]> CyberLeo.Net >> Repos - FreeBSD/releng/10.2.git/blob - sys/cddl/contrib/opensolaris/uts/common/fs/zfs/zap_leaf.c
- Copy stable/10@285827 to releng/10.2 in preparation for 10.2-RC1
[FreeBSD/releng/10.2.git] / sys / cddl / contrib / opensolaris / uts / common / fs / zfs / zap_leaf.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2013, 2014 by Delphix. All rights reserved.
24  */
25
26 /*
27  * The 512-byte leaf is broken into 32 16-byte chunks.
28  * chunk number n means l_chunk[n], even though the header precedes it.
29  * the names are stored null-terminated.
30  */
31
32 #include <sys/zio.h>
33 #include <sys/spa.h>
34 #include <sys/dmu.h>
35 #include <sys/zfs_context.h>
36 #include <sys/fs/zfs.h>
37 #include <sys/zap.h>
38 #include <sys/zap_impl.h>
39 #include <sys/zap_leaf.h>
40 #include <sys/arc.h>
41
42 static uint16_t *zap_leaf_rehash_entry(zap_leaf_t *l, uint16_t entry);
43
44 #define CHAIN_END 0xffff /* end of the chunk chain */
45
46 /* half the (current) minimum block size */
47 #define MAX_ARRAY_BYTES (8<<10)
48
49 #define LEAF_HASH(l, h) \
50         ((ZAP_LEAF_HASH_NUMENTRIES(l)-1) & \
51         ((h) >> \
52         (64 - ZAP_LEAF_HASH_SHIFT(l) - zap_leaf_phys(l)->l_hdr.lh_prefix_len)))
53
54 #define LEAF_HASH_ENTPTR(l, h) (&zap_leaf_phys(l)->l_hash[LEAF_HASH(l, h)])
55
56 extern inline zap_leaf_phys_t *zap_leaf_phys(zap_leaf_t *l);
57
58 static void
59 zap_memset(void *a, int c, size_t n)
60 {
61         char *cp = a;
62         char *cpend = cp + n;
63
64         while (cp < cpend)
65                 *cp++ = c;
66 }
67
68 static void
69 stv(int len, void *addr, uint64_t value)
70 {
71         switch (len) {
72         case 1:
73                 *(uint8_t *)addr = value;
74                 return;
75         case 2:
76                 *(uint16_t *)addr = value;
77                 return;
78         case 4:
79                 *(uint32_t *)addr = value;
80                 return;
81         case 8:
82                 *(uint64_t *)addr = value;
83                 return;
84         }
85         ASSERT(!"bad int len");
86 }
87
88 static uint64_t
89 ldv(int len, const void *addr)
90 {
91         switch (len) {
92         case 1:
93                 return (*(uint8_t *)addr);
94         case 2:
95                 return (*(uint16_t *)addr);
96         case 4:
97                 return (*(uint32_t *)addr);
98         case 8:
99                 return (*(uint64_t *)addr);
100         }
101         ASSERT(!"bad int len");
102         return (0xFEEDFACEDEADBEEFULL);
103 }
104
105 void
106 zap_leaf_byteswap(zap_leaf_phys_t *buf, int size)
107 {
108         int i;
109         zap_leaf_t l;
110         dmu_buf_t l_dbuf;
111
112         l_dbuf.db_data = buf;
113         l.l_bs = highbit64(size) - 1;
114         l.l_dbuf = &l_dbuf;
115
116         buf->l_hdr.lh_block_type =      BSWAP_64(buf->l_hdr.lh_block_type);
117         buf->l_hdr.lh_prefix =          BSWAP_64(buf->l_hdr.lh_prefix);
118         buf->l_hdr.lh_magic =           BSWAP_32(buf->l_hdr.lh_magic);
119         buf->l_hdr.lh_nfree =           BSWAP_16(buf->l_hdr.lh_nfree);
120         buf->l_hdr.lh_nentries =        BSWAP_16(buf->l_hdr.lh_nentries);
121         buf->l_hdr.lh_prefix_len =      BSWAP_16(buf->l_hdr.lh_prefix_len);
122         buf->l_hdr.lh_freelist =        BSWAP_16(buf->l_hdr.lh_freelist);
123
124         for (i = 0; i < ZAP_LEAF_HASH_NUMENTRIES(&l); i++)
125                 buf->l_hash[i] = BSWAP_16(buf->l_hash[i]);
126
127         for (i = 0; i < ZAP_LEAF_NUMCHUNKS(&l); i++) {
128                 zap_leaf_chunk_t *lc = &ZAP_LEAF_CHUNK(&l, i);
129                 struct zap_leaf_entry *le;
130
131                 switch (lc->l_free.lf_type) {
132                 case ZAP_CHUNK_ENTRY:
133                         le = &lc->l_entry;
