12 (4096 bytes)
63  *          zfs_max_auto_ashift = 11 (2048 bytes)
64  *          zfs_min_auto_ashift = 9 (512 bytes)
65  *
66  * On pool creation or the addition of a new top-level vdev, ZFS will
67  * increase the ashift of the top-level vdev to 2048 as limited by
68  * zfs_max_auto_ashift.
69  *
70  * Example: one or more 512B emulation child vdevs
71  *          child->vdev_ashift = 9 (512 bytes)
72  *          child->vdev_physical_ashift = 12 (4096 bytes)
73  *          zfs_max_auto_ashift = 13 (8192 bytes)
74  *          zfs_min_auto_ashift = 9 (512 bytes)
75  *
76  * On pool creation or the addition of a new top-level vdev, ZFS will
77  * increase the ashift of the top-level vdev to 4096 to match the
78  * max vdev_physical_ashift.
79  *
80  * Example: one or more 512B emulation child vdevs
81  *          child->vdev_ashift = 9 (512 bytes)
82  *          child->vdev_physical_ashift = 9 (512 bytes)
83  *          zfs_max_auto_ashift = 13 (8192 bytes)
84  *          zfs_min_auto_ashift = 12 (4096 bytes)
85  *
86  * On pool creation or the addition of a new top-level vdev, ZFS will
87  * increase the ashift of the top-level vdev to 4096 to match the
88  * zfs_min_auto_ashift.
89  */
90 static uint64_t zfs_max_auto_ashift = SPA_MAXASHIFT;
91 static uint64_t zfs_min_auto_ashift = SPA_MINASHIFT;
92
93 static int
94 sysctl_vfs_zfs_max_auto_ashift(SYSCTL_HANDLER_ARGS)
95 {
96         uint64_t val;
97         int err;
98
99         val = zfs_max_auto_ashift;
100         err = sysctl_handle_64(oidp, &val, 0, req);
101         if (err != 0 || req->newptr == NULL)
102                 return (err);
103
104         if (val > SPA_MAXASHIFT || val < zfs_min_auto_ashift)
105                 return (EINVAL);
106
107         zfs_max_auto_ashift = val;
108
109         return (0);
110 }
111 SYSCTL_PROC(_vfs_zfs, OID_AUTO, max_auto_ashift,
112     CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
113     sysctl_vfs_zfs_max_auto_ashift, "QU",
114     "Max ashift used when optimising for logical -> physical sectors size on "
115     "new top-level vdevs.");
116
117 static int
118 sysctl_vfs_zfs_min_auto_ashift(SYSCTL_HANDLER_ARGS)
119 {
120         uint64_t val;
121         int err;
122
123         val = zfs_min_auto_ashift;
124         err = sysctl_handle_64(oidp, &val, 0, req);
125         if (err != 0 || req->newptr == NULL)
126                 return (err);
127
128         if (val < SPA_MINASHIFT || val > zfs_max_auto_ashift)
129                 return (EINVAL);
130
131         zfs_min_auto_ashift = val;
132
133         return (0);
134 }
135 SYSCTL_PROC(_vfs_zfs, OID_AUTO, min_auto_ashift,
136     CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
137     sysctl_vfs_zfs_min_auto_ashift, "QU",
138     "Min ashift used when creating new top-level vdevs.");
139
140 static vdev_ops_t *vdev_ops_table[] = {
141         &vdev_root_ops,
142         &vdev_raidz_ops,
143         &vdev_mirror_ops,
144         &vdev_replacing_ops,
145         &vdev_spare_ops,
146 #ifdef _KERNEL
147         &vdev_geom_ops,
148 #else
149         &vdev_disk_ops,
150 #endif
151         &vdev_file_ops,
152         &vdev_missing_ops,
153         &vdev_hole_ops,
154         NULL
155 };
156
157
158 /*
159  * When a vdev is added, it will be divided into approximately (but no
160  * more than) this number of metaslabs.
161  */
162 int metaslabs_per_vdev = 200;
163 SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, metaslabs_per_vdev, CTLFLAG_RDTUN,
164     &metaslabs_per_vdev, 0,
165     "When a vdev is added, how many metaslabs the vdev should be divided into");
166
167 /*
168  * Given a vdev type, return the appropriate ops vector.
169  */
170 static vdev_ops_t *
171 vdev_getops(const char *type)
172 {
173         vdev_ops_t *ops, **opspp;
174
175         for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
176                 if (strcmp(ops->vdev_op_type, type) == 0)
177                         break;
178
179         return (ops);
180 }
181
182 /*
183  * Default asize function: return the MAX of psize with the asize of
184  * all children.  This is what's used by anything other than RAID-Z.
185  */
186 uint64_t
187 vdev_default_asize(vdev_t *vd, uint64_t psize)
188 {
189         uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
190         uint64_t csize;
191
192         for (int c = 0; c < vd->vdev_children; c++) {
193                 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
194                 asize = MAX(asize, csize);
195         }
196
197         return (asize);
198 }
199
200 /*
201  * Get the minimum allocatable size. We define the allocatable size as
202  * the vdev's asize rounded to the nearest metaslab. This allows us to
203  * replace or attach devices which don't have the same physical size but
204  * can still satisfy the same number of allocations.
205  */
206 uint64_t
207 vdev_get_min_asize(vdev_t *vd)
208 {
209         vdev_t *pvd = vd->vdev_parent;
210
211         /*
212          * If our parent is NULL (inactive spare or cache) or is the root,
213          * just return our own asize.
214          */
215         if (pvd == NULL)
216                 return (vd->vdev_asize);
217
218         /*
219          * The top-level vdev just returns the allocatable size rounded
220          * to the nearest metaslab.
221          */
222         if (vd == vd->vdev_top)
223                 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
224
225         /*
226          * The allocatable space for a raidz vdev is N * sizeof(smallest child),
227          * so each child must provide at least 1/Nth of its asize.
228          */
229         if (pvd->vdev_ops == &vdev_raidz_ops)
230                 return (pvd->vdev_min_asize / pvd->vdev_children);
231
232         return (pvd->vdev_min_asize);
233 }
234
235 void
236 vdev_set_min_asize(vdev_t *vd)
237 {
238         vd->vdev_min_asize = vdev_get_min_asize(vd);
239
240         for (int c = 0; c < vd->vdev_children; c++)
241                 vdev_set_min_asize(vd->vdev_child[c]);
242 }
243
244 vdev_t *
245 vdev_lookup_top(spa_t *spa, uint64_t vdev)
246 {
247         vdev_t *rvd = spa->spa_root_vdev;
248
249         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
250
251         if (vdev < rvd->vdev_children) {
252                 ASSERT(rvd->vdev_child[vdev] != NULL);
253                 return (rvd->vdev_child[vdev]);
254         }
255
256         return (NULL);
257 }
258
259 vdev_t *
260 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
261 {
262         vdev_t *mvd;
263
264         if (vd->vdev_guid == guid)
265                 return (vd);
266
267         for (int c = 0; c < vd->vdev_children; c++)
268                 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
269                     NULL)
270                         return (mvd);
271
272         return (NULL);
273 }
274
275 void
276 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
277 {
278         size_t oldsize, newsize;
279         uint64_t id = cvd->vdev_id;
280         vdev_t **newchild;
281         spa_t *spa = cvd->vdev_spa;
282
283         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
284         ASSERT(cvd->vdev_parent == NULL);
285
286         cvd->vdev_parent = pvd;
287
288         if (pvd == NULL)
289                 return;
290
291         ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
292
293         oldsize = pvd->vdev_children * sizeof (vdev_t *);
294         pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
295         newsize = pvd->vdev_children * sizeof (vdev_t *);
296
297         newchild = kmem_zalloc(newsize, KM_SLEEP);
298         if (pvd->vdev_child != NULL) {
299                 bcopy(pvd->vdev_child, newchild, oldsize);
300                 kmem_free(pvd->vdev_child, oldsize);
301         }
302
303         pvd->vdev_child = newchild;
304         pvd->vdev_child[id] = cvd;
305
306         cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
307         ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
308
309         /*
310          * Walk up all ancestors to update guid sum.
311          */
312         for (; pvd != NULL; pvd = pvd->vdev_parent)
313                 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
314 }
315
316 void
317 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
318 {
319         int c;
320         uint_t id = cvd->vdev_id;
321
322         ASSERT(cvd->vdev_parent == pvd);
323
324         if (pvd == NULL)
325                 return;
326
327         ASSERT(id < pvd->vdev_children);
328         ASSERT(pvd->vdev_child[id] == cvd);
329
330         pvd->vdev_child[id] = NULL;
331         cvd->vdev_parent = NULL;
332
333         for (c = 0; c < pvd->vdev_children; c++)
334                 if (pvd->vdev_child[c])
335                         break;
336
337         if (c == pvd->vdev_children) {
338                 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
339                 pvd->vdev_child = NULL;
340                 pvd->vdev_children = 0;
341         }
342
343         /*
344          * Walk up all ancestors to update guid sum.
345          */
346         for (; pvd != NULL; pvd = pvd->vdev_parent)
347                 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
348 }
349
350 /*
351  * Remove any holes in the child array.
352  */
353 void
354 vdev_compact_children(vdev_t *pvd)
355 {
356         vdev_t **newchild, *cvd;
357         int oldc = pvd->vdev_children;
358         int newc;
359
360         ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
361
362         for (int c = newc = 0; c < oldc; c++)
363                 if (pvd->vdev_child[c])
364                         newc++;
365
366         newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
367
368         for (int c = newc = 0; c < oldc; c++) {
369                 if ((cvd = pvd->vdev_child[c]) != NULL) {
370                         newchild[newc] = cvd;
371                         cvd->vdev_id = newc++;
372                 }
373         }
374
375         kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
376         pvd->vdev_child = newchild;
377         pvd->vdev_children = newc;
378 }
379
380 /*
381  * Allocate and minimally initialize a vdev_t.
382  */
383 vdev_t *
384 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
385 {
386         vdev_t *vd;
387
388         vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
389
390         if (spa->spa_root_vdev == NULL) {
391                 ASSERT(ops == &vdev_root_ops);
392                 spa->spa_root_vdev = vd;
393                 spa->spa_load_guid = spa_generate_guid(NULL);
394         }
395
396         if (guid == 0 && ops != &vdev_hole_ops) {
397                 if (spa->spa_root_vdev == vd) {
398                         /*
399                          * The root vdev's guid will also be the pool guid,
400                          * which must be unique among all pools.
401                          */
402                         guid = spa_generate_guid(NULL);
403                 } else {
404                         /*
405                          * Any other vdev's guid must be unique within the pool.
406                          */
407                         guid = spa_generate_guid(spa);
408                 }
409                 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
410         }
411
412         vd->vdev_spa = spa;
413         vd->vdev_id = id;
414         vd->vdev_guid = guid;
415         vd->vdev_guid_sum = guid;
416         vd->vdev_ops = ops;
417         vd->vdev_state = VDEV_STATE_CLOSED;
418         vd->vdev_ishole = (ops == &vdev_hole_ops);
419
420         mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
421         mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
422         mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
423         for (int t = 0; t < DTL_TYPES; t++) {
424                 vd->vdev_dtl[t] = range_tree_create(NULL, NULL,
425                     &vd->vdev_dtl_lock);
426         }
427         txg_list_create(&vd->vdev_ms_list,
428             offsetof(struct metaslab, ms_txg_node));
429         txg_list_create(&vd->vdev_dtl_list,
430             offsetof(struct vdev, vdev_dtl_node));
431         vd->vdev_stat.vs_timestamp = gethrtime();
432         vdev_queue_init(vd);
433         vdev_cache_init(vd);
434
435         return (vd);
436 }
437
438 /*
439  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
440  * creating a new vdev or loading an existing one - the behavior is slightly
441  * different for each case.
442  */
443 int
444 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
445     int alloctype)
446 {
447         vdev_ops_t *ops;
448         char *type;
449         uint64_t guid = 0, islog, nparity;
450         vdev_t *vd;
451
452         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
453
454         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
455                 return (SET_ERROR(EINVAL));
456
457         if ((ops = vdev_getops(type)) == NULL)
458                 return (SET_ERROR(EINVAL));
459
460         /*
461          * If this is a load, get the vdev guid from the nvlist.
462          * Otherwise, vdev_alloc_common() will generate one for us.
463          */
464         if (alloctype == VDEV_ALLOC_LOAD) {
465                 uint64_t label_id;
466
467                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
468                     label_id != id)
469                         return (SET_ERROR(EINVAL));
470
471                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
472                         return (SET_ERROR(EINVAL));
473         } else if (alloctype == VDEV_ALLOC_SPARE) {
474                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
475                         return (SET_ERROR(EINVAL));
476         } else if (alloctype == VDEV_ALLOC_L2CACHE) {
477                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
478                         return (SET_ERROR(EINVAL));
479         } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
480                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
481                         return (SET_ERROR(EINVAL));
482         }
483
484         /*
485          * The first allocated vdev must be of type 'root'.
486          */
487         if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
488                 return (SET_ERROR(EINVAL));
489
490         /*
491          * Determine whether we're a log vdev.
492          */
493         islog = 0;
494         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
495         if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
496                 return (SET_ERROR(ENOTSUP));
497
498         if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
499                 return (SET_ERROR(ENOTSUP));
500
501         /*
502          * Set the nparity property for RAID-Z vdevs.
503          */
504         nparity = -1ULL;
505         if (ops == &vdev_raidz_ops) {
506                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
507                     &nparity) == 0) {
508                         if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
509                                 return (SET_ERROR(EINVAL));
510                         /*
511                          * Previous versions could only support 1 or 2 parity
512                          * device.
513                          */
514                         if (nparity > 1 &&
515                             spa_version(spa) < SPA_VERSION_RAIDZ2)
516                                 return (SET_ERROR(ENOTSUP));
517                         if (nparity > 2 &&
518                             spa_version(spa) < SPA_VERSION_RAIDZ3)
519                                 return (SET_ERROR(ENOTSUP));
520                 } else {
521                         /*
522                          * We require the parity to be specified for SPAs that
523                          * support multiple parity levels.
