]> CyberLeo.Net >> Repos - FreeBSD/releng/10.2.git/blob - sys/dev/bce/if_bce.c
- Copy stable/10@285827 to releng/10.2 in preparation for 10.2-RC1
[FreeBSD/releng/10.2.git] / sys / dev / bce / if_bce.c
1 /*-
2  * Copyright (c) 2006-2014 QLogic Corporation
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
15  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
18  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
19  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
20  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
21  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
22  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
23  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
24  * THE POSSIBILITY OF SUCH DAMAGE.
25  */
26
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29
30 /*
31  * The following controllers are supported by this driver:
32  *   BCM5706C A2, A3
33  *   BCM5706S A2, A3
34  *   BCM5708C B1, B2
35  *   BCM5708S B1, B2
36  *   BCM5709C A1, C0
37  *   BCM5709S A1, C0
38  *   BCM5716C C0
39  *   BCM5716S C0
40  *
41  * The following controllers are not supported by this driver:
42  *   BCM5706C A0, A1 (pre-production)
43  *   BCM5706S A0, A1 (pre-production)
44  *   BCM5708C A0, B0 (pre-production)
45  *   BCM5708S A0, B0 (pre-production)
46  *   BCM5709C A0  B0, B1, B2 (pre-production)
47  *   BCM5709S A0, B0, B1, B2 (pre-production)
48  */
49
50 #include "opt_bce.h"
51
52 #include <dev/bce/if_bcereg.h>
53 #include <dev/bce/if_bcefw.h>
54
55 /****************************************************************************/
56 /* BCE Debug Options                                                        */
57 /****************************************************************************/
58 #ifdef BCE_DEBUG
59         u32 bce_debug = BCE_WARN;
60
61         /*          0 = Never              */
62         /*          1 = 1 in 2,147,483,648 */
63         /*        256 = 1 in     8,388,608 */
64         /*       2048 = 1 in     1,048,576 */
65         /*      65536 = 1 in        32,768 */
66         /*    1048576 = 1 in         2,048 */
67         /*  268435456 = 1 in             8 */
68         /*  536870912 = 1 in             4 */
69         /* 1073741824 = 1 in             2 */
70
71         /* Controls how often the l2_fhdr frame error check will fail. */
72         int l2fhdr_error_sim_control = 0;
73
74         /* Controls how often the unexpected attention check will fail. */
75         int unexpected_attention_sim_control = 0;
76
77         /* Controls how often to simulate an mbuf allocation failure. */
78         int mbuf_alloc_failed_sim_control = 0;
79
80         /* Controls how often to simulate a DMA mapping failure. */
81         int dma_map_addr_failed_sim_control = 0;
82
83         /* Controls how often to simulate a bootcode failure. */
84         int bootcode_running_failure_sim_control = 0;
85 #endif
86
87 /****************************************************************************/
88 /* PCI Device ID Table                                                      */
89 /*                                                                          */
90 /* Used by bce_probe() to identify the devices supported by this driver.    */
91 /****************************************************************************/
92 #define BCE_DEVDESC_MAX         64
93
94 static const struct bce_type bce_devs[] = {
95         /* BCM5706C Controllers and OEM boards. */
96         { BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3101,
97                 "HP NC370T Multifunction Gigabit Server Adapter" },
98         { BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3106,
99                 "HP NC370i Multifunction Gigabit Server Adapter" },
100         { BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3070,
101                 "HP NC380T PCIe DP Multifunc Gig Server Adapter" },
102         { BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x1709,
103                 "HP NC371i Multifunction Gigabit Server Adapter" },
104         { BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  PCI_ANY_ID,  PCI_ANY_ID,
105                 "QLogic NetXtreme II BCM5706 1000Base-T" },
106
107         /* BCM5706S controllers and OEM boards. */
108         { BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, HP_VENDORID, 0x3102,
109                 "HP NC370F Multifunction Gigabit Server Adapter" },
110         { BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, PCI_ANY_ID,  PCI_ANY_ID,
111                 "QLogic NetXtreme II BCM5706 1000Base-SX" },
112
113         /* BCM5708C controllers and OEM boards. */
114         { BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7037,
115                 "HP NC373T PCIe Multifunction Gig Server Adapter" },
116         { BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7038,
117                 "HP NC373i Multifunction Gigabit Server Adapter" },
118         { BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7045,
119                 "HP NC374m PCIe Multifunction Adapter" },
120         { BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  PCI_ANY_ID,  PCI_ANY_ID,
121                 "QLogic NetXtreme II BCM5708 1000Base-T" },
122
123         /* BCM5708S controllers and OEM boards. */
124         { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x1706,
125                 "HP NC373m Multifunction Gigabit Server Adapter" },
126         { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x703b,
127                 "HP NC373i Multifunction Gigabit Server Adapter" },
128         { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x703d,
129                 "HP NC373F PCIe Multifunc Giga Server Adapter" },
130         { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  PCI_ANY_ID,  PCI_ANY_ID,
131                 "QLogic NetXtreme II BCM5708 1000Base-SX" },
132
133         /* BCM5709C controllers and OEM boards. */
134         { BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  HP_VENDORID, 0x7055,
135                 "HP NC382i DP Multifunction Gigabit Server Adapter" },
136         { BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  HP_VENDORID, 0x7059,
137                 "HP NC382T PCIe DP Multifunction Gigabit Server Adapter" },
138         { BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  PCI_ANY_ID,  PCI_ANY_ID,
139                 "QLogic NetXtreme II BCM5709 1000Base-T" },
140
141         /* BCM5709S controllers and OEM boards. */
142         { BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  HP_VENDORID, 0x171d,
143                 "HP NC382m DP 1GbE Multifunction BL-c Adapter" },
144         { BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  HP_VENDORID, 0x7056,
145                 "HP NC382i DP Multifunction Gigabit Server Adapter" },
146         { BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  PCI_ANY_ID,  PCI_ANY_ID,
147                 "QLogic NetXtreme II BCM5709 1000Base-SX" },
148
149         /* BCM5716 controllers and OEM boards. */
150         { BRCM_VENDORID, BRCM_DEVICEID_BCM5716,  PCI_ANY_ID,  PCI_ANY_ID,
151                 "QLogic NetXtreme II BCM5716 1000Base-T" },
152
153         { 0, 0, 0, 0, NULL }
154 };
155
156
157 /****************************************************************************/
158 /* Supported Flash NVRAM device data.                                       */
159 /****************************************************************************/
160 static const struct flash_spec flash_table[] =
161 {
162 #define BUFFERED_FLAGS          (BCE_NV_BUFFERED | BCE_NV_TRANSLATE)
163 #define NONBUFFERED_FLAGS       (BCE_NV_WREN)
164
165         /* Slow EEPROM */
166         {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
167          BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
168          SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
169          "EEPROM - slow"},
170         /* Expansion entry 0001 */
171         {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
172          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
173          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
174          "Entry 0001"},
175         /* Saifun SA25F010 (non-buffered flash) */
176         /* strap, cfg1, & write1 need updates */
177         {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
178          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
179          SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
180          "Non-buffered flash (128kB)"},
181         /* Saifun SA25F020 (non-buffered flash) */
182         /* strap, cfg1, & write1 need updates */
183         {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
184          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
185          SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
186          "Non-buffered flash (256kB)"},
187         /* Expansion entry 0100 */
188         {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
189          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
190          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
191          "Entry 0100"},
192         /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
193         {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
194          NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
195          ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
196          "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
197         /* Entry 0110: ST M45PE20 (non-buffered flash)*/
198         {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
199          NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
200          ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
201          "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
202         /* Saifun SA25F005 (non-buffered flash) */
203         /* strap, cfg1, & write1 need updates */
204         {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
205          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
206          SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
207          "Non-buffered flash (64kB)"},
208         /* Fast EEPROM */
209         {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
210          BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
211          SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
212          "EEPROM - fast"},
213         /* Expansion entry 1001 */
214         {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
215          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
216          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
217          "Entry 1001"},
218         /* Expansion entry 1010 */
219         {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
220          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
221          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
222          "Entry 1010"},
223         /* ATMEL AT45DB011B (buffered flash) */
224         {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
225          BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
226          BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
227          "Buffered flash (128kB)"},
228         /* Expansion entry 1100 */
229         {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
230          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
231          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
232          "Entry 1100"},
233         /* Expansion entry 1101 */
234         {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
235          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
236          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
237          "Entry 1101"},
238         /* Ateml Expansion entry 1110 */
239         {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
240          BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
241          BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
242          "Entry 1110 (Atmel)"},
243         /* ATMEL AT45DB021B (buffered flash) */
244         {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
245          BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
246          BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
247          "Buffered flash (256kB)"},
248 };
249
250 /*
251  * The BCM5709 controllers transparently handle the
252  * differences between Atmel 264 byte pages and all
253  * flash devices which use 256 byte pages, so no
254  * logical-to-physical mapping is required in the
255  * driver.
256  */
257 static const struct flash_spec flash_5709 = {
258         .flags          = BCE_NV_BUFFERED,
259         .page_bits      = BCM5709_FLASH_PAGE_BITS,
260         .page_size      = BCM5709_FLASH_PAGE_SIZE,
261         .addr_mask      = BCM5709_FLASH_BYTE_ADDR_MASK,
262         .total_size     = BUFFERED_FLASH_TOTAL_SIZE * 2,
263         .name           = "5709/5716 buffered flash (256kB)",
264 };
265
266
267 /****************************************************************************/
268 /* FreeBSD device entry points.                                             */
269 /****************************************************************************/
270 static int  bce_probe                   (device_t);
271 static int  bce_attach                  (device_t);
272 static int  bce_detach                  (device_t);
273 static int  bce_shutdown                (device_t);
274
275
276 /****************************************************************************/
277 /* BCE Debug Data Structure Dump Routines                                   */
278 /****************************************************************************/
279 #ifdef BCE_DEBUG
280 static u32  bce_reg_rd                          (struct bce_softc *, u32);
281 static void bce_reg_wr                          (struct bce_softc *, u32, u32);
282 static void bce_reg_wr16                        (struct bce_softc *, u32, u16);
283 static u32  bce_ctx_rd                          (struct bce_softc *, u32, u32);
284 static void bce_dump_enet                       (struct bce_softc *, struct mbuf *);
285 static void bce_dump_mbuf                       (struct bce_softc *, struct mbuf *);
286 static void bce_dump_tx_mbuf_chain      (struct bce_softc *, u16, int);
287 static void bce_dump_rx_mbuf_chain      (struct bce_softc *, u16, int);
288 static void bce_dump_pg_mbuf_chain      (struct bce_softc *, u16, int);
289 static void bce_dump_txbd                       (struct bce_softc *,
290     int, struct tx_bd *);
291 static void bce_dump_rxbd                       (struct bce_softc *,
292     int, struct rx_bd *);
293 static void bce_dump_pgbd                       (struct bce_softc *,
294     int, struct rx_bd *);
295 static void bce_dump_l2fhdr             (struct bce_softc *,
296     int, struct l2_fhdr *);
297 static void bce_dump_ctx                        (struct bce_softc *, u16);
298 static void bce_dump_ftqs                       (struct bce_softc *);
299 static void bce_dump_tx_chain           (struct bce_softc *, u16, int);
300 static void bce_dump_rx_bd_chain        (struct bce_softc *, u16, int);
301 static void bce_dump_pg_chain           (struct bce_softc *, u16, int);
302 static void bce_dump_status_block       (struct bce_softc *);
303 static void bce_dump_stats_block        (struct bce_softc *);
304 static void bce_dump_driver_state       (struct bce_softc *);
305 static void bce_dump_hw_state           (struct bce_softc *);
306 static void bce_dump_shmem_state        (struct bce_softc *);
307 static void bce_dump_mq_regs            (struct bce_softc *);
308 static void bce_dump_bc_state           (struct bce_softc *);
309 static void bce_dump_txp_state          (struct bce_softc *, int);
310 static void bce_dump_rxp_state          (struct bce_softc *, int);
311 static void bce_dump_tpat_state (struct bce_softc *, int);
312 static void bce_dump_cp_state           (struct bce_softc *, int);
313 static void bce_dump_com_state          (struct bce_softc *, int);
314 static void bce_dump_rv2p_state (struct bce_softc *);
315 static void bce_breakpoint                      (struct bce_softc *);
316 #endif /*BCE_DEBUG */
317
318
319 /****************************************************************************/
320 /* BCE Register/Memory Access Routines                                      */
321 /****************************************************************************/
322 static u32  bce_reg_rd_ind              (struct bce_softc *, u32);
323 static void bce_reg_wr_ind              (struct bce_softc *, u32, u32);
324 static void bce_shmem_wr                (struct bce_softc *, u32, u32);
325 static u32  bce_shmem_rd                (struct bce_softc *, u32);
326 static void bce_ctx_wr                  (struct bce_softc *, u32, u32, u32);
327 static int  bce_miibus_read_reg         (device_t, int, int);
328 static int  bce_miibus_write_reg        (device_t, int, int, int);
329 static void bce_miibus_statchg          (device_t);
330
331 #ifdef BCE_DEBUG
332 static int bce_sysctl_nvram_dump(SYSCTL_HANDLER_ARGS);
333 #ifdef BCE_NVRAM_WRITE_SUPPORT
334 static int bce_sysctl_nvram_write(SYSCTL_HANDLER_ARGS);
335 #endif
336 #endif
337
338 /****************************************************************************/
339 /* BCE NVRAM Access Routines                                                */
340 /****************************************************************************/
341 static int  bce_acquire_nvram_lock      (struct bce_softc *);
342 static int  bce_release_nvram_lock      (struct bce_softc *);
343 static void bce_enable_nvram_access(struct bce_softc *);
344 static void bce_disable_nvram_access(struct bce_softc *);
345 static int  bce_nvram_read_dword        (struct bce_softc *, u32, u8 *, u32);
346 static int  bce_init_nvram                      (struct bce_softc *);
347 static int  bce_nvram_read                      (struct bce_softc *, u32, u8 *, int);
348 static int  bce_nvram_test                      (struct bce_softc *);
349 #ifdef BCE_NVRAM_WRITE_SUPPORT
350 static int  bce_enable_nvram_write      (struct bce_softc *);
351 static void bce_disable_nvram_write(struct bce_softc *);
352 static int  bce_nvram_erase_page        (struct bce_softc *, u32);
353 static int  bce_nvram_write_dword       (struct bce_softc *, u32, u8 *, u32);
354 static int  bce_nvram_write             (struct bce_softc *, u32, u8 *, int);
355 #endif
356
357 /****************************************************************************/
358 /*                                                                          */
359 /****************************************************************************/
360 static void bce_get_rx_buffer_sizes(struct bce_softc *, int);
361 static void bce_get_media                       (struct bce_softc *);
362 static void bce_init_media                      (struct bce_softc *);
363 static u32 bce_get_rphy_link            (struct bce_softc *);
364 static void bce_dma_map_addr            (void *, bus_dma_segment_t *, int, int);
365 static int  bce_dma_alloc                       (device_t);
366 static void bce_dma_free                        (struct bce_softc *);
367 static void bce_release_resources       (struct bce_softc *);
368
369 /****************************************************************************/
370 /* BCE Firmware Synchronization and Load                                    */
371 /****************************************************************************/
372 static void bce_fw_cap_init                     (struct bce_softc *);
373 static int  bce_fw_sync                 (struct bce_softc *, u32);
374 static void bce_load_rv2p_fw            (struct bce_softc *, const u32 *, u32,
375     u32);
376 static void bce_load_cpu_fw             (struct bce_softc *,
377     struct cpu_reg *, struct fw_info *);
378 static void bce_start_cpu                       (struct bce_softc *, struct cpu_reg *);
379 static void bce_halt_cpu                        (struct bce_softc *, struct cpu_reg *);
380 static void bce_start_rxp_cpu           (struct bce_softc *);
381 static void bce_init_rxp_cpu            (struct bce_softc *);
382 static void bce_init_txp_cpu            (struct bce_softc *);
383 static void bce_init_tpat_cpu           (struct bce_softc *);
384 static void bce_init_cp_cpu             (struct bce_softc *);
385 static void bce_init_com_cpu            (struct bce_softc *);
386 static void bce_init_cpus                       (struct bce_softc *);
387
388 static void bce_print_adapter_info      (struct bce_softc *);
389 static void bce_probe_pci_caps          (device_t, struct bce_softc *);
390 static void bce_stop                            (struct bce_softc *);
391 static int  bce_reset                           (struct bce_softc *, u32);
392 static int  bce_chipinit                        (struct bce_softc *);
393 static int  bce_blockinit                       (struct bce_softc *);
394
395 static int  bce_init_tx_chain           (struct bce_softc *);
396 static void bce_free_tx_chain           (struct bce_softc *);
397
398 static int  bce_get_rx_buf              (struct bce_softc *, u16, u16, u32 *);
399 static int  bce_init_rx_chain           (struct bce_softc *);
400 static void bce_fill_rx_chain           (struct bce_softc *);
401 static void bce_free_rx_chain           (struct bce_softc *);
402
403 static int  bce_get_pg_buf              (struct bce_softc *, u16, u16);
404 static int  bce_init_pg_chain           (struct bce_softc *);
405 static void bce_fill_pg_chain           (struct bce_softc *);
406 static void bce_free_pg_chain           (struct bce_softc *);
407
408 static struct mbuf *bce_tso_setup       (struct bce_softc *,
409     struct mbuf **, u16 *);
410 static int  bce_tx_encap                        (struct bce_softc *, struct mbuf **);
411 static void bce_start_locked            (struct ifnet *);
412 static void bce_start                           (struct ifnet *);
413 static int  bce_ioctl                           (struct ifnet *, u_long, caddr_t);
414 static void bce_watchdog                        (struct bce_softc *);
415 static int  bce_ifmedia_upd             (struct ifnet *);
416 static int  bce_ifmedia_upd_locked      (struct ifnet *);
417 static void bce_ifmedia_sts             (struct ifnet *, struct ifmediareq *);
418 static void bce_ifmedia_sts_rphy        (struct bce_softc *, struct ifmediareq *);
419 static void bce_init_locked             (struct bce_softc *);
420 static void bce_init                            (void *);
421 static void bce_mgmt_init_locked        (struct bce_softc *sc);
422
423 static int  bce_init_ctx                        (struct bce_softc *);
424 static void bce_get_mac_addr            (struct bce_softc *);
425 static void bce_set_mac_addr            (struct bce_softc *);
426 static void bce_phy_intr                        (struct bce_softc *);
427 static inline u16 bce_get_hw_rx_cons    (struct bce_softc *);
428 static void bce_rx_intr                 (struct bce_softc *);
429 static void bce_tx_intr                 (struct bce_softc *);
430 static void bce_disable_intr            (struct bce_softc *);
431 static void bce_enable_intr             (struct bce_softc *, int);
432
433 static void bce_intr                            (void *);
434 static void bce_set_rx_mode             (struct bce_softc *);
435 static void bce_stats_update            (struct bce_softc *);
436 static void bce_tick                            (void *);
437 static void bce_pulse                           (void *);
438 static void bce_add_sysctls             (struct bce_softc *);
439
440
441 /****************************************************************************/
442 /* FreeBSD device dispatch table.                                           */
443 /****************************************************************************/
444 static device_method_t bce_methods[] = {
445         /* Device interface (device_if.h) */
446         DEVMETHOD(device_probe,         bce_probe),
447         DEVMETHOD(device_attach,        bce_attach),
448         DEVMETHOD(device_detach,        bce_detach),
449         DEVMETHOD(device_shutdown,      bce_shutdown),
450 /* Supported by device interface but not used here. */
451 /*      DEVMETHOD(device_identify,      bce_identify),      */
452 /*      DEVMETHOD(device_suspend,       bce_suspend),       */
453 /*      DEVMETHOD(device_resume,        bce_resume),        */
454 /*      DEVMETHOD(device_quiesce,       bce_quiesce),       */
455
456         /* MII interface (miibus_if.h) */
457         DEVMETHOD(miibus_readreg,       bce_miibus_read_reg),
458         DEVMETHOD(miibus_writereg,      bce_miibus_write_reg),
459         DEVMETHOD(miibus_statchg,       bce_miibus_statchg),
460 /* Supported by MII interface but not used here.       */
461 /*      DEVMETHOD(miibus_linkchg,       bce_miibus_linkchg),   */
462 /*      DEVMETHOD(miibus_mediainit,     bce_miibus_mediainit), */
463
464         DEVMETHOD_END
465 };
466
467 static driver_t bce_driver = {
468         "bce",
469         bce_methods,
470         sizeof(struct bce_softc)
471 };
472
473 static devclass_t bce_devclass;
474
475 MODULE_DEPEND(bce, pci, 1, 1, 1);
476 MODULE_DEPEND(bce, ether, 1, 1, 1);
477 MODULE_DEPEND(bce, miibus, 1, 1, 1);
478
479 DRIVER_MODULE(bce, pci, bce_driver, bce_devclass, NULL, NULL);
480 DRIVER_MODULE(miibus, bce, miibus_driver, miibus_devclass, NULL, NULL);
481
482
483 /****************************************************************************/
484 /* Tunable device values                                                    */
485 /****************************************************************************/
486 static SYSCTL_NODE(_hw, OID_AUTO, bce, CTLFLAG_RD, 0, "bce driver parameters");
487
488 /* Allowable values are TRUE or FALSE */
489 static int bce_verbose = TRUE;
490 TUNABLE_INT("hw.bce.verbose", &bce_verbose);
491 SYSCTL_INT(_hw_bce, OID_AUTO, verbose, CTLFLAG_RDTUN, &bce_verbose, 0,
492     "Verbose output enable/disable");
493
494 /* Allowable values are TRUE or FALSE */
495 static int bce_tso_enable = TRUE;
496 TUNABLE_INT("hw.bce.tso_enable", &bce_tso_enable);
497 SYSCTL_INT(_hw_bce, OID_AUTO, tso_enable, CTLFLAG_RDTUN, &bce_tso_enable, 0,
498     "TSO Enable/Disable");
499
500 /* Allowable values are 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */
501 /* ToDo: Add MSI-X support. */
502 static int bce_msi_enable = 1;
503 TUNABLE_INT("hw.bce.msi_enable", &bce_msi_enable);
504 SYSCTL_INT(_hw_bce, OID_AUTO, msi_enable, CTLFLAG_RDTUN, &bce_msi_enable, 0,
505     "MSI-X|MSI|INTx selector");
506
507 /* Allowable values are 1, 2, 4, 8. */
508 static int bce_rx_pages = DEFAULT_RX_PAGES;
509 TUNABLE_INT("hw.bce.rx_pages", &bce_rx_pages);
510 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_pages, CTLFLAG_RDTUN, &bce_rx_pages, 0,
511     "Receive buffer descriptor pages (1 page = 255 buffer descriptors)");
512
513 /* Allowable values are 1, 2, 4, 8. */
514 static int bce_tx_pages = DEFAULT_TX_PAGES;
515 TUNABLE_INT("hw.bce.tx_pages", &bce_tx_pages);
516 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_pages, CTLFLAG_RDTUN, &bce_tx_pages, 0,
517     "Transmit buffer descriptor pages (1 page = 255 buffer descriptors)");
518
519 /* Allowable values are TRUE or FALSE. */
520 static int bce_hdr_split = TRUE;
521 TUNABLE_INT("hw.bce.hdr_split", &bce_hdr_split);
522 SYSCTL_UINT(_hw_bce, OID_AUTO, hdr_split, CTLFLAG_RDTUN, &bce_hdr_split, 0,
523     "Frame header/payload splitting Enable/Disable");
524
525 /* Allowable values are TRUE or FALSE. */
526 static int bce_strict_rx_mtu = FALSE;
527 TUNABLE_INT("hw.bce.strict_rx_mtu", &bce_strict_rx_mtu);
528 SYSCTL_UINT(_hw_bce, OID_AUTO, strict_rx_mtu, CTLFLAG_RDTUN,
529     &bce_strict_rx_mtu, 0,
530     "Enable/Disable strict RX frame size checking");
531
532 /* Allowable values are 0 ... 100 */
533 #ifdef BCE_DEBUG
534 /* Generate 1 interrupt for every transmit completion. */
535 static int bce_tx_quick_cons_trip_int = 1;
536 #else
537 /* Generate 1 interrupt for every 20 transmit completions. */
538 static int bce_tx_quick_cons_trip_int = DEFAULT_TX_QUICK_CONS_TRIP_INT;
539 #endif
540 TUNABLE_INT("hw.bce.tx_quick_cons_trip_int", &bce_tx_quick_cons_trip_int);
541 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_quick_cons_trip_int, CTLFLAG_RDTUN,
542     &bce_tx_quick_cons_trip_int, 0,
543     "Transmit BD trip point during interrupts");
544
545 /* Allowable values are 0 ... 100 */
546 /* Generate 1 interrupt for every transmit completion. */
547 #ifdef BCE_DEBUG
548 static int bce_tx_quick_cons_trip = 1;
549 #else
550 /* Generate 1 interrupt for every 20 transmit completions. */
551 static int bce_tx_quick_cons_trip = DEFAULT_TX_QUICK_CONS_TRIP;
552 #endif
553 TUNABLE_INT("hw.bce.tx_quick_cons_trip", &bce_tx_quick_cons_trip);
554 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_quick_cons_trip, CTLFLAG_RDTUN,
555     &bce_tx_quick_cons_trip, 0,
556     "Transmit BD trip point");
557
558 /* Allowable values are 0 ... 100 */
559 #ifdef BCE_DEBUG
560 /* Generate an interrupt if 0us have elapsed since the last TX completion. */
561 static int bce_tx_ticks_int = 0;
562 #else
563 /* Generate an interrupt if 80us have elapsed since the last TX completion. */
564 static int bce_tx_ticks_int = DEFAULT_TX_TICKS_INT;
565 #endif
566 TUNABLE_INT("hw.bce.tx_ticks_int", &bce_tx_ticks_int);
567 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_ticks_int, CTLFLAG_RDTUN,
568     &bce_tx_ticks_int, 0, "Transmit ticks count during interrupt");
569
570 /* Allowable values are 0 ... 100 */
571 #ifdef BCE_DEBUG
572 /* Generate an interrupt if 0us have elapsed since the last TX completion. */
573 static int bce_tx_ticks = 0;
574 #else
575 /* Generate an interrupt if 80us have elapsed since the last TX completion. */
576 static int bce_tx_ticks = DEFAULT_TX_TICKS;
577 #endif
578 TUNABLE_INT("hw.bce.tx_ticks", &bce_tx_ticks);
579 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_ticks, CTLFLAG_RDTUN,
580     &bce_tx_ticks, 0, "Transmit ticks count");
581
582 /* Allowable values are 1 ... 100 */
583 #ifdef BCE_DEBUG
584 /* Generate 1 interrupt for every received frame. */
585 static int bce_rx_quick_cons_trip_int = 1;
586 #else
587 /* Generate 1 interrupt for every 6 received frames. */
588 static int bce_rx_quick_cons_trip_int = DEFAULT_RX_QUICK_CONS_TRIP_INT;
589 #endif
590 TUNABLE_INT("hw.bce.rx_quick_cons_trip_int", &bce_rx_quick_cons_trip_int);
591 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_quick_cons_trip_int, CTLFLAG_RDTUN,
592     &bce_rx_quick_cons_trip_int, 0,
593     "Receive BD trip point duirng interrupts");
594
595 /* Allowable values are 1 ... 100 */
596 #ifdef BCE_DEBUG
597 /* Generate 1 interrupt for every received frame. */
598 static int bce_rx_quick_cons_trip = 1;
599 #else
600 /* Generate 1 interrupt for every 6 received frames. */
601 static int bce_rx_quick_cons_trip = DEFAULT_RX_QUICK_CONS_TRIP;
602 #endif
603 TUNABLE_INT("hw.bce.rx_quick_cons_trip", &bce_rx_quick_cons_trip);
604 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_quick_cons_trip, CTLFLAG_RDTUN,
605     &bce_rx_quick_cons_trip, 0,
606     "Receive BD trip point");
607
608 /* Allowable values are 0 ... 100 */
609 #ifdef BCE_DEBUG
610 /* Generate an int. if 0us have elapsed since the last received frame. */
611 static int bce_rx_ticks_int = 0;
612 #else
613 /* Generate an int. if 18us have elapsed since the last received frame. */
614 static int bce_rx_ticks_int = DEFAULT_RX_TICKS_INT;
615 #endif
616 TUNABLE_INT("hw.bce.rx_ticks_int", &bce_rx_ticks_int);
617 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_ticks_int, CTLFLAG_RDTUN,
618     &bce_rx_ticks_int, 0, "Receive ticks count during interrupt");
619
620 /* Allowable values are 0 ... 100 */
621 #ifdef BCE_DEBUG
622 /* Generate an int. if 0us have elapsed since the last received frame. */
623 static int bce_rx_ticks = 0;
624 #else
625 /* Generate an int. if 18us have elapsed since the last received frame. */
626 static int bce_rx_ticks = DEFAULT_RX_TICKS;
627 #endif
628 TUNABLE_INT("hw.bce.rx_ticks", &bce_rx_ticks);
629 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_ticks, CTLFLAG_RDTUN,
630     &bce_rx_ticks, 0, "Receive ticks count");
631
632
633 /****************************************************************************/
634 /* Device probe function.                                                   */
635 /*                                                                          */
636 /* Compares the device to the driver's list of supported devices and        */
637 /* reports back to the OS whether this is the right driver for the device.  */
638 /*                                                                          */
639 /* Returns:                                                                 */
640 /*   BUS_PROBE_DEFAULT on success, positive value on failure.               */
641 /****************************************************************************/
642 static int
643 bce_probe(device_t dev)
644 {
645         const struct bce_type *t;
646         struct bce_softc *sc;
647         char *descbuf;
648         u16 vid = 0, did = 0, svid = 0, sdid = 0;
649
650         t = bce_devs;
651
652         sc = device_get_softc(dev);
653         sc->bce_unit = device_get_unit(dev);
654         sc->bce_dev = dev;
655
656         /* Get the data for the device to be probed. */
657         vid  = pci_get_vendor(dev);
658         did  = pci_get_device(dev);
659         svid = pci_get_subvendor(dev);
660         sdid = pci_get_subdevice(dev);
661
662         DBPRINT(sc, BCE_EXTREME_LOAD,
663             "%s(); VID = 0x%04X, DID = 0x%04X, SVID = 0x%04X, "
664             "SDID = 0x%04X\n", __FUNCTION__, vid, did, svid, sdid);
665
666         /* Look through the list of known devices for a match. */
667         while(t->bce_name != NULL) {
668
669                 if ((vid == t->bce_vid) && (did == t->bce_did) &&
670                     ((svid == t->bce_svid) || (t->bce_svid == PCI_ANY_ID)) &&
671                     ((sdid == t->bce_sdid) || (t->bce_sdid == PCI_ANY_ID))) {
672
673                         descbuf = malloc(BCE_DEVDESC_MAX, M_TEMP, M_NOWAIT);
674
675                         if (descbuf == NULL)
676                                 return(ENOMEM);
677
678                         /* Print out the device identity. */
679                         snprintf(descbuf, BCE_DEVDESC_MAX, "%s (%c%d)",
680                             t->bce_name, (((pci_read_config(dev,
681                             PCIR_REVID, 4) & 0xf0) >> 4) + 'A'),
682                             (pci_read_config(dev, PCIR_REVID, 4) & 0xf));
683
684                         device_set_desc_copy(dev, descbuf);
685                         free(descbuf, M_TEMP);
686                         return(BUS_PROBE_DEFAULT);
687                 }
688                 t++;
689         }
690
691         return(ENXIO);
692 }
693
694
695 /****************************************************************************/
696 /* PCI Capabilities Probe Function.                                         */
697 /*                                                                          */
698 /* Walks the PCI capabiites list for the device to find what features are   */
699 /* supported.                                                               */
700 /*                                                                          */
701 /* Returns:                                                                 */
702 /*   None.                                                                  */
703 /****************************************************************************/
704 static void
705 bce_print_adapter_info(struct bce_softc *sc)
706 {
707         int i = 0;
708
709         DBENTER(BCE_VERBOSE_LOAD);
710
711         if (bce_verbose || bootverbose) {
712                 BCE_PRINTF("ASIC (0x%08X); ", sc->bce_chipid);
713                 printf("Rev (%c%d); ", ((BCE_CHIP_ID(sc) & 0xf000) >>
714                     12) + 'A', ((BCE_CHIP_ID(sc) & 0x0ff0) >> 4));
715
716
717                 /* Bus info. */
718                 if (sc->bce_flags & BCE_PCIE_FLAG) {
719                         printf("Bus (PCIe x%d, ", sc->link_width);
720                         switch (sc->link_speed) {
721                         case 1: printf("2.5Gbps); "); break;
722                         case 2: printf("5Gbps); "); break;
723                         default: printf("Unknown link speed); ");
724                         }
725                 } else {
726                         printf("Bus (PCI%s, %s, %dMHz); ",
727                             ((sc->bce_flags & BCE_PCIX_FLAG) ? "-X" : ""),
728                             ((sc->bce_flags & BCE_PCI_32BIT_FLAG) ?
729                             "32-bit" : "64-bit"), sc->bus_speed_mhz);
730                 }
731
732                 /* Firmware version and device features. */
733                 printf("B/C (%s); Bufs (RX:%d;TX:%d;PG:%d); Flags (",
734                     sc->bce_bc_ver,     sc->rx_pages, sc->tx_pages,
735                     (bce_hdr_split == TRUE ? sc->pg_pages: 0));
736
737                 if (bce_hdr_split == TRUE) {
738                         printf("SPLT");
739                         i++;
740                 }
741
742                 if (sc->bce_flags & BCE_USING_MSI_FLAG) {
743                         if (i > 0) printf("|");
744                         printf("MSI"); i++;
745                 }
746
747                 if (sc->bce_flags & BCE_USING_MSIX_FLAG) {
748                         if (i > 0) printf("|");
749                         printf("MSI-X"); i++;
750                 }
751
752                 if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG) {
753                         if (i > 0) printf("|");
754                         printf("2.5G"); i++;
755                 }
756
757                 if (sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) {
758                         if (i > 0) printf("|");
759                         printf("Remote PHY(%s)",
760                             sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG ?
761                             "FIBER" : "TP"); i++;
762                 }
763
764                 if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
765                         if (i > 0) printf("|");
766                         printf("MFW); MFW (%s)\n", sc->bce_mfw_ver);
767                 } else {
768                         printf(")\n");
769                 }
770
771                 printf("Coal (RX:%d,%d,%d,%d; TX:%d,%d,%d,%d)\n",
772                     sc->bce_rx_quick_cons_trip_int,
773                     sc->bce_rx_quick_cons_trip,
774                     sc->bce_rx_ticks_int,
775                     sc->bce_rx_ticks,
776                     sc->bce_tx_quick_cons_trip_int,
777                     sc->bce_tx_quick_cons_trip,
778                     sc->bce_tx_ticks_int,
779                     sc->bce_tx_ticks);
780
781         }
782
783         DBEXIT(BCE_VERBOSE_LOAD);
784 }
785
786
787 /****************************************************************************/
788 /* PCI Capabilities Probe Function.                                         */
789 /*                                                                          */
790 /* Walks the PCI capabiites list for the device to find what features are   */
791 /* supported.                                                               */
792 /*                                                                          */
793 /* Returns:                                                                 */
794 /*   None.                                                                  */
795 /****************************************************************************/
796 static void
797 bce_probe_pci_caps(device_t dev, struct bce_softc *sc)
798 {
799         u32 reg;
800
801         DBENTER(BCE_VERBOSE_LOAD);
802
803         /* Check if PCI-X capability is enabled. */
804         if (pci_find_cap(dev, PCIY_PCIX, &reg) == 0) {
805                 if (reg != 0)
806                         sc->bce_cap_flags |= BCE_PCIX_CAPABLE_FLAG;
807         }
808
809         /* Check if PCIe capability is enabled. */
810         if (pci_find_cap(dev, PCIY_EXPRESS, &reg) == 0) {
811                 if (reg != 0) {
812                         u16 link_status = pci_read_config(dev, reg + 0x12, 2);
813                         DBPRINT(sc, BCE_INFO_LOAD, "PCIe link_status = "
814                             "0x%08X\n", link_status);
815                         sc->link_speed = link_status & 0xf;
816                         sc->link_width = (link_status >> 4) & 0x3f;
817                         sc->bce_cap_flags |= BCE_PCIE_CAPABLE_FLAG;
818                         sc->bce_flags |= BCE_PCIE_FLAG;
819                 }
820         }
821
822         /* Check if MSI capability is enabled. */
823         if (pci_find_cap(dev, PCIY_MSI, &reg) == 0) {
824                 if (reg != 0)
825                         sc->bce_cap_flags |= BCE_MSI_CAPABLE_FLAG;
826         }
827
828         /* Check if MSI-X capability is enabled. */
829         if (pci_find_cap(dev, PCIY_MSIX, &reg) == 0) {
830                 if (reg != 0)
831                         sc->bce_cap_flags |= BCE_MSIX_CAPABLE_FLAG;
832         }
833
834         DBEXIT(BCE_VERBOSE_LOAD);
835 }
836
837
838 /****************************************************************************/
839 /* Load and validate user tunable settings.                                 */
840 /*                                                                          */
841 /* Returns:                                                                 */
842 /*   Nothing.                                                               */
843 /****************************************************************************/
844 static void
845 bce_set_tunables(struct bce_softc *sc)
846 {
847         /* Set sysctl values for RX page count. */
848         switch (bce_rx_pages) {
849         case 1:
850                 /* fall-through */
851         case 2:
852                 /* fall-through */
853         case 4:
854                 /* fall-through */
855         case 8:
856                 sc->rx_pages = bce_rx_pages;
857                 break;
858         default:
859                 sc->rx_pages = DEFAULT_RX_PAGES;
860                 BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
861                     "hw.bce.rx_pages!  Setting default of %d.\n",
862                     __FILE__, __LINE__, bce_rx_pages, DEFAULT_RX_PAGES);
863         }
864
865         /* ToDo: Consider allowing user setting for pg_pages. */
866         sc->pg_pages = min((sc->rx_pages * 4), MAX_PG_PAGES);
867
868         /* Set sysctl values for TX page count. */
869         switch (bce_tx_pages) {
870         case 1:
871                 /* fall-through */
872         case 2:
873                 /* fall-through */
874         case 4:
875                 /* fall-through */
876         case 8:
877                 sc->tx_pages = bce_tx_pages;
878                 break;
879         default:
880                 sc->tx_pages = DEFAULT_TX_PAGES;
881                 BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
882                     "hw.bce.tx_pages!  Setting default of %d.\n",
883                     __FILE__, __LINE__, bce_tx_pages, DEFAULT_TX_PAGES);
884         }
885
886         /*
887          * Validate the TX trip point (i.e. the number of
888          * TX completions before a status block update is
889          * generated and an interrupt is asserted.