134
135                         le->le_type =           BSWAP_8(le->le_type);
136                         le->le_value_intlen =   BSWAP_8(le->le_value_intlen);
137                         le->le_next =           BSWAP_16(le->le_next);
138                         le->le_name_chunk =     BSWAP_16(le->le_name_chunk);
139                         le->le_name_numints =   BSWAP_16(le->le_name_numints);
140                         le->le_value_chunk =    BSWAP_16(le->le_value_chunk);
141                         le->le_value_numints =  BSWAP_16(le->le_value_numints);
142                         le->le_cd =             BSWAP_32(le->le_cd);
143                         le->le_hash =           BSWAP_64(le->le_hash);
144                         break;
145                 case ZAP_CHUNK_FREE:
146                         lc->l_free.lf_type =    BSWAP_8(lc->l_free.lf_type);
147                         lc->l_free.lf_next =    BSWAP_16(lc->l_free.lf_next);
148                         break;
149                 case ZAP_CHUNK_ARRAY:
150                         lc->l_array.la_type =   BSWAP_8(lc->l_array.la_type);
151                         lc->l_array.la_next =   BSWAP_16(lc->l_array.la_next);
152                         /* la_array doesn't need swapping */
153                         break;
154                 default:
155                         ASSERT(!"bad leaf type");
156                 }
157         }
158 }
159
160 void
161 zap_leaf_init(zap_leaf_t *l, boolean_t sort)
162 {
163         int i;
164
165         l->l_bs = highbit64(l->l_dbuf->db_size) - 1;
166         zap_memset(&zap_leaf_phys(l)->l_hdr, 0,
167             sizeof (struct zap_leaf_header));
168         zap_memset(zap_leaf_phys(l)->l_hash, CHAIN_END,
169             2*ZAP_LEAF_HASH_NUMENTRIES(l));
170         for (i = 0; i < ZAP_LEAF_NUMCHUNKS(l); i++) {
171                 ZAP_LEAF_CHUNK(l, i).l_free.lf_type = ZAP_CHUNK_FREE;
172                 ZAP_LEAF_CHUNK(l, i).l_free.lf_next = i+1;
173         }
174         ZAP_LEAF_CHUNK(l, ZAP_LEAF_NUMCHUNKS(l)-1).l_free.lf_next = CHAIN_END;
175         zap_leaf_phys(l)->l_hdr.lh_block_type = ZBT_LEAF;
176         zap_leaf_phys(l)->l_hdr.lh_magic = ZAP_LEAF_MAGIC;
177         zap_leaf_phys(l)->l_hdr.lh_nfree = ZAP_LEAF_NUMCHUNKS(l);
178         if (sort)
179                 zap_leaf_phys(l)->l_hdr.lh_flags |= ZLF_ENTRIES_CDSORTED;
180 }
181
182 /*
183  * Routines which manipulate leaf chunks (l_chunk[]).
184  */
185
186 static uint16_t
187 zap_leaf_chunk_alloc(zap_leaf_t *l)
188 {
189         int chunk;
190
191         ASSERT(zap_leaf_phys(l)->l_hdr.lh_nfree > 0);
192
193         chunk = zap_leaf_phys(l)->l_hdr.lh_freelist;
194         ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
195         ASSERT3U(ZAP_LEAF_CHUNK(l, chunk).l_free.lf_type, ==, ZAP_CHUNK_FREE);
196
197         zap_leaf_phys(l)->l_hdr.lh_freelist =
198             ZAP_LEAF_CHUNK(l, chunk).l_free.lf_next;
199
200         zap_leaf_phys(l)->l_hdr.lh_nfree--;
201
202         return (chunk);
203 }
204
205 static void
206 zap_leaf_chunk_free(zap_leaf_t *l, uint16_t chunk)
207 {
208         struct zap_leaf_free *zlf = &ZAP_LEAF_CHUNK(l, chunk).l_free;
209         ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_nfree, <, ZAP_LEAF_NUMCHUNKS(l));
210         ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
211         ASSERT(zlf->lf_type != ZAP_CHUNK_FREE);
212
213         zlf->lf_type = ZAP_CHUNK_FREE;
214         zlf->lf_next = zap_leaf_phys(l)->l_hdr.lh_freelist;
215         bzero(zlf->lf_pad, sizeof (zlf->lf_pad)); /* help it to compress */
216         zap_leaf_phys(l)->l_hdr.lh_freelist = chunk;
217
218         zap_leaf_phys(l)->l_hdr.lh_nfree++;
219 }
220
221 /*
222  * Routines which manipulate leaf arrays (zap_leaf_array type chunks).