524                          */
525                         if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
526                                 return (SET_ERROR(EINVAL));
527                         /*
528                          * Otherwise, we default to 1 parity device for RAID-Z.
529                          */
530                         nparity = 1;
531                 }
532         } else {
533                 nparity = 0;
534         }
535         ASSERT(nparity != -1ULL);
536
537         vd = vdev_alloc_common(spa, id, guid, ops);
538
539         vd->vdev_islog = islog;
540         vd->vdev_nparity = nparity;
541
542         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
543                 vd->vdev_path = spa_strdup(vd->vdev_path);
544         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
545                 vd->vdev_devid = spa_strdup(vd->vdev_devid);
546         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
547             &vd->vdev_physpath) == 0)
548                 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
549         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
550                 vd->vdev_fru = spa_strdup(vd->vdev_fru);
551
552         /*
553          * Set the whole_disk property.  If it's not specified, leave the value
554          * as -1.
555          */
556         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
557             &vd->vdev_wholedisk) != 0)
558                 vd->vdev_wholedisk = -1ULL;
559
560         /*
561          * Look for the 'not present' flag.  This will only be set if the device
562          * was not present at the time of import.
563          */
564         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
565             &vd->vdev_not_present);
566
567         /*
568          * Get the alignment requirement.
569          */
570         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
571
572         /*
573          * Retrieve the vdev creation time.
574          */
575         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
576             &vd->vdev_crtxg);
577
578         /*
579          * If we're a top-level vdev, try to load the allocation parameters.
580          */
581         if (parent && !parent->vdev_parent &&
582             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
583                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
584                     &vd->vdev_ms_array);
585                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
586                     &vd->vdev_ms_shift);
587                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
588                     &vd->vdev_asize);
589                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
590                     &vd->vdev_removing);
591         }
592
593         if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
594                 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
595                     alloctype == VDEV_ALLOC_ADD ||
596                     alloctype == VDEV_ALLOC_SPLIT ||
597                     alloctype == VDEV_ALLOC_ROOTPOOL);
598                 vd->vdev_mg = metaslab_group_create(islog ?
599                     spa_log_class(spa) : spa_normal_class(spa), vd);
600         }
601
602         /*
603          * If we're a leaf vdev, try to load the DTL object and other state.
604          */
605         if (vd->vdev_ops->vdev_op_leaf &&
606             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
607             alloctype == VDEV_ALLOC_ROOTPOOL)) {
608                 if (alloctype == VDEV_ALLOC_LOAD) {
609                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
610                             &vd->vdev_dtl_object);
611                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
612                             &vd->vdev_unspare);
613                 }
614
615                 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
616                         uint64_t spare = 0;
617
618                         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
619                             &spare) == 0 && spare)
620                                 spa_spare_add(vd);
621                 }
622
623                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
624                     &vd->vdev_offline);
625
626                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
627                     &vd->vdev_resilver_txg);
628
629                 /*
630                  * When importing a pool, we want to ignore the persistent fault
631                  * state, as the diagnosis made on another system may not be
632                  * valid in the current context.  Local vdevs will
633                  * remain in the faulted state.
634                  */
635                 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
636                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
637                             &vd->vdev_faulted);
638                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
639                             &vd->vdev_degraded);
640                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
641                             &vd->vdev_removed);
642
643                         if (vd->vdev_faulted || vd->vdev_degraded) {
644                                 char *aux;
645
646                                 vd->vdev_label_aux =
647                                     VDEV_AUX_ERR_EXCEEDED;
648                                 if (nvlist_lookup_string(nv,
649                                     ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
650                                     strcmp(aux, "external") == 0)
651                                         vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
652                         }
653                 }
654         }
655
656         /*
657          * Add ourselves to the parent's list of children.
658          */
659         vdev_add_child(parent, vd);
660
661         *vdp = vd;
662
663         return (0);
664 }
665
666 void
667 vdev_free(vdev_t *vd)
668 {
669         spa_t *spa = vd->vdev_spa;
670
671         /*
672          * vdev_free() implies closing the vdev first.  This is simpler than
673          * trying to ensure complicated semantics for all callers.
674          */
675         vdev_close(vd);
676
677         ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
678         ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
679
680         /*
681          * Free all children.
682          */
683         for (int c = 0; c < vd->vdev_children; c++)
684                 vdev_free(vd->vdev_child[c]);
685
686         ASSERT(vd->vdev_child == NULL);
687         ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
688
689         /*
690          * Discard allocation state.
691          */
692         if (vd->vdev_mg != NULL) {
693                 vdev_metaslab_fini(vd);
694                 metaslab_group_destroy(vd->vdev_mg);
695         }
696
697         ASSERT0(vd->vdev_stat.vs_space);
698         ASSERT0(vd->vdev_stat.vs_dspace);
699         ASSERT0(vd->vdev_stat.vs_alloc);
700
701         /*
702          * Remove this vdev from its parent's child list.
703          */
704         vdev_remove_child(vd->vdev_parent, vd);
705
706         ASSERT(vd->vdev_parent == NULL);
707
708         /*
709          * Clean up vdev structure.
710          */
711         vdev_queue_fini(vd);
712         vdev_cache_fini(vd);
713
714         if (vd->vdev_path)
715                 spa_strfree(vd->vdev_path);
716         if (vd->vdev_devid)
717                 spa_strfree(vd->vdev_devid);
718         if (vd->vdev_physpath)
719                 spa_strfree(vd->vdev_physpath);
720         if (vd->vdev_fru)
721                 spa_strfree(vd->vdev_fru);
722
723         if (vd->vdev_isspare)
724                 spa_spare_remove(vd);
725         if (vd->vdev_isl2cache)
726                 spa_l2cache_remove(vd);
727
728         txg_list_destroy(&vd->vdev_ms_list);
729         txg_list_destroy(&vd->vdev_dtl_list);
730
731         mutex_enter(&vd->vdev_dtl_lock);
732         space_map_close(vd->vdev_dtl_sm);
733         for (int t = 0; t < DTL_TYPES; t++) {
734                 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
735                 range_tree_destroy(vd->vdev_dtl[t]);
736         }
737         mutex_exit(&vd->vdev_dtl_lock);
738
739         mutex_destroy(&vd->vdev_dtl_lock);
740         mutex_destroy(&vd->vdev_stat_lock);
741         mutex_destroy(&vd->vdev_probe_lock);
742
743         if (vd == spa->spa_root_vdev)
744                 spa->spa_root_vdev = NULL;
745
746         kmem_free(vd, sizeof (vdev_t));
747 }
748
749 /*
750  * Transfer top-level vdev state from svd to tvd.
751  */
752 static void
753 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
754 {
755         spa_t *spa = svd->vdev_spa;
756         metaslab_t *msp;
757         vdev_t *vd;
758         int t;
759
760         ASSERT(tvd == tvd->vdev_top);
761
762         tvd->vdev_ms_array = svd->vdev_ms_array;
763         tvd->vdev_ms_shift = svd->vdev_ms_shift;
764         tvd->vdev_ms_count = svd->vdev_ms_count;
765
766         svd->vdev_ms_array = 0;
767         svd->vdev_ms_shift = 0;
768         svd->vdev_ms_count = 0;
769
770         if (tvd->vdev_mg)
771                 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
772         tvd->vdev_mg = svd->vdev_mg;
773         tvd->vdev_ms = svd->vdev_ms;
774
775         svd->vdev_mg = NULL;
776         svd->vdev_ms = NULL;
777
778         if (tvd->vdev_mg != NULL)
779                 tvd->vdev_mg->mg_vd = tvd;
780
781         tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
782         tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
783         tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
784
785         svd->vdev_stat.vs_alloc = 0;
786         svd->vdev_stat.vs_space = 0;
787         svd->vdev_stat.vs_dspace = 0;
788
789         for (t = 0; t < TXG_SIZE; t++) {
790                 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
791                         (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
792                 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
793                         (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
794                 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
795                         (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
796         }
797
798         if (list_link_active(&svd->vdev_config_dirty_node)) {
799                 vdev_config_clean(svd);
800                 vdev_config_dirty(tvd);
801         }
802
803         if (list_link_active(&svd->vdev_state_dirty_node)) {
804                 vdev_state_clean(svd);
805                 vdev_state_dirty(tvd);
806         }
807
808         tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
809         svd->vdev_deflate_ratio = 0;
810
811         tvd->vdev_islog = svd->vdev_islog;
812         svd->vdev_islog = 0;
813 }
814
815 static void
816 vdev_top_update(vdev_t *tvd, vdev_t *vd)
817 {
818         if (vd == NULL)
819                 return;
820
821         vd->vdev_top = tvd;
822
823         for (int c = 0; c < vd->vdev_children; c++)
824                 vdev_top_update(tvd, vd->vdev_child[c]);
825 }
826
827 /*
828  * Add a mirror/replacing vdev above an existing vdev.
829  */
830 vdev_t *
831 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
832 {
833         spa_t *spa = cvd->vdev_spa;
834         vdev_t *pvd = cvd->vdev_parent;
835         vdev_t *mvd;
836
837         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
838
839         mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
840
841         mvd->vdev_asize = cvd->vdev_asize;
842         mvd->vdev_min_asize = cvd->vdev_min_asize;
843         mvd->vdev_max_asize = cvd->vdev_max_asize;
844         mvd->vdev_ashift = cvd->vdev_ashift;
845         mvd->vdev_logical_ashift = cvd->vdev_logical_ashift;
846         mvd->vdev_physical_ashift = cvd->vdev_physical_ashift;
847         mvd->vdev_state = cvd->vdev_state;
848         mvd->vdev_crtxg = cvd->vdev_crtxg;
849
850         vdev_remove_child(pvd, cvd);
851         vdev_add_child(pvd, mvd);
852         cvd->vdev_id = mvd->vdev_children;
853         vdev_add_child(mvd, cvd);
854         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
855
856         if (mvd == mvd->vdev_top)
857                 vdev_top_transfer(cvd, mvd);
858
859         return (mvd);
860 }
861
862 /*
863  * Remove a 1-way mirror/replacing vdev from the tree.
864  */
865 void
866 vdev_remove_parent(vdev_t *cvd)
867 {
868         vdev_t *mvd = cvd->vdev_parent;
869         vdev_t *pvd = mvd->vdev_parent;
870
871         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
872
873         ASSERT(mvd->vdev_children == 1);
874         ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
875             mvd->vdev_ops == &vdev_replacing_ops ||
876             mvd->vdev_ops == &vdev_spare_ops);
877         cvd->vdev_ashift = mvd->vdev_ashift;
878         cvd->vdev_logical_ashift = mvd->vdev_logical_ashift;
879         cvd->vdev_physical_ashift = mvd->vdev_physical_ashift;
880
881         vdev_remove_child(mvd, cvd);
882         vdev_remove_child(pvd, mvd);
883
884         /*
885          * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
886          * Otherwise, we could have detached an offline device, and when we
887          * go to import the pool we'll think we have two top-level vdevs,
888          * instead of a different version of the same top-level vdev.
889          */
890         if (mvd->vdev_top == mvd) {
891                 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
892                 cvd->vdev_orig_guid = cvd->vdev_guid;
893                 cvd->vdev_guid += guid_delta;
894                 cvd->vdev_guid_sum += guid_delta;
895         }
896         cvd->vdev_id = mvd->vdev_id;
897         vdev_add_child(pvd, cvd);
898         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
899
900         if (cvd == cvd->vdev_top)
901                 vdev_top_transfer(mvd, cvd);
902
903         ASSERT(mvd->vdev_children == 0);
904         vdev_free(mvd);
905 }
906
907 int
908 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
909 {
910         spa_t *spa = vd->vdev_spa;
911         objset_t *mos = spa->spa_meta_objset;
912         uint64_t m;
913         uint64_t oldc = vd->vdev_ms_count;
914         uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
915         metaslab_t **mspp;
916         int error;
917
918         ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
919
920         /*
921          * This vdev is not being allocated from yet or is a hole.
922          */
923         if (vd->vdev_ms_shift == 0)
924                 return (0);
925
926         ASSERT(!vd->vdev_ishole);
927
928         /*
929          * Compute the raidz-deflation ratio.  Note, we hard-code
930          * in 128k (1 << 17) because it is the "typical" blocksize.
931          * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
932          * otherwise it would inconsistently account for existing bp's.
933          */
934         vd->vdev_deflate_ratio = (1 << 17) /
935             (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
936
937         ASSERT(oldc <= newc);
938
939         mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
940
941         if (oldc != 0) {
942                 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
943                 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
944         }
945
946         vd->vdev_ms = mspp;
947         vd->vdev_ms_count = newc;
948
949         for (m = oldc; m < newc; m++) {
950                 uint64_t object = 0;
951
952                 if (txg == 0) {
953                         error = dmu_read(mos, vd->vdev_ms_array,
954                             m * sizeof (uint64_t), sizeof (uint64_t), &object,
955                             DMU_READ_PREFETCH);
956                         if (error)
957                                 return (error);
958                 }
959
960                 error = metaslab_init(vd->vdev_mg, m, object, txg,
961                     &(vd->vdev_ms[m]));
962                 if (error)
963                         return (error);
964         }
965
966         if (txg == 0)
967                 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
968
969         /*
970          * If the vdev is being removed we don't activate
971          * the metaslabs since we want to ensure that no new
972          * allocations are performed on this device.