890          */
891         if (bce_tx_quick_cons_trip_int <= 100) {
892                 sc->bce_tx_quick_cons_trip_int =
893                     bce_tx_quick_cons_trip_int;
894         } else {
895                 BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
896                     "hw.bce.tx_quick_cons_trip_int!  Setting default of %d.\n",
897                     __FILE__, __LINE__, bce_tx_quick_cons_trip_int,
898                     DEFAULT_TX_QUICK_CONS_TRIP_INT);
899                 sc->bce_tx_quick_cons_trip_int =
900                     DEFAULT_TX_QUICK_CONS_TRIP_INT;
901         }
902
903         if (bce_tx_quick_cons_trip <= 100) {
904                 sc->bce_tx_quick_cons_trip =
905                     bce_tx_quick_cons_trip;
906         } else {
907                 BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
908                     "hw.bce.tx_quick_cons_trip!  Setting default of %d.\n",
909                     __FILE__, __LINE__, bce_tx_quick_cons_trip,
910                     DEFAULT_TX_QUICK_CONS_TRIP);
911                 sc->bce_tx_quick_cons_trip =
912                     DEFAULT_TX_QUICK_CONS_TRIP;
913         }
914
915         /*
916          * Validate the TX ticks count (i.e. the maximum amount
917          * of time to wait after the last TX completion has
918          * occurred before a status block update is generated
919          * and an interrupt is asserted.
920          */
921         if (bce_tx_ticks_int <= 100) {
922                 sc->bce_tx_ticks_int =
923                     bce_tx_ticks_int;
924         } else {
925                 BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
926                     "hw.bce.tx_ticks_int!  Setting default of %d.\n",
927                     __FILE__, __LINE__, bce_tx_ticks_int,
928                     DEFAULT_TX_TICKS_INT);
929                 sc->bce_tx_ticks_int =
930                     DEFAULT_TX_TICKS_INT;
931            }
932
933         if (bce_tx_ticks <= 100) {
934                 sc->bce_tx_ticks =
935                     bce_tx_ticks;
936         } else {
937                 BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
938                     "hw.bce.tx_ticks!  Setting default of %d.\n",
939                     __FILE__, __LINE__, bce_tx_ticks,
940                     DEFAULT_TX_TICKS);
941                 sc->bce_tx_ticks =
942                     DEFAULT_TX_TICKS;
943         }
944
945         /*
946          * Validate the RX trip point (i.e. the number of
947          * RX frames received before a status block update is
948          * generated and an interrupt is asserted.
949          */
950         if (bce_rx_quick_cons_trip_int <= 100) {
951                 sc->bce_rx_quick_cons_trip_int =
952                     bce_rx_quick_cons_trip_int;
953         } else {
954                 BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
955                     "hw.bce.rx_quick_cons_trip_int!  Setting default of %d.\n",
956                     __FILE__, __LINE__, bce_rx_quick_cons_trip_int,
957                     DEFAULT_RX_QUICK_CONS_TRIP_INT);
958                 sc->bce_rx_quick_cons_trip_int =
959                     DEFAULT_RX_QUICK_CONS_TRIP_INT;
960         }
961
962         if (bce_rx_quick_cons_trip <= 100) {
963                 sc->bce_rx_quick_cons_trip =
964                     bce_rx_quick_cons_trip;
965         } else {
966                 BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
967                     "hw.bce.rx_quick_cons_trip!  Setting default of %d.\n",
968                     __FILE__, __LINE__, bce_rx_quick_cons_trip,
969                     DEFAULT_RX_QUICK_CONS_TRIP);
970                 sc->bce_rx_quick_cons_trip =
971                     DEFAULT_RX_QUICK_CONS_TRIP;
972         }
973
974         /*
975          * Validate the RX ticks count (i.e. the maximum amount
976          * of time to wait after the last RX frame has been
977          * received before a status block update is generated
978          * and an interrupt is asserted.
979          */
980         if (bce_rx_ticks_int <= 100) {
981                 sc->bce_rx_ticks_int = bce_rx_ticks_int;
982         } else {
983                 BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
984                     "hw.bce.rx_ticks_int!  Setting default of %d.\n",
985                     __FILE__, __LINE__, bce_rx_ticks_int,
986                     DEFAULT_RX_TICKS_INT);
987                 sc->bce_rx_ticks_int = DEFAULT_RX_TICKS_INT;
988         }
989
990         if (bce_rx_ticks <= 100) {
991                 sc->bce_rx_ticks = bce_rx_ticks;
992         } else {
993                 BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
994                     "hw.bce.rx_ticks!  Setting default of %d.\n",
995                     __FILE__, __LINE__, bce_rx_ticks,
996                     DEFAULT_RX_TICKS);
997                 sc->bce_rx_ticks = DEFAULT_RX_TICKS;
998         }
999
1000         /* Disabling both RX ticks and RX trips will prevent interrupts. */
1001         if ((bce_rx_quick_cons_trip == 0) && (bce_rx_ticks == 0)) {
1002                 BCE_PRINTF("%s(%d): Cannot set both hw.bce.rx_ticks and "
1003                     "hw.bce.rx_quick_cons_trip to 0. Setting default values.\n",
1004                    __FILE__, __LINE__);
1005                 sc->bce_rx_ticks = DEFAULT_RX_TICKS;
1006                 sc->bce_rx_quick_cons_trip = DEFAULT_RX_QUICK_CONS_TRIP;
1007         }
1008
1009         /* Disabling both TX ticks and TX trips will prevent interrupts. */
1010         if ((bce_tx_quick_cons_trip == 0) && (bce_tx_ticks == 0)) {
1011                 BCE_PRINTF("%s(%d): Cannot set both hw.bce.tx_ticks and "
1012                     "hw.bce.tx_quick_cons_trip to 0. Setting default values.\n",
1013                    __FILE__, __LINE__);
1014                 sc->bce_tx_ticks = DEFAULT_TX_TICKS;
1015                 sc->bce_tx_quick_cons_trip = DEFAULT_TX_QUICK_CONS_TRIP;
1016         }
1017 }
1018
1019
1020 /****************************************************************************/
1021 /* Device attach function.                                                  */
1022 /*                                                                          */
1023 /* Allocates device resources, performs secondary chip identification,      */
1024 /* resets and initializes the hardware, and initializes driver instance     */
1025 /* variables.                                                               */
1026 /*                                                                          */
1027 /* Returns:                                                                 */
1028 /*   0 on success, positive value on failure.                               */
1029 /****************************************************************************/
1030 static int
1031 bce_attach(device_t dev)
1032 {
1033         struct bce_softc *sc;
1034         struct ifnet *ifp;
1035         u32 val;
1036         int count, error, rc = 0, rid;
1037
1038         sc = device_get_softc(dev);
1039         sc->bce_dev = dev;
1040
1041         DBENTER(BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
1042
1043         sc->bce_unit = device_get_unit(dev);
1044
1045         /* Set initial device and PHY flags */
1046         sc->bce_flags = 0;
1047         sc->bce_phy_flags = 0;
1048
1049         bce_set_tunables(sc);
1050
1051         pci_enable_busmaster(dev);
1052
1053         /* Allocate PCI memory resources. */
1054         rid = PCIR_BAR(0);
1055         sc->bce_res_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1056                 &rid, RF_ACTIVE);
1057
1058         if (sc->bce_res_mem == NULL) {
1059                 BCE_PRINTF("%s(%d): PCI memory allocation failed\n",
1060                     __FILE__, __LINE__);
1061                 rc = ENXIO;
1062                 goto bce_attach_fail;
1063         }
1064
1065         /* Get various resource handles. */
1066         sc->bce_btag    = rman_get_bustag(sc->bce_res_mem);
1067         sc->bce_bhandle = rman_get_bushandle(sc->bce_res_mem);
1068         sc->bce_vhandle = (vm_offset_t) rman_get_virtual(sc->bce_res_mem);
1069
1070         bce_probe_pci_caps(dev, sc);
1071
1072         rid = 1;
1073         count = 0;
1074 #if 0
1075         /* Try allocating MSI-X interrupts. */
1076         if ((sc->bce_cap_flags & BCE_MSIX_CAPABLE_FLAG) &&
1077                 (bce_msi_enable >= 2) &&
1078                 ((sc->bce_res_irq = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1079                 &rid, RF_ACTIVE)) != NULL)) {
1080
1081                 msi_needed = count = 1;
1082
1083                 if (((error = pci_alloc_msix(dev, &count)) != 0) ||
1084                         (count != msi_needed)) {
1085                         BCE_PRINTF("%s(%d): MSI-X allocation failed! Requested = %d,"
1086                                 "Received = %d, error = %d\n", __FILE__, __LINE__,
1087                                 msi_needed, count, error);
1088                         count = 0;
1089                         pci_release_msi(dev);
1090                         bus_release_resource(dev, SYS_RES_MEMORY, rid,
1091                                 sc->bce_res_irq);
1092                         sc->bce_res_irq = NULL;
1093                 } else {
1094                         DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using MSI-X interrupt.\n",
1095                                 __FUNCTION__);
1096                         sc->bce_flags |= BCE_USING_MSIX_FLAG;
1097                 }
1098         }
1099 #endif
1100
1101         /* Try allocating a MSI interrupt. */
1102         if ((sc->bce_cap_flags & BCE_MSI_CAPABLE_FLAG) &&
1103                 (bce_msi_enable >= 1) && (count == 0)) {
1104                 count = 1;
1105                 if ((error = pci_alloc_msi(dev, &count)) != 0) {
1106                         BCE_PRINTF("%s(%d): MSI allocation failed! "
1107                             "error = %d\n", __FILE__, __LINE__, error);
1108                         count = 0;
1109                         pci_release_msi(dev);
1110                 } else {
1111                         DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using MSI "
1112                             "interrupt.\n", __FUNCTION__);
1113                         sc->bce_flags |= BCE_USING_MSI_FLAG;
1114                         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
1115                                 sc->bce_flags |= BCE_ONE_SHOT_MSI_FLAG;
1116                         rid = 1;
1117                 }
1118         }
1119
1120         /* Try allocating a legacy interrupt. */
1121         if (count == 0) {
1122                 DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using INTx interrupt.\n",
1123                         __FUNCTION__);
1124                 rid = 0;
1125         }
1126
1127         sc->bce_res_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
1128             &rid, RF_ACTIVE | (count != 0 ? 0 : RF_SHAREABLE));
1129
1130         /* Report any IRQ allocation errors. */
1131         if (sc->bce_res_irq == NULL) {
1132                 BCE_PRINTF("%s(%d): PCI map interrupt failed!\n",
1133                     __FILE__, __LINE__);
1134                 rc = ENXIO;
1135                 goto bce_attach_fail;
1136         }
1137
1138         /* Initialize mutex for the current device instance. */
1139         BCE_LOCK_INIT(sc, device_get_nameunit(dev));
1140
1141         /*
1142          * Configure byte swap and enable indirect register access.
1143          * Rely on CPU to do target byte swapping on big endian systems.
1144          * Access to registers outside of PCI configurtion space are not
1145          * valid until this is done.
1146          */
1147         pci_write_config(dev, BCE_PCICFG_MISC_CONFIG,
1148             BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
1149             BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP, 4);
1150
1151         /* Save ASIC revsion info. */
1152         sc->bce_chipid =  REG_RD(sc, BCE_MISC_ID);
1153
1154         /* Weed out any non-production controller revisions. */
1155         switch(BCE_CHIP_ID(sc)) {
1156         case BCE_CHIP_ID_5706_A0:
1157         case BCE_CHIP_ID_5706_A1:
1158         case BCE_CHIP_ID_5708_A0:
1159         case BCE_CHIP_ID_5708_B0:
1160         case BCE_CHIP_ID_5709_A0:
1161         case BCE_CHIP_ID_5709_B0:
1162         case BCE_CHIP_ID_5709_B1:
1163         case BCE_CHIP_ID_5709_B2:
1164                 BCE_PRINTF("%s(%d): Unsupported controller "
1165                     "revision (%c%d)!\n", __FILE__, __LINE__,
1166                     (((pci_read_config(dev, PCIR_REVID, 4) &
1167                     0xf0) >> 4) + 'A'), (pci_read_config(dev,
1168                     PCIR_REVID, 4) & 0xf));
1169                 rc = ENODEV;
1170                 goto bce_attach_fail;
1171         }
1172
1173         /*
1174          * The embedded PCIe to PCI-X bridge (EPB)
1175          * in the 5708 cannot address memory above
1176          * 40 bits (E7_5708CB1_23043 & E6_5708SB1_23043).
1177          */
1178         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708)
1179                 sc->max_bus_addr = BCE_BUS_SPACE_MAXADDR;
1180         else
1181                 sc->max_bus_addr = BUS_SPACE_MAXADDR;
1182
1183         /*
1184          * Find the base address for shared memory access.
1185          * Newer versions of bootcode use a signature and offset
1186          * while older versions use a fixed address.
1187          */
1188         val = REG_RD_IND(sc, BCE_SHM_HDR_SIGNATURE);
1189         if ((val & BCE_SHM_HDR_SIGNATURE_SIG_MASK) == BCE_SHM_HDR_SIGNATURE_SIG)
1190                 /* Multi-port devices use different offsets in shared memory. */
1191                 sc->bce_shmem_base = REG_RD_IND(sc, BCE_SHM_HDR_ADDR_0 +
1192                     (pci_get_function(sc->bce_dev) << 2));
1193         else
1194                 sc->bce_shmem_base = HOST_VIEW_SHMEM_BASE;
1195
1196         DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): bce_shmem_base = 0x%08X\n",
1197             __FUNCTION__, sc->bce_shmem_base);
1198
1199         /* Fetch the bootcode revision. */
1200         val = bce_shmem_rd(sc, BCE_DEV_INFO_BC_REV);
1201         for (int i = 0, j = 0; i < 3; i++) {
1202                 u8 num;
1203
1204                 num = (u8) (val >> (24 - (i * 8)));
1205                 for (int k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
1206                         if (num >= k || !skip0 || k == 1) {
1207                                 sc->bce_bc_ver[j++] = (num / k) + '0';
1208                                 skip0 = 0;
1209                         }
1210                 }
1211
1212                 if (i != 2)
1213                         sc->bce_bc_ver[j++] = '.';
1214         }
1215
1216         /* Check if any management firwmare is enabled. */
1217         val = bce_shmem_rd(sc, BCE_PORT_FEATURE);
1218         if (val & BCE_PORT_FEATURE_ASF_ENABLED) {
1219                 sc->bce_flags |= BCE_MFW_ENABLE_FLAG;
1220
1221                 /* Allow time for firmware to enter the running state. */
1222                 for (int i = 0; i < 30; i++) {
1223                         val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
1224                         if (val & BCE_CONDITION_MFW_RUN_MASK)
1225                                 break;
1226                         DELAY(10000);
1227                 }
1228
1229                 /* Check if management firmware is running. */
1230                 val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
1231                 val &= BCE_CONDITION_MFW_RUN_MASK;
1232                 if ((val != BCE_CONDITION_MFW_RUN_UNKNOWN) &&
1233                     (val != BCE_CONDITION_MFW_RUN_NONE)) {
1234                         u32 addr = bce_shmem_rd(sc, BCE_MFW_VER_PTR);
1235                         int i = 0;
1236
1237                         /* Read the management firmware version string. */
1238                         for (int j = 0; j < 3; j++) {
1239                                 val = bce_reg_rd_ind(sc, addr + j * 4);
1240                                 val = bswap32(val);
1241                                 memcpy(&sc->bce_mfw_ver[i], &val, 4);
1242                                 i += 4;
1243                         }
1244                 } else {
1245                         /* May cause firmware synchronization timeouts. */
1246                         BCE_PRINTF("%s(%d): Management firmware enabled "
1247                             "but not running!\n", __FILE__, __LINE__);
1248                         strcpy(sc->bce_mfw_ver, "NOT RUNNING!");
1249
1250                         /* ToDo: Any action the driver should take? */
1251                 }
1252         }
1253
1254         /* Get PCI bus information (speed and type). */
1255         val = REG_RD(sc, BCE_PCICFG_MISC_STATUS);
1256         if (val & BCE_PCICFG_MISC_STATUS_PCIX_DET) {
1257                 u32 clkreg;
1258
1259                 sc->bce_flags |= BCE_PCIX_FLAG;
1260
1261                 clkreg = REG_RD(sc, BCE_PCICFG_PCI_CLOCK_CONTROL_BITS);
1262
1263                 clkreg &= BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
1264                 switch (clkreg) {
1265                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
1266                         sc->bus_speed_mhz = 133;
1267                         break;
1268
1269                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
1270                         sc->bus_speed_mhz = 100;
1271                         break;
1272
1273                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
1274                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
1275                         sc->bus_speed_mhz = 66;
1276                         break;
1277
1278                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
1279                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
1280                         sc->bus_speed_mhz = 50;
1281                         break;
1282
1283                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
1284                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
1285                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
1286                         sc->bus_speed_mhz = 33;
1287                         break;
1288                 }
1289         } else {
1290                 if (val & BCE_PCICFG_MISC_STATUS_M66EN)
1291                         sc->bus_speed_mhz = 66;
1292                 else
1293                         sc->bus_speed_mhz = 33;
1294         }
1295
1296         if (val & BCE_PCICFG_MISC_STATUS_32BIT_DET)
1297                 sc->bce_flags |= BCE_PCI_32BIT_FLAG;
1298
1299         /* Find the media type for the adapter. */
1300         bce_get_media(sc);
1301
1302         /* Reset controller and announce to bootcode that driver is present. */
1303         if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) {
1304                 BCE_PRINTF("%s(%d): Controller reset failed!\n",
1305                     __FILE__, __LINE__);
1306                 rc = ENXIO;
1307                 goto bce_attach_fail;
1308         }
1309
1310         /* Initialize the controller. */
1311         if (bce_chipinit(sc)) {
1312                 BCE_PRINTF("%s(%d): Controller initialization failed!\n",
1313                     __FILE__, __LINE__);
1314                 rc = ENXIO;
1315                 goto bce_attach_fail;
1316         }
1317
1318         /* Perform NVRAM test. */
1319         if (bce_nvram_test(sc)) {
1320                 BCE_PRINTF("%s(%d): NVRAM test failed!\n",
1321                     __FILE__, __LINE__);
1322                 rc = ENXIO;
1323                 goto bce_attach_fail;
1324         }
1325
1326         /* Fetch the permanent Ethernet MAC address. */
1327         bce_get_mac_addr(sc);
1328
1329         /* Update statistics once every second. */
1330         sc->bce_stats_ticks = 1000000 & 0xffff00;
1331
1332         /* Store data needed by PHY driver for backplane applications */
1333         sc->bce_shared_hw_cfg = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG);
1334         sc->bce_port_hw_cfg   = bce_shmem_rd(sc, BCE_PORT_HW_CFG_CONFIG);
1335
1336         /* Allocate DMA memory resources. */
1337         if (bce_dma_alloc(dev)) {
1338                 BCE_PRINTF("%s(%d): DMA resource allocation failed!\n",
1339                     __FILE__, __LINE__);
1340                 rc = ENXIO;
1341                 goto bce_attach_fail;
1342         }
1343
1344         /* Allocate an ifnet structure. */
1345         ifp = sc->bce_ifp = if_alloc(IFT_ETHER);
1346         if (ifp == NULL) {
1347                 BCE_PRINTF("%s(%d): Interface allocation failed!\n",
1348                     __FILE__, __LINE__);
1349                 rc = ENXIO;
1350                 goto bce_attach_fail;
1351         }
1352
1353         /* Initialize the ifnet interface. */
1354         ifp->if_softc   = sc;
1355         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1356         ifp->if_flags   = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1357         ifp->if_ioctl   = bce_ioctl;
1358         ifp->if_start   = bce_start;
1359         ifp->if_init    = bce_init;
1360         ifp->if_mtu     = ETHERMTU;
1361
1362         if (bce_tso_enable) {
1363                 ifp->if_hwassist = BCE_IF_HWASSIST | CSUM_TSO;
1364                 ifp->if_capabilities = BCE_IF_CAPABILITIES | IFCAP_TSO4 |
1365                     IFCAP_VLAN_HWTSO;
1366         } else {
1367                 ifp->if_hwassist = BCE_IF_HWASSIST;
1368                 ifp->if_capabilities = BCE_IF_CAPABILITIES;
1369         }
1370
1371 #if __FreeBSD_version >= 800505
1372         /*
1373          * Introducing IFCAP_LINKSTATE didn't bump __FreeBSD_version
1374          * so it's approximate value.
1375          */
1376         if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0)
1377                 ifp->if_capabilities |= IFCAP_LINKSTATE;
1378 #endif
1379
1380         ifp->if_capenable = ifp->if_capabilities;
1381
1382         /*
1383          * Assume standard mbuf sizes for buffer allocation.
1384          * This may change later if the MTU size is set to
1385          * something other than 1500.
1386          */
1387         bce_get_rx_buffer_sizes(sc,
1388             (ETHER_MAX_LEN - ETHER_HDR_LEN - ETHER_CRC_LEN));
1389
1390         /* Recalculate our buffer allocation sizes. */
1391         ifp->if_snd.ifq_drv_maxlen = USABLE_TX_BD_ALLOC;
1392         IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
1393         IFQ_SET_READY(&ifp->if_snd);
1394
1395         if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG)
1396                 ifp->if_baudrate = IF_Mbps(2500ULL);
1397         else
1398                 ifp->if_baudrate = IF_Mbps(1000);
1399
1400         /* Handle any special PHY initialization for SerDes PHYs. */
1401         bce_init_media(sc);
1402
1403         if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
1404                 ifmedia_init(&sc->bce_ifmedia, IFM_IMASK, bce_ifmedia_upd,
1405                     bce_ifmedia_sts);
1406                 /*
1407                  * We can't manually override remote PHY's link and assume
1408                  * PHY port configuration(Fiber or TP) is not changed after
1409                  * device attach.  This may not be correct though.
1410                  */
1411                 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) != 0) {
1412                         if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG) {
1413                                 ifmedia_add(&sc->bce_ifmedia,
1414                                     IFM_ETHER | IFM_2500_SX, 0, NULL);
1415                                 ifmedia_add(&sc->bce_ifmedia,
1416                                     IFM_ETHER | IFM_2500_SX | IFM_FDX, 0, NULL);
1417                         }
1418                         ifmedia_add(&sc->bce_ifmedia,
1419                             IFM_ETHER | IFM_1000_SX, 0, NULL);
1420                         ifmedia_add(&sc->bce_ifmedia,
1421                             IFM_ETHER | IFM_1000_SX | IFM_FDX, 0, NULL);
1422                 } else {
1423                         ifmedia_add(&sc->bce_ifmedia,
1424                             IFM_ETHER | IFM_10_T, 0, NULL);
1425                         ifmedia_add(&sc->bce_ifmedia,
1426                             IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
1427                         ifmedia_add(&sc->bce_ifmedia,
1428                             IFM_ETHER | IFM_100_TX, 0, NULL);
1429                         ifmedia_add(&sc->bce_ifmedia,
1430                             IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
1431                         ifmedia_add(&sc->bce_ifmedia,
1432                             IFM_ETHER | IFM_1000_T, 0, NULL);
1433                         ifmedia_add(&sc->bce_ifmedia,
1434                             IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
1435                 }
1436                 ifmedia_add(&sc->bce_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
1437                 ifmedia_set(&sc->bce_ifmedia, IFM_ETHER | IFM_AUTO);
1438                 sc->bce_ifmedia.ifm_media = sc->bce_ifmedia.ifm_cur->ifm_media;
1439         } else {
1440                 /* MII child bus by attaching the PHY. */
1441                 rc = mii_attach(dev, &sc->bce_miibus, ifp, bce_ifmedia_upd,
1442                     bce_ifmedia_sts, BMSR_DEFCAPMASK, sc->bce_phy_addr,
1443                     MII_OFFSET_ANY, MIIF_DOPAUSE);
1444                 if (rc != 0) {
1445                         BCE_PRINTF("%s(%d): attaching PHYs failed\n", __FILE__,
1446                             __LINE__);
1447                         goto bce_attach_fail;
1448                 }
1449         }
1450
1451         /* Attach to the Ethernet interface list. */
1452         ether_ifattach(ifp, sc->eaddr);
1453
1454 #if __FreeBSD_version < 500000
1455         callout_init(&sc->bce_tick_callout);
1456         callout_init(&sc->bce_pulse_callout);
1457 #else
1458         callout_init_mtx(&sc->bce_tick_callout, &sc->bce_mtx, 0);
1459         callout_init_mtx(&sc->bce_pulse_callout, &sc->bce_mtx, 0);
1460 #endif
1461
1462         /* Hookup IRQ last. */
1463         rc = bus_setup_intr(dev, sc->bce_res_irq, INTR_TYPE_NET | INTR_MPSAFE,
1464                 NULL, bce_intr, sc, &sc->bce_intrhand);
1465
1466         if (rc) {
1467                 BCE_PRINTF("%s(%d): Failed to setup IRQ!\n",
1468                     __FILE__, __LINE__);
1469                 bce_detach(dev);
1470                 goto bce_attach_exit;
1471         }
1472
1473         /*
1474          * At this point we've acquired all the resources
1475          * we need to run so there's no turning back, we're
1476          * cleared for launch.
1477          */
1478
1479         /* Print some important debugging info. */
1480         DBRUNMSG(BCE_INFO, bce_dump_driver_state(sc));
1481
1482         /* Add the supported sysctls to the kernel. */
1483         bce_add_sysctls(sc);
1484
1485         BCE_LOCK(sc);
1486
1487         /*
1488          * The chip reset earlier notified the bootcode that
1489          * a driver is present.  We now need to start our pulse
1490          * routine so that the bootcode is reminded that we're
1491          * still running.
1492          */
1493         bce_pulse(sc);
1494
1495         bce_mgmt_init_locked(sc);
1496         BCE_UNLOCK(sc);
1497
1498         /* Finally, print some useful adapter info */
1499         bce_print_adapter_info(sc);
1500         DBPRINT(sc, BCE_FATAL, "%s(): sc = %p\n",
1501                 __FUNCTION__, sc);
1502
1503         goto bce_attach_exit;
1504
1505 bce_attach_fail:
1506         bce_release_resources(sc);
1507
1508 bce_attach_exit:
1509
1510         DBEXIT(BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
1511
1512         return(rc);
1513 }
1514
1515
1516 /****************************************************************************/
1517 /* Device detach function.                                                  */
1518 /*                                                                          */
1519 /* Stops the controller, resets the controller, and releases resources.     */
1520 /*                                                                          */
1521 /* Returns:                                                                 */
1522 /*   0 on success, positive value on failure.                               */
1523 /****************************************************************************/
1524 static int
1525 bce_detach(device_t dev)
1526 {
1527         struct bce_softc *sc = device_get_softc(dev);
1528         struct ifnet *ifp;
1529         u32 msg;
1530
1531         DBENTER(BCE_VERBOSE_UNLOAD | BCE_VERBOSE_RESET);
1532
1533         ifp = sc->bce_ifp;
1534
1535         /* Stop and reset the controller. */
1536         BCE_LOCK(sc);
1537
1538         /* Stop the pulse so the bootcode can go to driver absent state. */
1539         callout_stop(&sc->bce_pulse_callout);
1540
1541         bce_stop(sc);
1542         if (sc->bce_flags & BCE_NO_WOL_FLAG)
1543                 msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN;
1544         else
1545                 msg = BCE_DRV_MSG_CODE_UNLOAD;
1546         bce_reset(sc, msg);
1547
1548         BCE_UNLOCK(sc);
1549
1550         ether_ifdetach(ifp);
1551
1552         /* If we have a child device on the MII bus remove it too. */
1553         if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0)
1554                 ifmedia_removeall(&sc->bce_ifmedia);
1555         else {
1556                 bus_generic_detach(dev);
1557                 device_delete_child(dev, sc->bce_miibus);
1558         }
1559
1560         /* Release all remaining resources. */
1561         bce_release_resources(sc);
1562
1563         DBEXIT(BCE_VERBOSE_UNLOAD | BCE_VERBOSE_RESET);
1564
1565         return(0);
1566 }
1567
1568
1569 /****************************************************************************/
1570 /* Device shutdown function.                                                */
1571 /*                                                                          */
1572 /* Stops and resets the controller.                                         */
1573 /*                                                                          */
1574 /* Returns:                                                                 */
1575 /*   0 on success, positive value on failure.                               */
1576 /****************************************************************************/
1577 static int
1578 bce_shutdown(device_t dev)
1579 {
1580         struct bce_softc *sc = device_get_softc(dev);
1581         u32 msg;
1582
1583         DBENTER(BCE_VERBOSE);
1584
1585         BCE_LOCK(sc);
1586         bce_stop(sc);
1587         if (sc->bce_flags & BCE_NO_WOL_FLAG)
1588                 msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN;
1589         else
1590                 msg = BCE_DRV_MSG_CODE_UNLOAD;
1591         bce_reset(sc, msg);
1592         BCE_UNLOCK(sc);
1593
1594         DBEXIT(BCE_VERBOSE);
1595
1596         return (0);
1597 }
1598
1599
1600 #ifdef BCE_DEBUG
1601 /****************************************************************************/
1602 /* Register read.                                                           */
1603 /*                                                                          */
1604 /* Returns:                                                                 */
1605 /*   The value of the register.                                             */
1606 /****************************************************************************/
1607 static u32
1608 bce_reg_rd(struct bce_softc *sc, u32 offset)
1609 {
1610         u32 val = REG_RD(sc, offset);
1611         DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1612                 __FUNCTION__, offset, val);
1613         return val;
1614 }
1615
1616
1617 /****************************************************************************/
1618 /* Register write (16 bit).                                                 */
1619 /*                                                                          */
1620 /* Returns:                                                                 */
1621 /*   Nothing.                                                               */
1622 /****************************************************************************/
1623 static void
1624 bce_reg_wr16(struct bce_softc *sc, u32 offset, u16 val)
1625 {
1626         DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%04X\n",
1627                 __FUNCTION__, offset, val);
1628         REG_WR16(sc, offset, val);
1629 }
1630
1631
1632 /****************************************************************************/
1633 /* Register write.                                                          */
1634 /*                                                                          */
1635 /* Returns:                                                                 */
1636 /*   Nothing.                                                               */
1637 /****************************************************************************/
1638 static void
1639 bce_reg_wr(struct bce_softc *sc, u32 offset, u32 val)
1640 {
1641         DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1642                 __FUNCTION__, offset, val);
1643         REG_WR(sc, offset, val);
1644 }
1645 #endif
1646
1647 /****************************************************************************/
1648 /* Indirect register read.                                                  */
1649 /*                                                                          */
1650 /* Reads NetXtreme II registers using an index/data register pair in PCI    */
1651 /* configuration space.  Using this mechanism avoids issues with posted     */
1652 /* reads but is much slower than memory-mapped I/O.                         */
1653 /*                                                                          */
1654 /* Returns:                                                                 */
1655 /*   The value of the register.                                             */
1656 /****************************************************************************/
1657 static u32
1658 bce_reg_rd_ind(struct bce_softc *sc, u32 offset)
1659 {
1660         device_t dev;
1661         dev = sc->bce_dev;
1662
1663         pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4);
1664 #ifdef BCE_DEBUG
1665         {
1666                 u32 val;
1667                 val = pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4);
1668                 DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1669                         __FUNCTION__, offset, val);
1670                 return val;
1671         }
1672 #else
1673         return pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4);
1674 #endif
1675 }
1676
1677
1678 /****************************************************************************/
1679 /* Indirect register write.                                                 */
1680 /*                                                                          */
1681 /* Writes NetXtreme II registers using an index/data register pair in PCI   */
1682 /* configuration space.  Using this mechanism avoids issues with posted     */
1683 /* writes but is muchh slower than memory-mapped I/O.                       */
1684 /*                                                                          */
1685 /* Returns:                                                                 */
1686 /*   Nothing.                                                               */
1687 /****************************************************************************/
1688 static void
1689 bce_reg_wr_ind(struct bce_softc *sc, u32 offset, u32 val)
1690 {
1691         device_t dev;
1692         dev = sc->bce_dev;
1693
1694         DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1695                 __FUNCTION__, offset, val);
1696
1697         pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4);
1698         pci_write_config(dev, BCE_PCICFG_REG_WINDOW, val, 4);
1699 }
1700
1701
1702 /****************************************************************************/
1703 /* Shared memory write.                                                     */
1704 /*                                                                          */
1705 /* Writes NetXtreme II shared memory region.                                */
1706 /*                                                                          */
1707 /* Returns:                                                                 */
1708 /*   Nothing.                                                               */
1709 /****************************************************************************/
1710 static void
1711 bce_shmem_wr(struct bce_softc *sc, u32 offset, u32 val)
1712 {
1713         DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): Writing 0x%08X  to  "
1714             "0x%08X\n", __FUNCTION__, val, offset);
1715
1716         bce_reg_wr_ind(sc, sc->bce_shmem_base + offset, val);
1717 }
1718
1719
1720 /****************************************************************************/
1721 /* Shared memory read.                                                      */
1722 /*                                                                          */
1723 /* Reads NetXtreme II shared memory region.                                 */
1724 /*                                                                          */
1725 /* Returns:                                                                 */
1726 /*   The 32 bit value read.                                                 */
1727 /****************************************************************************/
1728 static u32
1729 bce_shmem_rd(struct bce_softc *sc, u32 offset)
1730 {
1731         u32 val = bce_reg_rd_ind(sc, sc->bce_shmem_base + offset);
1732
1733         DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): Reading 0x%08X from "
1734             "0x%08X\n", __FUNCTION__, val, offset);
1735
1736         return val;
1737 }
1738
1739
1740 #ifdef BCE_DEBUG
1741 /****************************************************************************/
1742 /* Context memory read.                                                     */
1743 /*                                                                          */
1744 /* The NetXtreme II controller uses context memory to track connection      */
1745 /* information for L2 and higher network protocols.                         */
1746 /*                                                                          */
1747 /* Returns:                                                                 */
1748 /*   The requested 32 bit value of context memory.                          */
1749 /****************************************************************************/
1750 static u32
1751 bce_ctx_rd(struct bce_softc *sc, u32 cid_addr, u32 ctx_offset)
1752 {
1753         u32 idx, offset, retry_cnt = 5, val;
1754
1755         DBRUNIF((cid_addr > MAX_CID_ADDR || ctx_offset & 0x3 ||
1756             cid_addr & CTX_MASK), BCE_PRINTF("%s(): Invalid CID "
1757             "address: 0x%08X.\n", __FUNCTION__, cid_addr));
1758
1759         offset = ctx_offset + cid_addr;
1760
1761         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
1762
1763                 REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_READ_REQ));
1764
1765                 for (idx = 0; idx < retry_cnt; idx++) {
1766                         val = REG_RD(sc, BCE_CTX_CTX_CTRL);
1767                         if ((val & BCE_CTX_CTX_CTRL_READ_REQ) == 0)
1768                                 break;
1769                         DELAY(5);
1770                 }
1771
1772                 if (val & BCE_CTX_CTX_CTRL_READ_REQ)
1773                         BCE_PRINTF("%s(%d); Unable to read CTX memory: "
1774                             "cid_addr = 0x%08X, offset = 0x%08X!\n",
1775                             __FILE__, __LINE__, cid_addr, ctx_offset);
1776
1777                 val = REG_RD(sc, BCE_CTX_CTX_DATA);
1778         } else {
1779                 REG_WR(sc, BCE_CTX_DATA_ADR, offset);
1780                 val = REG_RD(sc, BCE_CTX_DATA);
1781         }
1782
1783         DBPRINT(sc, BCE_EXTREME_CTX, "%s(); cid_addr = 0x%08X, offset = 0x%08X, "
1784                 "val = 0x%08X\n", __FUNCTION__, cid_addr, ctx_offset, val);
1785
1786         return(val);
1787 }
1788 #endif
1789
1790
1791 /****************************************************************************/
1792 /* Context memory write.                                                    */
1793 /*                                                                          */
1794 /* The NetXtreme II controller uses context memory to track connection      */
1795 /* information for L2 and higher network protocols.                         */
1796 /*                                                                          */
1797 /* Returns:                                                                 */
1798 /*   Nothing.                                                               */
1799 /****************************************************************************/
1800 static void
1801 bce_ctx_wr(struct bce_softc *sc, u32 cid_addr, u32 ctx_offset, u32 ctx_val)
1802 {
1803         u32 idx, offset = ctx_offset + cid_addr;
1804         u32 val, retry_cnt = 5;
1805
1806         DBPRINT(sc, BCE_EXTREME_CTX, "%s(); cid_addr = 0x%08X, offset = 0x%08X, "
1807                 "val = 0x%08X\n", __FUNCTION__, cid_addr, ctx_offset, ctx_val);
1808
1809         DBRUNIF((cid_addr > MAX_CID_ADDR || ctx_offset & 0x3 || cid_addr & CTX_MASK),
1810                 BCE_PRINTF("%s(): Invalid CID address: 0x%08X.\n",
1811                     __FUNCTION__, cid_addr));
1812
1813         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
1814
1815                 REG_WR(sc, BCE_CTX_CTX_DATA, ctx_val);
1816                 REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_WRITE_REQ));
1817
1818                 for (idx = 0; idx < retry_cnt; idx++) {
1819                         val = REG_RD(sc, BCE_CTX_CTX_CTRL);
1820                         if ((val & BCE_CTX_CTX_CTRL_WRITE_REQ) == 0)
1821                                 break;
1822                         DELAY(5);
1823                 }
1824
1825                 if (val & BCE_CTX_CTX_CTRL_WRITE_REQ)
1826                         BCE_PRINTF("%s(%d); Unable to write CTX memory: "
1827                             "cid_addr = 0x%08X, offset = 0x%08X!\n",
1828                             __FILE__, __LINE__, cid_addr, ctx_offset);
1829
1830         } else {
1831                 REG_WR(sc, BCE_CTX_DATA_ADR, offset);
1832                 REG_WR(sc, BCE_CTX_DATA, ctx_val);
1833         }
1834 }
1835
1836
1837 /****************************************************************************/
1838 /* PHY register read.                                                       */
1839 /*                                                                          */
1840 /* Implements register reads on the MII bus.                                */
1841 /*                                                                          */
1842 /* Returns:                                                                 */
1843 /*   The value of the register.                                             */
1844 /****************************************************************************/
1845 static int
1846 bce_miibus_read_reg(device_t dev, int phy, int reg)
1847 {
1848         struct bce_softc *sc;
1849         u32 val;
1850         int i;
1851
1852         sc = device_get_softc(dev);
1853
1854     /*
1855      * The 5709S PHY is an IEEE Clause 45 PHY
1856      * with special mappings to work with IEEE
1857      * Clause 22 register accesses.