223  */
224
225 static uint16_t
226 zap_leaf_array_create(zap_leaf_t *l, const char *buf,
227     int integer_size, int num_integers)
228 {
229         uint16_t chunk_head;
230         uint16_t *chunkp = &chunk_head;
231         int byten = 0;
232         uint64_t value = 0;
233         int shift = (integer_size-1)*8;
234         int len = num_integers;
235
236         ASSERT3U(num_integers * integer_size, <, MAX_ARRAY_BYTES);
237
238         while (len > 0) {
239                 uint16_t chunk = zap_leaf_chunk_alloc(l);
240                 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array;
241                 int i;
242
243                 la->la_type = ZAP_CHUNK_ARRAY;
244                 for (i = 0; i < ZAP_LEAF_ARRAY_BYTES; i++) {
245                         if (byten == 0)
246                                 value = ldv(integer_size, buf);
247                         la->la_array[i] = value >> shift;
248                         value <<= 8;
249                         if (++byten == integer_size) {
250                                 byten = 0;
251                                 buf += integer_size;
252                                 if (--len == 0)
253                                         break;
254                         }
255                 }
256
257                 *chunkp = chunk;
258                 chunkp = &la->la_next;
259         }
260         *chunkp = CHAIN_END;
261
262         return (chunk_head);
263 }
264
265 static void
266 zap_leaf_array_free(zap_leaf_t *l, uint16_t *chunkp)
267 {
268         uint16_t chunk = *chunkp;
269
270         *chunkp = CHAIN_END;
271
272         while (chunk != CHAIN_END) {
273                 int nextchunk = ZAP_LEAF_CHUNK(l, chunk).l_array.la_next;
274                 ASSERT3U(ZAP_LEAF_CHUNK(l, chunk).l_array.la_type, ==,
275                     ZAP_CHUNK_ARRAY);
276                 zap_leaf_chunk_free(l, chunk);
277                 chunk = nextchunk;
278         }
279 }
280
281 /* array_len and buf_len are in integers, not bytes */
282 static void
283 zap_leaf_array_read(zap_leaf_t *l, uint16_t chunk,
284     int array_int_len, int array_len, int buf_int_len, uint64_t buf_len,
285     void *buf)
286 {
287         int len = MIN(array_len, buf_len);
288         int byten = 0;
289         uint64_t value = 0;
290         char *p = buf;
291
292         ASSERT3U(array_int_len, <=, buf_int_len);
293
294         /* Fast path for one 8-byte integer */
295         if (array_int_len == 8 && buf_int_len == 8 && len == 1) {
296                 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array;
297                 uint8_t *ip = la->la_array;
298                 uint64_t *buf64 = buf;
299
300                 *buf64 = (uint64_t)ip[0] << 56 | (uint64_t)ip[1] << 48 |
301                     (uint64_t)ip[2] << 40 | (uint64_t)ip[3] << 32 |
302                     (uint64_t)ip[4] << 24 | (uint64_t)ip[5] << 16 |
303                     (uint64_t)ip[6] << 8 | (uint64_t)ip[7];
304                 return;
305         }
306
307         /* Fast path for an array of 1-byte integers (eg. the entry name) */
308         if (array_int_len == 1 && buf_int_len == 1 &&
309             buf_len > array_len + ZAP_LEAF_ARRAY_BYTES) {
310                 while (chunk != CHAIN_END) {
311                         struct zap_leaf_array *la =
312                             &ZAP_LEAF_CHUNK(l, chunk).l_array;
313                         bcopy(la->la_array, p, ZAP_LEAF_ARRAY_BYTES);
314                         p += ZAP_LEAF_ARRAY_BYTES;
315                         chunk = la->la_next;
316                 }
317                 return;
318         }
319
320         while (len > 0) {
321                 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array;
322                 int i;
323
324                 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
325                 for (i = 0; i < ZAP_LEAF_ARRAY_BYTES && len > 0; i++) {
326                         value = (value << 8) | la->la_array[i];
327                         byten++;
328                         if (byten == array_int_len) {
329                                 stv(buf_int_len, p, value);
330                                 byten = 0;
331                                 len--;
332                                 if (len == 0)
333                                         return;