973          */
974         if (oldc == 0 && !vd->vdev_removing)
975                 metaslab_group_activate(vd->vdev_mg);
976
977         if (txg == 0)
978                 spa_config_exit(spa, SCL_ALLOC, FTAG);
979
980         return (0);
981 }
982
983 void
984 vdev_metaslab_fini(vdev_t *vd)
985 {
986         uint64_t m;
987         uint64_t count = vd->vdev_ms_count;
988
989         if (vd->vdev_ms != NULL) {
990                 metaslab_group_passivate(vd->vdev_mg);
991                 for (m = 0; m < count; m++) {
992                         metaslab_t *msp = vd->vdev_ms[m];
993
994                         if (msp != NULL)
995                                 metaslab_fini(msp);
996                 }
997                 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
998                 vd->vdev_ms = NULL;
999         }
1000 }
1001
1002 typedef struct vdev_probe_stats {
1003         boolean_t       vps_readable;
1004         boolean_t       vps_writeable;
1005         int             vps_flags;
1006 } vdev_probe_stats_t;
1007
1008 static void
1009 vdev_probe_done(zio_t *zio)
1010 {
1011         spa_t *spa = zio->io_spa;
1012         vdev_t *vd = zio->io_vd;
1013         vdev_probe_stats_t *vps = zio->io_private;
1014
1015         ASSERT(vd->vdev_probe_zio != NULL);
1016
1017         if (zio->io_type == ZIO_TYPE_READ) {
1018                 if (zio->io_error == 0)
1019                         vps->vps_readable = 1;
1020                 if (zio->io_error == 0 && spa_writeable(spa)) {
1021                         zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1022                             zio->io_offset, zio->io_size, zio->io_data,
1023                             ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1024                             ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1025                 } else {
1026                         zio_buf_free(zio->io_data, zio->io_size);
1027                 }
1028         } else if (zio->io_type == ZIO_TYPE_WRITE) {
1029                 if (zio->io_error == 0)
1030                         vps->vps_writeable = 1;
1031                 zio_buf_free(zio->io_data, zio->io_size);
1032         } else if (zio->io_type == ZIO_TYPE_NULL) {
1033                 zio_t *pio;
1034
1035                 vd->vdev_cant_read |= !vps->vps_readable;
1036                 vd->vdev_cant_write |= !vps->vps_writeable;
1037
1038                 if (vdev_readable(vd) &&
1039                     (vdev_writeable(vd) || !spa_writeable(spa))) {
1040                         zio->io_error = 0;
1041                 } else {
1042                         ASSERT(zio->io_error != 0);
1043                         zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1044                             spa, vd, NULL, 0, 0);
1045                         zio->io_error = SET_ERROR(ENXIO);
1046                 }
1047
1048                 mutex_enter(&vd->vdev_probe_lock);
1049                 ASSERT(vd->vdev_probe_zio == zio);
1050                 vd->vdev_probe_zio = NULL;
1051                 mutex_exit(&vd->vdev_probe_lock);
1052
1053                 while ((pio = zio_walk_parents(zio)) != NULL)
1054                         if (!vdev_accessible(vd, pio))
1055                                 pio->io_error = SET_ERROR(ENXIO);
1056
1057                 kmem_free(vps, sizeof (*vps));
1058         }
1059 }
1060
1061 /*
1062  * Determine whether this device is accessible.
1063  *
1064  * Read and write to several known locations: the pad regions of each
1065  * vdev label but the first, which we leave alone in case it contains
1066  * a VTOC.
1067  */
1068 zio_t *
1069 vdev_probe(vdev_t *vd, zio_t *zio)
1070 {
1071         spa_t *spa = vd->vdev_spa;
1072         vdev_probe_stats_t *vps = NULL;
1073         zio_t *pio;
1074
1075         ASSERT(vd->vdev_ops->vdev_op_leaf);
1076
1077         /*
1078          * Don't probe the probe.
1079          */
1080         if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1081                 return (NULL);
1082
1083         /*
1084          * To prevent 'probe storms' when a device fails, we create
1085          * just one probe i/o at a time.  All zios that want to probe
1086          * this vdev will become parents of the probe io.
1087          */
1088         mutex_enter(&vd->vdev_probe_lock);
1089
1090         if ((pio = vd->vdev_probe_zio) == NULL) {
1091                 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1092
1093                 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1094                     ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1095                     ZIO_FLAG_TRYHARD;
1096
1097                 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1098                         /*
1099                          * vdev_cant_read and vdev_cant_write can only
1100                          * transition from TRUE to FALSE when we have the
1101                          * SCL_ZIO lock as writer; otherwise they can only
1102                          * transition from FALSE to TRUE.  This ensures that
1103                          * any zio looking at these values can assume that
1104                          * failures persist for the life of the I/O.  That's
1105                          * important because when a device has intermittent
1106                          * connectivity problems, we want to ensure that
1107                          * they're ascribed to the device (ENXIO) and not
1108                          * the zio (EIO).
1109                          *
1110                          * Since we hold SCL_ZIO as writer here, clear both
1111                          * values so the probe can reevaluate from first
1112                          * principles.
1113                          */
1114                         vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1115                         vd->vdev_cant_read = B_FALSE;
1116                         vd->vdev_cant_write = B_FALSE;
1117                 }
1118
1119                 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1120                     vdev_probe_done, vps,
1121                     vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1122
1123                 /*
1124                  * We can't change the vdev state in this context, so we
1125                  * kick off an async task to do it on our behalf.
1126                  */
1127                 if (zio != NULL) {
1128                         vd->vdev_probe_wanted = B_TRUE;
1129                         spa_async_request(spa, SPA_ASYNC_PROBE);
1130                 }
1131         }
1132
1133         if (zio != NULL)
1134                 zio_add_child(zio, pio);
1135
1136         mutex_exit(&vd->vdev_probe_lock);
1137
1138         if (vps == NULL) {
1139                 ASSERT(zio != NULL);
1140                 return (NULL);
1141         }
1142
1143         for (int l = 1; l < VDEV_LABELS; l++) {
1144                 zio_nowait(zio_read_phys(pio, vd,
1145                     vdev_label_offset(vd->vdev_psize, l,
1146                     offsetof(vdev_label_t, vl_pad2)),
1147                     VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1148                     ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1149                     ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1150         }
1151
1152         if (zio == NULL)
1153                 return (pio);
1154
1155         zio_nowait(pio);
1156         return (NULL);
1157 }
1158
1159 static void
1160 vdev_open_child(void *arg)
1161 {
1162         vdev_t *vd = arg;
1163
1164         vd->vdev_open_thread = curthread;
1165         vd->vdev_open_error = vdev_open(vd);
1166         vd->vdev_open_thread = NULL;
1167 }
1168
1169 boolean_t
1170 vdev_uses_zvols(vdev_t *vd)
1171 {
1172         if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1173             strlen(ZVOL_DIR)) == 0)
1174                 return (B_TRUE);
1175         for (int c = 0; c < vd->vdev_children; c++)
1176                 if (vdev_uses_zvols(vd->vdev_child[c]))
1177                         return (B_TRUE);
1178         return (B_FALSE);
1179 }
1180
1181 void
1182 vdev_open_children(vdev_t *vd)
1183 {
1184         taskq_t *tq;
1185         int children = vd->vdev_children;
1186
1187         /*
1188          * in order to handle pools on top of zvols, do the opens
1189          * in a single thread so that the same thread holds the
1190          * spa_namespace_lock
1191          */
1192         if (B_TRUE || vdev_uses_zvols(vd)) {
1193                 for (int c = 0; c < children; c++)
1194                         vd->vdev_child[c]->vdev_open_error =
1195                             vdev_open(vd->vdev_child[c]);
1196                 return;
1197         }
1198         tq = taskq_create("vdev_open", children, minclsyspri,
1199             children, children, TASKQ_PREPOPULATE);
1200
1201         for (int c = 0; c < children; c++)
1202                 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1203                     TQ_SLEEP) != 0);
1204
1205         taskq_destroy(tq);
1206 }
1207
1208 /*
1209  * Prepare a virtual device for access.
1210  */
1211 int
1212 vdev_open(vdev_t *vd)
1213 {
1214         spa_t *spa = vd->vdev_spa;
1215         int error;
1216         uint64_t osize = 0;
1217         uint64_t max_osize = 0;
1218         uint64_t asize, max_asize, psize;
1219         uint64_t logical_ashift = 0;
1220         uint64_t physical_ashift = 0;
1221
1222         ASSERT(vd->vdev_open_thread == curthread ||
1223             spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1224         ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1225             vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1226             vd->vdev_state == VDEV_STATE_OFFLINE);
1227
1228         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1229         vd->vdev_cant_read = B_FALSE;
1230         vd->vdev_cant_write = B_FALSE;
1231         vd->vdev_notrim = B_FALSE;
1232         vd->vdev_min_asize = vdev_get_min_asize(vd);
1233
1234         /*
1235          * If this vdev is not removed, check its fault status.  If it's
1236          * faulted, bail out of the open.
1237          */
1238         if (!vd->vdev_removed && vd->vdev_faulted) {
1239                 ASSERT(vd->vdev_children == 0);
1240                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1241                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1242                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1243                     vd->vdev_label_aux);
1244                 return (SET_ERROR(ENXIO));
1245         } else if (vd->vdev_offline) {
1246                 ASSERT(vd->vdev_children == 0);
1247                 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1248                 return (SET_ERROR(ENXIO));
1249         }
1250
1251         error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize,
1252             &logical_ashift, &physical_ashift);
1253
1254         /*
1255          * Reset the vdev_reopening flag so that we actually close
1256          * the vdev on error.
1257          */
1258         vd->vdev_reopening = B_FALSE;
1259         if (zio_injection_enabled && error == 0)
1260                 error = zio_handle_device_injection(vd, NULL, ENXIO);
1261
1262         if (error) {
1263                 if (vd->vdev_removed &&
1264                     vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1265                         vd->vdev_removed = B_FALSE;
1266
1267                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1268                     vd->vdev_stat.vs_aux);
1269                 return (error);
1270         }
1271
1272         vd->vdev_removed = B_FALSE;
1273
1274         /*
1275          * Recheck the faulted flag now that we have confirmed that
1276          * the vdev is accessible.  If we're faulted, bail.
1277          */
1278         if (vd->vdev_faulted) {
1279                 ASSERT(vd->vdev_children == 0);
1280                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1281                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1282                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1283                     vd->vdev_label_aux);
1284                 return (SET_ERROR(ENXIO));
1285         }
1286
1287         if (vd->vdev_degraded) {
1288                 ASSERT(vd->vdev_children == 0);
1289                 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1290                     VDEV_AUX_ERR_EXCEEDED);
1291         } else {
1292                 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1293         }
1294
1295         /*
1296          * For hole or missing vdevs we just return success.
1297          */
1298         if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1299                 return (0);
1300
1301         if (zfs_trim_enabled && !vd->vdev_notrim && vd->vdev_ops->vdev_op_leaf)
1302                 trim_map_create(vd);
1303
1304         for (int c = 0; c < vd->vdev_children; c++) {
1305                 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1306                         vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1307                             VDEV_AUX_NONE);
1308                         break;
1309                 }
1310         }
1311
1312         osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1313         max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1314
1315         if (vd->vdev_children == 0) {
1316                 if (osize < SPA_MINDEVSIZE) {
1317                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1318                             VDEV_AUX_TOO_SMALL);
1319                         return (SET_ERROR(EOVERFLOW));
1320                 }
1321                 psize = osize;
1322                 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1323                 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1324                     VDEV_LABEL_END_SIZE);
1325         } else {
1326                 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1327                     (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1328                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1329                             VDEV_AUX_TOO_SMALL);
1330                         return (SET_ERROR(EOVERFLOW));
1331                 }
1332                 psize = 0;
1333                 asize = osize;
1334                 max_asize = max_osize;
1335         }
1336
1337         vd->vdev_psize = psize;
1338
1339         /*
1340          * Make sure the allocatable size hasn't shrunk.
1341          */
1342         if (asize < vd->vdev_min_asize) {
1343                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1344                     VDEV_AUX_BAD_LABEL);
1345                 return (SET_ERROR(EINVAL));
1346         }
1347
1348         vd->vdev_physical_ashift =
1349             MAX(physical_ashift, vd->vdev_physical_ashift);
1350         vd->vdev_logical_ashift = MAX(logical_ashift, vd->vdev_logical_ashift);
1351         vd->vdev_ashift = MAX(vd->vdev_logical_ashift, vd->vdev_ashift);
1352
1353         if (vd->vdev_logical_ashift > SPA_MAXASHIFT) {
1354                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1355                     VDEV_AUX_ASHIFT_TOO_BIG);
1356                 return (EINVAL);
1357         }
1358
1359         if (vd->vdev_asize == 0) {
1360                 /*
1361                  * This is the first-ever open, so use the computed values.
1362                  * For testing purposes, a higher ashift can be requested.
1363                  */
1364                 vd->vdev_asize = asize;
1365                 vd->vdev_max_asize = max_asize;
1366         } else {
1367                 /*
1368                  * Make sure the alignment requirement hasn't increased.
1369                  */
1370                 if (vd->vdev_ashift > vd->vdev_top->vdev_ashift &&
1371                     vd->vdev_ops->vdev_op_leaf) {
1372                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1373                             VDEV_AUX_BAD_LABEL);
1374                         return (EINVAL);
1375                 }
1376                 vd->vdev_max_asize = max_asize;
1377         }
1378
1379         /*
1380          * If all children are healthy and the asize has increased,
1381          * then we've experienced dynamic LUN growth.  If automatic
1382          * expansion is enabled then use the additional space.
1383          */
1384         if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1385             (vd->vdev_expanding || spa->spa_autoexpand))
1386                 vd->vdev_asize = asize;
1387
1388         vdev_set_min_asize(vd);
1389
1390         /*
1391          * Ensure we can issue some IO before declaring the
1392          * vdev open for business.
1393          */
1394         if (vd->vdev_ops->vdev_op_leaf &&
1395             (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1396                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1397                     VDEV_AUX_ERR_EXCEEDED);
1398                 return (error);
1399         }
1400
1401         /*
1402          * Track the min and max ashift values for normal data devices.