1858      */
1859         if ((sc->bce_phy_flags & BCE_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1860                 if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1861                         reg += 0x10;
1862         }
1863
1864     if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1865                 val = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1866                 val &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL;
1867
1868                 REG_WR(sc, BCE_EMAC_MDIO_MODE, val);
1869                 REG_RD(sc, BCE_EMAC_MDIO_MODE);
1870
1871                 DELAY(40);
1872         }
1873
1874
1875         val = BCE_MIPHY(phy) | BCE_MIREG(reg) |
1876             BCE_EMAC_MDIO_COMM_COMMAND_READ | BCE_EMAC_MDIO_COMM_DISEXT |
1877             BCE_EMAC_MDIO_COMM_START_BUSY;
1878         REG_WR(sc, BCE_EMAC_MDIO_COMM, val);
1879
1880         for (i = 0; i < BCE_PHY_TIMEOUT; i++) {
1881                 DELAY(10);
1882
1883                 val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1884                 if (!(val & BCE_EMAC_MDIO_COMM_START_BUSY)) {
1885                         DELAY(5);
1886
1887                         val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1888                         val &= BCE_EMAC_MDIO_COMM_DATA;
1889
1890                         break;
1891                 }
1892         }
1893
1894         if (val & BCE_EMAC_MDIO_COMM_START_BUSY) {
1895                 BCE_PRINTF("%s(%d): Error: PHY read timeout! phy = %d, "
1896                     "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
1897                 val = 0x0;
1898         } else {
1899                 val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1900         }
1901
1902
1903         if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1904                 val = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1905                 val |= BCE_EMAC_MDIO_MODE_AUTO_POLL;
1906
1907                 REG_WR(sc, BCE_EMAC_MDIO_MODE, val);
1908                 REG_RD(sc, BCE_EMAC_MDIO_MODE);
1909
1910                 DELAY(40);
1911         }
1912
1913         DB_PRINT_PHY_REG(reg, val);
1914         return (val & 0xffff);
1915 }
1916
1917
1918 /****************************************************************************/
1919 /* PHY register write.                                                      */
1920 /*                                                                          */
1921 /* Implements register writes on the MII bus.                               */
1922 /*                                                                          */
1923 /* Returns:                                                                 */
1924 /*   The value of the register.                                             */
1925 /****************************************************************************/
1926 static int
1927 bce_miibus_write_reg(device_t dev, int phy, int reg, int val)
1928 {
1929         struct bce_softc *sc;
1930         u32 val1;
1931         int i;
1932
1933         sc = device_get_softc(dev);
1934
1935         DB_PRINT_PHY_REG(reg, val);
1936
1937         /*
1938          * The 5709S PHY is an IEEE Clause 45 PHY
1939          * with special mappings to work with IEEE
1940          * Clause 22 register accesses.
1941          */
1942         if ((sc->bce_phy_flags & BCE_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1943                 if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1944                         reg += 0x10;
1945         }
1946
1947         if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1948                 val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1949                 val1 &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL;
1950
1951                 REG_WR(sc, BCE_EMAC_MDIO_MODE, val1);
1952                 REG_RD(sc, BCE_EMAC_MDIO_MODE);
1953
1954                 DELAY(40);
1955         }
1956
1957         val1 = BCE_MIPHY(phy) | BCE_MIREG(reg) | val |
1958             BCE_EMAC_MDIO_COMM_COMMAND_WRITE |
1959             BCE_EMAC_MDIO_COMM_START_BUSY | BCE_EMAC_MDIO_COMM_DISEXT;
1960         REG_WR(sc, BCE_EMAC_MDIO_COMM, val1);
1961
1962         for (i = 0; i < BCE_PHY_TIMEOUT; i++) {
1963                 DELAY(10);
1964
1965                 val1 = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1966                 if (!(val1 & BCE_EMAC_MDIO_COMM_START_BUSY)) {
1967                         DELAY(5);
1968                         break;
1969                 }
1970         }
1971
1972         if (val1 & BCE_EMAC_MDIO_COMM_START_BUSY)
1973                 BCE_PRINTF("%s(%d): PHY write timeout!\n",
1974                     __FILE__, __LINE__);
1975
1976         if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1977                 val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1978                 val1 |= BCE_EMAC_MDIO_MODE_AUTO_POLL;
1979
1980                 REG_WR(sc, BCE_EMAC_MDIO_MODE, val1);
1981                 REG_RD(sc, BCE_EMAC_MDIO_MODE);
1982
1983                 DELAY(40);
1984         }
1985
1986         return 0;
1987 }
1988
1989
1990 /****************************************************************************/
1991 /* MII bus status change.                                                   */
1992 /*                                                                          */
1993 /* Called by the MII bus driver when the PHY establishes link to set the    */
1994 /* MAC interface registers.                                                 */
1995 /*                                                                          */
1996 /* Returns:                                                                 */
1997 /*   Nothing.                                                               */
1998 /****************************************************************************/
1999 static void
2000 bce_miibus_statchg(device_t dev)
2001 {
2002         struct bce_softc *sc;
2003         struct mii_data *mii;
2004         struct ifmediareq ifmr;
2005         int media_active, media_status, val;
2006
2007         sc = device_get_softc(dev);
2008
2009         DBENTER(BCE_VERBOSE_PHY);
2010
2011         if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
2012                 bzero(&ifmr, sizeof(ifmr));
2013                 bce_ifmedia_sts_rphy(sc, &ifmr);
2014                 media_active = ifmr.ifm_active;
2015                 media_status = ifmr.ifm_status;
2016         } else {
2017                 mii = device_get_softc(sc->bce_miibus);
2018                 media_active = mii->mii_media_active;
2019                 media_status = mii->mii_media_status;
2020         }
2021
2022         /* Ignore invalid media status. */
2023         if ((media_status & (IFM_ACTIVE | IFM_AVALID)) !=
2024             (IFM_ACTIVE | IFM_AVALID))
2025                 goto bce_miibus_statchg_exit;
2026
2027         val = REG_RD(sc, BCE_EMAC_MODE);
2028         val &= ~(BCE_EMAC_MODE_PORT | BCE_EMAC_MODE_HALF_DUPLEX |
2029             BCE_EMAC_MODE_MAC_LOOP | BCE_EMAC_MODE_FORCE_LINK |
2030             BCE_EMAC_MODE_25G);
2031
2032         /* Set MII or GMII interface based on the PHY speed. */
2033         switch (IFM_SUBTYPE(media_active)) {
2034         case IFM_10_T:
2035                 if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) {
2036                         DBPRINT(sc, BCE_INFO_PHY,
2037                             "Enabling 10Mb interface.\n");
2038                         val |= BCE_EMAC_MODE_PORT_MII_10;
2039                         break;
2040                 }
2041                 /* fall-through */
2042         case IFM_100_TX:
2043                 DBPRINT(sc, BCE_INFO_PHY, "Enabling MII interface.\n");
2044                 val |= BCE_EMAC_MODE_PORT_MII;
2045                 break;
2046         case IFM_2500_SX:
2047                 DBPRINT(sc, BCE_INFO_PHY, "Enabling 2.5G MAC mode.\n");
2048                 val |= BCE_EMAC_MODE_25G;
2049                 /* fall-through */
2050         case IFM_1000_T:
2051         case IFM_1000_SX:
2052                 DBPRINT(sc, BCE_INFO_PHY, "Enabling GMII interface.\n");
2053                 val |= BCE_EMAC_MODE_PORT_GMII;
2054                 break;
2055         default:
2056                 DBPRINT(sc, BCE_INFO_PHY, "Unknown link speed, enabling "
2057                     "default GMII interface.\n");
2058                 val |= BCE_EMAC_MODE_PORT_GMII;
2059         }
2060
2061         /* Set half or full duplex based on PHY settings. */
2062         if ((IFM_OPTIONS(media_active) & IFM_FDX) == 0) {
2063                 DBPRINT(sc, BCE_INFO_PHY,
2064                     "Setting Half-Duplex interface.\n");
2065                 val |= BCE_EMAC_MODE_HALF_DUPLEX;
2066         } else
2067                 DBPRINT(sc, BCE_INFO_PHY,
2068                     "Setting Full-Duplex interface.\n");
2069
2070         REG_WR(sc, BCE_EMAC_MODE, val);
2071
2072         if ((IFM_OPTIONS(media_active) & IFM_ETH_RXPAUSE) != 0) {
2073                 DBPRINT(sc, BCE_INFO_PHY,
2074                     "%s(): Enabling RX flow control.\n", __FUNCTION__);
2075                 BCE_SETBIT(sc, BCE_EMAC_RX_MODE, BCE_EMAC_RX_MODE_FLOW_EN);
2076                 sc->bce_flags |= BCE_USING_RX_FLOW_CONTROL;
2077         } else {
2078                 DBPRINT(sc, BCE_INFO_PHY,
2079                     "%s(): Disabling RX flow control.\n", __FUNCTION__);
2080                 BCE_CLRBIT(sc, BCE_EMAC_RX_MODE, BCE_EMAC_RX_MODE_FLOW_EN);
2081                 sc->bce_flags &= ~BCE_USING_RX_FLOW_CONTROL;
2082         }
2083
2084         if ((IFM_OPTIONS(media_active) & IFM_ETH_TXPAUSE) != 0) {
2085                 DBPRINT(sc, BCE_INFO_PHY,
2086                     "%s(): Enabling TX flow control.\n", __FUNCTION__);
2087                 BCE_SETBIT(sc, BCE_EMAC_TX_MODE, BCE_EMAC_TX_MODE_FLOW_EN);
2088                 sc->bce_flags |= BCE_USING_TX_FLOW_CONTROL;
2089         } else {
2090                 DBPRINT(sc, BCE_INFO_PHY,
2091                     "%s(): Disabling TX flow control.\n", __FUNCTION__);
2092                 BCE_CLRBIT(sc, BCE_EMAC_TX_MODE, BCE_EMAC_TX_MODE_FLOW_EN);
2093                 sc->bce_flags &= ~BCE_USING_TX_FLOW_CONTROL;
2094         }
2095
2096         /* ToDo: Update watermarks in bce_init_rx_context(). */
2097
2098 bce_miibus_statchg_exit:
2099         DBEXIT(BCE_VERBOSE_PHY);
2100 }
2101
2102
2103 /****************************************************************************/
2104 /* Acquire NVRAM lock.                                                      */
2105 /*                                                                          */
2106 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock.  */
2107 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
2108 /* for use by the driver.                                                   */
2109 /*                                                                          */
2110 /* Returns:                                                                 */
2111 /*   0 on success, positive value on failure.                               */
2112 /****************************************************************************/
2113 static int
2114 bce_acquire_nvram_lock(struct bce_softc *sc)
2115 {
2116         u32 val;
2117         int j, rc = 0;
2118
2119         DBENTER(BCE_VERBOSE_NVRAM);
2120
2121         /* Request access to the flash interface. */
2122         REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_SET2);
2123         for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2124                 val = REG_RD(sc, BCE_NVM_SW_ARB);
2125                 if (val & BCE_NVM_SW_ARB_ARB_ARB2)
2126                         break;
2127
2128                 DELAY(5);
2129         }
2130
2131         if (j >= NVRAM_TIMEOUT_COUNT) {
2132                 DBPRINT(sc, BCE_WARN, "Timeout acquiring NVRAM lock!\n");
2133                 rc = EBUSY;
2134         }
2135
2136         DBEXIT(BCE_VERBOSE_NVRAM);
2137         return (rc);
2138 }
2139
2140
2141 /****************************************************************************/
2142 /* Release NVRAM lock.                                                      */
2143 /*                                                                          */
2144 /* When the caller is finished accessing NVRAM the lock must be released.   */
2145 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
2146 /* for use by the driver.                                                   */
2147 /*                                                                          */
2148 /* Returns:                                                                 */
2149 /*   0 on success, positive value on failure.                               */
2150 /****************************************************************************/
2151 static int
2152 bce_release_nvram_lock(struct bce_softc *sc)
2153 {
2154         u32 val;
2155         int j, rc = 0;
2156
2157         DBENTER(BCE_VERBOSE_NVRAM);
2158
2159         /*
2160          * Relinquish nvram interface.
2161          */
2162         REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_CLR2);
2163
2164         for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2165                 val = REG_RD(sc, BCE_NVM_SW_ARB);
2166                 if (!(val & BCE_NVM_SW_ARB_ARB_ARB2))
2167                         break;
2168
2169                 DELAY(5);
2170         }
2171
2172         if (j >= NVRAM_TIMEOUT_COUNT) {
2173                 DBPRINT(sc, BCE_WARN, "Timeout releasing NVRAM lock!\n");
2174                 rc = EBUSY;
2175         }
2176
2177         DBEXIT(BCE_VERBOSE_NVRAM);
2178         return (rc);
2179 }
2180
2181
2182 #ifdef BCE_NVRAM_WRITE_SUPPORT
2183 /****************************************************************************/
2184 /* Enable NVRAM write access.                                               */
2185 /*                                                                          */
2186 /* Before writing to NVRAM the caller must enable NVRAM writes.             */
2187 /*                                                                          */
2188 /* Returns:                                                                 */
2189 /*   0 on success, positive value on failure.                               */
2190 /****************************************************************************/
2191 static int
2192 bce_enable_nvram_write(struct bce_softc *sc)
2193 {
2194         u32 val;
2195         int rc = 0;
2196
2197         DBENTER(BCE_VERBOSE_NVRAM);
2198
2199         val = REG_RD(sc, BCE_MISC_CFG);
2200         REG_WR(sc, BCE_MISC_CFG, val | BCE_MISC_CFG_NVM_WR_EN_PCI);
2201
2202         if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2203                 int j;
2204
2205                 REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2206                 REG_WR(sc, BCE_NVM_COMMAND,     BCE_NVM_COMMAND_WREN | BCE_NVM_COMMAND_DOIT);
2207
2208                 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2209                         DELAY(5);
2210
2211                         val = REG_RD(sc, BCE_NVM_COMMAND);
2212                         if (val & BCE_NVM_COMMAND_DONE)
2213                                 break;
2214                 }
2215
2216                 if (j >= NVRAM_TIMEOUT_COUNT) {
2217                         DBPRINT(sc, BCE_WARN, "Timeout writing NVRAM!\n");
2218                         rc = EBUSY;
2219                 }
2220         }
2221
2222         DBENTER(BCE_VERBOSE_NVRAM);
2223         return (rc);
2224 }
2225
2226
2227 /****************************************************************************/
2228 /* Disable NVRAM write access.                                              */
2229 /*                                                                          */
2230 /* When the caller is finished writing to NVRAM write access must be        */
2231 /* disabled.                                                                */
2232 /*                                                                          */
2233 /* Returns:                                                                 */
2234 /*   Nothing.                                                               */
2235 /****************************************************************************/
2236 static void
2237 bce_disable_nvram_write(struct bce_softc *sc)
2238 {
2239         u32 val;
2240
2241         DBENTER(BCE_VERBOSE_NVRAM);
2242
2243         val = REG_RD(sc, BCE_MISC_CFG);
2244         REG_WR(sc, BCE_MISC_CFG, val & ~BCE_MISC_CFG_NVM_WR_EN);
2245
2246         DBEXIT(BCE_VERBOSE_NVRAM);
2247
2248 }
2249 #endif
2250
2251
2252 /****************************************************************************/
2253 /* Enable NVRAM access.                                                     */
2254 /*                                                                          */
2255 /* Before accessing NVRAM for read or write operations the caller must      */
2256 /* enabled NVRAM access.                                                    */
2257 /*                                                                          */
2258 /* Returns:                                                                 */
2259 /*   Nothing.                                                               */
2260 /****************************************************************************/
2261 static void
2262 bce_enable_nvram_access(struct bce_softc *sc)
2263 {
2264         u32 val;
2265
2266         DBENTER(BCE_VERBOSE_NVRAM);
2267
2268         val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE);
2269         /* Enable both bits, even on read. */
2270         REG_WR(sc, BCE_NVM_ACCESS_ENABLE, val |
2271             BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN);
2272
2273         DBEXIT(BCE_VERBOSE_NVRAM);
2274 }
2275
2276
2277 /****************************************************************************/
2278 /* Disable NVRAM access.                                                    */
2279 /*                                                                          */
2280 /* When the caller is finished accessing NVRAM access must be disabled.     */
2281 /*                                                                          */
2282 /* Returns:                                                                 */
2283 /*   Nothing.                                                               */
2284 /****************************************************************************/
2285 static void
2286 bce_disable_nvram_access(struct bce_softc *sc)
2287 {
2288         u32 val;
2289
2290         DBENTER(BCE_VERBOSE_NVRAM);
2291
2292         val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE);
2293
2294         /* Disable both bits, even after read. */
2295         REG_WR(sc, BCE_NVM_ACCESS_ENABLE, val &
2296             ~(BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN));
2297
2298         DBEXIT(BCE_VERBOSE_NVRAM);
2299 }
2300
2301
2302 #ifdef BCE_NVRAM_WRITE_SUPPORT
2303 /****************************************************************************/
2304 /* Erase NVRAM page before writing.                                         */
2305 /*                                                                          */
2306 /* Non-buffered flash parts require that a page be erased before it is      */
2307 /* written.                                                                 */
2308 /*                                                                          */
2309 /* Returns:                                                                 */
2310 /*   0 on success, positive value on failure.                               */
2311 /****************************************************************************/
2312 static int
2313 bce_nvram_erase_page(struct bce_softc *sc, u32 offset)
2314 {
2315         u32 cmd;
2316         int j, rc = 0;
2317
2318         DBENTER(BCE_VERBOSE_NVRAM);
2319
2320         /* Buffered flash doesn't require an erase. */
2321         if (sc->bce_flash_info->flags & BCE_NV_BUFFERED)
2322                 goto bce_nvram_erase_page_exit;
2323
2324         /* Build an erase command. */
2325         cmd = BCE_NVM_COMMAND_ERASE | BCE_NVM_COMMAND_WR |
2326             BCE_NVM_COMMAND_DOIT;
2327
2328         /*
2329          * Clear the DONE bit separately, set the NVRAM adress to erase,
2330          * and issue the erase command.
2331          */
2332         REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2333         REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
2334         REG_WR(sc, BCE_NVM_COMMAND, cmd);
2335
2336         /* Wait for completion. */
2337         for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2338                 u32 val;
2339
2340                 DELAY(5);
2341
2342                 val = REG_RD(sc, BCE_NVM_COMMAND);
2343                 if (val & BCE_NVM_COMMAND_DONE)
2344                         break;
2345         }
2346
2347         if (j >= NVRAM_TIMEOUT_COUNT) {
2348                 DBPRINT(sc, BCE_WARN, "Timeout erasing NVRAM.\n");
2349                 rc = EBUSY;
2350         }
2351
2352 bce_nvram_erase_page_exit:
2353         DBEXIT(BCE_VERBOSE_NVRAM);
2354         return (rc);
2355 }
2356 #endif /* BCE_NVRAM_WRITE_SUPPORT */
2357
2358
2359 /****************************************************************************/
2360 /* Read a dword (32 bits) from NVRAM.                                       */
2361 /*                                                                          */
2362 /* Read a 32 bit word from NVRAM.  The caller is assumed to have already    */
2363 /* obtained the NVRAM lock and enabled the controller for NVRAM access.     */
2364 /*                                                                          */
2365 /* Returns:                                                                 */
2366 /*   0 on success and the 32 bit value read, positive value on failure.     */
2367 /****************************************************************************/
2368 static int
2369 bce_nvram_read_dword(struct bce_softc *sc,
2370     u32 offset, u8 *ret_val, u32 cmd_flags)
2371 {
2372         u32 cmd;
2373         int i, rc = 0;
2374
2375         DBENTER(BCE_EXTREME_NVRAM);
2376
2377         /* Build the command word. */
2378         cmd = BCE_NVM_COMMAND_DOIT | cmd_flags;
2379
2380         /* Calculate the offset for buffered flash if translation is used. */
2381         if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) {
2382                 offset = ((offset / sc->bce_flash_info->page_size) <<
2383                     sc->bce_flash_info->page_bits) +
2384                     (offset % sc->bce_flash_info->page_size);
2385         }
2386
2387         /*
2388          * Clear the DONE bit separately, set the address to read,
2389          * and issue the read.
2390          */
2391         REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2392         REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
2393         REG_WR(sc, BCE_NVM_COMMAND, cmd);
2394
2395         /* Wait for completion. */
2396         for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
2397                 u32 val;
2398
2399                 DELAY(5);
2400
2401                 val = REG_RD(sc, BCE_NVM_COMMAND);
2402                 if (val & BCE_NVM_COMMAND_DONE) {
2403                         val = REG_RD(sc, BCE_NVM_READ);
2404
2405                         val = bce_be32toh(val);
2406                         memcpy(ret_val, &val, 4);
2407                         break;
2408                 }
2409         }
2410
2411         /* Check for errors. */
2412         if (i >= NVRAM_TIMEOUT_COUNT) {
2413                 BCE_PRINTF("%s(%d): Timeout error reading NVRAM at "
2414                     "offset 0x%08X!\n", __FILE__, __LINE__, offset);
2415                 rc = EBUSY;
2416         }
2417
2418         DBEXIT(BCE_EXTREME_NVRAM);
2419         return(rc);
2420 }
2421
2422
2423 #ifdef BCE_NVRAM_WRITE_SUPPORT
2424 /****************************************************************************/
2425 /* Write a dword (32 bits) to NVRAM.                                        */
2426 /*                                                                          */
2427 /* Write a 32 bit word to NVRAM.  The caller is assumed to have already     */
2428 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and    */
2429 /* enabled NVRAM write access.                                              */
2430 /*                                                                          */
2431 /* Returns:                                                                 */
2432 /*   0 on success, positive value on failure.                               */
2433 /****************************************************************************/
2434 static int
2435 bce_nvram_write_dword(struct bce_softc *sc, u32 offset, u8 *val,
2436         u32 cmd_flags)
2437 {
2438         u32 cmd, val32;
2439         int j, rc = 0;
2440
2441         DBENTER(BCE_VERBOSE_NVRAM);
2442
2443         /* Build the command word. */
2444         cmd = BCE_NVM_COMMAND_DOIT | BCE_NVM_COMMAND_WR | cmd_flags;
2445
2446         /* Calculate the offset for buffered flash if translation is used. */
2447         if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) {
2448                 offset = ((offset / sc->bce_flash_info->page_size) <<
2449                     sc->bce_flash_info->page_bits) +
2450                     (offset % sc->bce_flash_info->page_size);
2451         }
2452
2453         /*
2454          * Clear the DONE bit separately, convert NVRAM data to big-endian,
2455          * set the NVRAM address to write, and issue the write command
2456          */
2457         REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2458         memcpy(&val32, val, 4);
2459         val32 = htobe32(val32);
2460         REG_WR(sc, BCE_NVM_WRITE, val32);
2461         REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
2462         REG_WR(sc, BCE_NVM_COMMAND, cmd);
2463
2464         /* Wait for completion. */
2465         for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2466                 DELAY(5);
2467
2468                 if (REG_RD(sc, BCE_NVM_COMMAND) & BCE_NVM_COMMAND_DONE)
2469                         break;
2470         }
2471         if (j >= NVRAM_TIMEOUT_COUNT) {
2472                 BCE_PRINTF("%s(%d): Timeout error writing NVRAM at "
2473                     "offset 0x%08X\n", __FILE__, __LINE__, offset);
2474                 rc = EBUSY;
2475         }
2476
2477         DBEXIT(BCE_VERBOSE_NVRAM);
2478         return (rc);
2479 }
2480 #endif /* BCE_NVRAM_WRITE_SUPPORT */
2481
2482
2483 /****************************************************************************/
2484 /* Initialize NVRAM access.                                                 */
2485 /*                                                                          */
2486 /* Identify the NVRAM device in use and prepare the NVRAM interface to      */
2487 /* access that device.                                                      */
2488 /*                                                                          */
2489 /* Returns:                                                                 */
2490 /*   0 on success, positive value on failure.                               */
2491 /****************************************************************************/
2492 static int
2493 bce_init_nvram(struct bce_softc *sc)
2494 {
2495         u32 val;
2496         int j, entry_count, rc = 0;
2497         const struct flash_spec *flash;
2498
2499         DBENTER(BCE_VERBOSE_NVRAM);
2500
2501         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
2502                 sc->bce_flash_info = &flash_5709;
2503                 goto bce_init_nvram_get_flash_size;
2504         }
2505
2506         /* Determine the selected interface. */
2507         val = REG_RD(sc, BCE_NVM_CFG1);
2508
2509         entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
2510
2511         /*
2512          * Flash reconfiguration is required to support additional
2513          * NVRAM devices not directly supported in hardware.
2514          * Check if the flash interface was reconfigured
2515          * by the bootcode.
2516          */
2517
2518         if (val & 0x40000000) {
2519                 /* Flash interface reconfigured by bootcode. */
2520
2521                 DBPRINT(sc,BCE_INFO_LOAD,
2522                         "bce_init_nvram(): Flash WAS reconfigured.\n");
2523
2524                 for (j = 0, flash = &flash_table[0]; j < entry_count;
2525                      j++, flash++) {
2526                         if ((val & FLASH_BACKUP_STRAP_MASK) ==
2527                             (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
2528                                 sc->bce_flash_info = flash;
2529                                 break;
2530                         }
2531                 }
2532         } else {
2533                 /* Flash interface not yet reconfigured. */
2534                 u32 mask;
2535
2536                 DBPRINT(sc, BCE_INFO_LOAD, "%s(): Flash was NOT reconfigured.\n",
2537                         __FUNCTION__);
2538
2539                 if (val & (1 << 23))
2540                         mask = FLASH_BACKUP_STRAP_MASK;
2541                 else
2542                         mask = FLASH_STRAP_MASK;
2543
2544                 /* Look for the matching NVRAM device configuration data. */
2545                 for (j = 0, flash = &flash_table[0]; j < entry_count; j++, flash++) {
2546
2547                         /* Check if the device matches any of the known devices. */
2548                         if ((val & mask) == (flash->strapping & mask)) {
2549                                 /* Found a device match. */
2550                                 sc->bce_flash_info = flash;
2551
2552                                 /* Request access to the flash interface. */
2553                                 if ((rc = bce_acquire_nvram_lock(sc)) != 0)
2554                                         return rc;
2555
2556                                 /* Reconfigure the flash interface. */
2557                                 bce_enable_nvram_access(sc);
2558                                 REG_WR(sc, BCE_NVM_CFG1, flash->config1);
2559                                 REG_WR(sc, BCE_NVM_CFG2, flash->config2);
2560                                 REG_WR(sc, BCE_NVM_CFG3, flash->config3);
2561                                 REG_WR(sc, BCE_NVM_WRITE1, flash->write1);
2562                                 bce_disable_nvram_access(sc);
2563                                 bce_release_nvram_lock(sc);
2564
2565                                 break;
2566                         }
2567                 }
2568         }
2569
2570         /* Check if a matching device was found. */
2571         if (j == entry_count) {
2572                 sc->bce_flash_info = NULL;
2573                 BCE_PRINTF("%s(%d): Unknown Flash NVRAM found!\n",
2574                     __FILE__, __LINE__);
2575                 DBEXIT(BCE_VERBOSE_NVRAM);
2576                 return (ENODEV);
2577         }
2578
2579 bce_init_nvram_get_flash_size:
2580         /* Write the flash config data to the shared memory interface. */
2581         val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG2);
2582         val &= BCE_SHARED_HW_CFG2_NVM_SIZE_MASK;
2583         if (val)
2584                 sc->bce_flash_size = val;
2585         else
2586                 sc->bce_flash_size = sc->bce_flash_info->total_size;
2587
2588         DBPRINT(sc, BCE_INFO_LOAD, "%s(): Found %s, size = 0x%08X\n",
2589             __FUNCTION__, sc->bce_flash_info->name,
2590             sc->bce_flash_info->total_size);
2591
2592         DBEXIT(BCE_VERBOSE_NVRAM);
2593         return rc;
2594 }
2595
2596
2597 /****************************************************************************/
2598 /* Read an arbitrary range of data from NVRAM.                              */
2599 /*                                                                          */
2600 /* Prepares the NVRAM interface for access and reads the requested data     */
2601 /* into the supplied buffer.                                                */
2602 /*                                                                          */
2603 /* Returns:                                                                 */
2604 /*   0 on success and the data read, positive value on failure.             */
2605 /****************************************************************************/
2606 static int
2607 bce_nvram_read(struct bce_softc *sc, u32 offset, u8 *ret_buf,
2608         int buf_size)
2609 {
2610         int rc = 0;
2611         u32 cmd_flags, offset32, len32, extra;
2612
2613         DBENTER(BCE_VERBOSE_NVRAM);
2614
2615         if (buf_size == 0)
2616                 goto bce_nvram_read_exit;
2617
2618         /* Request access to the flash interface. */
2619         if ((rc = bce_acquire_nvram_lock(sc)) != 0)
2620                 goto bce_nvram_read_exit;
2621
2622         /* Enable access to flash interface */
2623         bce_enable_nvram_access(sc);
2624
2625         len32 = buf_size;
2626         offset32 = offset;
2627         extra = 0;
2628
2629         cmd_flags = 0;
2630
2631         if (offset32 & 3) {
2632                 u8 buf[4];
2633                 u32 pre_len;
2634
2635                 offset32 &= ~3;
2636                 pre_len = 4 - (offset & 3);
2637
2638                 if (pre_len >= len32) {
2639                         pre_len = len32;
2640                         cmd_flags = BCE_NVM_COMMAND_FIRST | BCE_NVM_COMMAND_LAST;
2641                 }
2642                 else {
2643                         cmd_flags = BCE_NVM_COMMAND_FIRST;
2644                 }
2645
2646                 rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
2647
2648                 if (rc)
2649                         return rc;
2650
2651                 memcpy(ret_buf, buf + (offset & 3), pre_len);
2652
2653                 offset32 += 4;
2654                 ret_buf += pre_len;
2655                 len32 -= pre_len;
2656         }
2657
2658         if (len32 & 3) {
2659                 extra = 4 - (len32 & 3);
2660                 len32 = (len32 + 4) & ~3;
2661         }
2662
2663         if (len32 == 4) {
2664                 u8 buf[4];
2665
2666                 if (cmd_flags)
2667                         cmd_flags = BCE_NVM_COMMAND_LAST;
2668                 else
2669                         cmd_flags = BCE_NVM_COMMAND_FIRST |
2670                                     BCE_NVM_COMMAND_LAST;
2671
2672                 rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
2673
2674                 memcpy(ret_buf, buf, 4 - extra);
2675         }
2676         else if (len32 > 0) {
2677                 u8 buf[4];
2678
2679                 /* Read the first word. */
2680                 if (cmd_flags)
2681                         cmd_flags = 0;
2682                 else
2683                         cmd_flags = BCE_NVM_COMMAND_FIRST;
2684
2685                 rc = bce_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
2686
2687                 /* Advance to the next dword. */
2688                 offset32 += 4;
2689                 ret_buf += 4;
2690                 len32 -= 4;
2691
2692                 while (len32 > 4 && rc == 0) {
2693                         rc = bce_nvram_read_dword(sc, offset32, ret_buf, 0);
2694
2695                         /* Advance to the next dword. */
2696                         offset32 += 4;
2697                         ret_buf += 4;
2698                         len32 -= 4;
2699                 }
2700
2701                 if (rc)
2702                         goto bce_nvram_read_locked_exit;
2703
2704                 cmd_flags = BCE_NVM_COMMAND_LAST;
2705                 rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
2706
2707                 memcpy(ret_buf, buf, 4 - extra);
2708         }
2709
2710 bce_nvram_read_locked_exit:
2711         /* Disable access to flash interface and release the lock. */
2712         bce_disable_nvram_access(sc);
2713         bce_release_nvram_lock(sc);
2714
2715 bce_nvram_read_exit:
2716         DBEXIT(BCE_VERBOSE_NVRAM);
2717         return rc;
2718 }
2719
2720
2721 #ifdef BCE_NVRAM_WRITE_SUPPORT
2722 /****************************************************************************/
2723 /* Write an arbitrary range of data from NVRAM.                             */
2724 /*                                                                          */
2725 /* Prepares the NVRAM interface for write access and writes the requested   */
2726 /* data from the supplied buffer.  The caller is responsible for            */
2727 /* calculating any appropriate CRCs.                                        */
2728 /*                                                                          */
2729 /* Returns:                                                                 */
2730 /*   0 on success, positive value on failure.                               */
2731 /****************************************************************************/
2732 static int
2733 bce_nvram_write(struct bce_softc *sc, u32 offset, u8 *data_buf,
2734         int buf_size)
2735 {
2736         u32 written, offset32, len32;
2737         u8 *buf, start[4], end[4];
2738         int rc = 0;
2739         int align_start, align_end;
2740
2741         DBENTER(BCE_VERBOSE_NVRAM);
2742
2743         buf = data_buf;
2744         offset32 = offset;
2745         len32 = buf_size;
2746         align_start = align_end = 0;
2747
2748         if ((align_start = (offset32 & 3))) {
2749                 offset32 &= ~3;
2750                 len32 += align_start;
2751                 if ((rc = bce_nvram_read(sc, offset32, start, 4)))
2752                         goto bce_nvram_write_exit;
2753         }
2754
2755         if (len32 & 3) {
2756                 if ((len32 > 4) || !align_start) {
2757                         align_end = 4 - (len32 & 3);
2758                         len32 += align_end;
2759                         if ((rc = bce_nvram_read(sc, offset32 + len32 - 4,
2760                                 end, 4))) {
2761                                 goto bce_nvram_write_exit;
2762                         }
2763                 }
2764         }
2765
2766         if (align_start || align_end) {
2767                 buf = malloc(len32, M_DEVBUF, M_NOWAIT);
2768                 if (buf == 0) {
2769                         rc = ENOMEM;
2770                         goto bce_nvram_write_exit;
2771                 }
2772
2773                 if (align_start) {
2774                         memcpy(buf, start, 4);
2775                 }
2776
2777                 if (align_end) {
2778                         memcpy(buf + len32 - 4, end, 4);
2779                 }
2780                 memcpy(buf + align_start, data_buf, buf_size);
2781         }
2782
2783         written = 0;
2784         while ((written < len32) && (rc == 0)) {
2785                 u32 page_start, page_end, data_start, data_end;
2786                 u32 addr, cmd_flags;
2787                 int i;
2788                 u8 flash_buffer[264];
2789
2790             /* Find the page_start addr */
2791                 page_start = offset32 + written;
2792                 page_start -= (page_start % sc->bce_flash_info->page_size);
2793                 /* Find the page_end addr */
2794                 page_end = page_start + sc->bce_flash_info->page_size;
2795                 /* Find the data_start addr */
2796                 data_start = (written == 0) ? offset32 : page_start;
2797                 /* Find the data_end addr */
2798                 data_end = (page_end > offset32 + len32) ?