334                                 p += buf_int_len;
335                         }
336                 }
337                 chunk = la->la_next;
338         }
339 }
340
341 static boolean_t
342 zap_leaf_array_match(zap_leaf_t *l, zap_name_t *zn,
343     int chunk, int array_numints)
344 {
345         int bseen = 0;
346
347         if (zap_getflags(zn->zn_zap) & ZAP_FLAG_UINT64_KEY) {
348                 uint64_t *thiskey;
349                 boolean_t match;
350
351                 ASSERT(zn->zn_key_intlen == sizeof (*thiskey));
352                 thiskey = kmem_alloc(array_numints * sizeof (*thiskey),
353                     KM_SLEEP);
354
355                 zap_leaf_array_read(l, chunk, sizeof (*thiskey), array_numints,
356                     sizeof (*thiskey), array_numints, thiskey);
357                 match = bcmp(thiskey, zn->zn_key_orig,
358                     array_numints * sizeof (*thiskey)) == 0;
359                 kmem_free(thiskey, array_numints * sizeof (*thiskey));
360                 return (match);
361         }
362
363         ASSERT(zn->zn_key_intlen == 1);
364         if (zn->zn_matchtype == MT_FIRST) {
365                 char *thisname = kmem_alloc(array_numints, KM_SLEEP);
366                 boolean_t match;
367
368                 zap_leaf_array_read(l, chunk, sizeof (char), array_numints,
369                     sizeof (char), array_numints, thisname);
370                 match = zap_match(zn, thisname);
371                 kmem_free(thisname, array_numints);
372                 return (match);
373         }
374
375         /*
376          * Fast path for exact matching.
377          * First check that the lengths match, so that we don't read
378          * past the end of the zn_key_orig array.
379          */
380         if (array_numints != zn->zn_key_orig_numints)
381                 return (B_FALSE);
382         while (bseen < array_numints) {
383                 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array;
384                 int toread = MIN(array_numints - bseen, ZAP_LEAF_ARRAY_BYTES);
385                 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
386                 if (bcmp(la->la_array, (char *)zn->zn_key_orig + bseen, toread))
387                         break;
388                 chunk = la->la_next;
389                 bseen += toread;
390         }
391         return (bseen == array_numints);
392 }
393
394 /*
395  * Routines which manipulate leaf entries.
396  */
397
398 int
399 zap_leaf_lookup(zap_leaf_t *l, zap_name_t *zn, zap_entry_handle_t *zeh)
400 {
401         uint16_t *chunkp;
402         struct zap_leaf_entry *le;
403
404         ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_magic, ==, ZAP_LEAF_MAGIC);
405
406 again:
407         for (chunkp = LEAF_HASH_ENTPTR(l, zn->zn_hash);
408             *chunkp != CHAIN_END; chunkp = &le->le_next) {
409                 uint16_t chunk = *chunkp;
410                 le = ZAP_LEAF_ENTRY(l, chunk);
411
412                 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
413                 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
414
415                 if (le->le_hash != zn->zn_hash)
416                         continue;
417
418                 /*
419                  * NB: the entry chain is always sorted by cd on
420                  * normalized zap objects, so this will find the
421                  * lowest-cd match for MT_FIRST.
422                  */
423                 ASSERT(zn->zn_matchtype == MT_EXACT ||
424                     (zap_leaf_phys(l)->l_hdr.lh_flags & ZLF_ENTRIES_CDSORTED));
425                 if (zap_leaf_array_match(l, zn, le->le_name_chunk,
426                     le->le_name_numints)) {
427                         zeh->zeh_num_integers = le->le_value_numints;
428                         zeh->zeh_integer_size = le->le_value_intlen;
429                         zeh->zeh_cd = le->le_cd;
430                         zeh->zeh_hash = le->le_hash;
431                         zeh->zeh_chunkp = chunkp;
432                         zeh->zeh_leaf = l;
433                         return (0);
434                 }
435         }
436
437         /*
438          * NB: we could of course do this in one pass, but that would be
439          * a pain.  We'll see if MT_BEST is even used much.