1403          */
1404         if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1405             !vd->vdev_islog && vd->vdev_aux == NULL) {
1406                 if (vd->vdev_ashift > spa->spa_max_ashift)
1407                         spa->spa_max_ashift = vd->vdev_ashift;
1408                 if (vd->vdev_ashift < spa->spa_min_ashift)
1409                         spa->spa_min_ashift = vd->vdev_ashift;
1410         }
1411
1412         /*
1413          * If a leaf vdev has a DTL, and seems healthy, then kick off a
1414          * resilver.  But don't do this if we are doing a reopen for a scrub,
1415          * since this would just restart the scrub we are already doing.
1416          */
1417         if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1418             vdev_resilver_needed(vd, NULL, NULL))
1419                 spa_async_request(spa, SPA_ASYNC_RESILVER);
1420
1421         return (0);
1422 }
1423
1424 /*
1425  * Called once the vdevs are all opened, this routine validates the label
1426  * contents.  This needs to be done before vdev_load() so that we don't
1427  * inadvertently do repair I/Os to the wrong device.
1428  *
1429  * If 'strict' is false ignore the spa guid check. This is necessary because
1430  * if the machine crashed during a re-guid the new guid might have been written
1431  * to all of the vdev labels, but not the cached config. The strict check
1432  * will be performed when the pool is opened again using the mos config.
1433  *
1434  * This function will only return failure if one of the vdevs indicates that it
1435  * has since been destroyed or exported.  This is only possible if
1436  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1437  * will be updated but the function will return 0.
1438  */
1439 int
1440 vdev_validate(vdev_t *vd, boolean_t strict)
1441 {
1442         spa_t *spa = vd->vdev_spa;
1443         nvlist_t *label;
1444         uint64_t guid = 0, top_guid;
1445         uint64_t state;
1446
1447         for (int c = 0; c < vd->vdev_children; c++)
1448                 if (vdev_validate(vd->vdev_child[c], strict) != 0)
1449                         return (SET_ERROR(EBADF));
1450
1451         /*
1452          * If the device has already failed, or was marked offline, don't do
1453          * any further validation.  Otherwise, label I/O will fail and we will
1454          * overwrite the previous state.
1455          */
1456         if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1457                 uint64_t aux_guid = 0;
1458                 nvlist_t *nvl;
1459                 uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1460                     spa_last_synced_txg(spa) : -1ULL;
1461
1462                 if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1463                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1464                             VDEV_AUX_BAD_LABEL);
1465                         return (0);
1466                 }
1467
1468                 /*
1469                  * Determine if this vdev has been split off into another
1470                  * pool.  If so, then refuse to open it.
1471                  */
1472                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1473                     &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1474                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1475                             VDEV_AUX_SPLIT_POOL);
1476                         nvlist_free(label);
1477                         return (0);
1478                 }
1479
1480                 if (strict && (nvlist_lookup_uint64(label,
1481                     ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1482                     guid != spa_guid(spa))) {
1483                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1484                             VDEV_AUX_CORRUPT_DATA);
1485                         nvlist_free(label);
1486                         return (0);
1487                 }
1488
1489                 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1490                     != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1491                     &aux_guid) != 0)
1492                         aux_guid = 0;
1493
1494                 /*
1495                  * If this vdev just became a top-level vdev because its
1496                  * sibling was detached, it will have adopted the parent's
1497                  * vdev guid -- but the label may or may not be on disk yet.
1498                  * Fortunately, either version of the label will have the
1499                  * same top guid, so if we're a top-level vdev, we can
1500                  * safely compare to that instead.
1501                  *
1502                  * If we split this vdev off instead, then we also check the
1503                  * original pool's guid.  We don't want to consider the vdev
1504                  * corrupt if it is partway through a split operation.
1505                  */
1506                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1507                     &guid) != 0 ||
1508                     nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1509                     &top_guid) != 0 ||
1510                     ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1511                     (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1512                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1513                             VDEV_AUX_CORRUPT_DATA);
1514                         nvlist_free(label);
1515                         return (0);
1516                 }
1517
1518                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1519                     &state) != 0) {
1520                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1521                             VDEV_AUX_CORRUPT_DATA);
1522                         nvlist_free(label);
1523                         return (0);
1524                 }
1525
1526                 nvlist_free(label);
1527
1528                 /*
1529                  * If this is a verbatim import, no need to check the
1530                  * state of the pool.
1531                  */
1532                 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1533                     spa_load_state(spa) == SPA_LOAD_OPEN &&
1534                     state != POOL_STATE_ACTIVE)
1535                         return (SET_ERROR(EBADF));
1536
1537                 /*
1538                  * If we were able to open and validate a vdev that was
1539                  * previously marked permanently unavailable, clear that state
1540                  * now.
1541                  */
1542                 if (vd->vdev_not_present)
1543                         vd->vdev_not_present = 0;
1544         }
1545
1546         return (0);
1547 }
1548
1549 /*
1550  * Close a virtual device.
1551  */
1552 void
1553 vdev_close(vdev_t *vd)
1554 {
1555         spa_t *spa = vd->vdev_spa;
1556         vdev_t *pvd = vd->vdev_parent;
1557
1558         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1559
1560         /*
1561          * If our parent is reopening, then we are as well, unless we are
1562          * going offline.
1563          */
1564         if (pvd != NULL && pvd->vdev_reopening)
1565                 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1566
1567         vd->vdev_ops->vdev_op_close(vd);
1568
1569         vdev_cache_purge(vd);
1570
1571         if (vd->vdev_ops->vdev_op_leaf)
1572                 trim_map_destroy(vd);
1573
1574         /*
1575          * We record the previous state before we close it, so that if we are
1576          * doing a reopen(), we don't generate FMA ereports if we notice that
1577          * it's still faulted.
1578          */
1579         vd->vdev_prevstate = vd->vdev_state;
1580
1581         if (vd->vdev_offline)
1582                 vd->vdev_state = VDEV_STATE_OFFLINE;
1583         else
1584                 vd->vdev_state = VDEV_STATE_CLOSED;
1585         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1586 }
1587
1588 void
1589 vdev_hold(vdev_t *vd)
1590 {
1591         spa_t *spa = vd->vdev_spa;
1592
1593         ASSERT(spa_is_root(spa));
1594         if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1595                 return;
1596
1597         for (int c = 0; c < vd->vdev_children; c++)
1598                 vdev_hold(vd->vdev_child[c]);
1599
1600         if (vd->vdev_ops->vdev_op_leaf)
1601                 vd->vdev_ops->vdev_op_hold(vd);
1602 }
1603
1604 void
1605 vdev_rele(vdev_t *vd)
1606 {
1607         spa_t *spa = vd->vdev_spa;
1608
1609         ASSERT(spa_is_root(spa));
1610         for (int c = 0; c < vd->vdev_children; c++)
1611                 vdev_rele(vd->vdev_child[c]);
1612
1613         if (vd->vdev_ops->vdev_op_leaf)
1614                 vd->vdev_ops->vdev_op_rele(vd);
1615 }
1616
1617 /*
1618  * Reopen all interior vdevs and any unopened leaves.  We don't actually
1619  * reopen leaf vdevs which had previously been opened as they might deadlock
1620  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
1621  * If the leaf has never been opened then open it, as usual.
1622  */
1623 void
1624 vdev_reopen(vdev_t *vd)
1625 {
1626         spa_t *spa = vd->vdev_spa;
1627
1628         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1629
1630         /* set the reopening flag unless we're taking the vdev offline */
1631         vd->vdev_reopening = !vd->vdev_offline;
1632         vdev_close(vd);
1633         (void) vdev_open(vd);
1634
1635         /*
1636          * Call vdev_validate() here to make sure we have the same device.
1637          * Otherwise, a device with an invalid label could be successfully
1638          * opened in response to vdev_reopen().
1639          */
1640         if (vd->vdev_aux) {
1641                 (void) vdev_validate_aux(vd);
1642                 if (vdev_readable(vd) && vdev_writeable(vd) &&
1643                     vd->vdev_aux == &spa->spa_l2cache &&
1644                     !l2arc_vdev_present(vd))
1645                         l2arc_add_vdev(spa, vd);
1646         } else {
1647                 (void) vdev_validate(vd, B_TRUE);
1648         }
1649
1650         /*
1651          * Reassess parent vdev's health.
1652          */
1653         vdev_propagate_state(vd);
1654 }
1655
1656 int
1657 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1658 {
1659         int error;
1660
1661         /*
1662          * Normally, partial opens (e.g. of a mirror) are allowed.
1663          * For a create, however, we want to fail the request if
1664          * there are any components we can't open.
1665          */
1666         error = vdev_open(vd);
1667
1668         if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1669                 vdev_close(vd);
1670                 return (error ? error : ENXIO);
1671         }
1672
1673         /*
1674          * Recursively load DTLs and initialize all labels.
1675          */
1676         if ((error = vdev_dtl_load(vd)) != 0 ||
1677             (error = vdev_label_init(vd, txg, isreplacing ?
1678             VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1679                 vdev_close(vd);
1680                 return (error);
1681         }
1682
1683         return (0);
1684 }
1685
1686 void
1687 vdev_metaslab_set_size(vdev_t *vd)
1688 {
1689         /*
1690          * Aim for roughly metaslabs_per_vdev (default 200) metaslabs per vdev.
1691          */
1692         vd->vdev_ms_shift = highbit64(vd->vdev_asize / metaslabs_per_vdev);
1693         vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1694 }
1695
1696 /*
1697  * Maximize performance by inflating the configured ashift for top level
1698  * vdevs to be as close to the physical ashift as possible while maintaining
1699  * administrator defined limits and ensuring it doesn't go below the
1700  * logical ashift.
1701  */
1702 void
1703 vdev_ashift_optimize(vdev_t *vd)
1704 {
1705         if (vd == vd->vdev_top) {
1706                 if (vd->vdev_ashift < vd->vdev_physical_ashift) {
1707                         vd->vdev_ashift = MIN(
1708                             MAX(zfs_max_auto_ashift, vd->vdev_ashift),
1709                             MAX(zfs_min_auto_ashift, vd->vdev_physical_ashift));
1710                 } else {
1711                         /*
1712                          * Unusual case where logical ashift > physical ashift
1713                          * so we can't cap the calculated ashift based on max
1714                          * ashift as that would cause failures.
1715                          * We still check if we need to increase it to match
1716                          * the min ashift.
1717                          */
1718                         vd->vdev_ashift = MAX(zfs_min_auto_ashift,
1719                             vd->vdev_ashift);
1720                 }
1721         }
1722 }
1723
1724 void
1725 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1726 {
1727         ASSERT(vd == vd->vdev_top);
1728         ASSERT(!vd->vdev_ishole);
1729         ASSERT(ISP2(flags));
1730         ASSERT(spa_writeable(vd->vdev_spa));
1731
1732         if (flags & VDD_METASLAB)
1733                 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1734
1735         if (flags & VDD_DTL)
1736                 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1737
1738         (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1739 }
1740
1741 void
1742 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
1743 {
1744         for (int c = 0; c < vd->vdev_children; c++)
1745                 vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
1746
1747         if (vd->vdev_ops->vdev_op_leaf)
1748                 vdev_dirty(vd->vdev_top, flags, vd, txg);
1749 }
1750
1751 /*
1752  * DTLs.
1753  *
1754  * A vdev's DTL (dirty time log) is the set of transaction groups for which
1755  * the vdev has less than perfect replication.  There are four kinds of DTL:
1756  *
1757  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1758  *
1759  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1760  *
1761  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1762  *      scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1763  *      txgs that was scrubbed.
1764  *
1765  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1766  *      persistent errors or just some device being offline.
1767  *      Unlike the other three, the DTL_OUTAGE map is not generally
1768  *      maintained; it's only computed when needed, typically to
1769  *      determine whether a device can be detached.
1770  *
1771  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1772  * either has the data or it doesn't.
1773  *
1774  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1775  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1776  * if any child is less than fully replicated, then so is its parent.
1777  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1778  * comprising only those txgs which appear in 'maxfaults' or more children;
1779  * those are the txgs we don't have enough replication to read.  For example,
1780  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1781  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1782  * two child DTL_MISSING maps.
1783  *
1784  * It should be clear from the above that to compute the DTLs and outage maps
1785  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1786  * Therefore, that is all we keep on disk.  When loading the pool, or after
1787  * a configuration change, we generate all other DTLs from first principles.
1788  */
1789 void
1790 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1791 {
1792         range_tree_t *rt = vd->vdev_dtl[t];
1793
1794         ASSERT(t < DTL_TYPES);
1795         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1796         ASSERT(spa_writeable(vd->vdev_spa));
1797
1798         mutex_enter(rt->rt_lock);
1799         if (!range_tree_contains(rt, txg, size))
1800                 range_tree_add(rt, txg, size);
1801         mutex_exit(rt->rt_lock);
1802 }
1803
1804 boolean_t
1805 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1806 {
1807         range_tree_t *rt = vd->vdev_dtl[t];
1808         boolean_t dirty = B_FALSE;
1809
1810         ASSERT(t < DTL_TYPES);
1811         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1812
1813         mutex_enter(rt->rt_lock);
1814         if (range_tree_space(rt) != 0)
1815                 dirty = range_tree_contains(rt, txg, size);
1816         mutex_exit(rt->rt_lock);
1817
1818         return (dirty);
1819 }
1820
1821 boolean_t
1822 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1823 {
1824         range_tree_t *rt = vd->vdev_dtl[t];
1825         boolean_t empty;
1826
1827         mutex_enter(rt->rt_lock);
1828         empty = (range_tree_space(rt) == 0);
1829         mutex_exit(rt->rt_lock);
1830
1831         return (empty);
1832 }
1833
1834 /*
1835  * Returns the lowest txg in the DTL range.
1836  */
1837 static uint64_t
1838 vdev_dtl_min(vdev_t *vd)
1839 {
1840         range_seg_t *rs;
1841
1842         ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1843         ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1844         ASSERT0(vd->vdev_children);
1845
1846         rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1847         return (rs->rs_start - 1);
1848 }
1849
1850 /*
1851  * Returns the highest txg in the DTL.