2799                         (offset32 + len32) : page_end;
2800
2801                 /* Request access to the flash interface. */
2802                 if ((rc = bce_acquire_nvram_lock(sc)) != 0)
2803                         goto bce_nvram_write_exit;
2804
2805                 /* Enable access to flash interface */
2806                 bce_enable_nvram_access(sc);
2807
2808                 cmd_flags = BCE_NVM_COMMAND_FIRST;
2809                 if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2810                         int j;
2811
2812                         /* Read the whole page into the buffer
2813                          * (non-buffer flash only) */
2814                         for (j = 0; j < sc->bce_flash_info->page_size; j += 4) {
2815                                 if (j == (sc->bce_flash_info->page_size - 4)) {
2816                                         cmd_flags |= BCE_NVM_COMMAND_LAST;
2817                                 }
2818                                 rc = bce_nvram_read_dword(sc,
2819                                         page_start + j,
2820                                         &flash_buffer[j],
2821                                         cmd_flags);
2822
2823                                 if (rc)
2824                                         goto bce_nvram_write_locked_exit;
2825
2826                                 cmd_flags = 0;
2827                         }
2828                 }
2829
2830                 /* Enable writes to flash interface (unlock write-protect) */
2831                 if ((rc = bce_enable_nvram_write(sc)) != 0)
2832                         goto bce_nvram_write_locked_exit;
2833
2834                 /* Erase the page */
2835                 if ((rc = bce_nvram_erase_page(sc, page_start)) != 0)
2836                         goto bce_nvram_write_locked_exit;
2837
2838                 /* Re-enable the write again for the actual write */
2839                 bce_enable_nvram_write(sc);
2840
2841                 /* Loop to write back the buffer data from page_start to
2842                  * data_start */
2843                 i = 0;
2844                 if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2845                         for (addr = page_start; addr < data_start;
2846                                 addr += 4, i += 4) {
2847
2848                                 rc = bce_nvram_write_dword(sc, addr,
2849                                         &flash_buffer[i], cmd_flags);
2850
2851                                 if (rc != 0)
2852                                         goto bce_nvram_write_locked_exit;
2853
2854                                 cmd_flags = 0;
2855                         }
2856                 }
2857
2858                 /* Loop to write the new data from data_start to data_end */
2859                 for (addr = data_start; addr < data_end; addr += 4, i++) {
2860                         if ((addr == page_end - 4) ||
2861                                 ((sc->bce_flash_info->flags & BCE_NV_BUFFERED) &&
2862                                 (addr == data_end - 4))) {
2863
2864                                 cmd_flags |= BCE_NVM_COMMAND_LAST;
2865                         }
2866                         rc = bce_nvram_write_dword(sc, addr, buf,
2867                                 cmd_flags);
2868
2869                         if (rc != 0)
2870                                 goto bce_nvram_write_locked_exit;
2871
2872                         cmd_flags = 0;
2873                         buf += 4;
2874                 }
2875
2876                 /* Loop to write back the buffer data from data_end
2877                  * to page_end */
2878                 if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2879                         for (addr = data_end; addr < page_end;
2880                                 addr += 4, i += 4) {
2881
2882                                 if (addr == page_end-4) {
2883                                         cmd_flags = BCE_NVM_COMMAND_LAST;
2884                                 }
2885                                 rc = bce_nvram_write_dword(sc, addr,
2886                                         &flash_buffer[i], cmd_flags);
2887
2888                                 if (rc != 0)
2889                                         goto bce_nvram_write_locked_exit;
2890
2891                                 cmd_flags = 0;
2892                         }
2893                 }
2894
2895                 /* Disable writes to flash interface (lock write-protect) */
2896                 bce_disable_nvram_write(sc);
2897
2898                 /* Disable access to flash interface */
2899                 bce_disable_nvram_access(sc);
2900                 bce_release_nvram_lock(sc);
2901
2902                 /* Increment written */
2903                 written += data_end - data_start;
2904         }
2905
2906         goto bce_nvram_write_exit;
2907
2908 bce_nvram_write_locked_exit:
2909         bce_disable_nvram_write(sc);
2910         bce_disable_nvram_access(sc);
2911         bce_release_nvram_lock(sc);
2912
2913 bce_nvram_write_exit:
2914         if (align_start || align_end)
2915                 free(buf, M_DEVBUF);
2916
2917         DBEXIT(BCE_VERBOSE_NVRAM);
2918         return (rc);
2919 }
2920 #endif /* BCE_NVRAM_WRITE_SUPPORT */
2921
2922
2923 /****************************************************************************/
2924 /* Verifies that NVRAM is accessible and contains valid data.               */
2925 /*                                                                          */
2926 /* Reads the configuration data from NVRAM and verifies that the CRC is     */
2927 /* correct.                                                                 */
2928 /*                                                                          */
2929 /* Returns:                                                                 */
2930 /*   0 on success, positive value on failure.                               */
2931 /****************************************************************************/
2932 static int
2933 bce_nvram_test(struct bce_softc *sc)
2934 {
2935         u32 buf[BCE_NVRAM_SIZE / 4];
2936         u8 *data = (u8 *) buf;
2937         int rc = 0;
2938         u32 magic, csum;
2939
2940         DBENTER(BCE_VERBOSE_NVRAM | BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
2941
2942         /*
2943          * Check that the device NVRAM is valid by reading
2944          * the magic value at offset 0.
2945          */
2946         if ((rc = bce_nvram_read(sc, 0, data, 4)) != 0) {
2947                 BCE_PRINTF("%s(%d): Unable to read NVRAM!\n",
2948                     __FILE__, __LINE__);
2949                 goto bce_nvram_test_exit;
2950         }
2951
2952         /*
2953          * Verify that offset 0 of the NVRAM contains
2954          * a valid magic number.
2955          */
2956         magic = bce_be32toh(buf[0]);
2957         if (magic != BCE_NVRAM_MAGIC) {
2958                 rc = ENODEV;
2959                 BCE_PRINTF("%s(%d): Invalid NVRAM magic value! "
2960                     "Expected: 0x%08X, Found: 0x%08X\n",
2961                     __FILE__, __LINE__, BCE_NVRAM_MAGIC, magic);
2962                 goto bce_nvram_test_exit;
2963         }
2964
2965         /*
2966          * Verify that the device NVRAM includes valid
2967          * configuration data.
2968          */
2969         if ((rc = bce_nvram_read(sc, 0x100, data, BCE_NVRAM_SIZE)) != 0) {
2970                 BCE_PRINTF("%s(%d): Unable to read manufacturing "
2971                     "Information from  NVRAM!\n", __FILE__, __LINE__);
2972                 goto bce_nvram_test_exit;
2973         }
2974
2975         csum = ether_crc32_le(data, 0x100);
2976         if (csum != BCE_CRC32_RESIDUAL) {
2977                 rc = ENODEV;
2978                 BCE_PRINTF("%s(%d): Invalid manufacturing information "
2979                     "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n",
2980                     __FILE__, __LINE__, BCE_CRC32_RESIDUAL, csum);
2981                 goto bce_nvram_test_exit;
2982         }
2983
2984         csum = ether_crc32_le(data + 0x100, 0x100);
2985         if (csum != BCE_CRC32_RESIDUAL) {
2986                 rc = ENODEV;
2987                 BCE_PRINTF("%s(%d): Invalid feature configuration "
2988                     "information NVRAM CRC! Expected: 0x%08X, "
2989                     "Found: 08%08X\n", __FILE__, __LINE__,
2990                     BCE_CRC32_RESIDUAL, csum);
2991         }
2992
2993 bce_nvram_test_exit:
2994         DBEXIT(BCE_VERBOSE_NVRAM | BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
2995         return rc;
2996 }
2997
2998
2999 /****************************************************************************/
3000 /* Calculates the size of the buffers to allocate based on the MTU.         */
3001 /*                                                                          */
3002 /* Returns:                                                                 */
3003 /*   Nothing.                                                               */
3004 /****************************************************************************/
3005 static void
3006 bce_get_rx_buffer_sizes(struct bce_softc *sc, int mtu)
3007 {
3008         DBENTER(BCE_VERBOSE_LOAD);
3009
3010         /* Use a single allocation type when header splitting enabled. */
3011         if (bce_hdr_split == TRUE) {
3012                 sc->rx_bd_mbuf_alloc_size = MHLEN;
3013                 /* Make sure offset is 16 byte aligned for hardware. */
3014                 sc->rx_bd_mbuf_align_pad =
3015                         roundup2((MSIZE - MHLEN), 16) - (MSIZE - MHLEN);
3016                 sc->rx_bd_mbuf_data_len = sc->rx_bd_mbuf_alloc_size -
3017                         sc->rx_bd_mbuf_align_pad;
3018         } else {
3019                 if ((mtu + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
3020                     ETHER_CRC_LEN) > MCLBYTES) {
3021                         /* Setup for jumbo RX buffer allocations. */
3022                         sc->rx_bd_mbuf_alloc_size = MJUM9BYTES;
3023                         sc->rx_bd_mbuf_align_pad  =
3024                                 roundup2(MJUM9BYTES, 16) - MJUM9BYTES;
3025                         sc->rx_bd_mbuf_data_len =
3026                             sc->rx_bd_mbuf_alloc_size -
3027                             sc->rx_bd_mbuf_align_pad;
3028                 } else {
3029                         /* Setup for standard RX buffer allocations. */
3030                         sc->rx_bd_mbuf_alloc_size = MCLBYTES;
3031                         sc->rx_bd_mbuf_align_pad  =
3032                             roundup2(MCLBYTES, 16) - MCLBYTES;
3033                         sc->rx_bd_mbuf_data_len =
3034                             sc->rx_bd_mbuf_alloc_size -
3035                             sc->rx_bd_mbuf_align_pad;
3036                 }
3037         }
3038
3039 //      DBPRINT(sc, BCE_INFO_LOAD,
3040         DBPRINT(sc, BCE_WARN,
3041            "%s(): rx_bd_mbuf_alloc_size = %d, rx_bd_mbuf_data_len = %d, "
3042            "rx_bd_mbuf_align_pad = %d\n", __FUNCTION__,
3043            sc->rx_bd_mbuf_alloc_size, sc->rx_bd_mbuf_data_len,
3044            sc->rx_bd_mbuf_align_pad);
3045
3046         DBEXIT(BCE_VERBOSE_LOAD);
3047 }
3048
3049 /****************************************************************************/
3050 /* Identifies the current media type of the controller and sets the PHY     */
3051 /* address.                                                                 */
3052 /*                                                                          */
3053 /* Returns:                                                                 */
3054 /*   Nothing.                                                               */
3055 /****************************************************************************/
3056 static void
3057 bce_get_media(struct bce_softc *sc)
3058 {
3059         u32 val;
3060
3061         DBENTER(BCE_VERBOSE_PHY);
3062
3063         /* Assume PHY address for copper controllers. */
3064         sc->bce_phy_addr = 1;
3065
3066         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
3067                 u32 val = REG_RD(sc, BCE_MISC_DUAL_MEDIA_CTRL);
3068                 u32 bond_id = val & BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID;
3069                 u32 strap;
3070
3071                 /*
3072                  * The BCM5709S is software configurable
3073                  * for Copper or SerDes operation.
3074                  */
3075                 if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
3076                         DBPRINT(sc, BCE_INFO_LOAD, "5709 bonded "
3077                             "for copper.\n");
3078                         goto bce_get_media_exit;
3079                 } else if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
3080                         DBPRINT(sc, BCE_INFO_LOAD, "5709 bonded "
3081                             "for dual media.\n");
3082                         sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
3083                         goto bce_get_media_exit;
3084                 }
3085
3086                 if (val & BCE_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
3087                         strap = (val &
3088                             BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
3089                 else
3090                         strap = (val &
3091                             BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
3092
3093                 if (pci_get_function(sc->bce_dev) == 0) {
3094                         switch (strap) {
3095                         case 0x4:
3096                         case 0x5:
3097                         case 0x6:
3098                                 DBPRINT(sc, BCE_INFO_LOAD,
3099                                     "BCM5709 s/w configured for SerDes.\n");
3100                                 sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
3101                                 break;
3102                         default:
3103                                 DBPRINT(sc, BCE_INFO_LOAD,
3104                                     "BCM5709 s/w configured for Copper.\n");
3105                                 break;
3106                         }
3107                 } else {
3108                         switch (strap) {
3109                         case 0x1:
3110                         case 0x2:
3111                         case 0x4:
3112                                 DBPRINT(sc, BCE_INFO_LOAD,
3113                                     "BCM5709 s/w configured for SerDes.\n");
3114                                 sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
3115                                 break;
3116                         default:
3117                                 DBPRINT(sc, BCE_INFO_LOAD,
3118                                     "BCM5709 s/w configured for Copper.\n");
3119                                 break;
3120                         }
3121                 }
3122
3123         } else if (BCE_CHIP_BOND_ID(sc) & BCE_CHIP_BOND_ID_SERDES_BIT)
3124                 sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
3125
3126         if (sc->bce_phy_flags & BCE_PHY_SERDES_FLAG) {
3127
3128                 sc->bce_flags |= BCE_NO_WOL_FLAG;
3129
3130                 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
3131                         sc->bce_phy_flags |= BCE_PHY_IEEE_CLAUSE_45_FLAG;
3132
3133                 if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) {
3134                         /* 5708S/09S/16S use a separate PHY for SerDes. */
3135                         sc->bce_phy_addr = 2;
3136
3137                         val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG);
3138                         if (val & BCE_SHARED_HW_CFG_PHY_2_5G) {
3139                                 sc->bce_phy_flags |=
3140                                     BCE_PHY_2_5G_CAPABLE_FLAG;
3141                                 DBPRINT(sc, BCE_INFO_LOAD, "Found 2.5Gb "
3142                                     "capable adapter\n");
3143                         }
3144                 }
3145         } else if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) ||
3146             (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708))
3147                 sc->bce_phy_flags |= BCE_PHY_CRC_FIX_FLAG;
3148
3149 bce_get_media_exit:
3150         DBPRINT(sc, (BCE_INFO_LOAD | BCE_INFO_PHY),
3151                 "Using PHY address %d.\n", sc->bce_phy_addr);
3152
3153         DBEXIT(BCE_VERBOSE_PHY);
3154 }
3155
3156
3157 /****************************************************************************/
3158 /* Performs PHY initialization required before MII drivers access the       */
3159 /* device.                                                                  */
3160 /*                                                                          */
3161 /* Returns:                                                                 */
3162 /*   Nothing.                                                               */
3163 /****************************************************************************/
3164 static void
3165 bce_init_media(struct bce_softc *sc)
3166 {
3167         if ((sc->bce_phy_flags & (BCE_PHY_IEEE_CLAUSE_45_FLAG |
3168             BCE_PHY_REMOTE_CAP_FLAG)) == BCE_PHY_IEEE_CLAUSE_45_FLAG) {
3169                 /*
3170                  * Configure 5709S/5716S PHYs to use traditional IEEE
3171                  * Clause 22 method. Otherwise we have no way to attach
3172                  * the PHY in mii(4) layer. PHY specific configuration
3173                  * is done in mii layer.
3174                  */
3175
3176                 /* Select auto-negotiation MMD of the PHY. */
3177                 bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr,
3178                     BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT);
3179                 bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr,
3180                     BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD);
3181
3182                 /* Set IEEE0 block of AN MMD (assumed in brgphy(4) code). */
3183                 bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr,
3184                     BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0);
3185         }
3186 }
3187
3188
3189 /****************************************************************************/
3190 /* Free any DMA memory owned by the driver.                                 */
3191 /*                                                                          */
3192 /* Scans through each data structre that requires DMA memory and frees      */
3193 /* the memory if allocated.                                                 */
3194 /*                                                                          */
3195 /* Returns:                                                                 */
3196 /*   Nothing.                                                               */
3197 /****************************************************************************/
3198 static void
3199 bce_dma_free(struct bce_softc *sc)
3200 {
3201         int i;
3202
3203         DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_UNLOAD | BCE_VERBOSE_CTX);
3204
3205         /* Free, unmap, and destroy the status block. */
3206         if (sc->status_block != NULL) {
3207                 bus_dmamem_free(
3208                    sc->status_tag,
3209                     sc->status_block,
3210                     sc->status_map);
3211                 sc->status_block = NULL;
3212         }
3213
3214         if (sc->status_map != NULL) {
3215                 bus_dmamap_unload(
3216                     sc->status_tag,
3217                     sc->status_map);
3218                 bus_dmamap_destroy(sc->status_tag,
3219                     sc->status_map);
3220                 sc->status_map = NULL;
3221         }
3222
3223         if (sc->status_tag != NULL) {
3224                 bus_dma_tag_destroy(sc->status_tag);
3225                 sc->status_tag = NULL;
3226         }
3227
3228
3229         /* Free, unmap, and destroy the statistics block. */
3230         if (sc->stats_block != NULL) {
3231                 bus_dmamem_free(
3232                     sc->stats_tag,
3233                     sc->stats_block,
3234                     sc->stats_map);
3235                 sc->stats_block = NULL;
3236         }
3237
3238         if (sc->stats_map != NULL) {
3239                 bus_dmamap_unload(
3240                     sc->stats_tag,
3241                     sc->stats_map);
3242                 bus_dmamap_destroy(sc->stats_tag,
3243                     sc->stats_map);
3244                 sc->stats_map = NULL;
3245         }
3246
3247         if (sc->stats_tag != NULL) {
3248                 bus_dma_tag_destroy(sc->stats_tag);
3249                 sc->stats_tag = NULL;
3250         }
3251
3252
3253         /* Free, unmap and destroy all context memory pages. */
3254         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
3255                 for (i = 0; i < sc->ctx_pages; i++ ) {
3256                         if (sc->ctx_block[i] != NULL) {
3257                                 bus_dmamem_free(
3258                                     sc->ctx_tag,
3259                                     sc->ctx_block[i],
3260                                     sc->ctx_map[i]);
3261                                 sc->ctx_block[i] = NULL;
3262                         }
3263
3264                         if (sc->ctx_map[i] != NULL) {
3265                                 bus_dmamap_unload(
3266                                     sc->ctx_tag,
3267                                     sc->ctx_map[i]);
3268                                 bus_dmamap_destroy(
3269                                     sc->ctx_tag,
3270                                     sc->ctx_map[i]);
3271                                 sc->ctx_map[i] = NULL;
3272                         }
3273                 }
3274
3275                 /* Destroy the context memory tag. */
3276                 if (sc->ctx_tag != NULL) {
3277                         bus_dma_tag_destroy(sc->ctx_tag);
3278                         sc->ctx_tag = NULL;
3279                 }
3280         }
3281
3282
3283         /* Free, unmap and destroy all TX buffer descriptor chain pages. */
3284         for (i = 0; i < sc->tx_pages; i++ ) {
3285                 if (sc->tx_bd_chain[i] != NULL) {
3286                         bus_dmamem_free(
3287                             sc->tx_bd_chain_tag,
3288                             sc->tx_bd_chain[i],
3289                             sc->tx_bd_chain_map[i]);
3290                         sc->tx_bd_chain[i] = NULL;
3291                 }
3292
3293                 if (sc->tx_bd_chain_map[i] != NULL) {
3294                         bus_dmamap_unload(
3295                             sc->tx_bd_chain_tag,
3296                             sc->tx_bd_chain_map[i]);
3297                         bus_dmamap_destroy(
3298                             sc->tx_bd_chain_tag,
3299                             sc->tx_bd_chain_map[i]);
3300                         sc->tx_bd_chain_map[i] = NULL;
3301                 }
3302         }
3303
3304         /* Destroy the TX buffer descriptor tag. */
3305         if (sc->tx_bd_chain_tag != NULL) {
3306                 bus_dma_tag_destroy(sc->tx_bd_chain_tag);
3307                 sc->tx_bd_chain_tag = NULL;
3308         }
3309
3310
3311         /* Free, unmap and destroy all RX buffer descriptor chain pages. */
3312         for (i = 0; i < sc->rx_pages; i++ ) {
3313                 if (sc->rx_bd_chain[i] != NULL) {
3314                         bus_dmamem_free(
3315                             sc->rx_bd_chain_tag,
3316                             sc->rx_bd_chain[i],
3317                             sc->rx_bd_chain_map[i]);
3318                         sc->rx_bd_chain[i] = NULL;
3319                 }
3320
3321                 if (sc->rx_bd_chain_map[i] != NULL) {
3322                         bus_dmamap_unload(
3323                             sc->rx_bd_chain_tag,
3324                             sc->rx_bd_chain_map[i]);
3325                         bus_dmamap_destroy(
3326                             sc->rx_bd_chain_tag,
3327                             sc->rx_bd_chain_map[i]);
3328                         sc->rx_bd_chain_map[i] = NULL;
3329                 }
3330         }
3331
3332         /* Destroy the RX buffer descriptor tag. */
3333         if (sc->rx_bd_chain_tag != NULL) {
3334                 bus_dma_tag_destroy(sc->rx_bd_chain_tag);
3335                 sc->rx_bd_chain_tag = NULL;
3336         }
3337
3338
3339         /* Free, unmap and destroy all page buffer descriptor chain pages. */
3340         if (bce_hdr_split == TRUE) {
3341                 for (i = 0; i < sc->pg_pages; i++ ) {
3342                         if (sc->pg_bd_chain[i] != NULL) {
3343                                 bus_dmamem_free(
3344                                     sc->pg_bd_chain_tag,
3345                                     sc->pg_bd_chain[i],
3346                                     sc->pg_bd_chain_map[i]);
3347                                 sc->pg_bd_chain[i] = NULL;
3348                         }
3349
3350                         if (sc->pg_bd_chain_map[i] != NULL) {
3351                                 bus_dmamap_unload(
3352                                     sc->pg_bd_chain_tag,
3353                                     sc->pg_bd_chain_map[i]);
3354                                 bus_dmamap_destroy(
3355                                     sc->pg_bd_chain_tag,
3356                                     sc->pg_bd_chain_map[i]);
3357                                 sc->pg_bd_chain_map[i] = NULL;
3358                         }
3359                 }
3360
3361                 /* Destroy the page buffer descriptor tag. */
3362                 if (sc->pg_bd_chain_tag != NULL) {
3363                         bus_dma_tag_destroy(sc->pg_bd_chain_tag);
3364                         sc->pg_bd_chain_tag = NULL;
3365                 }
3366         }
3367
3368
3369         /* Unload and destroy the TX mbuf maps. */
3370         for (i = 0; i < MAX_TX_BD_AVAIL; i++) {
3371                 if (sc->tx_mbuf_map[i] != NULL) {
3372                         bus_dmamap_unload(sc->tx_mbuf_tag,
3373                             sc->tx_mbuf_map[i]);
3374                         bus_dmamap_destroy(sc->tx_mbuf_tag,
3375                             sc->tx_mbuf_map[i]);
3376                         sc->tx_mbuf_map[i] = NULL;
3377                 }
3378         }
3379
3380         /* Destroy the TX mbuf tag. */
3381         if (sc->tx_mbuf_tag != NULL) {
3382                 bus_dma_tag_destroy(sc->tx_mbuf_tag);
3383                 sc->tx_mbuf_tag = NULL;
3384         }
3385
3386         /* Unload and destroy the RX mbuf maps. */
3387         for (i = 0; i < MAX_RX_BD_AVAIL; i++) {
3388                 if (sc->rx_mbuf_map[i] != NULL) {
3389                         bus_dmamap_unload(sc->rx_mbuf_tag,
3390                             sc->rx_mbuf_map[i]);
3391                         bus_dmamap_destroy(sc->rx_mbuf_tag,
3392                             sc->rx_mbuf_map[i]);
3393                         sc->rx_mbuf_map[i] = NULL;
3394                 }
3395         }
3396
3397         /* Destroy the RX mbuf tag. */
3398         if (sc->rx_mbuf_tag != NULL) {
3399                 bus_dma_tag_destroy(sc->rx_mbuf_tag);
3400                 sc->rx_mbuf_tag = NULL;
3401         }
3402
3403         /* Unload and destroy the page mbuf maps. */
3404         if (bce_hdr_split == TRUE) {
3405                 for (i = 0; i < MAX_PG_BD_AVAIL; i++) {
3406                         if (sc->pg_mbuf_map[i] != NULL) {
3407                                 bus_dmamap_unload(sc->pg_mbuf_tag,
3408                                     sc->pg_mbuf_map[i]);
3409                                 bus_dmamap_destroy(sc->pg_mbuf_tag,
3410                                     sc->pg_mbuf_map[i]);
3411                                 sc->pg_mbuf_map[i] = NULL;
3412                         }
3413                 }
3414
3415                 /* Destroy the page mbuf tag. */
3416                 if (sc->pg_mbuf_tag != NULL) {
3417                         bus_dma_tag_destroy(sc->pg_mbuf_tag);
3418                         sc->pg_mbuf_tag = NULL;
3419                 }
3420         }
3421
3422         /* Destroy the parent tag */
3423         if (sc->parent_tag != NULL) {
3424                 bus_dma_tag_destroy(sc->parent_tag);
3425                 sc->parent_tag = NULL;
3426         }
3427
3428         DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_UNLOAD | BCE_VERBOSE_CTX);
3429 }
3430
3431
3432 /****************************************************************************/
3433 /* Get DMA memory from the OS.                                              */
3434 /*                                                                          */
3435 /* Validates that the OS has provided DMA buffers in response to a          */
3436 /* bus_dmamap_load() call and saves the physical address of those buffers.  */
3437 /* When the callback is used the OS will return 0 for the mapping function  */
3438 /* (bus_dmamap_load()) so we use the value of map_arg->maxsegs to pass any  */
3439 /* failures back to the caller.                                             */
3440 /*                                                                          */
3441 /* Returns:                                                                 */
3442 /*   Nothing.                                                               */
3443 /****************************************************************************/
3444 static void
3445 bce_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
3446 {
3447         bus_addr_t *busaddr = arg;
3448
3449         KASSERT(nseg == 1, ("%s(): Too many segments returned (%d)!",
3450             __FUNCTION__, nseg));
3451         /* Simulate a mapping failure. */
3452         DBRUNIF(DB_RANDOMTRUE(dma_map_addr_failed_sim_control),
3453             error = ENOMEM);
3454
3455         /* ToDo: How to increment debug sim_count variable here? */
3456
3457         /* Check for an error and signal the caller that an error occurred. */
3458         if (error) {
3459                 *busaddr = 0;
3460         } else {
3461                 *busaddr = segs->ds_addr;
3462         }
3463 }
3464
3465
3466 /****************************************************************************/
3467 /* Allocate any DMA memory needed by the driver.                            */
3468 /*                                                                          */
3469 /* Allocates DMA memory needed for the various global structures needed by  */
3470 /* hardware.                                                                */
3471 /*                                                                          */
3472 /* Memory alignment requirements:                                           */
3473 /* +-----------------+----------+----------+----------+----------+          */
3474 /* |                 |   5706   |   5708   |   5709   |   5716   |          */
3475 /* +-----------------+----------+----------+----------+----------+          */
3476 /* |Status Block     | 8 bytes  | 8 bytes  | 16 bytes | 16 bytes |          */
3477 /* |Statistics Block | 8 bytes  | 8 bytes  | 16 bytes | 16 bytes |          */
3478 /* |RX Buffers       | 16 bytes | 16 bytes | 16 bytes | 16 bytes |          */
3479 /* |PG Buffers       |   none   |   none   |   none   |   none   |          */
3480 /* |TX Buffers       |   none   |   none   |   none   |   none   |          */
3481 /* |Chain Pages(1)   |   4KiB   |   4KiB   |   4KiB   |   4KiB   |          */
3482 /* |Context Memory   |          |          |          |          |          */
3483 /* +-----------------+----------+----------+----------+----------+          */
3484 /*                                                                          */
3485 /* (1) Must align with CPU page size (BCM_PAGE_SZIE).                       */
3486 /*                                                                          */
3487 /* Returns:                                                                 */
3488 /*   0 for success, positive value for failure.                             */
3489 /****************************************************************************/
3490 static int
3491 bce_dma_alloc(device_t dev)
3492 {
3493         struct bce_softc *sc;
3494         int i, error, rc = 0;
3495         bus_size_t max_size, max_seg_size;
3496         int max_segments;
3497
3498         sc = device_get_softc(dev);
3499
3500         DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
3501
3502         /*
3503          * Allocate the parent bus DMA tag appropriate for PCI.
3504          */
3505         if (bus_dma_tag_create(bus_get_dma_tag(dev), 1, BCE_DMA_BOUNDARY,
3506             sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
3507             BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL,
3508             &sc->parent_tag)) {
3509                 BCE_PRINTF("%s(%d): Could not allocate parent DMA tag!\n",
3510                     __FILE__, __LINE__);
3511                 rc = ENOMEM;
3512                 goto bce_dma_alloc_exit;
3513         }
3514
3515         /*
3516          * Create a DMA tag for the status block, allocate and clear the
3517          * memory, map the memory into DMA space, and fetch the physical
3518          * address of the block.
3519          */
3520         if (bus_dma_tag_create(sc->parent_tag, BCE_DMA_ALIGN,
3521             BCE_DMA_BOUNDARY, sc->max_bus_addr, BUS_SPACE_MAXADDR,
3522             NULL, NULL, BCE_STATUS_BLK_SZ, 1, BCE_STATUS_BLK_SZ,
3523             0, NULL, NULL, &sc->status_tag)) {
3524                 BCE_PRINTF("%s(%d): Could not allocate status block "
3525                     "DMA tag!\n", __FILE__, __LINE__);
3526                 rc = ENOMEM;
3527                 goto bce_dma_alloc_exit;
3528         }
3529
3530         if(bus_dmamem_alloc(sc->status_tag, (void **)&sc->status_block,
3531             BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3532             &sc->status_map)) {
3533                 BCE_PRINTF("%s(%d): Could not allocate status block "
3534                     "DMA memory!\n", __FILE__, __LINE__);
3535                 rc = ENOMEM;
3536                 goto bce_dma_alloc_exit;
3537         }
3538
3539         error = bus_dmamap_load(sc->status_tag, sc->status_map,
3540             sc->status_block, BCE_STATUS_BLK_SZ, bce_dma_map_addr,
3541             &sc->status_block_paddr, BUS_DMA_NOWAIT);
3542
3543         if (error || sc->status_block_paddr == 0) {
3544                 BCE_PRINTF("%s(%d): Could not map status block "
3545                     "DMA memory!\n", __FILE__, __LINE__);
3546                 rc = ENOMEM;
3547                 goto bce_dma_alloc_exit;
3548         }
3549
3550         DBPRINT(sc, BCE_INFO_LOAD, "%s(): status_block_paddr = 0x%jX\n",
3551             __FUNCTION__, (uintmax_t) sc->status_block_paddr);
3552
3553         /*
3554          * Create a DMA tag for the statistics block, allocate and clear the
3555          * memory, map the memory into DMA space, and fetch the physical
3556          * address of the block.
3557          */
3558         if (bus_dma_tag_create(sc->parent_tag, BCE_DMA_ALIGN,
3559             BCE_DMA_BOUNDARY, sc->max_bus_addr, BUS_SPACE_MAXADDR,
3560             NULL, NULL, BCE_STATS_BLK_SZ, 1, BCE_STATS_BLK_SZ,
3561             0, NULL, NULL, &sc->stats_tag)) {
3562                 BCE_PRINTF("%s(%d): Could not allocate statistics block "
3563                     "DMA tag!\n", __FILE__, __LINE__);
3564                 rc = ENOMEM;
3565                 goto bce_dma_alloc_exit;
3566         }
3567
3568         if (bus_dmamem_alloc(sc->stats_tag, (void **)&sc->stats_block,
3569             BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &sc->stats_map)) {
3570                 BCE_PRINTF("%s(%d): Could not allocate statistics block "
3571                     "DMA memory!\n", __FILE__, __LINE__);
3572                 rc = ENOMEM;
3573                 goto bce_dma_alloc_exit;
3574         }
3575
3576         error = bus_dmamap_load(sc->stats_tag, sc->stats_map,
3577             sc->stats_block, BCE_STATS_BLK_SZ, bce_dma_map_addr,
3578             &sc->stats_block_paddr, BUS_DMA_NOWAIT);
3579
3580         if (error || sc->stats_block_paddr == 0) {
3581                 BCE_PRINTF("%s(%d): Could not map statistics block "
3582                     "DMA memory!\n", __FILE__, __LINE__);
3583                 rc = ENOMEM;
3584                 goto bce_dma_alloc_exit;
3585         }
3586
3587         DBPRINT(sc, BCE_INFO_LOAD, "%s(): stats_block_paddr = 0x%jX\n",
3588             __FUNCTION__, (uintmax_t) sc->stats_block_paddr);
3589
3590         /* BCM5709 uses host memory as cache for context memory. */
3591         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
3592                 sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
3593                 if (sc->ctx_pages == 0)
3594                         sc->ctx_pages = 1;
3595
3596                 DBRUNIF((sc->ctx_pages > 512),
3597                     BCE_PRINTF("%s(%d): Too many CTX pages! %d > 512\n",
3598                     __FILE__, __LINE__, sc->ctx_pages));
3599
3600                 /*
3601                  * Create a DMA tag for the context pages,
3602                  * allocate and clear the memory, map the
3603                  * memory into DMA space, and fetch the
3604                  * physical address of the block.
3605                  */
3606                 if(bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE,
3607                     BCE_DMA_BOUNDARY, sc->max_bus_addr, BUS_SPACE_MAXADDR,
3608                     NULL, NULL, BCM_PAGE_SIZE, 1, BCM_PAGE_SIZE,
3609                     0, NULL, NULL, &sc->ctx_tag)) {
3610                         BCE_PRINTF("%s(%d): Could not allocate CTX "
3611                             "DMA tag!\n", __FILE__, __LINE__);
3612                         rc = ENOMEM;
3613                         goto bce_dma_alloc_exit;
3614                 }
3615
3616                 for (i = 0; i < sc->ctx_pages; i++) {
3617
3618                         if(bus_dmamem_alloc(sc->ctx_tag,
3619                             (void **)&sc->ctx_block[i],
3620                             BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3621                             &sc->ctx_map[i])) {
3622                                 BCE_PRINTF("%s(%d): Could not allocate CTX "
3623                                     "DMA memory!\n", __FILE__, __LINE__);
3624                                 rc = ENOMEM;
3625                                 goto bce_dma_alloc_exit;
3626                         }
3627
3628                         error = bus_dmamap_load(sc->ctx_tag, sc->ctx_map[i],
3629                             sc->ctx_block[i], BCM_PAGE_SIZE, bce_dma_map_addr,
3630                             &sc->ctx_paddr[i], BUS_DMA_NOWAIT);
3631
3632                         if (error || sc->ctx_paddr[i] == 0) {
3633                                 BCE_PRINTF("%s(%d): Could not map CTX "
3634                                     "DMA memory!\n", __FILE__, __LINE__);
3635                                 rc = ENOMEM;
3636                                 goto bce_dma_alloc_exit;
3637                         }
3638
3639                         DBPRINT(sc, BCE_INFO_LOAD, "%s(): ctx_paddr[%d] "
3640                             "= 0x%jX\n", __FUNCTION__, i,
3641                             (uintmax_t) sc->ctx_paddr[i]);
3642                 }
3643         }
3644
3645         /*
3646          * Create a DMA tag for the TX buffer descriptor chain,
3647          * allocate and clear the  memory, and fetch the
3648          * physical address of the block.
3649          */
3650         if(bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE, BCE_DMA_BOUNDARY,
3651             sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
3652             BCE_TX_CHAIN_PAGE_SZ, 1, BCE_TX_CHAIN_PAGE_SZ, 0,
3653             NULL, NULL, &sc->tx_bd_chain_tag)) {
3654                 BCE_PRINTF("%s(%d): Could not allocate TX descriptor "
3655                     "chain DMA tag!\n", __FILE__, __LINE__);
3656                 rc = ENOMEM;
3657                 goto bce_dma_alloc_exit;
3658         }
3659
3660         for (i = 0; i < sc->tx_pages; i++) {
3661
3662                 if(bus_dmamem_alloc(sc->tx_bd_chain_tag,
3663                     (void **)&sc->tx_bd_chain[i],
3664                     BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3665                     &sc->tx_bd_chain_map[i])) {
3666                         BCE_PRINTF("%s(%d): Could not allocate TX descriptor "
3667                             "chain DMA memory!\n", __FILE__, __LINE__);
3668                         rc = ENOMEM;
3669                         goto bce_dma_alloc_exit;
3670                 }
3671
3672                 error = bus_dmamap_load(sc->tx_bd_chain_tag,
3673                     sc->tx_bd_chain_map[i], sc->tx_bd_chain[i],
3674                     BCE_TX_CHAIN_PAGE_SZ, bce_dma_map_addr,
3675                     &sc->tx_bd_chain_paddr[i], BUS_DMA_NOWAIT);
3676
3677                 if (error || sc->tx_bd_chain_paddr[i] == 0) {
3678                         BCE_PRINTF("%s(%d): Could not map TX descriptor "
3679                             "chain DMA memory!\n", __FILE__, __LINE__);
3680                         rc = ENOMEM;
3681                         goto bce_dma_alloc_exit;
3682                 }
3683
3684                 DBPRINT(sc, BCE_INFO_LOAD, "%s(): tx_bd_chain_paddr[%d] = "
3685                     "0x%jX\n", __FUNCTION__, i,
3686                     (uintmax_t) sc->tx_bd_chain_paddr[i]);
3687         }
3688
3689         /* Check the required size before mapping to conserve resources. */
3690         if (bce_tso_enable) {
3691                 max_size     = BCE_TSO_MAX_SIZE;
3692                 max_segments = BCE_MAX_SEGMENTS;
3693                 max_seg_size = BCE_TSO_MAX_SEG_SIZE;
3694         } else {
3695                 max_size     = MCLBYTES * BCE_MAX_SEGMENTS;
3696                 max_segments = BCE_MAX_SEGMENTS;
3697                 max_seg_size = MCLBYTES;
3698         }
3699
3700         /* Create a DMA tag for TX mbufs. */
3701         if (bus_dma_tag_create(sc->parent_tag, 1, BCE_DMA_BOUNDARY,
3702             sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL, max_size,
3703             max_segments, max_seg_size, 0, NULL, NULL, &sc->tx_mbuf_tag)) {
3704                 BCE_PRINTF("%s(%d): Could not allocate TX mbuf DMA tag!\n",
3705                     __FILE__, __LINE__);
3706                 rc = ENOMEM;
3707                 goto bce_dma_alloc_exit;
3708         }
3709
3710         /* Create DMA maps for the TX mbufs clusters. */
3711         for (i = 0; i < TOTAL_TX_BD_ALLOC; i++) {
3712                 if (bus_dmamap_create(sc->tx_mbuf_tag, BUS_DMA_NOWAIT,
3713                         &sc->tx_mbuf_map[i])) {
3714                         BCE_PRINTF("%s(%d): Unable to create TX mbuf DMA "
3715                             "map!\n", __FILE__, __LINE__);
3716                         rc = ENOMEM;
3717                         goto bce_dma_alloc_exit;
3718                 }
3719         }
3720
3721         /*
3722          * Create a DMA tag for the RX buffer descriptor chain,
3723          * allocate and clear the memory, and fetch the physical
3724          * address of the blocks.
3725          */
3726         if (bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE,
3727                         BCE_DMA_BOUNDARY, BUS_SPACE_MAXADDR,
3728                         sc->max_bus_addr, NULL, NULL,
3729                         BCE_RX_CHAIN_PAGE_SZ, 1, BCE_RX_CHAIN_PAGE_SZ,
3730                         0, NULL, NULL, &sc->rx_bd_chain_tag)) {
3731                 BCE_PRINTF("%s(%d): Could not allocate RX descriptor chain "
3732                     "DMA tag!\n", __FILE__, __LINE__);
3733                 rc = ENOMEM;
3734                 goto bce_dma_alloc_exit;
3735         }
3736
3737         for (i = 0; i < sc->rx_pages; i++) {
3738
3739                 if (bus_dmamem_alloc(sc->rx_bd_chain_tag,
3740                     (void **)&sc->rx_bd_chain[i],
3741                     BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3742                     &sc->rx_bd_chain_map[i])) {
3743                         BCE_PRINTF("%s(%d): Could not allocate RX descriptor "
3744                             "chain DMA memory!\n", __FILE__, __LINE__);
3745                         rc = ENOMEM;
3746                         goto bce_dma_alloc_exit;
3747                 }
3748
3749                 error = bus_dmamap_load(sc->rx_bd_chain_tag,
3750                     sc->rx_bd_chain_map[i], sc->rx_bd_chain[i],
3751                     BCE_RX_CHAIN_PAGE_SZ, bce_dma_map_addr,
3752                     &sc->rx_bd_chain_paddr[i], BUS_DMA_NOWAIT);
3753
3754                 if (error || sc->rx_bd_chain_paddr[i] == 0) {
3755                         BCE_PRINTF("%s(%d): Could not map RX descriptor "
3756                             "chain DMA memory!\n", __FILE__, __LINE__);
3757                         rc = ENOMEM;
3758                         goto bce_dma_alloc_exit;
3759                 }
3760
3761                 DBPRINT(sc, BCE_INFO_LOAD, "%s(): rx_bd_chain_paddr[%d] = "
3762                     "0x%jX\n", __FUNCTION__, i,
3763                     (uintmax_t) sc->rx_bd_chain_paddr[i]);
3764         }
3765
3766         /*
3767          * Create a DMA tag for RX mbufs.