440          */
441         if (zn->zn_matchtype == MT_BEST) {
442                 zn->zn_matchtype = MT_FIRST;
443                 goto again;
444         }
445
446         return (SET_ERROR(ENOENT));
447 }
448
449 /* Return (h1,cd1 >= h2,cd2) */
450 #define HCD_GTEQ(h1, cd1, h2, cd2) \
451         ((h1 > h2) ? TRUE : ((h1 == h2 && cd1 >= cd2) ? TRUE : FALSE))
452
453 int
454 zap_leaf_lookup_closest(zap_leaf_t *l,
455     uint64_t h, uint32_t cd, zap_entry_handle_t *zeh)
456 {
457         uint16_t chunk;
458         uint64_t besth = -1ULL;
459         uint32_t bestcd = -1U;
460         uint16_t bestlh = ZAP_LEAF_HASH_NUMENTRIES(l)-1;
461         uint16_t lh;
462         struct zap_leaf_entry *le;
463
464         ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_magic, ==, ZAP_LEAF_MAGIC);
465
466         for (lh = LEAF_HASH(l, h); lh <= bestlh; lh++) {
467                 for (chunk = zap_leaf_phys(l)->l_hash[lh];
468                     chunk != CHAIN_END; chunk = le->le_next) {
469                         le = ZAP_LEAF_ENTRY(l, chunk);
470
471                         ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
472                         ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
473
474                         if (HCD_GTEQ(le->le_hash, le->le_cd, h, cd) &&
475                             HCD_GTEQ(besth, bestcd, le->le_hash, le->le_cd)) {
476                                 ASSERT3U(bestlh, >=, lh);
477                                 bestlh = lh;
478                                 besth = le->le_hash;
479                                 bestcd = le->le_cd;
480
481                                 zeh->zeh_num_integers = le->le_value_numints;
482                                 zeh->zeh_integer_size = le->le_value_intlen;
483                                 zeh->zeh_cd = le->le_cd;
484                                 zeh->zeh_hash = le->le_hash;
485                                 zeh->zeh_fakechunk = chunk;
486                                 zeh->zeh_chunkp = &zeh->zeh_fakechunk;
487                                 zeh->zeh_leaf = l;
488                         }
489                 }
490         }
491
492         return (bestcd == -1U ? ENOENT : 0);
493 }
494
495 int
496 zap_entry_read(const zap_entry_handle_t *zeh,
497     uint8_t integer_size, uint64_t num_integers, void *buf)
498 {
499         struct zap_leaf_entry *le =
500             ZAP_LEAF_ENTRY(zeh->zeh_leaf, *zeh->zeh_chunkp);
501         ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
502
503         if (le->le_value_intlen > integer_size)
504                 return (SET_ERROR(EINVAL));
505
506         zap_leaf_array_read(zeh->zeh_leaf, le->le_value_chunk,
507             le->le_value_intlen, le->le_value_numints,
508             integer_size, num_integers, buf);
509
510         if (zeh->zeh_num_integers > num_integers)
511                 return (SET_ERROR(EOVERFLOW));
512         return (0);
513
514 }
515
516 int
517 zap_entry_read_name(zap_t *zap, const zap_entry_handle_t *zeh, uint16_t buflen,
518     char *buf)
519 {
520         struct zap_leaf_entry *le =
521             ZAP_LEAF_ENTRY(zeh->zeh_leaf, *zeh->zeh_chunkp);
522         ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
523
524         if (zap_getflags(zap) & ZAP_FLAG_UINT64_KEY) {
525                 zap_leaf_array_read(zeh->zeh_leaf, le->le_name_chunk, 8,
526                     le->le_name_numints, 8, buflen / 8, buf);
527         } else {
528                 zap_leaf_array_read(zeh->zeh_leaf, le->le_name_chunk, 1,
529                     le->le_name_numints, 1, buflen, buf);
530         }
531         if (le->le_name_numints > buflen)
532                 return (SET_ERROR(EOVERFLOW));
533         return (0);
534 }
535
536 int
537 zap_entry_update(zap_entry_handle_t *zeh,
538         uint8_t integer_size, uint64_t num_integers, const void *buf)
539 {
540         int delta_chunks;
541         zap_leaf_t *l = zeh->zeh_leaf;
542         struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, *zeh->zeh_chunkp);
543
544         delta_chunks = ZAP_LEAF_ARRAY_NCHUNKS(num_integers * integer_size) -
545             ZAP_LEAF_ARRAY_NCHUNKS(le->le_value_numints * le->le_value_intlen);
546
547         if ((int)zap_leaf_phys(l)->l_hdr.lh_nfree < delta_chunks)
548                 return (SET_ERROR(EAGAIN));
549
550         zap_leaf_array_free(l, &le->le_value_chunk);
551         le->le_value_chunk =
552             zap_leaf_array_create(l, buf, integer_size, num_integers);
553         le->le_value_numints = num_integers;
554         le->le_value_intlen = integer_size;
555         return (0);
556 }
557
558 void