1852  */
1853 static uint64_t
1854 vdev_dtl_max(vdev_t *vd)
1855 {
1856         range_seg_t *rs;
1857
1858         ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1859         ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1860         ASSERT0(vd->vdev_children);
1861
1862         rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1863         return (rs->rs_end);
1864 }
1865
1866 /*
1867  * Determine if a resilvering vdev should remove any DTL entries from
1868  * its range. If the vdev was resilvering for the entire duration of the
1869  * scan then it should excise that range from its DTLs. Otherwise, this
1870  * vdev is considered partially resilvered and should leave its DTL
1871  * entries intact. The comment in vdev_dtl_reassess() describes how we
1872  * excise the DTLs.
1873  */
1874 static boolean_t
1875 vdev_dtl_should_excise(vdev_t *vd)
1876 {
1877         spa_t *spa = vd->vdev_spa;
1878         dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1879
1880         ASSERT0(scn->scn_phys.scn_errors);
1881         ASSERT0(vd->vdev_children);
1882
1883         if (vd->vdev_resilver_txg == 0 ||
1884             range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0)
1885                 return (B_TRUE);
1886
1887         /*
1888          * When a resilver is initiated the scan will assign the scn_max_txg
1889          * value to the highest txg value that exists in all DTLs. If this
1890          * device's max DTL is not part of this scan (i.e. it is not in
1891          * the range (scn_min_txg, scn_max_txg] then it is not eligible
1892          * for excision.
1893          */
1894         if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
1895                 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
1896                 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
1897                 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
1898                 return (B_TRUE);
1899         }
1900         return (B_FALSE);
1901 }
1902
1903 /*
1904  * Reassess DTLs after a config change or scrub completion.
1905  */
1906 void
1907 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1908 {
1909         spa_t *spa = vd->vdev_spa;
1910         avl_tree_t reftree;
1911         int minref;
1912
1913         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1914
1915         for (int c = 0; c < vd->vdev_children; c++)
1916                 vdev_dtl_reassess(vd->vdev_child[c], txg,
1917                     scrub_txg, scrub_done);
1918
1919         if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1920                 return;
1921
1922         if (vd->vdev_ops->vdev_op_leaf) {
1923                 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1924
1925                 mutex_enter(&vd->vdev_dtl_lock);
1926
1927                 /*
1928                  * If we've completed a scan cleanly then determine
1929                  * if this vdev should remove any DTLs. We only want to
1930                  * excise regions on vdevs that were available during
1931                  * the entire duration of this scan.
1932                  */
1933                 if (scrub_txg != 0 &&
1934                     (spa->spa_scrub_started ||
1935                     (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
1936                     vdev_dtl_should_excise(vd)) {
1937                         /*
1938                          * We completed a scrub up to scrub_txg.  If we
1939                          * did it without rebooting, then the scrub dtl
1940                          * will be valid, so excise the old region and
1941                          * fold in the scrub dtl.  Otherwise, leave the
1942                          * dtl as-is if there was an error.
1943                          *
1944                          * There's little trick here: to excise the beginning
1945                          * of the DTL_MISSING map, we put it into a reference
1946                          * tree and then add a segment with refcnt -1 that
1947                          * covers the range [0, scrub_txg).  This means
1948                          * that each txg in that range has refcnt -1 or 0.
1949                          * We then add DTL_SCRUB with a refcnt of 2, so that
1950                          * entries in the range [0, scrub_txg) will have a
1951                          * positive refcnt -- either 1 or 2.  We then convert
1952                          * the reference tree into the new DTL_MISSING map.
1953                          */
1954                         space_reftree_create(&reftree);
1955                         space_reftree_add_map(&reftree,
1956                             vd->vdev_dtl[DTL_MISSING], 1);
1957                         space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
1958                         space_reftree_add_map(&reftree,
1959                             vd->vdev_dtl[DTL_SCRUB], 2);
1960                         space_reftree_generate_map(&reftree,
1961                             vd->vdev_dtl[DTL_MISSING], 1);
1962                         space_reftree_destroy(&reftree);
1963                 }
1964                 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1965                 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1966                     range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
1967                 if (scrub_done)
1968                         range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1969                 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1970                 if (!vdev_readable(vd))
1971                         range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1972                 else
1973                         range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1974                             range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
1975
1976                 /*
1977                  * If the vdev was resilvering and no longer has any
1978                  * DTLs then reset its resilvering flag and dirty
1979                  * the top level so that we persist the change.
1980                  */
1981                 if (vd->vdev_resilver_txg != 0 &&
1982                     range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 &&
1983                     range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0) {
1984                         vd->vdev_resilver_txg = 0;
1985                         vdev_config_dirty(vd->vdev_top);
1986                 }
1987
1988                 mutex_exit(&vd->vdev_dtl_lock);
1989
1990                 if (txg != 0)
1991                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1992                 return;
1993         }
1994
1995         mutex_enter(&vd->vdev_dtl_lock);
1996         for (int t = 0; t < DTL_TYPES; t++) {
1997                 /* account for child's outage in parent's missing map */
1998                 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1999                 if (t == DTL_SCRUB)
2000                         continue;                       /* leaf vdevs only */
2001                 if (t == DTL_PARTIAL)
2002                         minref = 1;                     /* i.e. non-zero */
2003                 else if (vd->vdev_nparity != 0)
2004                         minref = vd->vdev_nparity + 1;  /* RAID-Z */
2005                 else
2006                         minref = vd->vdev_children;     /* any kind of mirror */
2007                 space_reftree_create(&reftree);
2008                 for (int c = 0; c < vd->vdev_children; c++) {
2009                         vdev_t *cvd = vd->vdev_child[c];
2010                         mutex_enter(&cvd->vdev_dtl_lock);
2011                         space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
2012                         mutex_exit(&cvd->vdev_dtl_lock);
2013                 }
2014                 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
2015                 space_reftree_destroy(&reftree);
2016         }
2017         mutex_exit(&vd->vdev_dtl_lock);
2018 }
2019
2020 int
2021 vdev_dtl_load(vdev_t *vd)
2022 {
2023         spa_t *spa = vd->vdev_spa;
2024         objset_t *mos = spa->spa_meta_objset;
2025         int error = 0;
2026
2027         if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
2028                 ASSERT(!vd->vdev_ishole);
2029
2030                 error = space_map_open(&vd->vdev_dtl_sm, mos,
2031                     vd->vdev_dtl_object, 0, -1ULL, 0, &vd->vdev_dtl_lock);
2032                 if (error)
2033                         return (error);
2034                 ASSERT(vd->vdev_dtl_sm != NULL);
2035
2036                 mutex_enter(&vd->vdev_dtl_lock);
2037
2038                 /*
2039                  * Now that we've opened the space_map we need to update
2040                  * the in-core DTL.
2041                  */
2042                 space_map_update(vd->vdev_dtl_sm);
2043
2044                 error = space_map_load(vd->vdev_dtl_sm,
2045                     vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
2046                 mutex_exit(&vd->vdev_dtl_lock);
2047
2048                 return (error);
2049         }
2050
2051         for (int c = 0; c < vd->vdev_children; c++) {
2052                 error = vdev_dtl_load(vd->vdev_child[c]);
2053                 if (error != 0)
2054                         break;
2055         }
2056
2057         return (error);
2058 }
2059
2060 void
2061 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
2062 {
2063         spa_t *spa = vd->vdev_spa;
2064         range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
2065         objset_t *mos = spa->spa_meta_objset;
2066         range_tree_t *rtsync;
2067         kmutex_t rtlock;
2068         dmu_tx_t *tx;
2069         uint64_t object = space_map_object(vd->vdev_dtl_sm);
2070
2071         ASSERT(!vd->vdev_ishole);
2072         ASSERT(vd->vdev_ops->vdev_op_leaf);
2073
2074         tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2075
2076         if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
2077                 mutex_enter(&vd->vdev_dtl_lock);
2078                 space_map_free(vd->vdev_dtl_sm, tx);
2079                 space_map_close(vd->vdev_dtl_sm);
2080                 vd->vdev_dtl_sm = NULL;
2081                 mutex_exit(&vd->vdev_dtl_lock);
2082                 dmu_tx_commit(tx);
2083                 return;
2084         }
2085
2086         if (vd->vdev_dtl_sm == NULL) {
2087                 uint64_t new_object;
2088
2089                 new_object = space_map_alloc(mos, tx);
2090                 VERIFY3U(new_object, !=, 0);
2091
2092                 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
2093                     0, -1ULL, 0, &vd->vdev_dtl_lock));
2094                 ASSERT(vd->vdev_dtl_sm != NULL);
2095         }
2096
2097         bzero(&rtlock, sizeof(rtlock));
2098         mutex_init(&rtlock, NULL, MUTEX_DEFAULT, NULL);
2099
2100         rtsync = range_tree_create(NULL, NULL, &rtlock);
2101
2102         mutex_enter(&rtlock);
2103
2104         mutex_enter(&vd->vdev_dtl_lock);
2105         range_tree_walk(rt, range_tree_add, rtsync);
2106         mutex_exit(&vd->vdev_dtl_lock);
2107
2108         space_map_truncate(vd->vdev_dtl_sm, tx);
2109         space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx);
2110         range_tree_vacate(rtsync, NULL, NULL);
2111
2112         range_tree_destroy(rtsync);
2113
2114         mutex_exit(&rtlock);
2115         mutex_destroy(&rtlock);
2116
2117         /*
2118          * If the object for the space map has changed then dirty
2119          * the top level so that we update the config.
2120          */
2121         if (object != space_map_object(vd->vdev_dtl_sm)) {
2122                 zfs_dbgmsg("txg %llu, spa %s, DTL old object %llu, "
2123                     "new object %llu", txg, spa_name(spa), object,
2124                     space_map_object(vd->vdev_dtl_sm));
2125                 vdev_config_dirty(vd->vdev_top);
2126         }
2127
2128         dmu_tx_commit(tx);
2129
2130         mutex_enter(&vd->vdev_dtl_lock);
2131         space_map_update(vd->vdev_dtl_sm);
2132         mutex_exit(&vd->vdev_dtl_lock);
2133 }
2134
2135 /*
2136  * Determine whether the specified vdev can be offlined/detached/removed
2137  * without losing data.
2138  */
2139 boolean_t
2140 vdev_dtl_required(vdev_t *vd)
2141 {
2142         spa_t *spa = vd->vdev_spa;
2143         vdev_t *tvd = vd->vdev_top;
2144         uint8_t cant_read = vd->vdev_cant_read;
2145         boolean_t required;
2146
2147         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2148
2149         if (vd == spa->spa_root_vdev || vd == tvd)
2150                 return (B_TRUE);
2151
2152         /*
2153          * Temporarily mark the device as unreadable, and then determine
2154          * whether this results in any DTL outages in the top-level vdev.
2155          * If not, we can safely offline/detach/remove the device.
2156          */
2157         vd->vdev_cant_read = B_TRUE;
2158         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2159         required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2160         vd->vdev_cant_read = cant_read;
2161         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2162
2163         if (!required && zio_injection_enabled)
2164                 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2165
2166         return (required);
2167 }
2168
2169 /*
2170  * Determine if resilver is needed, and if so the txg range.
2171  */
2172 boolean_t
2173 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2174 {
2175         boolean_t needed = B_FALSE;
2176         uint64_t thismin = UINT64_MAX;
2177         uint64_t thismax = 0;
2178
2179         if (vd->vdev_children == 0) {
2180                 mutex_enter(&vd->vdev_dtl_lock);
2181                 if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 &&
2182                     vdev_writeable(vd)) {
2183
2184                         thismin = vdev_dtl_min(vd);
2185                         thismax = vdev_dtl_max(vd);
2186                         needed = B_TRUE;
2187                 }
2188                 mutex_exit(&vd->vdev_dtl_lock);
2189         } else {
2190                 for (int c = 0; c < vd->vdev_children; c++) {
2191                         vdev_t *cvd = vd->vdev_child[c];
2192                         uint64_t cmin, cmax;
2193
2194                         if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2195                                 thismin = MIN(thismin, cmin);
2196                                 thismax = MAX(thismax, cmax);
2197                                 needed = B_TRUE;
2198                         }
2199                 }
2200         }
2201
2202         if (needed && minp) {
2203                 *minp = thismin;
2204                 *maxp = thismax;
2205         }
2206         return (needed);
2207 }
2208
2209 void
2210 vdev_load(vdev_t *vd)
2211 {
2212         /*
2213          * Recursively load all children.
2214          */
2215         for (int c = 0; c < vd->vdev_children; c++)
2216                 vdev_load(vd->vdev_child[c]);
2217
2218         /*
2219          * If this is a top-level vdev, initialize its metaslabs.
2220          */
2221         if (vd == vd->vdev_top && !vd->vdev_ishole &&
2222             (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
2223             vdev_metaslab_init(vd, 0) != 0))
2224                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2225                     VDEV_AUX_CORRUPT_DATA);
2226
2227         /*
2228          * If this is a leaf vdev, load its DTL.
2229          */
2230         if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
2231                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2232                     VDEV_AUX_CORRUPT_DATA);
2233 }
2234
2235 /*
2236  * The special vdev case is used for hot spares and l2cache devices.  Its
2237  * sole purpose it to set the vdev state for the associated vdev.  To do this,
2238  * we make sure that we can open the underlying device, then try to read the
2239  * label, and make sure that the label is sane and that it hasn't been
2240  * repurposed to another pool.
2241  */
2242 int
2243 vdev_validate_aux(vdev_t *vd)
2244 {
2245         nvlist_t *label;
2246         uint64_t guid, version;
2247         uint64_t state;
2248
2249         if (!vdev_readable(vd))
2250                 return (0);
2251
2252         if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
2253                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2254                     VDEV_AUX_CORRUPT_DATA);
2255                 return (-1);
2256         }
2257
2258         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2259             !SPA_VERSION_IS_SUPPORTED(version) ||
2260             nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2261             guid != vd->vdev_guid ||
2262             nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2263                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2264                     VDEV_AUX_CORRUPT_DATA);
2265                 nvlist_free(label);
2266                 return (-1);
2267         }
2268
2269         /*
2270          * We don't actually check the pool state here.  If it's in fact in
2271          * use by another pool, we update this fact on the fly when requested.