3768          */
3769         if (bce_hdr_split == TRUE)
3770                 max_size = ((sc->rx_bd_mbuf_alloc_size < MCLBYTES) ?
3771                     MCLBYTES : sc->rx_bd_mbuf_alloc_size);
3772         else
3773                 max_size = MJUM9BYTES;
3774
3775         DBPRINT(sc, BCE_INFO_LOAD, "%s(): Creating rx_mbuf_tag "
3776             "(max size = 0x%jX)\n", __FUNCTION__, (uintmax_t)max_size);
3777
3778         if (bus_dma_tag_create(sc->parent_tag, BCE_RX_BUF_ALIGN,
3779             BCE_DMA_BOUNDARY, sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
3780             max_size, 1, max_size, 0, NULL, NULL, &sc->rx_mbuf_tag)) {
3781                 BCE_PRINTF("%s(%d): Could not allocate RX mbuf DMA tag!\n",
3782                     __FILE__, __LINE__);
3783                 rc = ENOMEM;
3784                 goto bce_dma_alloc_exit;
3785         }
3786
3787         /* Create DMA maps for the RX mbuf clusters. */
3788         for (i = 0; i < TOTAL_RX_BD_ALLOC; i++) {
3789                 if (bus_dmamap_create(sc->rx_mbuf_tag, BUS_DMA_NOWAIT,
3790                     &sc->rx_mbuf_map[i])) {
3791                         BCE_PRINTF("%s(%d): Unable to create RX mbuf "
3792                             "DMA map!\n", __FILE__, __LINE__);
3793                         rc = ENOMEM;
3794                         goto bce_dma_alloc_exit;
3795                 }
3796         }
3797
3798         if (bce_hdr_split == TRUE) {
3799                 /*
3800                  * Create a DMA tag for the page buffer descriptor chain,
3801                  * allocate and clear the memory, and fetch the physical
3802                  * address of the blocks.
3803                  */
3804                 if (bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE,
3805                             BCE_DMA_BOUNDARY, BUS_SPACE_MAXADDR, sc->max_bus_addr,
3806                             NULL, NULL, BCE_PG_CHAIN_PAGE_SZ, 1, BCE_PG_CHAIN_PAGE_SZ,
3807                             0, NULL, NULL, &sc->pg_bd_chain_tag)) {
3808                         BCE_PRINTF("%s(%d): Could not allocate page descriptor "
3809                             "chain DMA tag!\n", __FILE__, __LINE__);
3810                         rc = ENOMEM;
3811                         goto bce_dma_alloc_exit;
3812                 }
3813
3814                 for (i = 0; i < sc->pg_pages; i++) {
3815                         if (bus_dmamem_alloc(sc->pg_bd_chain_tag,
3816                             (void **)&sc->pg_bd_chain[i],
3817                             BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3818                             &sc->pg_bd_chain_map[i])) {
3819                                 BCE_PRINTF("%s(%d): Could not allocate page "
3820                                     "descriptor chain DMA memory!\n",
3821                                     __FILE__, __LINE__);
3822                                 rc = ENOMEM;
3823                                 goto bce_dma_alloc_exit;
3824                         }
3825
3826                         error = bus_dmamap_load(sc->pg_bd_chain_tag,
3827                             sc->pg_bd_chain_map[i], sc->pg_bd_chain[i],
3828                             BCE_PG_CHAIN_PAGE_SZ, bce_dma_map_addr,
3829                             &sc->pg_bd_chain_paddr[i], BUS_DMA_NOWAIT);
3830
3831                         if (error || sc->pg_bd_chain_paddr[i] == 0) {
3832                                 BCE_PRINTF("%s(%d): Could not map page descriptor "
3833                                         "chain DMA memory!\n", __FILE__, __LINE__);
3834                                 rc = ENOMEM;
3835                                 goto bce_dma_alloc_exit;
3836                         }
3837
3838                         DBPRINT(sc, BCE_INFO_LOAD, "%s(): pg_bd_chain_paddr[%d] = "
3839                                 "0x%jX\n", __FUNCTION__, i,
3840                                 (uintmax_t) sc->pg_bd_chain_paddr[i]);
3841                 }
3842
3843                 /*
3844                  * Create a DMA tag for page mbufs.
3845                  */
3846                 if (bus_dma_tag_create(sc->parent_tag, 1, BCE_DMA_BOUNDARY,
3847                     sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
3848                     1, MCLBYTES, 0, NULL, NULL, &sc->pg_mbuf_tag)) {
3849                         BCE_PRINTF("%s(%d): Could not allocate page mbuf "
3850                                 "DMA tag!\n", __FILE__, __LINE__);
3851                         rc = ENOMEM;
3852                         goto bce_dma_alloc_exit;
3853                 }
3854
3855                 /* Create DMA maps for the page mbuf clusters. */
3856                 for (i = 0; i < TOTAL_PG_BD_ALLOC; i++) {
3857                         if (bus_dmamap_create(sc->pg_mbuf_tag, BUS_DMA_NOWAIT,
3858                                 &sc->pg_mbuf_map[i])) {
3859                                 BCE_PRINTF("%s(%d): Unable to create page mbuf "
3860                                         "DMA map!\n", __FILE__, __LINE__);
3861                                 rc = ENOMEM;
3862                                 goto bce_dma_alloc_exit;
3863                         }
3864                 }
3865         }
3866
3867 bce_dma_alloc_exit:
3868         DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
3869         return(rc);
3870 }
3871
3872
3873 /****************************************************************************/
3874 /* Release all resources used by the driver.                                */
3875 /*                                                                          */
3876 /* Releases all resources acquired by the driver including interrupts,      */
3877 /* interrupt handler, interfaces, mutexes, and DMA memory.                  */
3878 /*                                                                          */
3879 /* Returns:                                                                 */
3880 /*   Nothing.                                                               */
3881 /****************************************************************************/
3882 static void
3883 bce_release_resources(struct bce_softc *sc)
3884 {
3885         device_t dev;
3886
3887         DBENTER(BCE_VERBOSE_RESET);
3888
3889         dev = sc->bce_dev;
3890
3891         bce_dma_free(sc);
3892
3893         if (sc->bce_intrhand != NULL) {
3894                 DBPRINT(sc, BCE_INFO_RESET, "Removing interrupt handler.\n");
3895                 bus_teardown_intr(dev, sc->bce_res_irq, sc->bce_intrhand);
3896         }
3897
3898         if (sc->bce_res_irq != NULL) {
3899                 DBPRINT(sc, BCE_INFO_RESET, "Releasing IRQ.\n");
3900                 bus_release_resource(dev, SYS_RES_IRQ,
3901                     rman_get_rid(sc->bce_res_irq), sc->bce_res_irq);
3902         }
3903
3904         if (sc->bce_flags & (BCE_USING_MSI_FLAG | BCE_USING_MSIX_FLAG)) {
3905                 DBPRINT(sc, BCE_INFO_RESET, "Releasing MSI/MSI-X vector.\n");
3906                 pci_release_msi(dev);
3907         }
3908
3909         if (sc->bce_res_mem != NULL) {
3910                 DBPRINT(sc, BCE_INFO_RESET, "Releasing PCI memory.\n");
3911                     bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0),
3912                     sc->bce_res_mem);
3913         }
3914
3915         if (sc->bce_ifp != NULL) {
3916                 DBPRINT(sc, BCE_INFO_RESET, "Releasing IF.\n");
3917                 if_free(sc->bce_ifp);
3918         }
3919
3920         if (mtx_initialized(&sc->bce_mtx))
3921                 BCE_LOCK_DESTROY(sc);
3922
3923         DBEXIT(BCE_VERBOSE_RESET);
3924 }
3925
3926
3927 /****************************************************************************/
3928 /* Firmware synchronization.                                                */
3929 /*                                                                          */
3930 /* Before performing certain events such as a chip reset, synchronize with  */
3931 /* the firmware first.                                                      */
3932 /*                                                                          */
3933 /* Returns:                                                                 */
3934 /*   0 for success, positive value for failure.                             */
3935 /****************************************************************************/
3936 static int
3937 bce_fw_sync(struct bce_softc *sc, u32 msg_data)
3938 {
3939         int i, rc = 0;
3940         u32 val;
3941
3942         DBENTER(BCE_VERBOSE_RESET);
3943
3944         /* Don't waste any time if we've timed out before. */
3945         if (sc->bce_fw_timed_out == TRUE) {
3946                 rc = EBUSY;
3947                 goto bce_fw_sync_exit;
3948         }
3949
3950         /* Increment the message sequence number. */
3951         sc->bce_fw_wr_seq++;
3952         msg_data |= sc->bce_fw_wr_seq;
3953
3954         DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "bce_fw_sync(): msg_data = "
3955             "0x%08X\n", msg_data);
3956
3957         /* Send the message to the bootcode driver mailbox. */
3958         bce_shmem_wr(sc, BCE_DRV_MB, msg_data);
3959
3960         /* Wait for the bootcode to acknowledge the message. */
3961         for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
3962                 /* Check for a response in the bootcode firmware mailbox. */
3963                 val = bce_shmem_rd(sc, BCE_FW_MB);
3964                 if ((val & BCE_FW_MSG_ACK) == (msg_data & BCE_DRV_MSG_SEQ))
3965                         break;
3966                 DELAY(1000);
3967         }
3968
3969         /* If we've timed out, tell bootcode that we've stopped waiting. */
3970         if (((val & BCE_FW_MSG_ACK) != (msg_data & BCE_DRV_MSG_SEQ)) &&
3971             ((msg_data & BCE_DRV_MSG_DATA) != BCE_DRV_MSG_DATA_WAIT0)) {
3972
3973                 BCE_PRINTF("%s(%d): Firmware synchronization timeout! "
3974                     "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
3975
3976                 msg_data &= ~BCE_DRV_MSG_CODE;
3977                 msg_data |= BCE_DRV_MSG_CODE_FW_TIMEOUT;
3978
3979                 bce_shmem_wr(sc, BCE_DRV_MB, msg_data);
3980
3981                 sc->bce_fw_timed_out = TRUE;
3982                 rc = EBUSY;
3983         }
3984
3985 bce_fw_sync_exit:
3986         DBEXIT(BCE_VERBOSE_RESET);
3987         return (rc);
3988 }
3989
3990
3991 /****************************************************************************/
3992 /* Load Receive Virtual 2 Physical (RV2P) processor firmware.               */
3993 /*                                                                          */
3994 /* Returns:                                                                 */
3995 /*   Nothing.                                                               */
3996 /****************************************************************************/
3997 static void
3998 bce_load_rv2p_fw(struct bce_softc *sc, const u32 *rv2p_code,
3999         u32 rv2p_code_len, u32 rv2p_proc)
4000 {
4001         int i;
4002         u32 val;
4003
4004         DBENTER(BCE_VERBOSE_RESET);
4005
4006         /* Set the page size used by RV2P. */
4007         if (rv2p_proc == RV2P_PROC2) {
4008                 BCE_RV2P_PROC2_CHG_MAX_BD_PAGE(USABLE_RX_BD_PER_PAGE);
4009         }
4010
4011         for (i = 0; i < rv2p_code_len; i += 8) {
4012                 REG_WR(sc, BCE_RV2P_INSTR_HIGH, *rv2p_code);
4013                 rv2p_code++;
4014                 REG_WR(sc, BCE_RV2P_INSTR_LOW, *rv2p_code);
4015                 rv2p_code++;
4016
4017                 if (rv2p_proc == RV2P_PROC1) {
4018                         val = (i / 8) | BCE_RV2P_PROC1_ADDR_CMD_RDWR;
4019                         REG_WR(sc, BCE_RV2P_PROC1_ADDR_CMD, val);
4020                 }
4021                 else {
4022                         val = (i / 8) | BCE_RV2P_PROC2_ADDR_CMD_RDWR;
4023                         REG_WR(sc, BCE_RV2P_PROC2_ADDR_CMD, val);
4024                 }
4025         }
4026
4027         /* Reset the processor, un-stall is done later. */
4028         if (rv2p_proc == RV2P_PROC1) {
4029                 REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC1_RESET);
4030         }
4031         else {
4032                 REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC2_RESET);
4033         }
4034
4035         DBEXIT(BCE_VERBOSE_RESET);
4036 }
4037
4038
4039 /****************************************************************************/
4040 /* Load RISC processor firmware.                                            */
4041 /*                                                                          */
4042 /* Loads firmware from the file if_bcefw.h into the scratchpad memory       */
4043 /* associated with a particular processor.                                  */
4044 /*                                                                          */
4045 /* Returns:                                                                 */
4046 /*   Nothing.                                                               */
4047 /****************************************************************************/
4048 static void
4049 bce_load_cpu_fw(struct bce_softc *sc, struct cpu_reg *cpu_reg,
4050         struct fw_info *fw)
4051 {
4052         u32 offset;
4053
4054         DBENTER(BCE_VERBOSE_RESET);
4055
4056     bce_halt_cpu(sc, cpu_reg);
4057
4058         /* Load the Text area. */
4059         offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
4060         if (fw->text) {
4061                 int j;
4062
4063                 for (j = 0; j < (fw->text_len / 4); j++, offset += 4) {
4064                         REG_WR_IND(sc, offset, fw->text[j]);
4065                 }
4066         }
4067
4068         /* Load the Data area. */
4069         offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
4070         if (fw->data) {
4071                 int j;
4072
4073                 for (j = 0; j < (fw->data_len / 4); j++, offset += 4) {
4074                         REG_WR_IND(sc, offset, fw->data[j]);
4075                 }
4076         }
4077
4078         /* Load the SBSS area. */
4079         offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
4080         if (fw->sbss) {
4081                 int j;
4082
4083                 for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4) {
4084                         REG_WR_IND(sc, offset, fw->sbss[j]);
4085                 }
4086         }
4087
4088         /* Load the BSS area. */
4089         offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
4090         if (fw->bss) {
4091                 int j;
4092
4093                 for (j = 0; j < (fw->bss_len/4); j++, offset += 4) {
4094                         REG_WR_IND(sc, offset, fw->bss[j]);
4095                 }
4096         }
4097
4098         /* Load the Read-Only area. */
4099         offset = cpu_reg->spad_base +
4100                 (fw->rodata_addr - cpu_reg->mips_view_base);
4101         if (fw->rodata) {
4102                 int j;
4103
4104                 for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4) {
4105                         REG_WR_IND(sc, offset, fw->rodata[j]);
4106                 }
4107         }
4108
4109         /* Clear the pre-fetch instruction and set the FW start address. */
4110         REG_WR_IND(sc, cpu_reg->inst, 0);
4111         REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
4112
4113         DBEXIT(BCE_VERBOSE_RESET);
4114 }
4115
4116
4117 /****************************************************************************/
4118 /* Starts the RISC processor.                                               */
4119 /*                                                                          */
4120 /* Assumes the CPU starting address has already been set.                   */
4121 /*                                                                          */
4122 /* Returns:                                                                 */
4123 /*   Nothing.                                                               */
4124 /****************************************************************************/
4125 static void
4126 bce_start_cpu(struct bce_softc *sc, struct cpu_reg *cpu_reg)
4127 {
4128         u32 val;
4129
4130         DBENTER(BCE_VERBOSE_RESET);
4131
4132         /* Start the CPU. */
4133         val = REG_RD_IND(sc, cpu_reg->mode);
4134         val &= ~cpu_reg->mode_value_halt;
4135         REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
4136         REG_WR_IND(sc, cpu_reg->mode, val);
4137
4138         DBEXIT(BCE_VERBOSE_RESET);
4139 }
4140
4141
4142 /****************************************************************************/
4143 /* Halts the RISC processor.                                                */
4144 /*                                                                          */
4145 /* Returns:                                                                 */
4146 /*   Nothing.                                                               */
4147 /****************************************************************************/
4148 static void
4149 bce_halt_cpu(struct bce_softc *sc, struct cpu_reg *cpu_reg)
4150 {
4151         u32 val;
4152
4153         DBENTER(BCE_VERBOSE_RESET);
4154
4155         /* Halt the CPU. */
4156         val = REG_RD_IND(sc, cpu_reg->mode);
4157         val |= cpu_reg->mode_value_halt;
4158         REG_WR_IND(sc, cpu_reg->mode, val);
4159         REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
4160
4161         DBEXIT(BCE_VERBOSE_RESET);
4162 }
4163
4164
4165 /****************************************************************************/
4166 /* Initialize the RX CPU.                                                   */
4167 /*                                                                          */
4168 /* Returns:                                                                 */
4169 /*   Nothing.                                                               */
4170 /****************************************************************************/
4171 static void
4172 bce_start_rxp_cpu(struct bce_softc *sc)
4173 {
4174         struct cpu_reg cpu_reg;
4175
4176         DBENTER(BCE_VERBOSE_RESET);
4177
4178         cpu_reg.mode = BCE_RXP_CPU_MODE;
4179         cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT;
4180         cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA;
4181         cpu_reg.state = BCE_RXP_CPU_STATE;
4182         cpu_reg.state_value_clear = 0xffffff;
4183         cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE;
4184         cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK;
4185         cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER;
4186         cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION;
4187         cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT;
4188         cpu_reg.spad_base = BCE_RXP_SCRATCH;
4189         cpu_reg.mips_view_base = 0x8000000;
4190
4191         DBPRINT(sc, BCE_INFO_RESET, "Starting RX firmware.\n");
4192         bce_start_cpu(sc, &cpu_reg);
4193
4194         DBEXIT(BCE_VERBOSE_RESET);
4195 }
4196
4197
4198 /****************************************************************************/
4199 /* Initialize the RX CPU.                                                   */
4200 /*                                                                          */
4201 /* Returns:                                                                 */
4202 /*   Nothing.                                                               */
4203 /****************************************************************************/
4204 static void
4205 bce_init_rxp_cpu(struct bce_softc *sc)
4206 {
4207         struct cpu_reg cpu_reg;
4208         struct fw_info fw;
4209
4210         DBENTER(BCE_VERBOSE_RESET);
4211
4212         cpu_reg.mode = BCE_RXP_CPU_MODE;
4213         cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT;
4214         cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA;
4215         cpu_reg.state = BCE_RXP_CPU_STATE;
4216         cpu_reg.state_value_clear = 0xffffff;
4217         cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE;
4218         cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK;
4219         cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER;
4220         cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION;
4221         cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT;
4222         cpu_reg.spad_base = BCE_RXP_SCRATCH;
4223         cpu_reg.mips_view_base = 0x8000000;
4224
4225         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4226                 fw.ver_major = bce_RXP_b09FwReleaseMajor;
4227                 fw.ver_minor = bce_RXP_b09FwReleaseMinor;
4228                 fw.ver_fix = bce_RXP_b09FwReleaseFix;
4229                 fw.start_addr = bce_RXP_b09FwStartAddr;
4230
4231                 fw.text_addr = bce_RXP_b09FwTextAddr;
4232                 fw.text_len = bce_RXP_b09FwTextLen;
4233                 fw.text_index = 0;
4234                 fw.text = bce_RXP_b09FwText;
4235
4236                 fw.data_addr = bce_RXP_b09FwDataAddr;
4237                 fw.data_len = bce_RXP_b09FwDataLen;
4238                 fw.data_index = 0;
4239                 fw.data = bce_RXP_b09FwData;
4240
4241                 fw.sbss_addr = bce_RXP_b09FwSbssAddr;
4242                 fw.sbss_len = bce_RXP_b09FwSbssLen;
4243                 fw.sbss_index = 0;
4244                 fw.sbss = bce_RXP_b09FwSbss;
4245
4246                 fw.bss_addr = bce_RXP_b09FwBssAddr;
4247                 fw.bss_len = bce_RXP_b09FwBssLen;
4248                 fw.bss_index = 0;
4249                 fw.bss = bce_RXP_b09FwBss;
4250
4251                 fw.rodata_addr = bce_RXP_b09FwRodataAddr;
4252                 fw.rodata_len = bce_RXP_b09FwRodataLen;
4253                 fw.rodata_index = 0;
4254                 fw.rodata = bce_RXP_b09FwRodata;
4255         } else {
4256                 fw.ver_major = bce_RXP_b06FwReleaseMajor;
4257                 fw.ver_minor = bce_RXP_b06FwReleaseMinor;
4258                 fw.ver_fix = bce_RXP_b06FwReleaseFix;
4259                 fw.start_addr = bce_RXP_b06FwStartAddr;
4260
4261                 fw.text_addr = bce_RXP_b06FwTextAddr;
4262                 fw.text_len = bce_RXP_b06FwTextLen;
4263                 fw.text_index = 0;
4264                 fw.text = bce_RXP_b06FwText;
4265
4266                 fw.data_addr = bce_RXP_b06FwDataAddr;
4267                 fw.data_len = bce_RXP_b06FwDataLen;
4268                 fw.data_index = 0;
4269                 fw.data = bce_RXP_b06FwData;
4270
4271                 fw.sbss_addr = bce_RXP_b06FwSbssAddr;
4272                 fw.sbss_len = bce_RXP_b06FwSbssLen;
4273                 fw.sbss_index = 0;
4274                 fw.sbss = bce_RXP_b06FwSbss;
4275
4276                 fw.bss_addr = bce_RXP_b06FwBssAddr;
4277                 fw.bss_len = bce_RXP_b06FwBssLen;
4278                 fw.bss_index = 0;
4279                 fw.bss = bce_RXP_b06FwBss;
4280
4281                 fw.rodata_addr = bce_RXP_b06FwRodataAddr;
4282                 fw.rodata_len = bce_RXP_b06FwRodataLen;
4283                 fw.rodata_index = 0;
4284                 fw.rodata = bce_RXP_b06FwRodata;
4285         }
4286
4287         DBPRINT(sc, BCE_INFO_RESET, "Loading RX firmware.\n");
4288         bce_load_cpu_fw(sc, &cpu_reg, &fw);
4289
4290     /* Delay RXP start until initialization is complete. */
4291
4292         DBEXIT(BCE_VERBOSE_RESET);
4293 }
4294
4295
4296 /****************************************************************************/
4297 /* Initialize the TX CPU.                                                   */
4298 /*                                                                          */
4299 /* Returns:                                                                 */
4300 /*   Nothing.                                                               */
4301 /****************************************************************************/
4302 static void
4303 bce_init_txp_cpu(struct bce_softc *sc)
4304 {
4305         struct cpu_reg cpu_reg;
4306         struct fw_info fw;
4307
4308         DBENTER(BCE_VERBOSE_RESET);
4309
4310         cpu_reg.mode = BCE_TXP_CPU_MODE;
4311         cpu_reg.mode_value_halt = BCE_TXP_CPU_MODE_SOFT_HALT;
4312         cpu_reg.mode_value_sstep = BCE_TXP_CPU_MODE_STEP_ENA;
4313         cpu_reg.state = BCE_TXP_CPU_STATE;
4314         cpu_reg.state_value_clear = 0xffffff;
4315         cpu_reg.gpr0 = BCE_TXP_CPU_REG_FILE;
4316         cpu_reg.evmask = BCE_TXP_CPU_EVENT_MASK;
4317         cpu_reg.pc = BCE_TXP_CPU_PROGRAM_COUNTER;
4318         cpu_reg.inst = BCE_TXP_CPU_INSTRUCTION;
4319         cpu_reg.bp = BCE_TXP_CPU_HW_BREAKPOINT;
4320         cpu_reg.spad_base = BCE_TXP_SCRATCH;
4321         cpu_reg.mips_view_base = 0x8000000;
4322
4323         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4324                 fw.ver_major = bce_TXP_b09FwReleaseMajor;
4325                 fw.ver_minor = bce_TXP_b09FwReleaseMinor;
4326                 fw.ver_fix = bce_TXP_b09FwReleaseFix;
4327                 fw.start_addr = bce_TXP_b09FwStartAddr;
4328
4329                 fw.text_addr = bce_TXP_b09FwTextAddr;
4330                 fw.text_len = bce_TXP_b09FwTextLen;
4331                 fw.text_index = 0;
4332                 fw.text = bce_TXP_b09FwText;
4333
4334                 fw.data_addr = bce_TXP_b09FwDataAddr;
4335                 fw.data_len = bce_TXP_b09FwDataLen;
4336                 fw.data_index = 0;
4337                 fw.data = bce_TXP_b09FwData;
4338
4339                 fw.sbss_addr = bce_TXP_b09FwSbssAddr;
4340                 fw.sbss_len = bce_TXP_b09FwSbssLen;
4341                 fw.sbss_index = 0;
4342                 fw.sbss = bce_TXP_b09FwSbss;
4343
4344                 fw.bss_addr = bce_TXP_b09FwBssAddr;
4345                 fw.bss_len = bce_TXP_b09FwBssLen;
4346                 fw.bss_index = 0;
4347                 fw.bss = bce_TXP_b09FwBss;
4348
4349                 fw.rodata_addr = bce_TXP_b09FwRodataAddr;
4350                 fw.rodata_len = bce_TXP_b09FwRodataLen;
4351                 fw.rodata_index = 0;
4352                 fw.rodata = bce_TXP_b09FwRodata;
4353         } else {
4354                 fw.ver_major = bce_TXP_b06FwReleaseMajor;
4355                 fw.ver_minor = bce_TXP_b06FwReleaseMinor;
4356                 fw.ver_fix = bce_TXP_b06FwReleaseFix;
4357                 fw.start_addr = bce_TXP_b06FwStartAddr;
4358
4359                 fw.text_addr = bce_TXP_b06FwTextAddr;
4360                 fw.text_len = bce_TXP_b06FwTextLen;
4361                 fw.text_index = 0;
4362                 fw.text = bce_TXP_b06FwText;
4363
4364                 fw.data_addr = bce_TXP_b06FwDataAddr;
4365                 fw.data_len = bce_TXP_b06FwDataLen;
4366                 fw.data_index = 0;
4367                 fw.data = bce_TXP_b06FwData;
4368
4369                 fw.sbss_addr = bce_TXP_b06FwSbssAddr;
4370                 fw.sbss_len = bce_TXP_b06FwSbssLen;
4371                 fw.sbss_index = 0;
4372                 fw.sbss = bce_TXP_b06FwSbss;
4373
4374                 fw.bss_addr = bce_TXP_b06FwBssAddr;
4375                 fw.bss_len = bce_TXP_b06FwBssLen;
4376                 fw.bss_index = 0;
4377                 fw.bss = bce_TXP_b06FwBss;
4378
4379                 fw.rodata_addr = bce_TXP_b06FwRodataAddr;
4380                 fw.rodata_len = bce_TXP_b06FwRodataLen;
4381                 fw.rodata_index = 0;
4382                 fw.rodata = bce_TXP_b06FwRodata;
4383         }
4384
4385         DBPRINT(sc, BCE_INFO_RESET, "Loading TX firmware.\n");
4386         bce_load_cpu_fw(sc, &cpu_reg, &fw);
4387     bce_start_cpu(sc, &cpu_reg);
4388
4389         DBEXIT(BCE_VERBOSE_RESET);
4390 }
4391
4392
4393 /****************************************************************************/
4394 /* Initialize the TPAT CPU.                                                 */
4395 /*                                                                          */
4396 /* Returns:                                                                 */
4397 /*   Nothing.                                                               */
4398 /****************************************************************************/
4399 static void
4400 bce_init_tpat_cpu(struct bce_softc *sc)
4401 {
4402         struct cpu_reg cpu_reg;
4403         struct fw_info fw;
4404
4405         DBENTER(BCE_VERBOSE_RESET);
4406
4407         cpu_reg.mode = BCE_TPAT_CPU_MODE;
4408         cpu_reg.mode_value_halt = BCE_TPAT_CPU_MODE_SOFT_HALT;
4409         cpu_reg.mode_value_sstep = BCE_TPAT_CPU_MODE_STEP_ENA;
4410         cpu_reg.state = BCE_TPAT_CPU_STATE;
4411         cpu_reg.state_value_clear = 0xffffff;
4412         cpu_reg.gpr0 = BCE_TPAT_CPU_REG_FILE;
4413         cpu_reg.evmask = BCE_TPAT_CPU_EVENT_MASK;
4414         cpu_reg.pc = BCE_TPAT_CPU_PROGRAM_COUNTER;
4415         cpu_reg.inst = BCE_TPAT_CPU_INSTRUCTION;
4416         cpu_reg.bp = BCE_TPAT_CPU_HW_BREAKPOINT;
4417         cpu_reg.spad_base = BCE_TPAT_SCRATCH;
4418         cpu_reg.mips_view_base = 0x8000000;
4419
4420         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4421                 fw.ver_major = bce_TPAT_b09FwReleaseMajor;
4422                 fw.ver_minor = bce_TPAT_b09FwReleaseMinor;
4423                 fw.ver_fix = bce_TPAT_b09FwReleaseFix;
4424                 fw.start_addr = bce_TPAT_b09FwStartAddr;
4425
4426                 fw.text_addr = bce_TPAT_b09FwTextAddr;
4427                 fw.text_len = bce_TPAT_b09FwTextLen;
4428                 fw.text_index = 0;
4429                 fw.text = bce_TPAT_b09FwText;
4430
4431                 fw.data_addr = bce_TPAT_b09FwDataAddr;
4432                 fw.data_len = bce_TPAT_b09FwDataLen;
4433                 fw.data_index = 0;
4434                 fw.data = bce_TPAT_b09FwData;
4435
4436                 fw.sbss_addr = bce_TPAT_b09FwSbssAddr;
4437                 fw.sbss_len = bce_TPAT_b09FwSbssLen;
4438                 fw.sbss_index = 0;
4439                 fw.sbss = bce_TPAT_b09FwSbss;
4440
4441                 fw.bss_addr = bce_TPAT_b09FwBssAddr;
4442                 fw.bss_len = bce_TPAT_b09FwBssLen;
4443                 fw.bss_index = 0;
4444                 fw.bss = bce_TPAT_b09FwBss;
4445
4446                 fw.rodata_addr = bce_TPAT_b09FwRodataAddr;
4447                 fw.rodata_len = bce_TPAT_b09FwRodataLen;
4448                 fw.rodata_index = 0;
4449                 fw.rodata = bce_TPAT_b09FwRodata;
4450         } else {
4451                 fw.ver_major = bce_TPAT_b06FwReleaseMajor;
4452                 fw.ver_minor = bce_TPAT_b06FwReleaseMinor;
4453                 fw.ver_fix = bce_TPAT_b06FwReleaseFix;
4454                 fw.start_addr = bce_TPAT_b06FwStartAddr;
4455
4456                 fw.text_addr = bce_TPAT_b06FwTextAddr;
4457                 fw.text_len = bce_TPAT_b06FwTextLen;
4458                 fw.text_index = 0;
4459                 fw.text = bce_TPAT_b06FwText;
4460
4461                 fw.data_addr = bce_TPAT_b06FwDataAddr;
4462                 fw.data_len = bce_TPAT_b06FwDataLen;
4463                 fw.data_index = 0;
4464                 fw.data = bce_TPAT_b06FwData;
4465
4466                 fw.sbss_addr = bce_TPAT_b06FwSbssAddr;
4467                 fw.sbss_len = bce_TPAT_b06FwSbssLen;
4468                 fw.sbss_index = 0;
4469                 fw.sbss = bce_TPAT_b06FwSbss;
4470
4471                 fw.bss_addr = bce_TPAT_b06FwBssAddr;
4472                 fw.bss_len = bce_TPAT_b06FwBssLen;
4473                 fw.bss_index = 0;
4474                 fw.bss = bce_TPAT_b06FwBss;
4475
4476                 fw.rodata_addr = bce_TPAT_b06FwRodataAddr;
4477                 fw.rodata_len = bce_TPAT_b06FwRodataLen;
4478                 fw.rodata_index = 0;
4479                 fw.rodata = bce_TPAT_b06FwRodata;
4480         }
4481
4482         DBPRINT(sc, BCE_INFO_RESET, "Loading TPAT firmware.\n");
4483         bce_load_cpu_fw(sc, &cpu_reg, &fw);
4484         bce_start_cpu(sc, &cpu_reg);
4485
4486         DBEXIT(BCE_VERBOSE_RESET);
4487 }
4488
4489
4490 /****************************************************************************/
4491 /* Initialize the CP CPU.                                                   */
4492 /*                                                                          */
4493 /* Returns:                                                                 */
4494 /*   Nothing.                                                               */
4495 /****************************************************************************/
4496 static void
4497 bce_init_cp_cpu(struct bce_softc *sc)
4498 {
4499         struct cpu_reg cpu_reg;
4500         struct fw_info fw;
4501
4502         DBENTER(BCE_VERBOSE_RESET);
4503
4504         cpu_reg.mode = BCE_CP_CPU_MODE;
4505         cpu_reg.mode_value_halt = BCE_CP_CPU_MODE_SOFT_HALT;
4506         cpu_reg.mode_value_sstep = BCE_CP_CPU_MODE_STEP_ENA;
4507         cpu_reg.state = BCE_CP_CPU_STATE;
4508         cpu_reg.state_value_clear = 0xffffff;
4509         cpu_reg.gpr0 = BCE_CP_CPU_REG_FILE;
4510         cpu_reg.evmask = BCE_CP_CPU_EVENT_MASK;
4511         cpu_reg.pc = BCE_CP_CPU_PROGRAM_COUNTER;
4512         cpu_reg.inst = BCE_CP_CPU_INSTRUCTION;
4513         cpu_reg.bp = BCE_CP_CPU_HW_BREAKPOINT;
4514         cpu_reg.spad_base = BCE_CP_SCRATCH;
4515         cpu_reg.mips_view_base = 0x8000000;
4516
4517         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4518                 fw.ver_major = bce_CP_b09FwReleaseMajor;
4519                 fw.ver_minor = bce_CP_b09FwReleaseMinor;
4520                 fw.ver_fix = bce_CP_b09FwReleaseFix;
4521                 fw.start_addr = bce_CP_b09FwStartAddr;
4522
4523                 fw.text_addr = bce_CP_b09FwTextAddr;
4524                 fw.text_len = bce_CP_b09FwTextLen;
4525                 fw.text_index = 0;
4526                 fw.text = bce_CP_b09FwText;
4527
4528                 fw.data_addr = bce_CP_b09FwDataAddr;
4529                 fw.data_len = bce_CP_b09FwDataLen;
4530                 fw.data_index = 0;
4531                 fw.data = bce_CP_b09FwData;
4532
4533                 fw.sbss_addr = bce_CP_b09FwSbssAddr;
4534                 fw.sbss_len = bce_CP_b09FwSbssLen;
4535                 fw.sbss_index = 0;
4536                 fw.sbss = bce_CP_b09FwSbss;
4537
4538                 fw.bss_addr = bce_CP_b09FwBssAddr;
4539                 fw.bss_len = bce_CP_b09FwBssLen;
4540                 fw.bss_index = 0;
4541                 fw.bss = bce_CP_b09FwBss;
4542
4543                 fw.rodata_addr = bce_CP_b09FwRodataAddr;
4544                 fw.rodata_len = bce_CP_b09FwRodataLen;
4545                 fw.rodata_index = 0;
4546                 fw.rodata = bce_CP_b09FwRodata;
4547         } else {
4548                 fw.ver_major = bce_CP_b06FwReleaseMajor;
4549                 fw.ver_minor = bce_CP_b06FwReleaseMinor;
4550                 fw.ver_fix = bce_CP_b06FwReleaseFix;
4551                 fw.start_addr = bce_CP_b06FwStartAddr;
4552
4553                 fw.text_addr = bce_CP_b06FwTextAddr;
4554                 fw.text_len = bce_CP_b06FwTextLen;
4555                 fw.text_index = 0;
4556                 fw.text = bce_CP_b06FwText;
4557
4558                 fw.data_addr = bce_CP_b06FwDataAddr;
4559                 fw.data_len = bce_CP_b06FwDataLen;
4560                 fw.data_index = 0;
4561                 fw.data = bce_CP_b06FwData;
4562
4563                 fw.sbss_addr = bce_CP_b06FwSbssAddr;
4564                 fw.sbss_len = bce_CP_b06FwSbssLen;
4565                 fw.sbss_index = 0;
4566                 fw.sbss = bce_CP_b06FwSbss;
4567
4568                 fw.bss_addr = bce_CP_b06FwBssAddr;
4569                 fw.bss_len = bce_CP_b06FwBssLen;
4570                 fw.bss_index = 0;
4571                 fw.bss = bce_CP_b06FwBss;
4572
4573                 fw.rodata_addr = bce_CP_b06FwRodataAddr;
4574                 fw.rodata_len = bce_CP_b06FwRodataLen;
4575                 fw.rodata_index = 0;
4576                 fw.rodata = bce_CP_b06FwRodata;
4577         }
4578
4579         DBPRINT(sc, BCE_INFO_RESET, "Loading CP firmware.\n");
4580         bce_load_cpu_fw(sc, &cpu_reg, &fw);
4581         bce_start_cpu(sc, &cpu_reg);
4582
4583         DBEXIT(BCE_VERBOSE_RESET);
4584 }
4585
4586
4587 /****************************************************************************/
4588 /* Initialize the COM CPU.                                                 */
4589 /*                                                                          */
4590 /* Returns:                                                                 */
4591 /*   Nothing.                                                               */
4592 /****************************************************************************/
4593 static void
4594 bce_init_com_cpu(struct bce_softc *sc)
4595 {
4596         struct cpu_reg cpu_reg;
4597         struct fw_info fw;
4598
4599         DBENTER(BCE_VERBOSE_RESET);
4600
4601         cpu_reg.mode = BCE_COM_CPU_MODE;
4602         cpu_reg.mode_value_halt = BCE_COM_CPU_MODE_SOFT_HALT;
4603         cpu_reg.mode_value_sstep = BCE_COM_CPU_MODE_STEP_ENA;
4604         cpu_reg.state = BCE_COM_CPU_STATE;
4605         cpu_reg.state_value_clear = 0xffffff;
4606         cpu_reg.gpr0 = BCE_COM_CPU_REG_FILE;
4607         cpu_reg.evmask = BCE_COM_CPU_EVENT_MASK;
4608         cpu_reg.pc = BCE_COM_CPU_PROGRAM_COUNTER;
4609         cpu_reg.inst = BCE_COM_CPU_INSTRUCTION;
4610         cpu_reg.bp = BCE_COM_CPU_HW_BREAKPOINT;
4611         cpu_reg.spad_base = BCE_COM_SCRATCH;
4612         cpu_reg.mips_view_base = 0x8000000;
4613
4614         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4615                 fw.ver_major = bce_COM_b09FwReleaseMajor;
4616                 fw.ver_minor = bce_COM_b09FwReleaseMinor;
4617                 fw.ver_fix = bce_COM_b09FwReleaseFix;
4618                 fw.start_addr = bce_COM_b09FwStartAddr;
4619
4620                 fw.text_addr = bce_COM_b09FwTextAddr;
4621                 fw.text_len = bce_COM_b09FwTextLen;
4622                 fw.text_index = 0;
4623                 fw.text = bce_COM_b09FwText;
4624
4625                 fw.data_addr = bce_COM_b09FwDataAddr;
4626                 fw.data_len = bce_COM_b09FwDataLen;
4627                 fw.data_index = 0;
4628                 fw.data = bce_COM_b09FwData;
4629
4630                 fw.sbss_addr = bce_COM_b09FwSbssAddr;
4631                 fw.sbss_len = bce_COM_b09FwSbssLen;
4632                 fw.sbss_index = 0;
4633                 fw.sbss = bce_COM_b09FwSbss;
4634
4635                 fw.bss_addr = bce_COM_b09FwBssAddr;
4636                 fw.bss_len = bce_COM_b09FwBssLen;
4637                 fw.bss_index = 0;
4638                 fw.bss = bce_COM_b09FwBss;
4639
4640                 fw.rodata_addr = bce_COM_b09FwRodataAddr;
4641                 fw.rodata_len = bce_COM_b09FwRodataLen;
4642                 fw.rodata_index = 0;
4643                 fw.rodata = bce_COM_b09FwRodata;
4644         } else {
4645                 fw.ver_major = bce_COM_b06FwReleaseMajor;
4646                 fw.ver_minor = bce_COM_b06FwReleaseMinor;
4647                 fw.ver_fix = bce_COM_b06FwReleaseFix;
4648                 fw.start_addr = bce_COM_b06FwStartAddr;
4649
4650                 fw.text_addr = bce_COM_b06FwTextAddr;
4651                 fw.text_len = bce_COM_b06FwTextLen;
4652                 fw.text_index = 0;
4653                 fw.text = bce_COM_b06FwText;
4654
4655                 fw.data_addr = bce_COM_b06FwDataAddr;
4656                 fw.data_len = bce_COM_b06FwDataLen;
4657                 fw.data_index = 0;
4658                 fw.data = bce_COM_b06FwData;
4659
4660                 fw.sbss_addr = bce_COM_b06FwSbssAddr;
4661                 fw.sbss_len = bce_COM_b06FwSbssLen;
4662                 fw.sbss_index = 0;
4663                 fw.sbss = bce_COM_b06FwSbss;
4664
4665                 fw.bss_addr = bce_COM_b06FwBssAddr;
4666                 fw.bss_len = bce_COM_b06FwBssLen;
4667                 fw.bss_index = 0;
4668                 fw.bss = bce_COM_b06FwBss;
4669
4670                 fw.rodata_addr = bce_COM_b06FwRodataAddr;
4671                 fw.rodata_len = bce_COM_b06FwRodataLen;
4672                 fw.rodata_index = 0;
4673                 fw.rodata = bce_COM_b06FwRodata;
4674         }
4675
4676         DBPRINT(sc, BCE_INFO_RESET, "Loading COM firmware.\n");
4677         bce_load_cpu_fw(sc, &cpu_reg, &fw);
4678         bce_start_cpu(sc, &cpu_reg);
4679
4680         DBEXIT(BCE_VERBOSE_RESET);
4681 }
4682
4683
4684 /****************************************************************************/
4685 /* Initialize the RV2P, RX, TX, TPAT, COM, and CP CPUs.                     */
4686 /*                                                                          */
4687 /* Loads the firmware for each CPU and starts the CPU.                      */
4688 /*                                                                          */
4689 /* Returns:                                                                 */
4690 /*   Nothing.                                                               */
4691 /****************************************************************************/
4692 static void
4693 bce_init_cpus(struct bce_softc *sc)
4694 {
4695         DBENTER(BCE_VERBOSE_RESET);
4696
4697         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4698
4699                 if ((BCE_CHIP_REV(sc) == BCE_CHIP_REV_Ax)) {
4700                         bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc1,
4701                             sizeof(bce_xi90_rv2p_proc1), RV2P_PROC1);
4702                         bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc2,
4703                             sizeof(bce_xi90_rv2p_proc2), RV2P_PROC2);
4704                 } else {
4705                         bce_load_rv2p_fw(sc, bce_xi_rv2p_proc1,
4706                             sizeof(bce_xi_rv2p_proc1), RV2P_PROC1);
4707                         bce_load_rv2p_fw(sc, bce_xi_rv2p_proc2,
4708                             sizeof(bce_xi_rv2p_proc2), RV2P_PROC2);
4709                 }
4710
4711         } else {
4712                 bce_load_rv2p_fw(sc, bce_rv2p_proc1,
4713                     sizeof(bce_rv2p_proc1), RV2P_PROC1);
4714                 bce_load_rv2p_fw(sc, bce_rv2p_proc2,
4715                     sizeof(bce_rv2p_proc2), RV2P_PROC2);
4716         }
4717
4718         bce_init_rxp_cpu(sc);
4719         bce_init_txp_cpu(sc);
4720         bce_init_tpat_cpu(sc);
4721         bce_init_com_cpu(sc);
4722         bce_init_cp_cpu(sc);
4723
4724         DBEXIT(BCE_VERBOSE_RESET);
4725 }
4726
4727
4728 /****************************************************************************/
4729 /* Initialize context memory.                                               */
4730 /*                                                                          */
4731 /* Clears the memory associated with each Context ID (CID).                 */
4732 /*                                                                          */
4733 /* Returns:                                                                 */
4734 /*   Nothing.                                                               */
4735 /****************************************************************************/
4736 static int
4737 bce_init_ctx(struct bce_softc *sc)
4738 {
4739         u32 offset, val, vcid_addr;
4740         int i, j, rc, retry_cnt;
4741
4742         rc = 0;
4743         DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
4744
4745         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4746                 retry_cnt = CTX_INIT_RETRY_COUNT;
4747
4748                 DBPRINT(sc, BCE_INFO_CTX, "Initializing 5709 context.\n");
4749
4750                 /*
4751                  * BCM5709 context memory may be cached
4752                  * in host memory so prepare the host memory
4753                  * for access.