559 zap_entry_remove(zap_entry_handle_t *zeh)
560 {
561         uint16_t entry_chunk;
562         struct zap_leaf_entry *le;
563         zap_leaf_t *l = zeh->zeh_leaf;
564
565         ASSERT3P(zeh->zeh_chunkp, !=, &zeh->zeh_fakechunk);
566
567         entry_chunk = *zeh->zeh_chunkp;
568         le = ZAP_LEAF_ENTRY(l, entry_chunk);
569         ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
570
571         zap_leaf_array_free(l, &le->le_name_chunk);
572         zap_leaf_array_free(l, &le->le_value_chunk);
573
574         *zeh->zeh_chunkp = le->le_next;
575         zap_leaf_chunk_free(l, entry_chunk);
576
577         zap_leaf_phys(l)->l_hdr.lh_nentries--;
578 }
579
580 int
581 zap_entry_create(zap_leaf_t *l, zap_name_t *zn, uint32_t cd,
582     uint8_t integer_size, uint64_t num_integers, const void *buf,
583     zap_entry_handle_t *zeh)
584 {
585         uint16_t chunk;
586         uint16_t *chunkp;
587         struct zap_leaf_entry *le;
588         uint64_t valuelen;
589         int numchunks;
590         uint64_t h = zn->zn_hash;
591
592         valuelen = integer_size * num_integers;
593
594         numchunks = 1 + ZAP_LEAF_ARRAY_NCHUNKS(zn->zn_key_orig_numints *
595             zn->zn_key_intlen) + ZAP_LEAF_ARRAY_NCHUNKS(valuelen);
596         if (numchunks > ZAP_LEAF_NUMCHUNKS(l))
597                 return (E2BIG);
598
599         if (cd == ZAP_NEED_CD) {
600                 /* find the lowest unused cd */
601                 if (zap_leaf_phys(l)->l_hdr.lh_flags & ZLF_ENTRIES_CDSORTED) {
602                         cd = 0;
603
604                         for (chunk = *LEAF_HASH_ENTPTR(l, h);
605                             chunk != CHAIN_END; chunk = le->le_next) {
606                                 le = ZAP_LEAF_ENTRY(l, chunk);
607                                 if (le->le_cd > cd)
608                                         break;
609                                 if (le->le_hash == h) {
610                                         ASSERT3U(cd, ==, le->le_cd);
611                                         cd++;
612                                 }
613                         }
614                 } else {
615                         /* old unsorted format; do it the O(n^2) way */
616                         for (cd = 0; ; cd++) {
617                                 for (chunk = *LEAF_HASH_ENTPTR(l, h);
618                                     chunk != CHAIN_END; chunk = le->le_next) {
619                                         le = ZAP_LEAF_ENTRY(l, chunk);
620                                         if (le->le_hash == h &&
621                                             le->le_cd == cd) {
622                                                 break;
623                                         }
624                                 }
625                                 /* If this cd is not in use, we are good. */
626                                 if (chunk == CHAIN_END)
627                                         break;
628                         }
629                 }
630                 /*
631                  * We would run out of space in a block before we could
632                  * store enough entries to run out of CD values.
633                  */
634                 ASSERT3U(cd, <, zap_maxcd(zn->zn_zap));
635         }
636
637         if (zap_leaf_phys(l)->l_hdr.lh_nfree < numchunks)
638                 return (SET_ERROR(EAGAIN));
639
640         /* make the entry */
641         chunk = zap_leaf_chunk_alloc(l);
642         le = ZAP_LEAF_ENTRY(l, chunk);
643         le->le_type = ZAP_CHUNK_ENTRY;
644         le->le_name_chunk = zap_leaf_array_create(l, zn->zn_key_orig,
645             zn->zn_key_intlen, zn->zn_key_orig_numints);
646         le->le_name_numints = zn->zn_key_orig_numints;
647         le->le_value_chunk =
648             zap_leaf_array_create(l, buf, integer_size, num_integers);
649         le->le_value_numints = num_integers;
650         le->le_value_intlen = integer_size;
651         le->le_hash = h;
652         le->le_cd = cd;
653
654         /* link it into the hash chain */
655         /* XXX if we did the search above, we could just use that */
656         chunkp = zap_leaf_rehash_entry(l, chunk);
657
658         zap_leaf_phys(l)->l_hdr.lh_nentries++;
659
660         zeh->zeh_leaf = l;
661         zeh->zeh_num_integers = num_integers;
662         zeh->zeh_integer_size = le->le_value_intlen;
663         zeh->zeh_cd = le->le_cd;
664         zeh->zeh_hash = le->le_hash;
665         zeh->zeh_chunkp = chunkp;
666
667         return (0);
668 }
669
670 /*
671  * Determine if there is another entry with the same normalized form.