2272          */
2273         nvlist_free(label);
2274         return (0);
2275 }
2276
2277 void
2278 vdev_remove(vdev_t *vd, uint64_t txg)
2279 {
2280         spa_t *spa = vd->vdev_spa;
2281         objset_t *mos = spa->spa_meta_objset;
2282         dmu_tx_t *tx;
2283
2284         tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2285
2286         if (vd->vdev_ms != NULL) {
2287                 metaslab_group_t *mg = vd->vdev_mg;
2288
2289                 metaslab_group_histogram_verify(mg);
2290                 metaslab_class_histogram_verify(mg->mg_class);
2291
2292                 for (int m = 0; m < vd->vdev_ms_count; m++) {
2293                         metaslab_t *msp = vd->vdev_ms[m];
2294
2295                         if (msp == NULL || msp->ms_sm == NULL)
2296                                 continue;
2297
2298                         mutex_enter(&msp->ms_lock);
2299                         /*
2300                          * If the metaslab was not loaded when the vdev
2301                          * was removed then the histogram accounting may
2302                          * not be accurate. Update the histogram information
2303                          * here so that we ensure that the metaslab group
2304                          * and metaslab class are up-to-date.
2305                          */
2306                         metaslab_group_histogram_remove(mg, msp);
2307
2308                         VERIFY0(space_map_allocated(msp->ms_sm));
2309                         space_map_free(msp->ms_sm, tx);
2310                         space_map_close(msp->ms_sm);
2311                         msp->ms_sm = NULL;
2312                         mutex_exit(&msp->ms_lock);
2313                 }
2314
2315                 metaslab_group_histogram_verify(mg);
2316                 metaslab_class_histogram_verify(mg->mg_class);
2317                 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
2318                         ASSERT0(mg->mg_histogram[i]);
2319
2320         }
2321
2322         if (vd->vdev_ms_array) {
2323                 (void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2324                 vd->vdev_ms_array = 0;
2325         }
2326         dmu_tx_commit(tx);
2327 }
2328
2329 void
2330 vdev_sync_done(vdev_t *vd, uint64_t txg)
2331 {
2332         metaslab_t *msp;
2333         boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2334
2335         ASSERT(!vd->vdev_ishole);
2336
2337         while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2338                 metaslab_sync_done(msp, txg);
2339
2340         if (reassess)
2341                 metaslab_sync_reassess(vd->vdev_mg);
2342 }
2343
2344 void
2345 vdev_sync(vdev_t *vd, uint64_t txg)
2346 {
2347         spa_t *spa = vd->vdev_spa;
2348         vdev_t *lvd;
2349         metaslab_t *msp;
2350         dmu_tx_t *tx;
2351
2352         ASSERT(!vd->vdev_ishole);
2353
2354         if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2355                 ASSERT(vd == vd->vdev_top);
2356                 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2357                 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2358                     DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2359                 ASSERT(vd->vdev_ms_array != 0);
2360                 vdev_config_dirty(vd);
2361                 dmu_tx_commit(tx);
2362         }
2363
2364         /*
2365          * Remove the metadata associated with this vdev once it's empty.
2366          */
2367         if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2368                 vdev_remove(vd, txg);
2369
2370         while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2371                 metaslab_sync(msp, txg);
2372                 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2373         }
2374
2375         while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2376                 vdev_dtl_sync(lvd, txg);
2377
2378         (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2379 }
2380
2381 uint64_t
2382 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2383 {
2384         return (vd->vdev_ops->vdev_op_asize(vd, psize));
2385 }
2386
2387 /*
2388  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
2389  * not be opened, and no I/O is attempted.
2390  */
2391 int
2392 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2393 {
2394         vdev_t *vd, *tvd;
2395
2396         spa_vdev_state_enter(spa, SCL_NONE);
2397
2398         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2399                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2400
2401         if (!vd->vdev_ops->vdev_op_leaf)
2402                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2403
2404         tvd = vd->vdev_top;
2405
2406         /*
2407          * We don't directly use the aux state here, but if we do a
2408          * vdev_reopen(), we need this value to be present to remember why we
2409          * were faulted.
2410          */
2411         vd->vdev_label_aux = aux;
2412
2413         /*
2414          * Faulted state takes precedence over degraded.
2415          */
2416         vd->vdev_delayed_close = B_FALSE;
2417         vd->vdev_faulted = 1ULL;
2418         vd->vdev_degraded = 0ULL;
2419         vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2420
2421         /*
2422          * If this device has the only valid copy of the data, then
2423          * back off and simply mark the vdev as degraded instead.
2424          */
2425         if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2426                 vd->vdev_degraded = 1ULL;
2427                 vd->vdev_faulted = 0ULL;
2428
2429                 /*
2430                  * If we reopen the device and it's not dead, only then do we
2431                  * mark it degraded.
2432                  */
2433                 vdev_reopen(tvd);
2434
2435                 if (vdev_readable(vd))
2436                         vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2437         }
2438
2439         return (spa_vdev_state_exit(spa, vd, 0));
2440 }
2441
2442 /*
2443  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
2444  * user that something is wrong.  The vdev continues to operate as normal as far
2445  * as I/O is concerned.
2446  */
2447 int
2448 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2449 {
2450         vdev_t *vd;
2451
2452         spa_vdev_state_enter(spa, SCL_NONE);
2453
2454         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2455                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2456
2457         if (!vd->vdev_ops->vdev_op_leaf)
2458                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2459
2460         /*
2461          * If the vdev is already faulted, then don't do anything.
2462          */
2463         if (vd->vdev_faulted || vd->vdev_degraded)
2464                 return (spa_vdev_state_exit(spa, NULL, 0));
2465
2466         vd->vdev_degraded = 1ULL;
2467         if (!vdev_is_dead(vd))
2468                 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2469                     aux);
2470
2471         return (spa_vdev_state_exit(spa, vd, 0));
2472 }
2473
2474 /*
2475  * Online the given vdev.
2476  *
2477  * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things.  First, any attached
2478  * spare device should be detached when the device finishes resilvering.
2479  * Second, the online should be treated like a 'test' online case, so no FMA
2480  * events are generated if the device fails to open.
2481  */
2482 int
2483 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2484 {
2485         vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2486
2487         spa_vdev_state_enter(spa, SCL_NONE);
2488
2489         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2490                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2491
2492         if (!vd->vdev_ops->vdev_op_leaf)
2493                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2494
2495         tvd = vd->vdev_top;
2496         vd->vdev_offline = B_FALSE;
2497         vd->vdev_tmpoffline = B_FALSE;
2498         vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2499         vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2500
2501         /* XXX - L2ARC 1.0 does not support expansion */
2502         if (!vd->vdev_aux) {
2503                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2504                         pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2505         }
2506
2507         vdev_reopen(tvd);
2508         vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2509
2510         if (!vd->vdev_aux) {
2511                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2512                         pvd->vdev_expanding = B_FALSE;
2513         }
2514
2515         if (newstate)
2516                 *newstate = vd->vdev_state;
2517         if ((flags & ZFS_ONLINE_UNSPARE) &&
2518             !vdev_is_dead(vd) && vd->vdev_parent &&
2519             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2520             vd->vdev_parent->vdev_child[0] == vd)
2521                 vd->vdev_unspare = B_TRUE;
2522
2523         if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2524
2525                 /* XXX - L2ARC 1.0 does not support expansion */
2526                 if (vd->vdev_aux)
2527                         return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2528                 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2529         }
2530         return (spa_vdev_state_exit(spa, vd, 0));
2531 }
2532
2533 static int
2534 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2535 {
2536         vdev_t *vd, *tvd;
2537         int error = 0;
2538         uint64_t generation;
2539         metaslab_group_t *mg;
2540
2541 top:
2542         spa_vdev_state_enter(spa, SCL_ALLOC);
2543
2544         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2545                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2546
2547         if (!vd->vdev_ops->vdev_op_leaf)
2548                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2549
2550         tvd = vd->vdev_top;
2551         mg = tvd->vdev_mg;
2552         generation = spa->spa_config_generation + 1;
2553
2554         /*
2555          * If the device isn't already offline, try to offline it.
2556          */
2557         if (!vd->vdev_offline) {
2558                 /*
2559                  * If this device has the only valid copy of some data,
2560                  * don't allow it to be offlined. Log devices are always
2561                  * expendable.
2562                  */
2563                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2564                     vdev_dtl_required(vd))
2565                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2566
2567                 /*
2568                  * If the top-level is a slog and it has had allocations
2569                  * then proceed.  We check that the vdev's metaslab group
2570                  * is not NULL since it's possible that we may have just
2571                  * added this vdev but not yet initialized its metaslabs.
2572                  */
2573                 if (tvd->vdev_islog && mg != NULL) {
2574                         /*
2575                          * Prevent any future allocations.
2576                          */
2577                         metaslab_group_passivate(mg);
2578                         (void) spa_vdev_state_exit(spa, vd, 0);
2579
2580                         error = spa_offline_log(spa);
2581
2582                         spa_vdev_state_enter(spa, SCL_ALLOC);
2583
2584                         /*
2585                          * Check to see if the config has changed.
2586                          */
2587                         if (error || generation != spa->spa_config_generation) {
2588                                 metaslab_group_activate(mg);
2589                                 if (error)
2590                                         return (spa_vdev_state_exit(spa,
2591                                             vd, error));
2592                                 (void) spa_vdev_state_exit(spa, vd, 0);
2593                                 goto top;
2594                         }
2595                         ASSERT0(tvd->vdev_stat.vs_alloc);
2596                 }
2597
2598                 /*
2599                  * Offline this device and reopen its top-level vdev.
2600                  * If the top-level vdev is a log device then just offline
2601                  * it. Otherwise, if this action results in the top-level
2602                  * vdev becoming unusable, undo it and fail the request.
2603                  */
2604                 vd->vdev_offline = B_TRUE;
2605                 vdev_reopen(tvd);
2606
2607                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2608                     vdev_is_dead(tvd)) {
2609                         vd->vdev_offline = B_FALSE;
2610                         vdev_reopen(tvd);
2611                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2612                 }
2613
2614                 /*
2615                  * Add the device back into the metaslab rotor so that
2616                  * once we online the device it's open for business.
2617                  */
2618                 if (tvd->vdev_islog && mg != NULL)
2619                         metaslab_group_activate(mg);
2620         }
2621
2622         vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2623
2624         return (spa_vdev_state_exit(spa, vd, 0));
2625 }
2626
2627 int
2628 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2629 {
2630         int error;
2631
2632         mutex_enter(&spa->spa_vdev_top_lock);
2633         error = vdev_offline_locked(spa, guid, flags);
2634         mutex_exit(&spa->spa_vdev_top_lock);
2635
2636         return (error);
2637 }
2638
2639 /*
2640  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2641  * vdev_offline(), we assume the spa config is locked.  We also clear all
2642  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2643  */
2644 void
2645 vdev_clear(spa_t *spa, vdev_t *vd)
2646 {
2647         vdev_t *rvd = spa->spa_root_vdev;
2648
2649         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2650
2651         if (vd == NULL)
2652                 vd = rvd;
2653
2654         vd->vdev_stat.vs_read_errors = 0;
2655         vd->vdev_stat.vs_write_errors = 0;
2656         vd->vdev_stat.vs_checksum_errors = 0;
2657
2658         for (int c = 0; c < vd->vdev_children; c++)
2659                 vdev_clear(spa, vd->vdev_child[c]);
2660
2661         if (vd == rvd) {
2662                 for (int c = 0; c < spa->spa_l2cache.sav_count; c++)
2663                         vdev_clear(spa, spa->spa_l2cache.sav_vdevs[c]);
2664
2665                 for (int c = 0; c < spa->spa_spares.sav_count; c++)
2666                         vdev_clear(spa, spa->spa_spares.sav_vdevs[c]);
2667         }
2668
2669         /*
2670          * If we're in the FAULTED state or have experienced failed I/O, then
2671          * clear the persistent state and attempt to reopen the device.  We
2672          * also mark the vdev config dirty, so that the new faulted state is
2673          * written out to disk.
2674          */
2675         if (vd->vdev_faulted || vd->vdev_degraded ||
2676             !vdev_readable(vd) || !vdev_writeable(vd)) {
2677
2678                 /*
2679                  * When reopening in reponse to a clear event, it may be due to
2680                  * a fmadm repair request.  In this case, if the device is
2681                  * still broken, we want to still post the ereport again.
2682                  */
2683                 vd->vdev_forcefault = B_TRUE;
2684
2685                 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2686                 vd->vdev_cant_read = B_FALSE;
2687                 vd->vdev_cant_write = B_FALSE;
2688
2689                 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2690
2691                 vd->vdev_forcefault = B_FALSE;
2692
2693                 if (vd != rvd && vdev_writeable(vd->vdev_top))
2694                         vdev_state_dirty(vd->vdev_top);
2695
2696                 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2697                         spa_async_request(spa, SPA_ASYNC_RESILVER);
2698
2699                 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2700         }
2701
2702         /*
2703          * When clearing a FMA-diagnosed fault, we always want to
2704          * unspare the device, as we assume that the original spare was
2705          * done in response to the FMA fault.
2706          */
2707         if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2708             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2709             vd->vdev_parent->vdev_child[0] == vd)
2710                 vd->vdev_unspare = B_TRUE;
2711 }
2712
2713 boolean_t
2714 vdev_is_dead(vdev_t *vd)
2715 {
2716         /*
2717          * Holes and missing devices are always considered "dead".
2718          * This simplifies the code since we don't have to check for
2719          * these types of devices in the various code paths.
2720          * Instead we rely on the fact that we skip over dead devices
2721          * before issuing I/O to them.