4754                  */
4755                 val = BCE_CTX_COMMAND_ENABLED |
4756                     BCE_CTX_COMMAND_MEM_INIT | (1 << 12);
4757                 val |= (BCM_PAGE_BITS - 8) << 16;
4758                 REG_WR(sc, BCE_CTX_COMMAND, val);
4759
4760                 /* Wait for mem init command to complete. */
4761                 for (i = 0; i < retry_cnt; i++) {
4762                         val = REG_RD(sc, BCE_CTX_COMMAND);
4763                         if (!(val & BCE_CTX_COMMAND_MEM_INIT))
4764                                 break;
4765                         DELAY(2);
4766                 }
4767                 if ((val & BCE_CTX_COMMAND_MEM_INIT) != 0) {
4768                         BCE_PRINTF("%s(): Context memory initialization failed!\n",
4769                             __FUNCTION__);
4770                         rc = EBUSY;
4771                         goto init_ctx_fail;
4772                 }
4773
4774                 for (i = 0; i < sc->ctx_pages; i++) {
4775                         /* Set the physical address of the context memory. */
4776                         REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA0,
4777                             BCE_ADDR_LO(sc->ctx_paddr[i] & 0xfffffff0) |
4778                             BCE_CTX_HOST_PAGE_TBL_DATA0_VALID);
4779                         REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA1,
4780                             BCE_ADDR_HI(sc->ctx_paddr[i]));
4781                         REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_CTRL, i |
4782                             BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
4783
4784                         /* Verify the context memory write was successful. */
4785                         for (j = 0; j < retry_cnt; j++) {
4786                                 val = REG_RD(sc, BCE_CTX_HOST_PAGE_TBL_CTRL);
4787                                 if ((val &
4788                                     BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
4789                                         break;
4790                                 DELAY(5);
4791                         }
4792                         if ((val & BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) != 0) {
4793                                 BCE_PRINTF("%s(): Failed to initialize "
4794                                     "context page %d!\n", __FUNCTION__, i);
4795                                 rc = EBUSY;
4796                                 goto init_ctx_fail;
4797                         }
4798                 }
4799         } else {
4800
4801                 DBPRINT(sc, BCE_INFO, "Initializing 5706/5708 context.\n");
4802
4803                 /*
4804                  * For the 5706/5708, context memory is local to
4805                  * the controller, so initialize the controller
4806                  * context memory.
4807                  */
4808
4809                 vcid_addr = GET_CID_ADDR(96);
4810                 while (vcid_addr) {
4811
4812                         vcid_addr -= PHY_CTX_SIZE;
4813
4814                         REG_WR(sc, BCE_CTX_VIRT_ADDR, 0);
4815                         REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr);
4816
4817                         for(offset = 0; offset < PHY_CTX_SIZE; offset += 4) {
4818                                 CTX_WR(sc, 0x00, offset, 0);
4819                         }
4820
4821                         REG_WR(sc, BCE_CTX_VIRT_ADDR, vcid_addr);
4822                         REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr);
4823                 }
4824
4825         }
4826 init_ctx_fail:
4827         DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
4828         return (rc);
4829 }
4830
4831
4832 /****************************************************************************/
4833 /* Fetch the permanent MAC address of the controller.                       */
4834 /*                                                                          */
4835 /* Returns:                                                                 */
4836 /*   Nothing.                                                               */
4837 /****************************************************************************/
4838 static void
4839 bce_get_mac_addr(struct bce_softc *sc)
4840 {
4841         u32 mac_lo = 0, mac_hi = 0;
4842
4843         DBENTER(BCE_VERBOSE_RESET);
4844
4845         /*
4846          * The NetXtreme II bootcode populates various NIC
4847          * power-on and runtime configuration items in a
4848          * shared memory area.  The factory configured MAC
4849          * address is available from both NVRAM and the
4850          * shared memory area so we'll read the value from
4851          * shared memory for speed.
4852          */
4853
4854         mac_hi = bce_shmem_rd(sc, BCE_PORT_HW_CFG_MAC_UPPER);
4855         mac_lo = bce_shmem_rd(sc, BCE_PORT_HW_CFG_MAC_LOWER);
4856
4857         if ((mac_lo == 0) && (mac_hi == 0)) {
4858                 BCE_PRINTF("%s(%d): Invalid Ethernet address!\n",
4859                     __FILE__, __LINE__);
4860         } else {
4861                 sc->eaddr[0] = (u_char)(mac_hi >> 8);
4862                 sc->eaddr[1] = (u_char)(mac_hi >> 0);
4863                 sc->eaddr[2] = (u_char)(mac_lo >> 24);
4864                 sc->eaddr[3] = (u_char)(mac_lo >> 16);
4865                 sc->eaddr[4] = (u_char)(mac_lo >> 8);
4866                 sc->eaddr[5] = (u_char)(mac_lo >> 0);
4867         }
4868
4869         DBPRINT(sc, BCE_INFO_MISC, "Permanent Ethernet "
4870             "address = %6D\n", sc->eaddr, ":");
4871         DBEXIT(BCE_VERBOSE_RESET);
4872 }
4873
4874
4875 /****************************************************************************/
4876 /* Program the MAC address.                                                 */
4877 /*                                                                          */
4878 /* Returns:                                                                 */
4879 /*   Nothing.                                                               */
4880 /****************************************************************************/
4881 static void
4882 bce_set_mac_addr(struct bce_softc *sc)
4883 {
4884         u32 val;
4885         u8 *mac_addr = sc->eaddr;
4886
4887         /* ToDo: Add support for setting multiple MAC addresses. */
4888
4889         DBENTER(BCE_VERBOSE_RESET);
4890         DBPRINT(sc, BCE_INFO_MISC, "Setting Ethernet address = "
4891             "%6D\n", sc->eaddr, ":");
4892
4893         val = (mac_addr[0] << 8) | mac_addr[1];
4894
4895         REG_WR(sc, BCE_EMAC_MAC_MATCH0, val);
4896
4897         val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
4898             (mac_addr[4] << 8) | mac_addr[5];
4899
4900         REG_WR(sc, BCE_EMAC_MAC_MATCH1, val);
4901
4902         DBEXIT(BCE_VERBOSE_RESET);
4903 }
4904
4905
4906 /****************************************************************************/
4907 /* Stop the controller.                                                     */
4908 /*                                                                          */
4909 /* Returns:                                                                 */
4910 /*   Nothing.                                                               */
4911 /****************************************************************************/
4912 static void
4913 bce_stop(struct bce_softc *sc)
4914 {
4915         struct ifnet *ifp;
4916
4917         DBENTER(BCE_VERBOSE_RESET);
4918
4919         BCE_LOCK_ASSERT(sc);
4920
4921         ifp = sc->bce_ifp;
4922
4923         callout_stop(&sc->bce_tick_callout);
4924
4925         /* Disable the transmit/receive blocks. */
4926         REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS, BCE_MISC_ENABLE_CLR_DEFAULT);
4927         REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS);
4928         DELAY(20);
4929
4930         bce_disable_intr(sc);
4931
4932         /* Free RX buffers. */
4933         if (bce_hdr_split == TRUE) {
4934                 bce_free_pg_chain(sc);
4935         }
4936         bce_free_rx_chain(sc);
4937
4938         /* Free TX buffers. */
4939         bce_free_tx_chain(sc);
4940
4941         sc->watchdog_timer = 0;
4942
4943         sc->bce_link_up = FALSE;
4944
4945         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
4946
4947         DBEXIT(BCE_VERBOSE_RESET);
4948 }
4949
4950
4951 static int
4952 bce_reset(struct bce_softc *sc, u32 reset_code)
4953 {
4954         u32 emac_mode_save, val;
4955         int i, rc = 0;
4956         static const u32 emac_mode_mask = BCE_EMAC_MODE_PORT |
4957             BCE_EMAC_MODE_HALF_DUPLEX | BCE_EMAC_MODE_25G;
4958
4959         DBENTER(BCE_VERBOSE_RESET);
4960
4961         DBPRINT(sc, BCE_VERBOSE_RESET, "%s(): reset_code = 0x%08X\n",
4962             __FUNCTION__, reset_code);
4963
4964         /*
4965          * If ASF/IPMI is operational, then the EMAC Mode register already
4966          * contains appropriate values for the link settings that have
4967          * been auto-negotiated.  Resetting the chip will clobber those
4968          * values.  Save the important bits so we can restore them after
4969          * the reset.
4970          */
4971         emac_mode_save = REG_RD(sc, BCE_EMAC_MODE) & emac_mode_mask;
4972
4973         /* Wait for pending PCI transactions to complete. */
4974         REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS,
4975             BCE_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
4976             BCE_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
4977             BCE_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
4978             BCE_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
4979         val = REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS);
4980         DELAY(5);
4981
4982         /* Disable DMA */
4983         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4984                 val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL);
4985                 val &= ~BCE_MISC_NEW_CORE_CTL_DMA_ENABLE;
4986                 REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val);
4987         }
4988
4989         /* Assume bootcode is running. */
4990         sc->bce_fw_timed_out = FALSE;
4991         sc->bce_drv_cardiac_arrest = FALSE;
4992
4993         /* Give the firmware a chance to prepare for the reset. */
4994         rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT0 | reset_code);
4995         if (rc)
4996                 goto bce_reset_exit;
4997
4998         /* Set a firmware reminder that this is a soft reset. */
4999         bce_shmem_wr(sc, BCE_DRV_RESET_SIGNATURE, BCE_DRV_RESET_SIGNATURE_MAGIC);
5000
5001         /* Dummy read to force the chip to complete all current transactions. */
5002         val = REG_RD(sc, BCE_MISC_ID);
5003
5004         /* Chip reset. */
5005         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5006                 REG_WR(sc, BCE_MISC_COMMAND, BCE_MISC_COMMAND_SW_RESET);
5007                 REG_RD(sc, BCE_MISC_COMMAND);
5008                 DELAY(5);
5009
5010                 val = BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
5011                     BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
5012
5013                 pci_write_config(sc->bce_dev, BCE_PCICFG_MISC_CONFIG, val, 4);
5014         } else {
5015                 val = BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
5016                     BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
5017                     BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
5018                 REG_WR(sc, BCE_PCICFG_MISC_CONFIG, val);
5019
5020                 /* Allow up to 30us for reset to complete. */
5021                 for (i = 0; i < 10; i++) {
5022                         val = REG_RD(sc, BCE_PCICFG_MISC_CONFIG);
5023                         if ((val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
5024                             BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
5025                                 break;
5026                         }
5027                         DELAY(10);
5028                 }
5029
5030                 /* Check that reset completed successfully. */
5031                 if (val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
5032                     BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
5033                         BCE_PRINTF("%s(%d): Reset failed!\n",
5034                             __FILE__, __LINE__);
5035                         rc = EBUSY;
5036                         goto bce_reset_exit;
5037                 }
5038         }
5039
5040         /* Make sure byte swapping is properly configured. */
5041         val = REG_RD(sc, BCE_PCI_SWAP_DIAG0);
5042         if (val != 0x01020304) {
5043                 BCE_PRINTF("%s(%d): Byte swap is incorrect!\n",
5044                     __FILE__, __LINE__);
5045                 rc = ENODEV;
5046                 goto bce_reset_exit;
5047         }
5048
5049         /* Just completed a reset, assume that firmware is running again. */
5050         sc->bce_fw_timed_out = FALSE;
5051         sc->bce_drv_cardiac_arrest = FALSE;
5052
5053         /* Wait for the firmware to finish its initialization. */
5054         rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT1 | reset_code);
5055         if (rc)
5056                 BCE_PRINTF("%s(%d): Firmware did not complete "
5057                     "initialization!\n", __FILE__, __LINE__);
5058         /* Get firmware capabilities. */
5059         bce_fw_cap_init(sc);
5060
5061 bce_reset_exit:
5062         /* Restore EMAC Mode bits needed to keep ASF/IPMI running. */
5063         if (reset_code == BCE_DRV_MSG_CODE_RESET) {
5064                 val = REG_RD(sc, BCE_EMAC_MODE);
5065                 val = (val & ~emac_mode_mask) | emac_mode_save;
5066                 REG_WR(sc, BCE_EMAC_MODE, val);
5067         }
5068
5069         DBEXIT(BCE_VERBOSE_RESET);
5070         return (rc);
5071 }
5072
5073
5074 static int
5075 bce_chipinit(struct bce_softc *sc)
5076 {
5077         u32 val;
5078         int rc = 0;
5079
5080         DBENTER(BCE_VERBOSE_RESET);
5081
5082         bce_disable_intr(sc);
5083
5084         /*
5085          * Initialize DMA byte/word swapping, configure the number of DMA
5086          * channels and PCI clock compensation delay.
5087          */
5088         val = BCE_DMA_CONFIG_DATA_BYTE_SWAP |
5089             BCE_DMA_CONFIG_DATA_WORD_SWAP |
5090 #if BYTE_ORDER == BIG_ENDIAN
5091             BCE_DMA_CONFIG_CNTL_BYTE_SWAP |
5092 #endif
5093             BCE_DMA_CONFIG_CNTL_WORD_SWAP |
5094             DMA_READ_CHANS << 12 |
5095             DMA_WRITE_CHANS << 16;
5096
5097         val |= (0x2 << 20) | BCE_DMA_CONFIG_CNTL_PCI_COMP_DLY;
5098
5099         if ((sc->bce_flags & BCE_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
5100                 val |= BCE_DMA_CONFIG_PCI_FAST_CLK_CMP;
5101
5102         /*
5103          * This setting resolves a problem observed on certain Intel PCI
5104          * chipsets that cannot handle multiple outstanding DMA operations.
5105          * See errata E9_5706A1_65.
5106          */
5107         if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) &&
5108             (BCE_CHIP_ID(sc) != BCE_CHIP_ID_5706_A0) &&
5109             !(sc->bce_flags & BCE_PCIX_FLAG))
5110                 val |= BCE_DMA_CONFIG_CNTL_PING_PONG_DMA;
5111
5112         REG_WR(sc, BCE_DMA_CONFIG, val);
5113
5114         /* Enable the RX_V2P and Context state machines before access. */
5115         REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
5116             BCE_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
5117             BCE_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
5118             BCE_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
5119
5120         /* Initialize context mapping and zero out the quick contexts. */
5121         if ((rc = bce_init_ctx(sc)) != 0)
5122                 goto bce_chipinit_exit;
5123
5124         /* Initialize the on-boards CPUs */
5125         bce_init_cpus(sc);
5126
5127         /* Enable management frames (NC-SI) to flow to the MCP. */
5128         if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
5129                 val = REG_RD(sc, BCE_RPM_MGMT_PKT_CTRL) | BCE_RPM_MGMT_PKT_CTRL_MGMT_EN;
5130                 REG_WR(sc, BCE_RPM_MGMT_PKT_CTRL, val);
5131         }
5132
5133         /* Prepare NVRAM for access. */
5134         if ((rc = bce_init_nvram(sc)) != 0)
5135                 goto bce_chipinit_exit;
5136
5137         /* Set the kernel bypass block size */
5138         val = REG_RD(sc, BCE_MQ_CONFIG);
5139         val &= ~BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE;
5140         val |= BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
5141
5142         /* Enable bins used on the 5709. */
5143         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5144                 val |= BCE_MQ_CONFIG_BIN_MQ_MODE;
5145                 if (BCE_CHIP_ID(sc) == BCE_CHIP_ID_5709_A1)
5146                         val |= BCE_MQ_CONFIG_HALT_DIS;
5147         }
5148
5149         REG_WR(sc, BCE_MQ_CONFIG, val);
5150
5151         val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
5152         REG_WR(sc, BCE_MQ_KNL_BYP_WIND_START, val);
5153         REG_WR(sc, BCE_MQ_KNL_WIND_END, val);
5154
5155         /* Set the page size and clear the RV2P processor stall bits. */
5156         val = (BCM_PAGE_BITS - 8) << 24;
5157         REG_WR(sc, BCE_RV2P_CONFIG, val);
5158
5159         /* Configure page size. */
5160         val = REG_RD(sc, BCE_TBDR_CONFIG);
5161         val &= ~BCE_TBDR_CONFIG_PAGE_SIZE;
5162         val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
5163         REG_WR(sc, BCE_TBDR_CONFIG, val);
5164
5165         /* Set the perfect match control register to default. */
5166         REG_WR_IND(sc, BCE_RXP_PM_CTRL, 0);
5167
5168 bce_chipinit_exit:
5169         DBEXIT(BCE_VERBOSE_RESET);
5170
5171         return(rc);
5172 }
5173
5174
5175 /****************************************************************************/
5176 /* Initialize the controller in preparation to send/receive traffic.        */
5177 /*                                                                          */
5178 /* Returns:                                                                 */
5179 /*   0 for success, positive value for failure.                             */
5180 /****************************************************************************/
5181 static int
5182 bce_blockinit(struct bce_softc *sc)
5183 {
5184         u32 reg, val;
5185         int rc = 0;
5186
5187         DBENTER(BCE_VERBOSE_RESET);
5188
5189         /* Load the hardware default MAC address. */
5190         bce_set_mac_addr(sc);
5191
5192         /* Set the Ethernet backoff seed value */
5193         val = sc->eaddr[0]         + (sc->eaddr[1] << 8) +
5194               (sc->eaddr[2] << 16) + (sc->eaddr[3]     ) +
5195               (sc->eaddr[4] << 8)  + (sc->eaddr[5] << 16);
5196         REG_WR(sc, BCE_EMAC_BACKOFF_SEED, val);
5197
5198         sc->last_status_idx = 0;
5199         sc->rx_mode = BCE_EMAC_RX_MODE_SORT_MODE;
5200
5201         /* Set up link change interrupt generation. */
5202         REG_WR(sc, BCE_EMAC_ATTENTION_ENA, BCE_EMAC_ATTENTION_ENA_LINK);
5203
5204         /* Program the physical address of the status block. */
5205         REG_WR(sc, BCE_HC_STATUS_ADDR_L,
5206             BCE_ADDR_LO(sc->status_block_paddr));
5207         REG_WR(sc, BCE_HC_STATUS_ADDR_H,
5208             BCE_ADDR_HI(sc->status_block_paddr));
5209
5210         /* Program the physical address of the statistics block. */
5211         REG_WR(sc, BCE_HC_STATISTICS_ADDR_L,
5212             BCE_ADDR_LO(sc->stats_block_paddr));
5213         REG_WR(sc, BCE_HC_STATISTICS_ADDR_H,
5214             BCE_ADDR_HI(sc->stats_block_paddr));
5215
5216         /*
5217          * Program various host coalescing parameters.
5218          * Trip points control how many BDs should be ready before generating
5219          * an interrupt while ticks control how long a BD can sit in the chain
5220          * before generating an interrupt.
5221          */
5222         REG_WR(sc, BCE_HC_TX_QUICK_CONS_TRIP,
5223             (sc->bce_tx_quick_cons_trip_int << 16) |
5224             sc->bce_tx_quick_cons_trip);
5225         REG_WR(sc, BCE_HC_RX_QUICK_CONS_TRIP,
5226             (sc->bce_rx_quick_cons_trip_int << 16) |
5227             sc->bce_rx_quick_cons_trip);
5228         REG_WR(sc, BCE_HC_TX_TICKS,
5229             (sc->bce_tx_ticks_int << 16) | sc->bce_tx_ticks);
5230         REG_WR(sc, BCE_HC_RX_TICKS,
5231             (sc->bce_rx_ticks_int << 16) | sc->bce_rx_ticks);
5232         REG_WR(sc, BCE_HC_STATS_TICKS, sc->bce_stats_ticks & 0xffff00);
5233         REG_WR(sc, BCE_HC_STAT_COLLECT_TICKS, 0xbb8);  /* 3ms */
5234         /* Not used for L2. */
5235         REG_WR(sc, BCE_HC_COMP_PROD_TRIP, 0);
5236         REG_WR(sc, BCE_HC_COM_TICKS, 0);
5237         REG_WR(sc, BCE_HC_CMD_TICKS, 0);
5238
5239         /* Configure the Host Coalescing block. */
5240         val = BCE_HC_CONFIG_RX_TMR_MODE | BCE_HC_CONFIG_TX_TMR_MODE |
5241             BCE_HC_CONFIG_COLLECT_STATS;
5242
5243 #if 0
5244         /* ToDo: Add MSI-X support. */
5245         if (sc->bce_flags & BCE_USING_MSIX_FLAG) {
5246                 u32 base = ((BCE_TX_VEC - 1) * BCE_HC_SB_CONFIG_SIZE) +
5247                     BCE_HC_SB_CONFIG_1;
5248
5249                 REG_WR(sc, BCE_HC_MSIX_BIT_VECTOR, BCE_HC_MSIX_BIT_VECTOR_VAL);
5250
5251                 REG_WR(sc, base, BCE_HC_SB_CONFIG_1_TX_TMR_MODE |
5252                     BCE_HC_SB_CONFIG_1_ONE_SHOT);
5253
5254                 REG_WR(sc, base + BCE_HC_TX_QUICK_CONS_TRIP_OFF,
5255                     (sc->tx_quick_cons_trip_int << 16) |
5256                      sc->tx_quick_cons_trip);
5257
5258                 REG_WR(sc, base + BCE_HC_TX_TICKS_OFF,
5259                     (sc->tx_ticks_int << 16) | sc->tx_ticks);
5260
5261                 val |= BCE_HC_CONFIG_SB_ADDR_INC_128B;
5262         }
5263
5264         /*
5265          * Tell the HC block to automatically set the
5266          * INT_MASK bit after an MSI/MSI-X interrupt
5267          * is generated so the driver doesn't have to.
5268          */
5269         if (sc->bce_flags & BCE_ONE_SHOT_MSI_FLAG)
5270                 val |= BCE_HC_CONFIG_ONE_SHOT;
5271
5272         /* Set the MSI-X status blocks to 128 byte boundaries. */
5273         if (sc->bce_flags & BCE_USING_MSIX_FLAG)
5274                 val |= BCE_HC_CONFIG_SB_ADDR_INC_128B;
5275 #endif
5276
5277         REG_WR(sc, BCE_HC_CONFIG, val);
5278
5279         /* Clear the internal statistics counters. */
5280         REG_WR(sc, BCE_HC_COMMAND, BCE_HC_COMMAND_CLR_STAT_NOW);
5281
5282         /* Verify that bootcode is running. */
5283         reg = bce_shmem_rd(sc, BCE_DEV_INFO_SIGNATURE);
5284
5285         DBRUNIF(DB_RANDOMTRUE(bootcode_running_failure_sim_control),
5286             BCE_PRINTF("%s(%d): Simulating bootcode failure.\n",
5287             __FILE__, __LINE__);
5288             reg = 0);
5289
5290         if ((reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
5291             BCE_DEV_INFO_SIGNATURE_MAGIC) {
5292                 BCE_PRINTF("%s(%d): Bootcode not running! Found: 0x%08X, "
5293                     "Expected: 08%08X\n", __FILE__, __LINE__,
5294                     (reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK),
5295                     BCE_DEV_INFO_SIGNATURE_MAGIC);
5296                 rc = ENODEV;
5297                 goto bce_blockinit_exit;
5298         }
5299
5300         /* Enable DMA */
5301         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5302                 val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL);
5303                 val |= BCE_MISC_NEW_CORE_CTL_DMA_ENABLE;
5304                 REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val);
5305         }
5306
5307         /* Allow bootcode to apply additional fixes before enabling MAC. */
5308         rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT2 |
5309             BCE_DRV_MSG_CODE_RESET);
5310
5311         /* Enable link state change interrupt generation. */
5312         REG_WR(sc, BCE_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
5313
5314         /* Enable the RXP. */
5315         bce_start_rxp_cpu(sc);
5316
5317         /* Disable management frames (NC-SI) from flowing to the MCP. */
5318         if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
5319                 val = REG_RD(sc, BCE_RPM_MGMT_PKT_CTRL) &
5320                     ~BCE_RPM_MGMT_PKT_CTRL_MGMT_EN;
5321                 REG_WR(sc, BCE_RPM_MGMT_PKT_CTRL, val);
5322         }
5323
5324         /* Enable all remaining blocks in the MAC. */
5325         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
5326                 REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
5327                     BCE_MISC_ENABLE_DEFAULT_XI);
5328         else
5329                 REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
5330                     BCE_MISC_ENABLE_DEFAULT);
5331
5332         REG_RD(sc, BCE_MISC_ENABLE_SET_BITS);
5333         DELAY(20);
5334
5335         /* Save the current host coalescing block settings. */
5336         sc->hc_command = REG_RD(sc, BCE_HC_COMMAND);
5337
5338 bce_blockinit_exit:
5339         DBEXIT(BCE_VERBOSE_RESET);
5340
5341         return (rc);
5342 }
5343
5344
5345 /****************************************************************************/
5346 /* Encapsulate an mbuf into the rx_bd chain.                                */
5347 /*                                                                          */
5348 /* Returns:                                                                 */
5349 /*   0 for success, positive value for failure.                             */
5350 /****************************************************************************/
5351 static int
5352 bce_get_rx_buf(struct bce_softc *sc, u16 prod, u16 chain_prod, u32 *prod_bseq)
5353 {
5354         bus_dma_segment_t segs[1];
5355         struct mbuf *m_new = NULL;
5356         struct rx_bd *rxbd;
5357         int nsegs, error, rc = 0;
5358 #ifdef BCE_DEBUG
5359         u16 debug_chain_prod = chain_prod;
5360 #endif
5361
5362         DBENTER(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5363
5364         /* Make sure the inputs are valid. */
5365         DBRUNIF((chain_prod > MAX_RX_BD_ALLOC),
5366             BCE_PRINTF("%s(%d): RX producer out of range: "
5367             "0x%04X > 0x%04X\n", __FILE__, __LINE__,
5368             chain_prod, (u16)MAX_RX_BD_ALLOC));
5369
5370         DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): prod = 0x%04X, "
5371             "chain_prod = 0x%04X, prod_bseq = 0x%08X\n", __FUNCTION__,
5372             prod, chain_prod, *prod_bseq);
5373
5374         /* Update some debug statistic counters */
5375         DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
5376             sc->rx_low_watermark = sc->free_rx_bd);
5377         DBRUNIF((sc->free_rx_bd == sc->max_rx_bd),
5378             sc->rx_empty_count++);
5379
5380         /* Simulate an mbuf allocation failure. */
5381         DBRUNIF(DB_RANDOMTRUE(mbuf_alloc_failed_sim_control),
5382             sc->mbuf_alloc_failed_count++;
5383             sc->mbuf_alloc_failed_sim_count++;
5384             rc = ENOBUFS;
5385             goto bce_get_rx_buf_exit);
5386
5387         /* This is a new mbuf allocation. */
5388         if (bce_hdr_split == TRUE)
5389                 MGETHDR(m_new, M_NOWAIT, MT_DATA);
5390         else
5391                 m_new = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR,
5392                     sc->rx_bd_mbuf_alloc_size);
5393
5394         if (m_new == NULL) {
5395                 sc->mbuf_alloc_failed_count++;
5396                 rc = ENOBUFS;
5397                 goto bce_get_rx_buf_exit;
5398         }
5399
5400         DBRUN(sc->debug_rx_mbuf_alloc++);
5401
5402         /* Make sure we have a valid packet header. */
5403         M_ASSERTPKTHDR(m_new);
5404
5405         /* Initialize the mbuf size and pad if necessary for alignment. */
5406         m_new->m_pkthdr.len = m_new->m_len = sc->rx_bd_mbuf_alloc_size;
5407         m_adj(m_new, sc->rx_bd_mbuf_align_pad);
5408
5409         /* ToDo: Consider calling m_fragment() to test error handling. */
5410
5411         /* Map the mbuf cluster into device memory. */
5412         error = bus_dmamap_load_mbuf_sg(sc->rx_mbuf_tag,
5413             sc->rx_mbuf_map[chain_prod], m_new, segs, &nsegs, BUS_DMA_NOWAIT);
5414
5415         /* Handle any mapping errors. */
5416         if (error) {
5417                 BCE_PRINTF("%s(%d): Error mapping mbuf into RX "
5418                     "chain (%d)!\n", __FILE__, __LINE__, error);
5419
5420                 sc->dma_map_addr_rx_failed_count++;
5421                 m_freem(m_new);
5422
5423                 DBRUN(sc->debug_rx_mbuf_alloc--);
5424
5425                 rc = ENOBUFS;
5426                 goto bce_get_rx_buf_exit;
5427         }
5428
5429         /* All mbufs must map to a single segment. */
5430         KASSERT(nsegs == 1, ("%s(): Too many segments returned (%d)!",
5431             __FUNCTION__, nsegs));
5432
5433         /* Setup the rx_bd for the segment. */
5434         rxbd = &sc->rx_bd_chain[RX_PAGE(chain_prod)][RX_IDX(chain_prod)];
5435
5436         rxbd->rx_bd_haddr_lo  = htole32(BCE_ADDR_LO(segs[0].ds_addr));
5437         rxbd->rx_bd_haddr_hi  = htole32(BCE_ADDR_HI(segs[0].ds_addr));
5438         rxbd->rx_bd_len       = htole32(segs[0].ds_len);
5439         rxbd->rx_bd_flags     = htole32(RX_BD_FLAGS_START | RX_BD_FLAGS_END);
5440         *prod_bseq += segs[0].ds_len;
5441
5442         /* Save the mbuf and update our counter. */
5443         sc->rx_mbuf_ptr[chain_prod] = m_new;
5444         sc->free_rx_bd -= nsegs;
5445
5446         DBRUNMSG(BCE_INSANE_RECV,
5447             bce_dump_rx_mbuf_chain(sc, debug_chain_prod, nsegs));
5448
5449         DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): prod = 0x%04X, "
5450             "chain_prod = 0x%04X, prod_bseq = 0x%08X\n", __FUNCTION__, prod,
5451             chain_prod, *prod_bseq);
5452
5453 bce_get_rx_buf_exit:
5454         DBEXIT(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5455
5456         return(rc);
5457 }
5458
5459
5460 /****************************************************************************/
5461 /* Encapsulate an mbuf cluster into the page chain.                         */
5462 /*                                                                          */
5463 /* Returns:                                                                 */
5464 /*   0 for success, positive value for failure.                             */
5465 /****************************************************************************/
5466 static int
5467 bce_get_pg_buf(struct bce_softc *sc, u16 prod, u16 prod_idx)
5468 {
5469         bus_dma_segment_t segs[1];
5470         struct mbuf *m_new = NULL;
5471         struct rx_bd *pgbd;
5472         int error, nsegs, rc = 0;
5473 #ifdef BCE_DEBUG
5474         u16 debug_prod_idx = prod_idx;
5475 #endif
5476
5477         DBENTER(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5478
5479         /* Make sure the inputs are valid. */
5480         DBRUNIF((prod_idx > MAX_PG_BD_ALLOC),
5481             BCE_PRINTF("%s(%d): page producer out of range: "
5482             "0x%04X > 0x%04X\n", __FILE__, __LINE__,
5483             prod_idx, (u16)MAX_PG_BD_ALLOC));
5484
5485         DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): prod = 0x%04X, "
5486             "chain_prod = 0x%04X\n", __FUNCTION__, prod, prod_idx);
5487
5488         /* Update counters if we've hit a new low or run out of pages. */
5489         DBRUNIF((sc->free_pg_bd < sc->pg_low_watermark),
5490             sc->pg_low_watermark = sc->free_pg_bd);
5491         DBRUNIF((sc->free_pg_bd == sc->max_pg_bd), sc->pg_empty_count++);
5492
5493         /* Simulate an mbuf allocation failure. */
5494         DBRUNIF(DB_RANDOMTRUE(mbuf_alloc_failed_sim_control),
5495             sc->mbuf_alloc_failed_count++;
5496             sc->mbuf_alloc_failed_sim_count++;
5497             rc = ENOBUFS;
5498             goto bce_get_pg_buf_exit);
5499
5500         /* This is a new mbuf allocation. */
5501         m_new = m_getcl(M_NOWAIT, MT_DATA, 0);
5502         if (m_new == NULL) {
5503                 sc->mbuf_alloc_failed_count++;
5504                 rc = ENOBUFS;
5505                 goto bce_get_pg_buf_exit;
5506         }
5507
5508         DBRUN(sc->debug_pg_mbuf_alloc++);
5509
5510         m_new->m_len = MCLBYTES;
5511
5512         /* ToDo: Consider calling m_fragment() to test error handling. */
5513
5514         /* Map the mbuf cluster into device memory. */
5515         error = bus_dmamap_load_mbuf_sg(sc->pg_mbuf_tag,
5516             sc->pg_mbuf_map[prod_idx], m_new, segs, &nsegs, BUS_DMA_NOWAIT);
5517
5518         /* Handle any mapping errors. */
5519         if (error) {
5520                 BCE_PRINTF("%s(%d): Error mapping mbuf into page chain!\n",
5521                     __FILE__, __LINE__);
5522
5523                 m_freem(m_new);
5524                 DBRUN(sc->debug_pg_mbuf_alloc--);
5525
5526                 rc = ENOBUFS;
5527                 goto bce_get_pg_buf_exit;
5528         }
5529
5530         /* All mbufs must map to a single segment. */
5531         KASSERT(nsegs == 1, ("%s(): Too many segments returned (%d)!",
5532             __FUNCTION__, nsegs));
5533
5534         /* ToDo: Do we need bus_dmamap_sync(,,BUS_DMASYNC_PREREAD) here? */
5535
5536         /*
5537          * The page chain uses the same rx_bd data structure
5538          * as the receive chain but doesn't require a byte sequence (bseq).