672  * For performance purposes, either zn or name must be provided (the
673  * other can be NULL).  Note, there usually won't be any hash
674  * conflicts, in which case we don't need the concatenated/normalized
675  * form of the name.  But all callers have one of these on hand anyway,
676  * so might as well take advantage.  A cleaner but slower interface
677  * would accept neither argument, and compute the normalized name as
678  * needed (using zap_name_alloc(zap_entry_read_name(zeh))).
679  */
680 boolean_t
681 zap_entry_normalization_conflict(zap_entry_handle_t *zeh, zap_name_t *zn,
682     const char *name, zap_t *zap)
683 {
684         uint64_t chunk;
685         struct zap_leaf_entry *le;
686         boolean_t allocdzn = B_FALSE;
687
688         if (zap->zap_normflags == 0)
689                 return (B_FALSE);
690
691         for (chunk = *LEAF_HASH_ENTPTR(zeh->zeh_leaf, zeh->zeh_hash);
692             chunk != CHAIN_END; chunk = le->le_next) {
693                 le = ZAP_LEAF_ENTRY(zeh->zeh_leaf, chunk);
694                 if (le->le_hash != zeh->zeh_hash)
695                         continue;
696                 if (le->le_cd == zeh->zeh_cd)
697                         continue;
698
699                 if (zn == NULL) {
700                         zn = zap_name_alloc(zap, name, MT_FIRST);
701                         allocdzn = B_TRUE;
702                 }
703                 if (zap_leaf_array_match(zeh->zeh_leaf, zn,
704                     le->le_name_chunk, le->le_name_numints)) {
705                         if (allocdzn)
706                                 zap_name_free(zn);
707                         return (B_TRUE);
708                 }
709         }
710         if (allocdzn)
711                 zap_name_free(zn);
712         return (B_FALSE);
713 }
714
715 /*
716  * Routines for transferring entries between leafs.
717  */
718
719 static uint16_t *
720 zap_leaf_rehash_entry(zap_leaf_t *l, uint16_t entry)
721 {
722         struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, entry);
723         struct zap_leaf_entry *le2;
724         uint16_t *chunkp;
725
726         /*
727          * keep the entry chain sorted by cd
728          * NB: this will not cause problems for unsorted leafs, though
729          * it is unnecessary there.
730          */
731         for (chunkp = LEAF_HASH_ENTPTR(l, le->le_hash);
732             *chunkp != CHAIN_END; chunkp = &le2->le_next) {
733                 le2 = ZAP_LEAF_ENTRY(l, *chunkp);
734                 if (le2->le_cd > le->le_cd)
735                         break;
736         }
737
738         le->le_next = *chunkp;
739         *chunkp = entry;
740         return (chunkp);
741 }
742
743 static uint16_t
744 zap_leaf_transfer_array(zap_leaf_t *l, uint16_t chunk, zap_leaf_t *nl)
745 {
746         uint16_t new_chunk;
747         uint16_t *nchunkp = &new_chunk;
748
749         while (chunk != CHAIN_END) {
750                 uint16_t nchunk = zap_leaf_chunk_alloc(nl);
751                 struct zap_leaf_array *nla =
752                     &ZAP_LEAF_CHUNK(nl, nchunk).l_array;
753                 struct zap_leaf_array *la =
754                     &ZAP_LEAF_CHUNK(l, chunk).l_array;
755                 int nextchunk = la->la_next;
756
757                 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
758                 ASSERT3U(nchunk, <, ZAP_LEAF_NUMCHUNKS(l));
759
760                 *nla = *la; /* structure assignment */
761
762                 zap_leaf_chunk_free(l, chunk);
763                 chunk = nextchunk;
764                 *nchunkp = nchunk;
765                 nchunkp = &nla->la_next;
766         }
767         *nchunkp = CHAIN_END;
768         return (new_chunk);
769 }
770
771 static void
772 zap_leaf_transfer_entry(zap_leaf_t *l, int entry, zap_leaf_t *nl)
773 {
774         struct zap_leaf_entry *le, *nle;
775         uint16_t chunk;
776
777         le = ZAP_LEAF_ENTRY(l, entry);
778         ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
779
780         chunk = zap_leaf_chunk_alloc(nl);
781         nle = ZAP_LEAF_ENTRY(nl, chunk);
782         *nle = *le; /* structure assignment */
783
784         (void) zap_leaf_rehash_entry(nl, chunk);
785
786         nle->le_name_chunk = zap_leaf_transfer_array(l, le->le_name_chunk, nl);
787         nle->le_value_chunk =
788             zap_leaf_transfer_array(l, le->le_value_chunk, nl);
789
790         zap_leaf_chunk_free(l, entry);
791
792         zap_leaf_phys(l)->l_hdr.lh_nentries--;
793         zap_leaf_phys(nl)->l_hdr.lh_nentries++;
794 }
795
796 /*
797  * Transfer the entries whose hash prefix ends in 1 to the new leaf.