2722          */
2723         return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2724             vd->vdev_ops == &vdev_missing_ops);
2725 }
2726
2727 boolean_t
2728 vdev_readable(vdev_t *vd)
2729 {
2730         return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2731 }
2732
2733 boolean_t
2734 vdev_writeable(vdev_t *vd)
2735 {
2736         return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2737 }
2738
2739 boolean_t
2740 vdev_allocatable(vdev_t *vd)
2741 {
2742         uint64_t state = vd->vdev_state;
2743
2744         /*
2745          * We currently allow allocations from vdevs which may be in the
2746          * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2747          * fails to reopen then we'll catch it later when we're holding
2748          * the proper locks.  Note that we have to get the vdev state
2749          * in a local variable because although it changes atomically,
2750          * we're asking two separate questions about it.
2751          */
2752         return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2753             !vd->vdev_cant_write && !vd->vdev_ishole);
2754 }
2755
2756 boolean_t
2757 vdev_accessible(vdev_t *vd, zio_t *zio)
2758 {
2759         ASSERT(zio->io_vd == vd);
2760
2761         if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2762                 return (B_FALSE);
2763
2764         if (zio->io_type == ZIO_TYPE_READ)
2765                 return (!vd->vdev_cant_read);
2766
2767         if (zio->io_type == ZIO_TYPE_WRITE)
2768                 return (!vd->vdev_cant_write);
2769
2770         return (B_TRUE);
2771 }
2772
2773 /*
2774  * Get statistics for the given vdev.
2775  */
2776 void
2777 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2778 {
2779         spa_t *spa = vd->vdev_spa;
2780         vdev_t *rvd = spa->spa_root_vdev;
2781
2782         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2783
2784         mutex_enter(&vd->vdev_stat_lock);
2785         bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2786         vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2787         vs->vs_state = vd->vdev_state;
2788         vs->vs_rsize = vdev_get_min_asize(vd);
2789         if (vd->vdev_ops->vdev_op_leaf)
2790                 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2791         vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize;
2792         vs->vs_configured_ashift = vd->vdev_top != NULL
2793             ? vd->vdev_top->vdev_ashift : vd->vdev_ashift;
2794         vs->vs_logical_ashift = vd->vdev_logical_ashift;
2795         vs->vs_physical_ashift = vd->vdev_physical_ashift;
2796         if (vd->vdev_aux == NULL && vd == vd->vdev_top && !vd->vdev_ishole) {
2797                 vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation;
2798         }
2799
2800         /*
2801          * If we're getting stats on the root vdev, aggregate the I/O counts
2802          * over all top-level vdevs (i.e. the direct children of the root).
2803          */
2804         if (vd == rvd) {
2805                 for (int c = 0; c < rvd->vdev_children; c++) {
2806                         vdev_t *cvd = rvd->vdev_child[c];
2807                         vdev_stat_t *cvs = &cvd->vdev_stat;
2808
2809                         for (int t = 0; t < ZIO_TYPES; t++) {
2810                                 vs->vs_ops[t] += cvs->vs_ops[t];
2811                                 vs->vs_bytes[t] += cvs->vs_bytes[t];
2812                         }
2813                         cvs->vs_scan_removing = cvd->vdev_removing;
2814                 }
2815         }
2816         mutex_exit(&vd->vdev_stat_lock);
2817 }
2818
2819 void
2820 vdev_clear_stats(vdev_t *vd)
2821 {
2822         mutex_enter(&vd->vdev_stat_lock);
2823         vd->vdev_stat.vs_space = 0;
2824         vd->vdev_stat.vs_dspace = 0;
2825         vd->vdev_stat.vs_alloc = 0;
2826         mutex_exit(&vd->vdev_stat_lock);
2827 }
2828
2829 void
2830 vdev_scan_stat_init(vdev_t *vd)
2831 {
2832         vdev_stat_t *vs = &vd->vdev_stat;
2833
2834         for (int c = 0; c < vd->vdev_children; c++)
2835                 vdev_scan_stat_init(vd->vdev_child[c]);
2836
2837         mutex_enter(&vd->vdev_stat_lock);
2838         vs->vs_scan_processed = 0;
2839         mutex_exit(&vd->vdev_stat_lock);
2840 }
2841
2842 void
2843 vdev_stat_update(zio_t *zio, uint64_t psize)
2844 {
2845         spa_t *spa = zio->io_spa;
2846         vdev_t *rvd = spa->spa_root_vdev;
2847         vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2848         vdev_t *pvd;
2849         uint64_t txg = zio->io_txg;
2850         vdev_stat_t *vs = &vd->vdev_stat;
2851         zio_type_t type = zio->io_type;
2852         int flags = zio->io_flags;
2853
2854         /*
2855          * If this i/o is a gang leader, it didn't do any actual work.
2856          */
2857         if (zio->io_gang_tree)
2858                 return;
2859
2860         if (zio->io_error == 0) {
2861                 /*
2862                  * If this is a root i/o, don't count it -- we've already
2863                  * counted the top-level vdevs, and vdev_get_stats() will
2864                  * aggregate them when asked.  This reduces contention on
2865                  * the root vdev_stat_lock and implicitly handles blocks
2866                  * that compress away to holes, for which there is no i/o.
2867                  * (Holes never create vdev children, so all the counters
2868                  * remain zero, which is what we want.)
2869                  *
2870                  * Note: this only applies to successful i/o (io_error == 0)
2871                  * because unlike i/o counts, errors are not additive.
2872                  * When reading a ditto block, for example, failure of
2873                  * one top-level vdev does not imply a root-level error.
2874                  */
2875                 if (vd == rvd)
2876                         return;
2877
2878                 ASSERT(vd == zio->io_vd);
2879
2880                 if (flags & ZIO_FLAG_IO_BYPASS)
2881                         return;
2882
2883                 mutex_enter(&vd->vdev_stat_lock);
2884
2885                 if (flags & ZIO_FLAG_IO_REPAIR) {
2886                         if (flags & ZIO_FLAG_SCAN_THREAD) {
2887                                 dsl_scan_phys_t *scn_phys =
2888                                     &spa->spa_dsl_pool->dp_scan->scn_phys;
2889                                 uint64_t *processed = &scn_phys->scn_processed;
2890
2891                                 /* XXX cleanup? */
2892                                 if (vd->vdev_ops->vdev_op_leaf)
2893                                         atomic_add_64(processed, psize);
2894                                 vs->vs_scan_processed += psize;
2895                         }
2896
2897                         if (flags & ZIO_FLAG_SELF_HEAL)
2898                                 vs->vs_self_healed += psize;
2899                 }
2900
2901                 vs->vs_ops[type]++;
2902                 vs->vs_bytes[type] += psize;
2903
2904                 mutex_exit(&vd->vdev_stat_lock);
2905                 return;
2906         }
2907
2908         if (flags & ZIO_FLAG_SPECULATIVE)
2909                 return;
2910
2911         /*
2912          * If this is an I/O error that is going to be retried, then ignore the
2913          * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
2914          * hard errors, when in reality they can happen for any number of
2915          * innocuous reasons (bus resets, MPxIO link failure, etc).
2916          */
2917         if (zio->io_error == EIO &&
2918             !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2919                 return;
2920
2921         /*
2922          * Intent logs writes won't propagate their error to the root
2923          * I/O so don't mark these types of failures as pool-level
2924          * errors.
2925          */
2926         if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2927                 return;
2928
2929         mutex_enter(&vd->vdev_stat_lock);
2930         if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2931                 if (zio->io_error == ECKSUM)
2932                         vs->vs_checksum_errors++;
2933                 else
2934                         vs->vs_read_errors++;
2935         }
2936         if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2937                 vs->vs_write_errors++;
2938         mutex_exit(&vd->vdev_stat_lock);
2939
2940         if (type == ZIO_TYPE_WRITE && txg != 0 &&
2941             (!(flags & ZIO_FLAG_IO_REPAIR) ||
2942             (flags & ZIO_FLAG_SCAN_THREAD) ||
2943             spa->spa_claiming)) {
2944                 /*
2945                  * This is either a normal write (not a repair), or it's
2946                  * a repair induced by the scrub thread, or it's a repair
2947                  * made by zil_claim() during spa_load() in the first txg.
2948                  * In the normal case, we commit the DTL change in the same
2949                  * txg as the block was born.  In the scrub-induced repair
2950                  * case, we know that scrubs run in first-pass syncing context,
2951                  * so we commit the DTL change in spa_syncing_txg(spa).
2952                  * In the zil_claim() case, we commit in spa_first_txg(spa).
2953                  *
2954                  * We currently do not make DTL entries for failed spontaneous
2955                  * self-healing writes triggered by normal (non-scrubbing)
2956                  * reads, because we have no transactional context in which to
2957                  * do so -- and it's not clear that it'd be desirable anyway.
2958                  */
2959                 if (vd->vdev_ops->vdev_op_leaf) {
2960                         uint64_t commit_txg = txg;
2961                         if (flags & ZIO_FLAG_SCAN_THREAD) {
2962                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2963                                 ASSERT(spa_sync_pass(spa) == 1);
2964                                 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2965                                 commit_txg = spa_syncing_txg(spa);
2966                         } else if (spa->spa_claiming) {
2967                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2968                                 commit_txg = spa_first_txg(spa);
2969                         }
2970                         ASSERT(commit_txg >= spa_syncing_txg(spa));
2971                         if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2972                                 return;
2973                         for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2974                                 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2975                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2976                 }
2977                 if (vd != rvd)
2978                         vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2979         }
2980 }
2981
2982 /*
2983  * Update the in-core space usage stats for this vdev, its metaslab class,
2984  * and the root vdev.
2985  */
2986 void
2987 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2988     int64_t space_delta)
2989 {
2990         int64_t dspace_delta = space_delta;
2991         spa_t *spa = vd->vdev_spa;
2992         vdev_t *rvd = spa->spa_root_vdev;
2993         metaslab_group_t *mg = vd->vdev_mg;
2994         metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2995
2996         ASSERT(vd == vd->vdev_top);
2997
2998         /*
2999          * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
3000          * factor.  We must calculate this here and not at the root vdev
3001          * because the root vdev's psize-to-asize is simply the max of its
3002          * childrens', thus not accurate enough for us.
3003          */
3004         ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
3005         ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
3006         dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
3007             vd->vdev_deflate_ratio;
3008
3009         mutex_enter(&vd->vdev_stat_lock);
3010         vd->vdev_stat.vs_alloc += alloc_delta;
3011         vd->vdev_stat.vs_space += space_delta;
3012         vd->vdev_stat.vs_dspace += dspace_delta;
3013         mutex_exit(&vd->vdev_stat_lock);
3014
3015         if (mc == spa_normal_class(spa)) {
3016                 mutex_enter(&rvd->vdev_stat_lock);
3017                 rvd->vdev_stat.vs_alloc += alloc_delta;
3018                 rvd->vdev_stat.vs_space += space_delta;
3019                 rvd->vdev_stat.vs_dspace += dspace_delta;
3020                 mutex_exit(&rvd->vdev_stat_lock);
3021         }
3022
3023         if (mc != NULL) {
3024                 ASSERT(rvd == vd->vdev_parent);
3025                 ASSERT(vd->vdev_ms_count != 0);
3026
3027                 metaslab_class_space_update(mc,
3028                     alloc_delta, defer_delta, space_delta, dspace_delta);
3029         }
3030 }
3031
3032 /*
3033  * Mark a top-level vdev's config as dirty, placing it on the dirty list
3034  * so that it will be written out next time the vdev configuration is synced.
3035  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
3036  */
3037 void
3038 vdev_config_dirty(vdev_t *vd)
3039 {
3040         spa_t *spa = vd->vdev_spa;
3041         vdev_t *rvd = spa->spa_root_vdev;
3042         int c;
3043
3044         ASSERT(spa_writeable(spa));
3045
3046         /*
3047          * If this is an aux vdev (as with l2cache and spare devices), then we
3048          * update the vdev config manually and set the sync flag.
3049          */
3050         if (vd->vdev_aux != NULL) {
3051                 spa_aux_vdev_t *sav = vd->vdev_aux;
3052                 nvlist_t **aux;
3053                 uint_t naux;
3054
3055                 for (c = 0; c < sav->sav_count; c++) {
3056                         if (sav->sav_vdevs[c] == vd)
3057                                 break;
3058                 }
3059
3060                 if (c == sav->sav_count) {
3061                         /*
3062                          * We're being removed.  There's nothing more to do.
3063                          */
3064                         ASSERT(sav->sav_sync == B_TRUE);
3065                         return;
3066                 }
3067
3068                 sav->sav_sync = B_TRUE;
3069
3070                 if (nvlist_lookup_nvlist_array(sav->sav_config,
3071                     ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
3072                         VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
3073                             ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
3074                 }
3075
3076                 ASSERT(c < naux);
3077
3078                 /*
3079                  * Setting the nvlist in the middle if the array is a little
3080                  * sketchy, but it will work.
3081                  */
3082                 nvlist_free(aux[c]);
3083                 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
3084
3085                 return;
3086         }
3087
3088         /*
3089          * The dirty list is protected by the SCL_CONFIG lock.  The caller
3090          * must either hold SCL_CONFIG as writer, or must be the sync thread
3091          * (which holds SCL_CONFIG as reader).  There's only one sync thread,
3092          * so this is sufficient to ensure mutual exclusion.
3093          */
3094         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3095             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3096             spa_config_held(spa, SCL_CONFIG, RW_READER)));
3097
3098         if (vd == rvd) {
3099                 for (c = 0; c < rvd->vdev_children; c++)
3100                         vdev_config_dirty(rvd->vdev_child[c]);
3101         } else {
3102                 ASSERT(vd == vd->vdev_top);
3103
3104                 if (!list_link_active(&vd->vdev_config_dirty_node) &&
3105                     !vd->vdev_ishole)
3106                         list_insert_head(&spa->spa_config_dirty_list, vd);
3107         }
3108 }
3109
3110 void
3111 vdev_config_clean(vdev_t *vd)
3112 {
3113         spa_t *spa = vd->vdev_spa;
3114
3115         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3116             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3117             spa_config_held(spa, SCL_CONFIG, RW_READER)));
3118
3119         ASSERT(list_link_active(&vd->vdev_config_dirty_node));
3120         list_remove(&spa->spa_config_dirty_list, vd);
3121 }
3122
3123 /*
3124  * Mark a top-level vdev's state as dirty, so that the next pass of
3125  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
3126  * the state changes from larger config changes because they require
3127  * much less locking, and are often needed for administrative actions.