5539          */
5540         pgbd = &sc->pg_bd_chain[PG_PAGE(prod_idx)][PG_IDX(prod_idx)];
5541
5542         pgbd->rx_bd_haddr_lo  = htole32(BCE_ADDR_LO(segs[0].ds_addr));
5543         pgbd->rx_bd_haddr_hi  = htole32(BCE_ADDR_HI(segs[0].ds_addr));
5544         pgbd->rx_bd_len       = htole32(MCLBYTES);
5545         pgbd->rx_bd_flags     = htole32(RX_BD_FLAGS_START | RX_BD_FLAGS_END);
5546
5547         /* Save the mbuf and update our counter. */
5548         sc->pg_mbuf_ptr[prod_idx] = m_new;
5549         sc->free_pg_bd--;
5550
5551         DBRUNMSG(BCE_INSANE_RECV,
5552             bce_dump_pg_mbuf_chain(sc, debug_prod_idx, 1));
5553
5554         DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): prod = 0x%04X, "
5555             "prod_idx = 0x%04X\n", __FUNCTION__, prod, prod_idx);
5556
5557 bce_get_pg_buf_exit:
5558         DBEXIT(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5559
5560         return(rc);
5561 }
5562
5563
5564 /****************************************************************************/
5565 /* Initialize the TX context memory.                                        */
5566 /*                                                                          */
5567 /* Returns:                                                                 */
5568 /*   Nothing                                                                */
5569 /****************************************************************************/
5570 static void
5571 bce_init_tx_context(struct bce_softc *sc)
5572 {
5573         u32 val;
5574
5575         DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
5576
5577         /* Initialize the context ID for an L2 TX chain. */
5578         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5579                 /* Set the CID type to support an L2 connection. */
5580                 val = BCE_L2CTX_TX_TYPE_TYPE_L2_XI |
5581                     BCE_L2CTX_TX_TYPE_SIZE_L2_XI;
5582                 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE_XI, val);
5583                 val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2_XI | (8 << 16);
5584                 CTX_WR(sc, GET_CID_ADDR(TX_CID),
5585                     BCE_L2CTX_TX_CMD_TYPE_XI, val);
5586
5587                 /* Point the hardware to the first page in the chain. */
5588                 val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]);
5589                 CTX_WR(sc, GET_CID_ADDR(TX_CID),
5590                     BCE_L2CTX_TX_TBDR_BHADDR_HI_XI, val);
5591                 val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]);
5592                 CTX_WR(sc, GET_CID_ADDR(TX_CID),
5593                     BCE_L2CTX_TX_TBDR_BHADDR_LO_XI, val);
5594         } else {
5595                 /* Set the CID type to support an L2 connection. */
5596                 val = BCE_L2CTX_TX_TYPE_TYPE_L2 | BCE_L2CTX_TX_TYPE_SIZE_L2;
5597                 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE, val);
5598                 val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2 | (8 << 16);
5599                 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_CMD_TYPE, val);
5600
5601                 /* Point the hardware to the first page in the chain. */
5602                 val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]);
5603                 CTX_WR(sc, GET_CID_ADDR(TX_CID),
5604                     BCE_L2CTX_TX_TBDR_BHADDR_HI, val);
5605                 val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]);
5606                 CTX_WR(sc, GET_CID_ADDR(TX_CID),
5607                     BCE_L2CTX_TX_TBDR_BHADDR_LO, val);
5608         }
5609
5610         DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
5611 }
5612
5613
5614 /****************************************************************************/
5615 /* Allocate memory and initialize the TX data structures.                   */
5616 /*                                                                          */
5617 /* Returns:                                                                 */
5618 /*   0 for success, positive value for failure.                             */
5619 /****************************************************************************/
5620 static int
5621 bce_init_tx_chain(struct bce_softc *sc)
5622 {
5623         struct tx_bd *txbd;
5624         int i, rc = 0;
5625
5626         DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_LOAD);
5627
5628         /* Set the initial TX producer/consumer indices. */
5629         sc->tx_prod        = 0;
5630         sc->tx_cons        = 0;
5631         sc->tx_prod_bseq   = 0;
5632         sc->used_tx_bd     = 0;
5633         sc->max_tx_bd      = USABLE_TX_BD_ALLOC;
5634         DBRUN(sc->tx_hi_watermark = 0);
5635         DBRUN(sc->tx_full_count = 0);
5636
5637         /*
5638          * The NetXtreme II supports a linked-list structre called
5639          * a Buffer Descriptor Chain (or BD chain).  A BD chain
5640          * consists of a series of 1 or more chain pages, each of which
5641          * consists of a fixed number of BD entries.
5642          * The last BD entry on each page is a pointer to the next page
5643          * in the chain, and the last pointer in the BD chain
5644          * points back to the beginning of the chain.
5645          */
5646
5647         /* Set the TX next pointer chain entries. */
5648         for (i = 0; i < sc->tx_pages; i++) {
5649                 int j;
5650
5651                 txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
5652
5653                 /* Check if we've reached the last page. */
5654                 if (i == (sc->tx_pages - 1))
5655                         j = 0;
5656                 else
5657                         j = i + 1;
5658
5659                 txbd->tx_bd_haddr_hi =
5660                     htole32(BCE_ADDR_HI(sc->tx_bd_chain_paddr[j]));
5661                 txbd->tx_bd_haddr_lo =
5662                     htole32(BCE_ADDR_LO(sc->tx_bd_chain_paddr[j]));
5663         }
5664
5665         bce_init_tx_context(sc);
5666
5667         DBRUNMSG(BCE_INSANE_SEND, bce_dump_tx_chain(sc, 0, TOTAL_TX_BD_ALLOC));
5668         DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_LOAD);
5669
5670         return(rc);
5671 }
5672
5673
5674 /****************************************************************************/
5675 /* Free memory and clear the TX data structures.                            */
5676 /*                                                                          */
5677 /* Returns:                                                                 */
5678 /*   Nothing.                                                               */
5679 /****************************************************************************/
5680 static void
5681 bce_free_tx_chain(struct bce_softc *sc)
5682 {
5683         int i;
5684
5685         DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_UNLOAD);
5686
5687         /* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
5688         for (i = 0; i < MAX_TX_BD_AVAIL; i++) {
5689                 if (sc->tx_mbuf_ptr[i] != NULL) {
5690                         if (sc->tx_mbuf_map[i] != NULL)
5691                                 bus_dmamap_sync(sc->tx_mbuf_tag,
5692                                     sc->tx_mbuf_map[i],
5693                                     BUS_DMASYNC_POSTWRITE);
5694                         m_freem(sc->tx_mbuf_ptr[i]);
5695                         sc->tx_mbuf_ptr[i] = NULL;
5696                         DBRUN(sc->debug_tx_mbuf_alloc--);
5697                 }
5698         }
5699
5700         /* Clear each TX chain page. */
5701         for (i = 0; i < sc->tx_pages; i++)
5702                 bzero((char *)sc->tx_bd_chain[i], BCE_TX_CHAIN_PAGE_SZ);
5703
5704         sc->used_tx_bd = 0;
5705
5706         /* Check if we lost any mbufs in the process. */
5707         DBRUNIF((sc->debug_tx_mbuf_alloc),
5708             BCE_PRINTF("%s(%d): Memory leak! Lost %d mbufs "
5709             "from tx chain!\n", __FILE__, __LINE__,
5710             sc->debug_tx_mbuf_alloc));
5711
5712         DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_UNLOAD);
5713 }
5714
5715
5716 /****************************************************************************/
5717 /* Initialize the RX context memory.                                        */
5718 /*                                                                          */
5719 /* Returns:                                                                 */
5720 /*   Nothing                                                                */
5721 /****************************************************************************/
5722 static void
5723 bce_init_rx_context(struct bce_softc *sc)
5724 {
5725         u32 val;
5726
5727         DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_CTX);
5728
5729         /* Init the type, size, and BD cache levels for the RX context. */
5730         val = BCE_L2CTX_RX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
5731             BCE_L2CTX_RX_CTX_TYPE_SIZE_L2 |
5732             (0x02 << BCE_L2CTX_RX_BD_PRE_READ_SHIFT);
5733
5734         /*
5735          * Set the level for generating pause frames
5736          * when the number of available rx_bd's gets
5737          * too low (the low watermark) and the level
5738          * when pause frames can be stopped (the high
5739          * watermark).
5740          */
5741         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5742                 u32 lo_water, hi_water;
5743
5744                 if (sc->bce_flags & BCE_USING_TX_FLOW_CONTROL) {
5745                         lo_water = BCE_L2CTX_RX_LO_WATER_MARK_DEFAULT;
5746                 } else {
5747                         lo_water = 0;
5748                 }
5749
5750                 if (lo_water >= USABLE_RX_BD_ALLOC) {
5751                         lo_water = 0;
5752                 }
5753
5754                 hi_water = USABLE_RX_BD_ALLOC / 4;
5755
5756                 if (hi_water <= lo_water) {
5757                         lo_water = 0;
5758                 }
5759
5760                 lo_water /= BCE_L2CTX_RX_LO_WATER_MARK_SCALE;
5761                 hi_water /= BCE_L2CTX_RX_HI_WATER_MARK_SCALE;
5762
5763                 if (hi_water > 0xf)
5764                         hi_water = 0xf;
5765                 else if (hi_water == 0)
5766                         lo_water = 0;
5767
5768                 val |= (lo_water << BCE_L2CTX_RX_LO_WATER_MARK_SHIFT) |
5769                     (hi_water << BCE_L2CTX_RX_HI_WATER_MARK_SHIFT);
5770         }
5771
5772         CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_CTX_TYPE, val);
5773
5774         /* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
5775         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5776                 val = REG_RD(sc, BCE_MQ_MAP_L2_5);
5777                 REG_WR(sc, BCE_MQ_MAP_L2_5, val | BCE_MQ_MAP_L2_5_ARM);
5778         }
5779
5780         /* Point the hardware to the first page in the chain. */
5781         val = BCE_ADDR_HI(sc->rx_bd_chain_paddr[0]);
5782         CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_HI, val);
5783         val = BCE_ADDR_LO(sc->rx_bd_chain_paddr[0]);
5784         CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_LO, val);
5785
5786         DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_CTX);
5787 }
5788
5789
5790 /****************************************************************************/
5791 /* Allocate memory and initialize the RX data structures.                   */
5792 /*                                                                          */
5793 /* Returns:                                                                 */
5794 /*   0 for success, positive value for failure.                             */
5795 /****************************************************************************/
5796 static int
5797 bce_init_rx_chain(struct bce_softc *sc)
5798 {
5799         struct rx_bd *rxbd;
5800         int i, rc = 0;
5801
5802         DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5803             BCE_VERBOSE_CTX);
5804
5805         /* Initialize the RX producer and consumer indices. */
5806         sc->rx_prod        = 0;
5807         sc->rx_cons        = 0;
5808         sc->rx_prod_bseq   = 0;
5809         sc->free_rx_bd     = USABLE_RX_BD_ALLOC;
5810         sc->max_rx_bd      = USABLE_RX_BD_ALLOC;
5811
5812         /* Initialize the RX next pointer chain entries. */
5813         for (i = 0; i < sc->rx_pages; i++) {
5814                 int j;
5815
5816                 rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
5817
5818                 /* Check if we've reached the last page. */
5819                 if (i == (sc->rx_pages - 1))
5820                         j = 0;
5821                 else
5822                         j = i + 1;
5823
5824                 /* Setup the chain page pointers. */
5825                 rxbd->rx_bd_haddr_hi =
5826                     htole32(BCE_ADDR_HI(sc->rx_bd_chain_paddr[j]));
5827                 rxbd->rx_bd_haddr_lo =
5828                     htole32(BCE_ADDR_LO(sc->rx_bd_chain_paddr[j]));
5829         }
5830
5831         /* Fill up the RX chain. */
5832         bce_fill_rx_chain(sc);
5833
5834         DBRUN(sc->rx_low_watermark = USABLE_RX_BD_ALLOC);
5835         DBRUN(sc->rx_empty_count = 0);
5836         for (i = 0; i < sc->rx_pages; i++) {
5837                 bus_dmamap_sync(sc->rx_bd_chain_tag, sc->rx_bd_chain_map[i],
5838                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
5839         }
5840
5841         bce_init_rx_context(sc);
5842
5843         DBRUNMSG(BCE_EXTREME_RECV,
5844             bce_dump_rx_bd_chain(sc, 0, TOTAL_RX_BD_ALLOC));
5845         DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5846             BCE_VERBOSE_CTX);
5847
5848         /* ToDo: Are there possible failure modes here? */
5849
5850         return(rc);
5851 }
5852
5853
5854 /****************************************************************************/
5855 /* Add mbufs to the RX chain until its full or an mbuf allocation error     */
5856 /* occurs.                                                                  */
5857 /*                                                                          */
5858 /* Returns:                                                                 */
5859 /*   Nothing                                                                */
5860 /****************************************************************************/
5861 static void
5862 bce_fill_rx_chain(struct bce_softc *sc)
5863 {
5864         u16 prod, prod_idx;
5865         u32 prod_bseq;
5866
5867         DBENTER(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
5868             BCE_VERBOSE_CTX);
5869
5870         /* Get the RX chain producer indices. */
5871         prod      = sc->rx_prod;
5872         prod_bseq = sc->rx_prod_bseq;
5873
5874         /* Keep filling the RX chain until it's full. */
5875         while (sc->free_rx_bd > 0) {
5876                 prod_idx = RX_CHAIN_IDX(prod);
5877                 if (bce_get_rx_buf(sc, prod, prod_idx, &prod_bseq)) {
5878                         /* Bail out if we can't add an mbuf to the chain. */
5879                         break;
5880                 }
5881                 prod = NEXT_RX_BD(prod);
5882         }
5883
5884         /* Save the RX chain producer indices. */
5885         sc->rx_prod      = prod;
5886         sc->rx_prod_bseq = prod_bseq;
5887
5888         /* We should never end up pointing to a next page pointer. */
5889         DBRUNIF(((prod & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE),
5890             BCE_PRINTF("%s(): Invalid rx_prod value: 0x%04X\n",
5891             __FUNCTION__, rx_prod));
5892
5893         /* Write the mailbox and tell the chip about the waiting rx_bd's. */
5894         REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_BDIDX, prod);
5895         REG_WR(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_BSEQ, prod_bseq);
5896
5897         DBEXIT(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
5898             BCE_VERBOSE_CTX);
5899 }
5900
5901
5902 /****************************************************************************/
5903 /* Free memory and clear the RX data structures.                            */
5904 /*                                                                          */
5905 /* Returns:                                                                 */
5906 /*   Nothing.                                                               */
5907 /****************************************************************************/
5908 static void
5909 bce_free_rx_chain(struct bce_softc *sc)
5910 {
5911         int i;
5912
5913         DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
5914
5915         /* Free any mbufs still in the RX mbuf chain. */
5916         for (i = 0; i < MAX_RX_BD_AVAIL; i++) {
5917                 if (sc->rx_mbuf_ptr[i] != NULL) {
5918                         if (sc->rx_mbuf_map[i] != NULL)
5919                                 bus_dmamap_sync(sc->rx_mbuf_tag,
5920                                     sc->rx_mbuf_map[i],
5921                                     BUS_DMASYNC_POSTREAD);
5922                         m_freem(sc->rx_mbuf_ptr[i]);
5923                         sc->rx_mbuf_ptr[i] = NULL;
5924                         DBRUN(sc->debug_rx_mbuf_alloc--);
5925                 }
5926         }
5927
5928         /* Clear each RX chain page. */
5929         for (i = 0; i < sc->rx_pages; i++)
5930                 if (sc->rx_bd_chain[i] != NULL)
5931                         bzero((char *)sc->rx_bd_chain[i],
5932                             BCE_RX_CHAIN_PAGE_SZ);
5933
5934         sc->free_rx_bd = sc->max_rx_bd;
5935
5936         /* Check if we lost any mbufs in the process. */
5937         DBRUNIF((sc->debug_rx_mbuf_alloc),
5938             BCE_PRINTF("%s(): Memory leak! Lost %d mbufs from rx chain!\n",
5939             __FUNCTION__, sc->debug_rx_mbuf_alloc));
5940
5941         DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
5942 }
5943
5944
5945 /****************************************************************************/
5946 /* Allocate memory and initialize the page data structures.                 */
5947 /* Assumes that bce_init_rx_chain() has not already been called.            */
5948 /*                                                                          */
5949 /* Returns:                                                                 */
5950 /*   0 for success, positive value for failure.                             */
5951 /****************************************************************************/
5952 static int
5953 bce_init_pg_chain(struct bce_softc *sc)
5954 {
5955         struct rx_bd *pgbd;
5956         int i, rc = 0;
5957         u32 val;
5958
5959         DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5960                 BCE_VERBOSE_CTX);
5961
5962         /* Initialize the page producer and consumer indices. */
5963         sc->pg_prod        = 0;
5964         sc->pg_cons        = 0;
5965         sc->free_pg_bd     = USABLE_PG_BD_ALLOC;
5966         sc->max_pg_bd      = USABLE_PG_BD_ALLOC;
5967         DBRUN(sc->pg_low_watermark = sc->max_pg_bd);
5968         DBRUN(sc->pg_empty_count = 0);
5969
5970         /* Initialize the page next pointer chain entries. */
5971         for (i = 0; i < sc->pg_pages; i++) {
5972                 int j;
5973
5974                 pgbd = &sc->pg_bd_chain[i][USABLE_PG_BD_PER_PAGE];
5975
5976                 /* Check if we've reached the last page. */
5977                 if (i == (sc->pg_pages - 1))
5978                         j = 0;
5979                 else
5980                         j = i + 1;
5981
5982                 /* Setup the chain page pointers. */
5983                 pgbd->rx_bd_haddr_hi =
5984                     htole32(BCE_ADDR_HI(sc->pg_bd_chain_paddr[j]));
5985                 pgbd->rx_bd_haddr_lo =
5986                     htole32(BCE_ADDR_LO(sc->pg_bd_chain_paddr[j]));
5987         }
5988
5989         /* Setup the MQ BIN mapping for host_pg_bidx. */
5990         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
5991                 REG_WR(sc, BCE_MQ_MAP_L2_3, BCE_MQ_MAP_L2_3_DEFAULT);
5992
5993         CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_PG_BUF_SIZE, 0);
5994
5995         /* Configure the rx_bd and page chain mbuf cluster size. */
5996         val = (sc->rx_bd_mbuf_data_len << 16) | MCLBYTES;
5997         CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_PG_BUF_SIZE, val);
5998
5999         /* Configure the context reserved for jumbo support. */
6000         CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_RBDC_KEY,
6001                 BCE_L2CTX_RX_RBDC_JUMBO_KEY);
6002
6003         /* Point the hardware to the first page in the page chain. */
6004         val = BCE_ADDR_HI(sc->pg_bd_chain_paddr[0]);
6005         CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_PG_BDHADDR_HI, val);
6006         val = BCE_ADDR_LO(sc->pg_bd_chain_paddr[0]);
6007         CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_PG_BDHADDR_LO, val);
6008
6009         /* Fill up the page chain. */
6010         bce_fill_pg_chain(sc);
6011
6012         for (i = 0; i < sc->pg_pages; i++) {
6013                 bus_dmamap_sync(sc->pg_bd_chain_tag, sc->pg_bd_chain_map[i],
6014                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
6015         }
6016
6017         DBRUNMSG(BCE_EXTREME_RECV,
6018             bce_dump_pg_chain(sc, 0, TOTAL_PG_BD_ALLOC));
6019         DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
6020                 BCE_VERBOSE_CTX);
6021         return(rc);
6022 }
6023
6024
6025 /****************************************************************************/
6026 /* Add mbufs to the page chain until its full or an mbuf allocation error   */
6027 /* occurs.                                                                  */
6028 /*                                                                          */
6029 /* Returns:                                                                 */
6030 /*   Nothing                                                                */
6031 /****************************************************************************/
6032 static void
6033 bce_fill_pg_chain(struct bce_softc *sc)
6034 {
6035         u16 prod, prod_idx;
6036
6037         DBENTER(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
6038             BCE_VERBOSE_CTX);
6039
6040         /* Get the page chain prodcuer index. */
6041         prod = sc->pg_prod;
6042
6043         /* Keep filling the page chain until it's full. */
6044         while (sc->free_pg_bd > 0) {
6045                 prod_idx = PG_CHAIN_IDX(prod);
6046                 if (bce_get_pg_buf(sc, prod, prod_idx)) {
6047                         /* Bail out if we can't add an mbuf to the chain. */
6048                         break;
6049                 }
6050                 prod = NEXT_PG_BD(prod);
6051         }
6052
6053         /* Save the page chain producer index. */
6054         sc->pg_prod = prod;
6055
6056         DBRUNIF(((prod & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE),
6057             BCE_PRINTF("%s(): Invalid pg_prod value: 0x%04X\n",
6058             __FUNCTION__, pg_prod));
6059
6060         /*
6061          * Write the mailbox and tell the chip about
6062          * the new rx_bd's in the page chain.
6063          */
6064         REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_PG_BDIDX,
6065             prod);
6066
6067         DBEXIT(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
6068             BCE_VERBOSE_CTX);
6069 }
6070
6071
6072 /****************************************************************************/
6073 /* Free memory and clear the RX data structures.                            */
6074 /*                                                                          */
6075 /* Returns:                                                                 */
6076 /*   Nothing.                                                               */
6077 /****************************************************************************/
6078 static void
6079 bce_free_pg_chain(struct bce_softc *sc)
6080 {
6081         int i;
6082
6083         DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
6084
6085         /* Free any mbufs still in the mbuf page chain. */
6086         for (i = 0; i < MAX_PG_BD_AVAIL; i++) {
6087                 if (sc->pg_mbuf_ptr[i] != NULL) {
6088                         if (sc->pg_mbuf_map[i] != NULL)
6089                                 bus_dmamap_sync(sc->pg_mbuf_tag,
6090                                     sc->pg_mbuf_map[i],
6091                                     BUS_DMASYNC_POSTREAD);
6092                         m_freem(sc->pg_mbuf_ptr[i]);
6093                         sc->pg_mbuf_ptr[i] = NULL;
6094                         DBRUN(sc->debug_pg_mbuf_alloc--);
6095                 }
6096         }
6097
6098         /* Clear each page chain pages. */
6099         for (i = 0; i < sc->pg_pages; i++)
6100                 bzero((char *)sc->pg_bd_chain[i], BCE_PG_CHAIN_PAGE_SZ);
6101
6102         sc->free_pg_bd = sc->max_pg_bd;
6103
6104         /* Check if we lost any mbufs in the process. */
6105         DBRUNIF((sc->debug_pg_mbuf_alloc),
6106             BCE_PRINTF("%s(): Memory leak! Lost %d mbufs from page chain!\n",
6107             __FUNCTION__, sc->debug_pg_mbuf_alloc));
6108
6109         DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
6110 }
6111
6112
6113 static u32
6114 bce_get_rphy_link(struct bce_softc *sc)
6115 {
6116         u32 advertise, link;
6117         int fdpx;
6118
6119         advertise = 0;
6120         fdpx = 0;
6121         if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) != 0)
6122                 link = bce_shmem_rd(sc, BCE_RPHY_SERDES_LINK);
6123         else
6124                 link = bce_shmem_rd(sc, BCE_RPHY_COPPER_LINK);
6125         if (link & BCE_NETLINK_ANEG_ENB)
6126                 advertise |= BCE_NETLINK_ANEG_ENB;
6127         if (link & BCE_NETLINK_SPEED_10HALF)
6128                 advertise |= BCE_NETLINK_SPEED_10HALF;
6129         if (link & BCE_NETLINK_SPEED_10FULL) {
6130                 advertise |= BCE_NETLINK_SPEED_10FULL;
6131                 fdpx++;
6132         }
6133         if (link & BCE_NETLINK_SPEED_100HALF)
6134                 advertise |= BCE_NETLINK_SPEED_100HALF;
6135         if (link & BCE_NETLINK_SPEED_100FULL) {
6136                 advertise |= BCE_NETLINK_SPEED_100FULL;
6137                 fdpx++;
6138         }
6139         if (link & BCE_NETLINK_SPEED_1000HALF)
6140                 advertise |= BCE_NETLINK_SPEED_1000HALF;
6141         if (link & BCE_NETLINK_SPEED_1000FULL) {
6142                 advertise |= BCE_NETLINK_SPEED_1000FULL;
6143                 fdpx++;
6144         }
6145         if (link & BCE_NETLINK_SPEED_2500HALF)
6146                 advertise |= BCE_NETLINK_SPEED_2500HALF;
6147         if (link & BCE_NETLINK_SPEED_2500FULL) {
6148                 advertise |= BCE_NETLINK_SPEED_2500FULL;
6149                 fdpx++;
6150         }
6151         if (fdpx)
6152                 advertise |= BCE_NETLINK_FC_PAUSE_SYM |
6153                     BCE_NETLINK_FC_PAUSE_ASYM;
6154         if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
6155                 advertise |= BCE_NETLINK_PHY_APP_REMOTE |
6156                     BCE_NETLINK_ETH_AT_WIRESPEED;
6157
6158         return (advertise);
6159 }
6160
6161
6162 /****************************************************************************/
6163 /* Set media options.                                                       */
6164 /*                                                                          */
6165 /* Returns:                                                                 */
6166 /*   0 for success, positive value for failure.                             */
6167 /****************************************************************************/
6168 static int
6169 bce_ifmedia_upd(struct ifnet *ifp)
6170 {
6171         struct bce_softc *sc = ifp->if_softc;
6172         int error;
6173
6174         DBENTER(BCE_VERBOSE);
6175
6176         BCE_LOCK(sc);
6177         error = bce_ifmedia_upd_locked(ifp);
6178         BCE_UNLOCK(sc);
6179
6180         DBEXIT(BCE_VERBOSE);
6181         return (error);
6182 }
6183
6184
6185 /****************************************************************************/
6186 /* Set media options.                                                       */
6187 /*                                                                          */
6188 /* Returns:                                                                 */
6189 /*   Nothing.                                                               */
6190 /****************************************************************************/
6191 static int
6192 bce_ifmedia_upd_locked(struct ifnet *ifp)
6193 {
6194         struct bce_softc *sc = ifp->if_softc;
6195         struct mii_data *mii;
6196         struct mii_softc *miisc;
6197         struct ifmedia *ifm;
6198         u32 link;
6199         int error, fdx;
6200
6201         DBENTER(BCE_VERBOSE_PHY);
6202
6203         error = 0;
6204         BCE_LOCK_ASSERT(sc);
6205
6206         sc->bce_link_up = FALSE;
6207         if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
6208                 ifm = &sc->bce_ifmedia;
6209                 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
6210                         return (EINVAL);
6211                 link = 0;
6212                 fdx = IFM_OPTIONS(ifm->ifm_media) & IFM_FDX;
6213                 switch(IFM_SUBTYPE(ifm->ifm_media)) {
6214                 case IFM_AUTO:
6215                         /*
6216                          * Check advertised link of remote PHY by reading
6217                          * BCE_RPHY_SERDES_LINK or BCE_RPHY_COPPER_LINK.
6218                          * Always use the same link type of remote PHY.
6219                          */
6220                         link = bce_get_rphy_link(sc);
6221                         break;
6222                 case IFM_2500_SX:
6223                         if ((sc->bce_phy_flags &
6224                             (BCE_PHY_REMOTE_PORT_FIBER_FLAG |
6225                             BCE_PHY_2_5G_CAPABLE_FLAG)) == 0)
6226                                 return (EINVAL);
6227                         /*
6228                          * XXX
6229                          * Have to enable forced 2.5Gbps configuration.
6230                          */
6231                         if (fdx != 0)
6232                                 link |= BCE_NETLINK_SPEED_2500FULL;
6233                         else
6234                                 link |= BCE_NETLINK_SPEED_2500HALF;
6235                         break;
6236                 case IFM_1000_SX:
6237                         if ((sc->bce_phy_flags &
6238                             BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
6239                                 return (EINVAL);
6240                         /*
6241                          * XXX
6242                          * Have to disable 2.5Gbps configuration.
6243                          */
6244                         if (fdx != 0)
6245                                 link = BCE_NETLINK_SPEED_1000FULL;
6246                         else
6247                                 link = BCE_NETLINK_SPEED_1000HALF;
6248                         break;
6249                 case IFM_1000_T:
6250                         if (sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG)
6251                                 return (EINVAL);
6252                         if (fdx != 0)
6253                                 link = BCE_NETLINK_SPEED_1000FULL;
6254                         else
6255                                 link = BCE_NETLINK_SPEED_1000HALF;
6256                         break;
6257                 case IFM_100_TX:
6258                         if (sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG)
6259                                 return (EINVAL);
6260                         if (fdx != 0)
6261                                 link = BCE_NETLINK_SPEED_100FULL;
6262                         else
6263                                 link = BCE_NETLINK_SPEED_100HALF;
6264                         break;
6265                 case IFM_10_T:
6266                         if (sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG)
6267                                 return (EINVAL);
6268                         if (fdx != 0)
6269                                 link = BCE_NETLINK_SPEED_10FULL;
6270                         else
6271                                 link = BCE_NETLINK_SPEED_10HALF;
6272                         break;
6273                 default:
6274                         return (EINVAL);
6275                 }
6276                 if (IFM_SUBTYPE(ifm->ifm_media) != IFM_AUTO) {
6277                         /*
6278                          * XXX
6279                          * Advertise pause capability for full-duplex media.
6280                          */
6281                         if (fdx != 0)
6282                                 link |= BCE_NETLINK_FC_PAUSE_SYM |
6283                                     BCE_NETLINK_FC_PAUSE_ASYM;
6284                         if ((sc->bce_phy_flags &
6285                             BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
6286                                 link |= BCE_NETLINK_PHY_APP_REMOTE |
6287                                     BCE_NETLINK_ETH_AT_WIRESPEED;
6288                 }
6289
6290                 bce_shmem_wr(sc, BCE_MB_ARGS_0, link);
6291                 error = bce_fw_sync(sc, BCE_DRV_MSG_CODE_CMD_SET_LINK);
6292         } else {
6293                 mii = device_get_softc(sc->bce_miibus);
6294
6295                 /* Make sure the MII bus has been enumerated. */
6296                 if (mii) {
6297                         LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
6298                                 PHY_RESET(miisc);
6299                         error = mii_mediachg(mii);
6300                 }
6301         }
6302
6303         DBEXIT(BCE_VERBOSE_PHY);
6304         return (error);
6305 }
6306
6307
6308 static void
6309 bce_ifmedia_sts_rphy(struct bce_softc *sc, struct ifmediareq *ifmr)
6310 {
6311         struct ifnet *ifp;
6312         u32 link;
6313
6314         ifp = sc->bce_ifp;
6315         BCE_LOCK_ASSERT(sc);
6316
6317         ifmr->ifm_status = IFM_AVALID;
6318         ifmr->ifm_active = IFM_ETHER;
6319         link = bce_shmem_rd(sc, BCE_LINK_STATUS);
6320         /* XXX Handle heart beat status? */
6321         if ((link & BCE_LINK_STATUS_LINK_UP) != 0)
6322                 ifmr->ifm_status |= IFM_ACTIVE;
6323         else {
6324                 ifmr->ifm_active |= IFM_NONE;
6325                 ifp->if_baudrate = 0;
6326                 return;
6327         }
6328         switch (link & BCE_LINK_STATUS_SPEED_MASK) {
6329         case BCE_LINK_STATUS_10HALF:
6330                 ifmr->ifm_active |= IFM_10_T | IFM_HDX;
6331                 ifp->if_baudrate = IF_Mbps(10UL);
6332                 break;
6333         case BCE_LINK_STATUS_10FULL:
6334                 ifmr->ifm_active |= IFM_10_T | IFM_FDX;
6335                 ifp->if_baudrate = IF_Mbps(10UL);
6336                 break;
6337         case BCE_LINK_STATUS_100HALF:
6338                 ifmr->ifm_active |= IFM_100_TX | IFM_HDX;
6339                 ifp->if_baudrate = IF_Mbps(100UL);
6340                 break;
6341         case BCE_LINK_STATUS_100FULL:
6342                 ifmr->ifm_active |= IFM_100_TX | IFM_FDX;
6343                 ifp->if_baudrate = IF_Mbps(100UL);
6344                 break;
6345         case BCE_LINK_STATUS_1000HALF:
6346                 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
6347                         ifmr->ifm_active |= IFM_1000_T | IFM_HDX;
6348                 else
6349                         ifmr->ifm_active |= IFM_1000_SX | IFM_HDX;
6350                 ifp->if_baudrate = IF_Mbps(1000UL);
6351                 break;
6352         case BCE_LINK_STATUS_1000FULL:
6353                 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
6354                         ifmr->ifm_active |= IFM_1000_T | IFM_FDX;
6355                 else
6356                         ifmr->ifm_active |= IFM_1000_SX | IFM_FDX;
6357                 ifp->if_baudrate = IF_Mbps(1000UL);
6358                 break;
6359         case BCE_LINK_STATUS_2500HALF:
6360                 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0) {
6361                         ifmr->ifm_active |= IFM_NONE;
6362                         return;
6363                 } else
6364                         ifmr->ifm_active |= IFM_2500_SX | IFM_HDX;
6365                 ifp->if_baudrate = IF_Mbps(2500UL);
6366                 break;
6367         case BCE_LINK_STATUS_2500FULL:
6368                 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0) {
6369                         ifmr->ifm_active |= IFM_NONE;
6370                         return;
6371                 } else
6372                         ifmr->ifm_active |= IFM_2500_SX | IFM_FDX;
6373                 ifp->if_baudrate = IF_Mbps(2500UL);
6374                 break;
6375         default:
6376                 ifmr->ifm_active |= IFM_NONE;
6377                 return;
6378         }
6379
6380         if ((link & BCE_LINK_STATUS_RX_FC_ENABLED) != 0)
6381                 ifmr->ifm_active |= IFM_ETH_RXPAUSE;
6382         if ((link & BCE_LINK_STATUS_TX_FC_ENABLED) != 0)
6383                 ifmr->ifm_active |= IFM_ETH_TXPAUSE;
6384 }
6385
6386
6387 /****************************************************************************/
6388 /* Reports current media status.                                            */
6389 /*                                                                          */
6390 /* Returns:                                                                 */
6391 /*   Nothing.                                                               */
6392 /****************************************************************************/
6393 static void
6394 bce_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
6395 {
6396         struct bce_softc *sc = ifp->if_softc;
6397         struct mii_data *mii;
6398
6399         DBENTER(BCE_VERBOSE_PHY);
6400
6401         BCE_LOCK(sc);
6402
6403         if ((ifp->if_flags & IFF_UP) == 0) {
6404                 BCE_UNLOCK(sc);
6405                 return;
6406         }
6407
6408         if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0)
6409                 bce_ifmedia_sts_rphy(sc, ifmr);
6410         else {
6411                 mii = device_get_softc(sc->bce_miibus);
6412                 mii_pollstat(mii);
6413                 ifmr->ifm_active = mii->mii_media_active;
6414                 ifmr->ifm_status = mii->mii_media_status;
6415         }
6416
6417         BCE_UNLOCK(sc);
6418
6419         DBEXIT(BCE_VERBOSE_PHY);
6420 }
6421
6422
6423 /****************************************************************************/
6424 /* Handles PHY generated interrupt events.                                  */
6425 /*                                                                          */
6426 /* Returns:                                                                 */
6427 /*   Nothing.                                                               */
6428 /****************************************************************************/
6429 static void
6430 bce_phy_intr(struct bce_softc *sc)
6431 {
6432         u32 new_link_state, old_link_state;
6433
6434         DBENTER(BCE_VERBOSE_PHY | BCE_VERBOSE_INTR);
6435
6436         DBRUN(sc->phy_interrupts++);
6437
6438         new_link_state = sc->status_block->status_attn_bits &
6439             STATUS_ATTN_BITS_LINK_STATE;
6440         old_link_state = sc->status_block->status_attn_bits_ack &
6441             STATUS_ATTN_BITS_LINK_STATE;
6442
6443         /* Handle any changes if the link state has changed. */
6444         if (new_link_state != old_link_state) {
6445
6446                 /* Update the status_attn_bits_ack field. */
6447                 if (new_link_state) {
6448                         REG_WR(sc, BCE_PCICFG_STATUS_BIT_SET_CMD,
6449                             STATUS_ATTN_BITS_LINK_STATE);
6450                         DBPRINT(sc, BCE_INFO_PHY, "%s(): Link is now UP.\n",
6451                             __FUNCTION__);
6452                 } else {
6453                         REG_WR(sc, BCE_PCICFG_STATUS_BIT_CLEAR_CMD,
6454                             STATUS_ATTN_BITS_LINK_STATE);
6455                         DBPRINT(sc, BCE_INFO_PHY, "%s(): Link is now DOWN.\n",
6456                             __FUNCTION__);
6457                 }
6458
6459                 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
6460                         if (new_link_state) {
6461                                 if (bootverbose)
6462                                         if_printf(sc->bce_ifp, "link UP\n");
6463                                 if_link_state_change(sc->bce_ifp,
6464                                     LINK_STATE_UP);
6465                         } else {
6466                                 if (bootverbose)
6467                                         if_printf(sc->bce_ifp, "link DOWN\n");
6468                                 if_link_state_change(sc->bce_ifp,
6469                                     LINK_STATE_DOWN);
6470                         }
6471                 }
6472                 /*
6473                  * Assume link is down and allow
6474                  * tick routine to update the state
6475                  * based on the actual media state.