798  */
799 void
800 zap_leaf_split(zap_leaf_t *l, zap_leaf_t *nl, boolean_t sort)
801 {
802         int i;
803         int bit = 64 - 1 - zap_leaf_phys(l)->l_hdr.lh_prefix_len;
804
805         /* set new prefix and prefix_len */
806         zap_leaf_phys(l)->l_hdr.lh_prefix <<= 1;
807         zap_leaf_phys(l)->l_hdr.lh_prefix_len++;
808         zap_leaf_phys(nl)->l_hdr.lh_prefix =
809             zap_leaf_phys(l)->l_hdr.lh_prefix | 1;
810         zap_leaf_phys(nl)->l_hdr.lh_prefix_len =
811             zap_leaf_phys(l)->l_hdr.lh_prefix_len;
812
813         /* break existing hash chains */
814         zap_memset(zap_leaf_phys(l)->l_hash, CHAIN_END,
815             2*ZAP_LEAF_HASH_NUMENTRIES(l));
816
817         if (sort)
818                 zap_leaf_phys(l)->l_hdr.lh_flags |= ZLF_ENTRIES_CDSORTED;
819
820         /*
821          * Transfer entries whose hash bit 'bit' is set to nl; rehash
822          * the remaining entries
823          *
824          * NB: We could find entries via the hashtable instead. That
825          * would be O(hashents+numents) rather than O(numblks+numents),
826          * but this accesses memory more sequentially, and when we're
827          * called, the block is usually pretty full.
828          */
829         for (i = 0; i < ZAP_LEAF_NUMCHUNKS(l); i++) {
830                 struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, i);
831                 if (le->le_type != ZAP_CHUNK_ENTRY)
832                         continue;
833
834                 if (le->le_hash & (1ULL << bit))
835                         zap_leaf_transfer_entry(l, i, nl);
836                 else
837                         (void) zap_leaf_rehash_entry(l, i);
838         }
839 }
840
841 void
842 zap_leaf_stats(zap_t *zap, zap_leaf_t *l, zap_stats_t *zs)
843 {
844         int i, n;
845
846         n = zap_f_phys(zap)->zap_ptrtbl.zt_shift -
847             zap_leaf_phys(l)->l_hdr.lh_prefix_len;
848         n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
849         zs->zs_leafs_with_2n_pointers[n]++;
850
851
852         n = zap_leaf_phys(l)->l_hdr.lh_nentries/5;
853         n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
854         zs->zs_blocks_with_n5_entries[n]++;
855
856         n = ((1<<FZAP_BLOCK_SHIFT(zap)) -
857             zap_leaf_phys(l)->l_hdr.lh_nfree * (ZAP_LEAF_ARRAY_BYTES+1))*10 /
858             (1<<FZAP_BLOCK_SHIFT(zap));
859         n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
860         zs->zs_blocks_n_tenths_full[n]++;
861
862         for (i = 0; i < ZAP_LEAF_HASH_NUMENTRIES(l); i++) {
863                 int nentries = 0;
864                 int chunk = zap_leaf_phys(l)->l_hash[i];
865
866                 while (chunk != CHAIN_END) {
867                         struct zap_leaf_entry *le =
868                             ZAP_LEAF_ENTRY(l, chunk);
869
870                         n = 1 + ZAP_LEAF_ARRAY_NCHUNKS(le->le_name_numints) +
871                             ZAP_LEAF_ARRAY_NCHUNKS(le->le_value_numints *
872                             le->le_value_intlen);
873                         n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
874                         zs->zs_entries_using_n_chunks[n]++;
875
876                         chunk = le->le_next;
877                         nentries++;
878                 }
879
880                 n = nentries;
881                 n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
882                 zs->zs_buckets_with_n_entries[n]++;
883         }
884 }