3128  */
3129 void
3130 vdev_state_dirty(vdev_t *vd)
3131 {
3132         spa_t *spa = vd->vdev_spa;
3133
3134         ASSERT(spa_writeable(spa));
3135         ASSERT(vd == vd->vdev_top);
3136
3137         /*
3138          * The state list is protected by the SCL_STATE lock.  The caller
3139          * must either hold SCL_STATE as writer, or must be the sync thread
3140          * (which holds SCL_STATE as reader).  There's only one sync thread,
3141          * so this is sufficient to ensure mutual exclusion.
3142          */
3143         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3144             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3145             spa_config_held(spa, SCL_STATE, RW_READER)));
3146
3147         if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
3148                 list_insert_head(&spa->spa_state_dirty_list, vd);
3149 }
3150
3151 void
3152 vdev_state_clean(vdev_t *vd)
3153 {
3154         spa_t *spa = vd->vdev_spa;
3155
3156         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3157             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3158             spa_config_held(spa, SCL_STATE, RW_READER)));
3159
3160         ASSERT(list_link_active(&vd->vdev_state_dirty_node));
3161         list_remove(&spa->spa_state_dirty_list, vd);
3162 }
3163
3164 /*
3165  * Propagate vdev state up from children to parent.
3166  */
3167 void
3168 vdev_propagate_state(vdev_t *vd)
3169 {
3170         spa_t *spa = vd->vdev_spa;
3171         vdev_t *rvd = spa->spa_root_vdev;
3172         int degraded = 0, faulted = 0;
3173         int corrupted = 0;
3174         vdev_t *child;
3175
3176         if (vd->vdev_children > 0) {
3177                 for (int c = 0; c < vd->vdev_children; c++) {
3178                         child = vd->vdev_child[c];
3179
3180                         /*
3181                          * Don't factor holes into the decision.
3182                          */
3183                         if (child->vdev_ishole)
3184                                 continue;
3185
3186                         if (!vdev_readable(child) ||
3187                             (!vdev_writeable(child) && spa_writeable(spa))) {
3188                                 /*
3189                                  * Root special: if there is a top-level log
3190                                  * device, treat the root vdev as if it were
3191                                  * degraded.
3192                                  */
3193                                 if (child->vdev_islog && vd == rvd)
3194                                         degraded++;
3195                                 else
3196                                         faulted++;
3197                         } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
3198                                 degraded++;
3199                         }
3200
3201                         if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
3202                                 corrupted++;
3203                 }
3204
3205                 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
3206
3207                 /*
3208                  * Root special: if there is a top-level vdev that cannot be
3209                  * opened due to corrupted metadata, then propagate the root
3210                  * vdev's aux state as 'corrupt' rather than 'insufficient
3211                  * replicas'.
3212                  */
3213                 if (corrupted && vd == rvd &&
3214                     rvd->vdev_state == VDEV_STATE_CANT_OPEN)
3215                         vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
3216                             VDEV_AUX_CORRUPT_DATA);
3217         }
3218
3219         if (vd->vdev_parent)
3220                 vdev_propagate_state(vd->vdev_parent);
3221 }
3222
3223 /*
3224  * Set a vdev's state.  If this is during an open, we don't update the parent
3225  * state, because we're in the process of opening children depth-first.
3226  * Otherwise, we propagate the change to the parent.
3227  *
3228  * If this routine places a device in a faulted state, an appropriate ereport is
3229  * generated.
3230  */
3231 void
3232 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
3233 {
3234         uint64_t save_state;
3235         spa_t *spa = vd->vdev_spa;
3236
3237         if (state == vd->vdev_state) {
3238                 vd->vdev_stat.vs_aux = aux;
3239                 return;
3240         }
3241
3242         save_state = vd->vdev_state;
3243
3244         vd->vdev_state = state;
3245         vd->vdev_stat.vs_aux = aux;
3246
3247         /*
3248          * If we are setting the vdev state to anything but an open state, then
3249          * always close the underlying device unless the device has requested
3250          * a delayed close (i.e. we're about to remove or fault the device).
3251          * Otherwise, we keep accessible but invalid devices open forever.
3252          * We don't call vdev_close() itself, because that implies some extra
3253          * checks (offline, etc) that we don't want here.  This is limited to
3254          * leaf devices, because otherwise closing the device will affect other
3255          * children.
3256          */
3257         if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
3258             vd->vdev_ops->vdev_op_leaf)
3259                 vd->vdev_ops->vdev_op_close(vd);
3260
3261         /*
3262          * If we have brought this vdev back into service, we need
3263          * to notify fmd so that it can gracefully repair any outstanding
3264          * cases due to a missing device.  We do this in all cases, even those
3265          * that probably don't correlate to a repaired fault.  This is sure to
3266          * catch all cases, and we let the zfs-retire agent sort it out.  If
3267          * this is a transient state it's OK, as the retire agent will
3268          * double-check the state of the vdev before repairing it.
3269          */
3270         if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
3271             vd->vdev_prevstate != state)
3272                 zfs_post_state_change(spa, vd);
3273
3274         if (vd->vdev_removed &&
3275             state == VDEV_STATE_CANT_OPEN &&
3276             (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
3277                 /*
3278                  * If the previous state is set to VDEV_STATE_REMOVED, then this
3279                  * device was previously marked removed and someone attempted to
3280                  * reopen it.  If this failed due to a nonexistent device, then
3281                  * keep the device in the REMOVED state.  We also let this be if
3282                  * it is one of our special test online cases, which is only
3283                  * attempting to online the device and shouldn't generate an FMA
3284                  * fault.
3285                  */
3286                 vd->vdev_state = VDEV_STATE_REMOVED;
3287                 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3288         } else if (state == VDEV_STATE_REMOVED) {
3289                 vd->vdev_removed = B_TRUE;
3290         } else if (state == VDEV_STATE_CANT_OPEN) {
3291                 /*
3292                  * If we fail to open a vdev during an import or recovery, we
3293                  * mark it as "not available", which signifies that it was
3294                  * never there to begin with.  Failure to open such a device
3295                  * is not considered an error.
3296                  */
3297                 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3298                     spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3299                     vd->vdev_ops->vdev_op_leaf)
3300                         vd->vdev_not_present = 1;
3301
3302                 /*
3303                  * Post the appropriate ereport.  If the 'prevstate' field is
3304                  * set to something other than VDEV_STATE_UNKNOWN, it indicates
3305                  * that this is part of a vdev_reopen().  In this case, we don't
3306                  * want to post the ereport if the device was already in the
3307                  * CANT_OPEN state beforehand.
3308                  *
3309                  * If the 'checkremove' flag is set, then this is an attempt to
3310                  * online the device in response to an insertion event.  If we
3311                  * hit this case, then we have detected an insertion event for a
3312                  * faulted or offline device that wasn't in the removed state.
3313                  * In this scenario, we don't post an ereport because we are
3314                  * about to replace the device, or attempt an online with
3315                  * vdev_forcefault, which will generate the fault for us.
3316                  */
3317                 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3318                     !vd->vdev_not_present && !vd->vdev_checkremove &&
3319                     vd != spa->spa_root_vdev) {
3320                         const char *class;
3321
3322                         switch (aux) {
3323                         case VDEV_AUX_OPEN_FAILED:
3324                                 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3325                                 break;
3326                         case VDEV_AUX_CORRUPT_DATA:
3327                                 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3328                                 break;
3329                         case VDEV_AUX_NO_REPLICAS:
3330                                 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3331                                 break;
3332                         case VDEV_AUX_BAD_GUID_SUM:
3333                                 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3334                                 break;
3335                         case VDEV_AUX_TOO_SMALL:
3336                                 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3337                                 break;
3338                         case VDEV_AUX_BAD_LABEL:
3339                                 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3340                                 break;
3341                         default:
3342                                 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3343                         }
3344
3345                         zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3346                 }
3347
3348                 /* Erase any notion of persistent removed state */
3349                 vd->vdev_removed = B_FALSE;
3350         } else {
3351                 vd->vdev_removed = B_FALSE;
3352         }
3353
3354         if (!isopen && vd->vdev_parent)
3355                 vdev_propagate_state(vd->vdev_parent);
3356 }
3357
3358 /*
3359  * Check the vdev configuration to ensure that it's capable of supporting
3360  * a root pool.
3361  *
3362  * On Solaris, we do not support RAID-Z or partial configuration.  In
3363  * addition, only a single top-level vdev is allowed and none of the
3364  * leaves can be wholedisks.
3365  *
3366  * For FreeBSD, we can boot from any configuration. There is a
3367  * limitation that the boot filesystem must be either uncompressed or
3368  * compresses with lzjb compression but I'm not sure how to enforce
3369  * that here.
3370  */
3371 boolean_t
3372 vdev_is_bootable(vdev_t *vd)
3373 {
3374 #ifdef sun
3375         if (!vd->vdev_ops->vdev_op_leaf) {
3376                 char *vdev_type = vd->vdev_ops->vdev_op_type;
3377
3378                 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3379                     vd->vdev_children > 1) {
3380                         return (B_FALSE);
3381                 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3382                     strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3383                         return (B_FALSE);
3384                 }
3385         } else if (vd->vdev_wholedisk == 1) {
3386                 return (B_FALSE);
3387         }
3388
3389         for (int c = 0; c < vd->vdev_children; c++) {
3390                 if (!vdev_is_bootable(vd->vdev_child[c]))
3391                         return (B_FALSE);
3392         }
3393 #endif  /* sun */
3394         return (B_TRUE);
3395 }
3396
3397 /*
3398  * Load the state from the original vdev tree (ovd) which
3399  * we've retrieved from the MOS config object. If the original
3400  * vdev was offline or faulted then we transfer that state to the
3401  * device in the current vdev tree (nvd).
3402  */
3403 void
3404 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3405 {
3406         spa_t *spa = nvd->vdev_spa;
3407
3408         ASSERT(nvd->vdev_top->vdev_islog);
3409         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3410         ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3411
3412         for (int c = 0; c < nvd->vdev_children; c++)
3413                 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3414
3415         if (nvd->vdev_ops->vdev_op_leaf) {
3416                 /*
3417                  * Restore the persistent vdev state
3418                  */
3419                 nvd->vdev_offline = ovd->vdev_offline;
3420                 nvd->vdev_faulted = ovd->vdev_faulted;
3421                 nvd->vdev_degraded = ovd->vdev_degraded;
3422                 nvd->vdev_removed = ovd->vdev_removed;
3423         }
3424 }
3425
3426 /*
3427  * Determine if a log device has valid content.  If the vdev was
3428  * removed or faulted in the MOS config then we know that
3429  * the content on the log device has already been written to the pool.
3430  */
3431 boolean_t
3432 vdev_log_state_valid(vdev_t *vd)
3433 {
3434         if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3435             !vd->vdev_removed)
3436                 return (B_TRUE);
3437
3438         for (int c = 0; c < vd->vdev_children; c++)
3439                 if (vdev_log_state_valid(vd->vdev_child[c]))
3440                         return (B_TRUE);
3441
3442         return (B_FALSE);
3443 }
3444
3445 /*
3446  * Expand a vdev if possible.
3447  */
3448 void
3449 vdev_expand(vdev_t *vd, uint64_t txg)
3450 {
3451         ASSERT(vd->vdev_top == vd);
3452         ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3453
3454         if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3455                 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3456                 vdev_config_dirty(vd);
3457         }
3458 }
3459
3460 /*
3461  * Split a vdev.
3462  */
3463 void
3464 vdev_split(vdev_t *vd)
3465 {
3466         vdev_t *cvd, *pvd = vd->vdev_parent;
3467
3468         vdev_remove_child(pvd, vd);
3469         vdev_compact_children(pvd);
3470
3471         cvd = pvd->vdev_child[0];
3472         if (pvd->vdev_children == 1) {
3473                 vdev_remove_parent(cvd);
3474                 cvd->vdev_splitting = B_TRUE;
3475         }
3476         vdev_propagate_state(cvd);
3477 }
3478
3479 void
3480 vdev_deadman(vdev_t *vd)
3481 {
3482         for (int c = 0; c < vd->vdev_children; c++) {
3483                 vdev_t *cvd = vd->vdev_child[c];
3484
3485                 vdev_deadman(cvd);
3486         }
3487
3488         if (vd->vdev_ops->vdev_op_leaf) {
3489                 vdev_queue_t *vq = &vd->vdev_queue;
3490
3491                 mutex_enter(&vq->vq_lock);
3492                 if (avl_numnodes(&vq->vq_active_tree) > 0) {
3493                         spa_t *spa = vd->vdev_spa;
3494                         zio_t *fio;
3495                         uint64_t delta;
3496
3497                         /*
3498                          * Look at the head of all the pending queues,
3499                          * if any I/O has been outstanding for longer than
3500                          * the spa_deadman_synctime we panic the system.
3501                          */
3502                         fio = avl_first(&vq->vq_active_tree);
3503                         delta = gethrtime() - fio->io_timestamp;
3504                         if (delta > spa_deadman_synctime(spa)) {
3505                                 zfs_dbgmsg("SLOW IO: zio timestamp %lluns, "
3506                                     "delta %lluns, last io %lluns",
3507                                     fio->io_timestamp, delta,
3508                                     vq->vq_io_complete_ts);
3509                                 fm_panic("I/O to pool '%s' appears to be "
3510                                     "hung on vdev guid %llu at '%s'.",
3511                                     spa_name(spa),
3512                                     (long long unsigned int) vd->vdev_guid,
3513                                     vd->vdev_path);
3514                         }
3515                 }
3516                 mutex_exit(&vq->vq_lock);
3517         }
3518 }