6476                  */
6477                 sc->bce_link_up = FALSE;
6478                 callout_stop(&sc->bce_tick_callout);
6479                 bce_tick(sc);
6480         }
6481
6482         /* Acknowledge the link change interrupt. */
6483         REG_WR(sc, BCE_EMAC_STATUS, BCE_EMAC_STATUS_LINK_CHANGE);
6484
6485         DBEXIT(BCE_VERBOSE_PHY | BCE_VERBOSE_INTR);
6486 }
6487
6488
6489 /****************************************************************************/
6490 /* Reads the receive consumer value from the status block (skipping over    */
6491 /* chain page pointer if necessary).                                        */
6492 /*                                                                          */
6493 /* Returns:                                                                 */
6494 /*   hw_cons                                                                */
6495 /****************************************************************************/
6496 static inline u16
6497 bce_get_hw_rx_cons(struct bce_softc *sc)
6498 {
6499         u16 hw_cons;
6500
6501         rmb();
6502         hw_cons = sc->status_block->status_rx_quick_consumer_index0;
6503         if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
6504                 hw_cons++;
6505
6506         return hw_cons;
6507 }
6508
6509 /****************************************************************************/
6510 /* Handles received frame interrupt events.                                 */
6511 /*                                                                          */
6512 /* Returns:                                                                 */
6513 /*   Nothing.                                                               */
6514 /****************************************************************************/
6515 static void
6516 bce_rx_intr(struct bce_softc *sc)
6517 {
6518         struct ifnet *ifp = sc->bce_ifp;
6519         struct l2_fhdr *l2fhdr;
6520         struct ether_vlan_header *vh;
6521         unsigned int pkt_len;
6522         u16 sw_rx_cons, sw_rx_cons_idx, hw_rx_cons;
6523         u32 status;
6524         unsigned int rem_len;
6525         u16 sw_pg_cons, sw_pg_cons_idx;
6526
6527         DBENTER(BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
6528         DBRUN(sc->interrupts_rx++);
6529         DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): rx_prod = 0x%04X, "
6530             "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
6531             __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
6532
6533         /* Prepare the RX chain pages to be accessed by the host CPU. */
6534         for (int i = 0; i < sc->rx_pages; i++)
6535                 bus_dmamap_sync(sc->rx_bd_chain_tag,
6536                     sc->rx_bd_chain_map[i], BUS_DMASYNC_POSTREAD);
6537
6538         /* Prepare the page chain pages to be accessed by the host CPU. */
6539         if (bce_hdr_split == TRUE) {
6540                 for (int i = 0; i < sc->pg_pages; i++)
6541                         bus_dmamap_sync(sc->pg_bd_chain_tag,
6542                             sc->pg_bd_chain_map[i], BUS_DMASYNC_POSTREAD);
6543         }
6544
6545         /* Get the hardware's view of the RX consumer index. */
6546         hw_rx_cons = sc->hw_rx_cons = bce_get_hw_rx_cons(sc);
6547
6548         /* Get working copies of the driver's view of the consumer indices. */
6549         sw_rx_cons = sc->rx_cons;
6550         sw_pg_cons = sc->pg_cons;
6551
6552         /* Update some debug statistics counters */
6553         DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
6554             sc->rx_low_watermark = sc->free_rx_bd);
6555         DBRUNIF((sc->free_rx_bd == sc->max_rx_bd),
6556             sc->rx_empty_count++);
6557
6558         /* Scan through the receive chain as long as there is work to do */
6559         /* ToDo: Consider setting a limit on the number of packets processed. */
6560         rmb();
6561         while (sw_rx_cons != hw_rx_cons) {
6562                 struct mbuf *m0;
6563
6564                 /* Convert the producer/consumer indices to an actual rx_bd index. */
6565                 sw_rx_cons_idx = RX_CHAIN_IDX(sw_rx_cons);
6566
6567                 /* Unmap the mbuf from DMA space. */
6568                 bus_dmamap_sync(sc->rx_mbuf_tag,
6569                     sc->rx_mbuf_map[sw_rx_cons_idx],
6570                     BUS_DMASYNC_POSTREAD);
6571                 bus_dmamap_unload(sc->rx_mbuf_tag,
6572                     sc->rx_mbuf_map[sw_rx_cons_idx]);
6573
6574                 /* Remove the mbuf from the RX chain. */
6575                 m0 = sc->rx_mbuf_ptr[sw_rx_cons_idx];
6576                 sc->rx_mbuf_ptr[sw_rx_cons_idx] = NULL;
6577                 DBRUN(sc->debug_rx_mbuf_alloc--);
6578                 sc->free_rx_bd++;
6579
6580                 /*
6581                  * Frames received on the NetXteme II are prepended
6582                  * with an l2_fhdr structure which provides status
6583                  * information about the received frame (including
6584                  * VLAN tags and checksum info).  The frames are
6585                  * also automatically adjusted to word align the IP
6586                  * header (i.e. two null bytes are inserted before
6587                  * the Ethernet header).  As a result the data
6588                  * DMA'd by the controller into the mbuf looks
6589                  * like this:
6590                  *
6591                  * +---------+-----+---------------------+-----+
6592                  * | l2_fhdr | pad | packet data         | FCS |
6593                  * +---------+-----+---------------------+-----+
6594                  *
6595                  * The l2_fhdr needs to be checked and skipped and
6596                  * the FCS needs to be stripped before sending the
6597                  * packet up the stack.
6598                  */
6599                 l2fhdr  = mtod(m0, struct l2_fhdr *);
6600
6601                 /* Get the packet data + FCS length and the status. */
6602                 pkt_len = l2fhdr->l2_fhdr_pkt_len;
6603                 status  = l2fhdr->l2_fhdr_status;
6604
6605                 /*
6606                  * Skip over the l2_fhdr and pad, resulting in the
6607                  * following data in the mbuf:
6608                  * +---------------------+-----+
6609                  * | packet data         | FCS |
6610                  * +---------------------+-----+
6611                  */
6612                 m_adj(m0, sizeof(struct l2_fhdr) + ETHER_ALIGN);
6613
6614                 /*
6615                  * When split header mode is used, an ethernet frame
6616                  * may be split across the receive chain and the
6617                  * page chain. If that occurs an mbuf cluster must be
6618                  * reassembled from the individual mbuf pieces.
6619                  */
6620                 if (bce_hdr_split == TRUE) {
6621                         /*
6622                          * Check whether the received frame fits in a single
6623                          * mbuf or not (i.e. packet data + FCS <=
6624                          * sc->rx_bd_mbuf_data_len bytes).
6625                          */
6626                         if (pkt_len > m0->m_len) {
6627                                 /*
6628                                  * The received frame is larger than a single mbuf.
6629                                  * If the frame was a TCP frame then only the TCP
6630                                  * header is placed in the mbuf, the remaining
6631                                  * payload (including FCS) is placed in the page
6632                                  * chain, the SPLIT flag is set, and the header
6633                                  * length is placed in the IP checksum field.
6634                                  * If the frame is not a TCP frame then the mbuf
6635                                  * is filled and the remaining bytes are placed
6636                                  * in the page chain.
6637                                  */
6638
6639                                 DBPRINT(sc, BCE_INFO_RECV, "%s(): Found a large "
6640                                         "packet.\n", __FUNCTION__);
6641                                 DBRUN(sc->split_header_frames_rcvd++);
6642
6643                                 /*
6644                                  * When the page chain is enabled and the TCP
6645                                  * header has been split from the TCP payload,
6646                                  * the ip_xsum structure will reflect the length
6647                                  * of the TCP header, not the IP checksum.  Set
6648                                  * the packet length of the mbuf accordingly.
6649                                  */
6650                                 if (status & L2_FHDR_STATUS_SPLIT) {
6651                                         m0->m_len = l2fhdr->l2_fhdr_ip_xsum;
6652                                         DBRUN(sc->split_header_tcp_frames_rcvd++);
6653                                 }
6654
6655                                 rem_len = pkt_len - m0->m_len;
6656
6657                                 /* Pull mbufs off the page chain for any remaining data. */
6658                                 while (rem_len > 0) {
6659                                         struct mbuf *m_pg;
6660
6661                                         sw_pg_cons_idx = PG_CHAIN_IDX(sw_pg_cons);
6662
6663                                         /* Remove the mbuf from the page chain. */
6664                                         m_pg = sc->pg_mbuf_ptr[sw_pg_cons_idx];
6665                                         sc->pg_mbuf_ptr[sw_pg_cons_idx] = NULL;
6666                                         DBRUN(sc->debug_pg_mbuf_alloc--);
6667                                         sc->free_pg_bd++;
6668
6669                                         /* Unmap the page chain mbuf from DMA space. */
6670                                         bus_dmamap_sync(sc->pg_mbuf_tag,
6671                                                 sc->pg_mbuf_map[sw_pg_cons_idx],
6672                                                 BUS_DMASYNC_POSTREAD);
6673                                         bus_dmamap_unload(sc->pg_mbuf_tag,
6674                                                 sc->pg_mbuf_map[sw_pg_cons_idx]);
6675
6676                                         /* Adjust the mbuf length. */
6677                                         if (rem_len < m_pg->m_len) {
6678                                                 /* The mbuf chain is complete. */
6679                                                 m_pg->m_len = rem_len;
6680                                                 rem_len = 0;
6681                                         } else {
6682                                                 /* More packet data is waiting. */
6683                                                 rem_len -= m_pg->m_len;
6684                                         }
6685
6686                                         /* Concatenate the mbuf cluster to the mbuf. */
6687                                         m_cat(m0, m_pg);
6688
6689                                         sw_pg_cons = NEXT_PG_BD(sw_pg_cons);
6690                                 }
6691
6692                                 /* Set the total packet length. */
6693                                 m0->m_pkthdr.len = pkt_len;
6694
6695                         } else {
6696                                 /*
6697                                  * The received packet is small and fits in a
6698                                  * single mbuf (i.e. the l2_fhdr + pad + packet +
6699                                  * FCS <= MHLEN).  In other words, the packet is
6700                                  * 154 bytes or less in size.
6701                                  */
6702
6703                                 DBPRINT(sc, BCE_INFO_RECV, "%s(): Found a small "
6704                                         "packet.\n", __FUNCTION__);
6705
6706                                 /* Set the total packet length. */
6707                                 m0->m_pkthdr.len = m0->m_len = pkt_len;
6708                         }
6709                 } else
6710                         /* Set the total packet length. */
6711                         m0->m_pkthdr.len = m0->m_len = pkt_len;
6712
6713                 /* Remove the trailing Ethernet FCS. */
6714                 m_adj(m0, -ETHER_CRC_LEN);
6715
6716                 /* Check that the resulting mbuf chain is valid. */
6717                 DBRUN(m_sanity(m0, FALSE));
6718                 DBRUNIF(((m0->m_len < ETHER_HDR_LEN) |
6719                     (m0->m_pkthdr.len > BCE_MAX_JUMBO_ETHER_MTU_VLAN)),
6720                     BCE_PRINTF("Invalid Ethernet frame size!\n");
6721                     m_print(m0, 128));
6722
6723                 DBRUNIF(DB_RANDOMTRUE(l2fhdr_error_sim_control),
6724                     sc->l2fhdr_error_sim_count++;
6725                     status = status | L2_FHDR_ERRORS_PHY_DECODE);
6726
6727                 /* Check the received frame for errors. */
6728                 if (status & (L2_FHDR_ERRORS_BAD_CRC |
6729                     L2_FHDR_ERRORS_PHY_DECODE | L2_FHDR_ERRORS_ALIGNMENT |
6730                     L2_FHDR_ERRORS_TOO_SHORT  | L2_FHDR_ERRORS_GIANT_FRAME)) {
6731
6732                         /* Log the error and release the mbuf. */
6733                         ifp->if_ierrors++;
6734                         sc->l2fhdr_error_count++;
6735
6736                         m_freem(m0);
6737                         m0 = NULL;
6738                         goto bce_rx_intr_next_rx;
6739                 }
6740
6741                 /* Send the packet to the appropriate interface. */
6742                 m0->m_pkthdr.rcvif = ifp;
6743
6744                 /* Assume no hardware checksum. */
6745                 m0->m_pkthdr.csum_flags = 0;
6746
6747                 /* Validate the checksum if offload enabled. */
6748                 if (ifp->if_capenable & IFCAP_RXCSUM) {
6749                         /* Check for an IP datagram. */
6750                         if (!(status & L2_FHDR_STATUS_SPLIT) &&
6751                             (status & L2_FHDR_STATUS_IP_DATAGRAM)) {
6752                                 m0->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
6753                                 DBRUN(sc->csum_offload_ip++);
6754                                 /* Check if the IP checksum is valid. */
6755                                 if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff) == 0)
6756                                         m0->m_pkthdr.csum_flags |=
6757                                             CSUM_IP_VALID;
6758                         }
6759
6760                         /* Check for a valid TCP/UDP frame. */
6761                         if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
6762                             L2_FHDR_STATUS_UDP_DATAGRAM)) {
6763
6764                                 /* Check for a good TCP/UDP checksum. */
6765                                 if ((status & (L2_FHDR_ERRORS_TCP_XSUM |
6766                                     L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
6767                                         DBRUN(sc->csum_offload_tcp_udp++);
6768                                         m0->m_pkthdr.csum_data =
6769                                             l2fhdr->l2_fhdr_tcp_udp_xsum;
6770                                         m0->m_pkthdr.csum_flags |=
6771                                             (CSUM_DATA_VALID
6772                                             | CSUM_PSEUDO_HDR);
6773                                 }
6774                         }
6775                 }
6776
6777                 /* Attach the VLAN tag. */
6778                 if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
6779                     !(sc->rx_mode & BCE_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
6780                         DBRUN(sc->vlan_tagged_frames_rcvd++);
6781                         if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
6782                                 DBRUN(sc->vlan_tagged_frames_stripped++);
6783 #if __FreeBSD_version < 700000
6784                                 VLAN_INPUT_TAG(ifp, m0,
6785                                     l2fhdr->l2_fhdr_vlan_tag, continue);
6786 #else
6787                                 m0->m_pkthdr.ether_vtag =
6788                                     l2fhdr->l2_fhdr_vlan_tag;
6789                                 m0->m_flags |= M_VLANTAG;
6790 #endif
6791                         } else {
6792                                 /*
6793                                  * bce(4) controllers can't disable VLAN
6794                                  * tag stripping if management firmware
6795                                  * (ASF/IPMI/UMP) is running. So we always
6796                                  * strip VLAN tag and manually reconstruct
6797                                  * the VLAN frame by appending stripped
6798                                  * VLAN tag in driver if VLAN tag stripping
6799                                  * was disabled.
6800                                  *
6801                                  * TODO: LLC SNAP handling.
6802                                  */
6803                                 bcopy(mtod(m0, uint8_t *),
6804                                     mtod(m0, uint8_t *) - ETHER_VLAN_ENCAP_LEN,
6805                                     ETHER_ADDR_LEN * 2);
6806                                 m0->m_data -= ETHER_VLAN_ENCAP_LEN;
6807                                 vh = mtod(m0, struct ether_vlan_header *);
6808                                 vh->evl_encap_proto = htons(ETHERTYPE_VLAN);
6809                                 vh->evl_tag = htons(l2fhdr->l2_fhdr_vlan_tag);
6810                                 m0->m_pkthdr.len += ETHER_VLAN_ENCAP_LEN;
6811                                 m0->m_len += ETHER_VLAN_ENCAP_LEN;
6812                         }
6813                 }
6814
6815                 /* Increment received packet statistics. */
6816                 ifp->if_ipackets++;
6817
6818 bce_rx_intr_next_rx:
6819                 sw_rx_cons = NEXT_RX_BD(sw_rx_cons);
6820
6821                 /* If we have a packet, pass it up the stack */
6822                 if (m0) {
6823                         /* Make sure we don't lose our place when we release the lock. */
6824                         sc->rx_cons = sw_rx_cons;
6825                         sc->pg_cons = sw_pg_cons;
6826
6827                         BCE_UNLOCK(sc);
6828                         (*ifp->if_input)(ifp, m0);
6829                         BCE_LOCK(sc);
6830
6831                         /* Recover our place. */
6832                         sw_rx_cons = sc->rx_cons;
6833                         sw_pg_cons = sc->pg_cons;
6834                 }
6835
6836                 /* Refresh hw_cons to see if there's new work */
6837                 if (sw_rx_cons == hw_rx_cons)
6838                         hw_rx_cons = sc->hw_rx_cons = bce_get_hw_rx_cons(sc);
6839         }
6840
6841         /* No new packets.  Refill the page chain. */
6842         if (bce_hdr_split == TRUE) {
6843                 sc->pg_cons = sw_pg_cons;
6844                 bce_fill_pg_chain(sc);
6845         }
6846
6847         /* No new packets.  Refill the RX chain. */
6848         sc->rx_cons = sw_rx_cons;
6849         bce_fill_rx_chain(sc);
6850
6851         /* Prepare the page chain pages to be accessed by the NIC. */
6852         for (int i = 0; i < sc->rx_pages; i++)
6853                 bus_dmamap_sync(sc->rx_bd_chain_tag,
6854                     sc->rx_bd_chain_map[i], BUS_DMASYNC_PREWRITE);
6855
6856         if (bce_hdr_split == TRUE) {
6857                 for (int i = 0; i < sc->pg_pages; i++)
6858                         bus_dmamap_sync(sc->pg_bd_chain_tag,
6859                             sc->pg_bd_chain_map[i], BUS_DMASYNC_PREWRITE);
6860         }
6861
6862         DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): rx_prod = 0x%04X, "
6863             "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
6864             __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
6865         DBEXIT(BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
6866 }
6867
6868
6869 /****************************************************************************/
6870 /* Reads the transmit consumer value from the status block (skipping over   */
6871 /* chain page pointer if necessary).                                        */
6872 /*                                                                          */
6873 /* Returns:                                                                 */
6874 /*   hw_cons                                                                */
6875 /****************************************************************************/
6876 static inline u16
6877 bce_get_hw_tx_cons(struct bce_softc *sc)
6878 {
6879         u16 hw_cons;
6880
6881         mb();
6882         hw_cons = sc->status_block->status_tx_quick_consumer_index0;
6883         if ((hw_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
6884                 hw_cons++;
6885
6886         return hw_cons;
6887 }
6888
6889
6890 /****************************************************************************/
6891 /* Handles transmit completion interrupt events.                            */
6892 /*                                                                          */
6893 /* Returns:                                                                 */
6894 /*   Nothing.                                                               */
6895 /****************************************************************************/
6896 static void
6897 bce_tx_intr(struct bce_softc *sc)
6898 {
6899         struct ifnet *ifp = sc->bce_ifp;
6900         u16 hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
6901
6902         DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_INTR);
6903         DBRUN(sc->interrupts_tx++);
6904         DBPRINT(sc, BCE_EXTREME_SEND, "%s(enter): tx_prod = 0x%04X, "
6905             "tx_cons = 0x%04X, tx_prod_bseq = 0x%08X\n",
6906             __FUNCTION__, sc->tx_prod, sc->tx_cons, sc->tx_prod_bseq);
6907
6908         BCE_LOCK_ASSERT(sc);
6909
6910         /* Get the hardware's view of the TX consumer index. */
6911         hw_tx_cons = sc->hw_tx_cons = bce_get_hw_tx_cons(sc);
6912         sw_tx_cons = sc->tx_cons;
6913
6914         /* Prevent speculative reads of the status block. */
6915         bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
6916             BUS_SPACE_BARRIER_READ);
6917
6918         /* Cycle through any completed TX chain page entries. */
6919         while (sw_tx_cons != hw_tx_cons) {
6920 #ifdef BCE_DEBUG
6921                 struct tx_bd *txbd = NULL;
6922 #endif
6923                 sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
6924
6925                 DBPRINT(sc, BCE_INFO_SEND,
6926                     "%s(): hw_tx_cons = 0x%04X, sw_tx_cons = 0x%04X, "
6927                     "sw_tx_chain_cons = 0x%04X\n",
6928                     __FUNCTION__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
6929
6930                 DBRUNIF((sw_tx_chain_cons > MAX_TX_BD_ALLOC),
6931                     BCE_PRINTF("%s(%d): TX chain consumer out of range! "
6932                     " 0x%04X > 0x%04X\n", __FILE__, __LINE__, sw_tx_chain_cons,
6933                     (int) MAX_TX_BD_ALLOC);
6934                     bce_breakpoint(sc));
6935
6936                 DBRUN(txbd = &sc->tx_bd_chain[TX_PAGE(sw_tx_chain_cons)]
6937                     [TX_IDX(sw_tx_chain_cons)]);
6938
6939                 DBRUNIF((txbd == NULL),
6940                     BCE_PRINTF("%s(%d): Unexpected NULL tx_bd[0x%04X]!\n",
6941                     __FILE__, __LINE__, sw_tx_chain_cons);
6942                     bce_breakpoint(sc));
6943
6944                 DBRUNMSG(BCE_INFO_SEND, BCE_PRINTF("%s(): ", __FUNCTION__);
6945                     bce_dump_txbd(sc, sw_tx_chain_cons, txbd));
6946
6947                 /*
6948                  * Free the associated mbuf. Remember
6949                  * that only the last tx_bd of a packet
6950                  * has an mbuf pointer and DMA map.
6951                  */
6952                 if (sc->tx_mbuf_ptr[sw_tx_chain_cons] != NULL) {
6953
6954                         /* Validate that this is the last tx_bd. */
6955                         DBRUNIF((!(txbd->tx_bd_flags & TX_BD_FLAGS_END)),
6956                             BCE_PRINTF("%s(%d): tx_bd END flag not set but "
6957                             "txmbuf == NULL!\n", __FILE__, __LINE__);
6958                             bce_breakpoint(sc));
6959
6960                         DBRUNMSG(BCE_INFO_SEND,
6961                             BCE_PRINTF("%s(): Unloading map/freeing mbuf "
6962                             "from tx_bd[0x%04X]\n", __FUNCTION__,
6963                             sw_tx_chain_cons));
6964
6965                         /* Unmap the mbuf. */
6966                         bus_dmamap_unload(sc->tx_mbuf_tag,
6967                             sc->tx_mbuf_map[sw_tx_chain_cons]);
6968
6969                         /* Free the mbuf. */
6970                         m_freem(sc->tx_mbuf_ptr[sw_tx_chain_cons]);
6971                         sc->tx_mbuf_ptr[sw_tx_chain_cons] = NULL;
6972                         DBRUN(sc->debug_tx_mbuf_alloc--);
6973
6974                         ifp->if_opackets++;
6975                 }
6976
6977                 sc->used_tx_bd--;
6978                 sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
6979
6980                 /* Refresh hw_cons to see if there's new work. */
6981                 hw_tx_cons = sc->hw_tx_cons = bce_get_hw_tx_cons(sc);
6982
6983                 /* Prevent speculative reads of the status block. */
6984                 bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
6985                     BUS_SPACE_BARRIER_READ);
6986         }
6987
6988         /* Clear the TX timeout timer. */
6989         sc->watchdog_timer = 0;
6990
6991         /* Clear the tx hardware queue full flag. */
6992         if (sc->used_tx_bd < sc->max_tx_bd) {
6993                 DBRUNIF((ifp->if_drv_flags & IFF_DRV_OACTIVE),
6994                     DBPRINT(sc, BCE_INFO_SEND,
6995                     "%s(): Open TX chain! %d/%d (used/total)\n",
6996                     __FUNCTION__, sc->used_tx_bd, sc->max_tx_bd));
6997                 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
6998         }
6999
7000         sc->tx_cons = sw_tx_cons;
7001
7002         DBPRINT(sc, BCE_EXTREME_SEND, "%s(exit): tx_prod = 0x%04X, "
7003             "tx_cons = 0x%04X, tx_prod_bseq = 0x%08X\n",
7004             __FUNCTION__, sc->tx_prod, sc->tx_cons, sc->tx_prod_bseq);
7005         DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_INTR);
7006 }
7007
7008
7009 /****************************************************************************/
7010 /* Disables interrupt generation.                                           */
7011 /*                                                                          */
7012 /* Returns:                                                                 */
7013 /*   Nothing.                                                               */
7014 /****************************************************************************/
7015 static void
7016 bce_disable_intr(struct bce_softc *sc)
7017 {
7018         DBENTER(BCE_VERBOSE_INTR);
7019
7020         REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, BCE_PCICFG_INT_ACK_CMD_MASK_INT);
7021         REG_RD(sc, BCE_PCICFG_INT_ACK_CMD);
7022
7023         DBEXIT(BCE_VERBOSE_INTR);
7024 }
7025
7026
7027 /****************************************************************************/
7028 /* Enables interrupt generation.                                            */
7029 /*                                                                          */
7030 /* Returns:                                                                 */
7031 /*   Nothing.                                                               */
7032 /****************************************************************************/
7033 static void
7034 bce_enable_intr(struct bce_softc *sc, int coal_now)
7035 {
7036         DBENTER(BCE_VERBOSE_INTR);
7037
7038         REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
7039             BCE_PCICFG_INT_ACK_CMD_INDEX_VALID |
7040             BCE_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
7041
7042         REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
7043             BCE_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
7044
7045         /* Force an immediate interrupt (whether there is new data or not). */
7046         if (coal_now)
7047                 REG_WR(sc, BCE_HC_COMMAND, sc->hc_command | BCE_HC_COMMAND_COAL_NOW);
7048
7049         DBEXIT(BCE_VERBOSE_INTR);
7050 }
7051
7052
7053 /****************************************************************************/
7054 /* Handles controller initialization.                                       */
7055 /*                                                                          */
7056 /* Returns:                                                                 */
7057 /*   Nothing.                                                               */
7058 /****************************************************************************/
7059 static void
7060 bce_init_locked(struct bce_softc *sc)
7061 {
7062         struct ifnet *ifp;
7063         u32 ether_mtu = 0;
7064
7065         DBENTER(BCE_VERBOSE_RESET);
7066
7067         BCE_LOCK_ASSERT(sc);
7068
7069         ifp = sc->bce_ifp;
7070
7071         /* Check if the driver is still running and bail out if it is. */
7072         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
7073                 goto bce_init_locked_exit;
7074
7075         bce_stop(sc);
7076
7077         if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) {
7078                 BCE_PRINTF("%s(%d): Controller reset failed!\n",
7079                     __FILE__, __LINE__);
7080                 goto bce_init_locked_exit;
7081         }
7082
7083         if (bce_chipinit(sc)) {
7084                 BCE_PRINTF("%s(%d): Controller initialization failed!\n",
7085                     __FILE__, __LINE__);
7086                 goto bce_init_locked_exit;
7087         }
7088
7089         if (bce_blockinit(sc)) {
7090                 BCE_PRINTF("%s(%d): Block initialization failed!\n",
7091                     __FILE__, __LINE__);
7092                 goto bce_init_locked_exit;
7093         }
7094
7095         /* Load our MAC address. */
7096         bcopy(IF_LLADDR(sc->bce_ifp), sc->eaddr, ETHER_ADDR_LEN);
7097         bce_set_mac_addr(sc);
7098
7099         if (bce_hdr_split == FALSE)
7100                 bce_get_rx_buffer_sizes(sc, ifp->if_mtu);
7101         /*
7102          * Calculate and program the hardware Ethernet MTU
7103          * size. Be generous on the receive if we have room
7104          * and allowed by the user.
7105          */
7106         if (bce_strict_rx_mtu == TRUE)
7107                 ether_mtu = ifp->if_mtu;
7108         else {
7109                 if (bce_hdr_split == TRUE) {
7110                         if (ifp->if_mtu <= sc->rx_bd_mbuf_data_len + MCLBYTES)
7111                                 ether_mtu = sc->rx_bd_mbuf_data_len +
7112                                     MCLBYTES;
7113                         else
7114                                 ether_mtu = ifp->if_mtu;
7115                 } else {
7116                         if (ifp->if_mtu <= sc->rx_bd_mbuf_data_len)
7117                                 ether_mtu = sc->rx_bd_mbuf_data_len;
7118                         else
7119                                 ether_mtu = ifp->if_mtu;
7120                 }
7121         }
7122
7123         ether_mtu += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN;
7124
7125         DBPRINT(sc, BCE_INFO_MISC, "%s(): setting h/w mtu = %d\n",
7126             __FUNCTION__, ether_mtu);
7127
7128         /* Program the mtu, enabling jumbo frame support if necessary. */
7129         if (ether_mtu > (ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN))
7130                 REG_WR(sc, BCE_EMAC_RX_MTU_SIZE,
7131                     min(ether_mtu, BCE_MAX_JUMBO_ETHER_MTU) |
7132                     BCE_EMAC_RX_MTU_SIZE_JUMBO_ENA);
7133         else
7134                 REG_WR(sc, BCE_EMAC_RX_MTU_SIZE, ether_mtu);
7135
7136         /* Program appropriate promiscuous/multicast filtering. */
7137         bce_set_rx_mode(sc);
7138
7139         if (bce_hdr_split == TRUE) {
7140                 /* Init page buffer descriptor chain. */
7141                 bce_init_pg_chain(sc);
7142         }
7143
7144         /* Init RX buffer descriptor chain. */
7145         bce_init_rx_chain(sc);
7146
7147         /* Init TX buffer descriptor chain. */
7148         bce_init_tx_chain(sc);
7149
7150         /* Enable host interrupts. */
7151         bce_enable_intr(sc, 1);
7152
7153         bce_ifmedia_upd_locked(ifp);
7154
7155         /* Let the OS know the driver is up and running. */
7156         ifp->if_drv_flags |= IFF_DRV_RUNNING;
7157         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
7158
7159         callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc);
7160
7161 bce_init_locked_exit:
7162         DBEXIT(BCE_VERBOSE_RESET);
7163 }
7164
7165
7166 /****************************************************************************/
7167 /* Initialize the controller just enough so that any management firmware    */
7168 /* running on the device will continue to operate correctly.                */
7169 /*                                                                          */
7170 /* Returns:                                                                 */
7171 /*   Nothing.                                                               */
7172 /****************************************************************************/
7173 static void
7174 bce_mgmt_init_locked(struct bce_softc *sc)
7175 {
7176         struct ifnet *ifp;
7177
7178         DBENTER(BCE_VERBOSE_RESET);
7179
7180         BCE_LOCK_ASSERT(sc);
7181
7182         /* Bail out if management firmware is not running. */
7183         if (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG)) {
7184                 DBPRINT(sc, BCE_VERBOSE_SPECIAL,
7185                     "No management firmware running...\n");
7186                 goto bce_mgmt_init_locked_exit;
7187         }
7188
7189         ifp = sc->bce_ifp;
7190
7191         /* Enable all critical blocks in the MAC. */
7192         REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, BCE_MISC_ENABLE_DEFAULT);
7193         REG_RD(sc, BCE_MISC_ENABLE_SET_BITS);
7194         DELAY(20);
7195
7196         bce_ifmedia_upd_locked(ifp);
7197
7198 bce_mgmt_init_locked_exit:
7199         DBEXIT(BCE_VERBOSE_RESET);
7200 }
7201
7202
7203 /****************************************************************************/
7204 /* Handles controller initialization when called from an unlocked routine.  */
7205 /*                                                                          */
7206 /* Returns:                                                                 */
7207 /*   Nothing.                                                               */
7208 /****************************************************************************/
7209 static void
7210 bce_init(void *xsc)
7211 {
7212         struct bce_softc *sc = xsc;
7213
7214         DBENTER(BCE_VERBOSE_RESET);
7215
7216         BCE_LOCK(sc);
7217         bce_init_locked(sc);
7218         BCE_UNLOCK(sc);
7219
7220         DBEXIT(BCE_VERBOSE_RESET);
7221 }
7222
7223
7224 /****************************************************************************/
7225 /* Modifies an mbuf for TSO on the hardware.                                */
7226 /*                                                                          */
7227 /* Returns:                                                                 */
7228 /*   Pointer to a modified mbuf.                                            */
7229 /****************************************************************************/
7230 static struct mbuf *
7231 bce_tso_setup(struct bce_softc *sc, struct mbuf **m_head, u16 *flags)
7232 {
7233         struct mbuf *m;
7234         struct ether_header *eh;
7235         struct ip *ip;
7236         struct tcphdr *th;
7237         u16 etype;
7238         int hdr_len, ip_hlen = 0, tcp_hlen = 0, ip_len = 0;
7239
7240         DBRUN(sc->tso_frames_requested++);
7241
7242         /* Controller may modify mbuf chains. */
7243         if (M_WRITABLE(*m_head) == 0) {
7244                 m = m_dup(*m_head, M_NOWAIT);
7245                 m_freem(*m_head);
7246                 if (m == NULL) {
7247                         sc->mbuf_alloc_failed_count++;
7248                         *m_head = NULL;
7249                         return (NULL);
7250                 }
7251                 *m_head = m;
7252         }
7253
7254         /*
7255          * For TSO the controller needs two pieces of info,
7256          * the MSS and the IP+TCP options length.
7257          */
7258         m = m_pullup(*m_head, sizeof(struct ether_header) + sizeof(struct ip));
7259         if (m == NULL) {
7260                 *m_head = NULL;
7261                 return (NULL);
7262         }
7263         eh = mtod(m, struct ether_header *);
7264         etype = ntohs(eh->ether_type);
7265
7266         /* Check for supported TSO Ethernet types (only IPv4 for now) */
7267         switch (etype) {
7268         case ETHERTYPE_IP:
7269                 ip = (struct ip *)(m->m_data + sizeof(struct ether_header));
7270                 /* TSO only supported for TCP protocol. */
7271                 if (ip->ip_p != IPPROTO_TCP) {
7272                         BCE_PRINTF("%s(%d): TSO enabled for non-TCP frame!.\n",
7273                             __FILE__, __LINE__);
7274                         m_freem(*m_head);
7275                         *m_head = NULL;
7276                         return (NULL);
7277                 }
7278
7279                 /* Get IP header length in bytes (min 20) */
7280                 ip_hlen = ip->ip_hl << 2;
7281                 m = m_pullup(*m_head, sizeof(struct ether_header) + ip_hlen +
7282                     sizeof(struct tcphdr));
7283                 if (m == NULL) {
7284                         *m_head = NULL;
7285                         return (NULL);
7286                 }
7287
7288                 /* Get the TCP header length in bytes (min 20) */
7289                 ip = (struct ip *)(m->m_data + sizeof(struct ether_header));
7290                 th = (struct tcphdr *)((caddr_t)ip + ip_hlen);
7291                 tcp_hlen = (th->th_off << 2);
7292
7293                 /* Make sure all IP/TCP options live in the same buffer. */
7294                 m = m_pullup(*m_head,  sizeof(struct ether_header)+ ip_hlen +
7295                     tcp_hlen);
7296                 if (m == NULL) {
7297                         *m_head = NULL;
7298                         return (NULL);
7299                 }
7300
7301                 /* Clear IP header length and checksum, will be calc'd by h/w. */
7302                 ip = (struct ip *)(m->m_data + sizeof(struct ether_header));
7303                 ip_len = ip->ip_len;
7304                 ip->ip_len = 0;
7305                 ip->ip_sum = 0;
7306                 break;
7307         case ETHERTYPE_IPV6:
7308                 BCE_PRINTF("%s(%d): TSO over IPv6 not supported!.\n",
7309                     __FILE__, __LINE__);
7310                 m_freem(*m_head);
7311                 *m_head = NULL;
7312                 return (NULL);
7313                 /* NOT REACHED */
7314         default:
7315                 BCE_PRINTF("%s(%d): TSO enabled for unsupported protocol!.\n",
7316                     __FILE__, __LINE__);
7317                 m_freem(*m_head);
7318                 *m_head = NULL;
7319                 return (NULL);
7320         }
7321
7322         hdr_len = sizeof(struct ether_header) + ip_hlen + tcp_hlen;
7323
7324         DBPRINT(sc, BCE_EXTREME_SEND, "%s(): hdr_len = %d, e_hlen = %d, "
7325             "ip_hlen = %d, tcp_hlen = %d, ip_len = %d\n",
7326             __FUNCTION__, hdr_len, (int) sizeof(struct ether_header), ip_hlen,
7327             tcp_hlen, ip_len);
7328
7329         /* Set the LSO flag in the TX BD */
7330         *flags |= TX_BD_FLAGS_SW_LSO;
7331
7332         /* Set the length of IP + TCP options (in 32 bit words) */
7333         *flags |= (((ip_hlen + tcp_hlen - sizeof(struct ip) -
7334             sizeof(struct tcphdr)) >> 2) << 8);
7335
7336         DBRUN(sc->tso_frames_completed++);
7337         return (*m_head);
7338 }
7339
7340
7341 /****************************************************************************/
7342 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
7343 /* memory visible to the controller.                                        */
7344 /*                                                                          */
7345 /* Returns:                                                                 */
7346 /*   0 for success, positive value for failure.                             */
7347 /* Modified:                                                                */
7348 /*   m_head: May be set to NULL if MBUF is excessively fragmented.          */
7349 /****************************************************************************/
7350 static int
7351 bce_tx_encap(struct bce_softc *sc, struct mbuf **m_head)
7352 {
7353         bus_dma_segment_t segs[BCE_MAX_SEGMENTS];
7354         bus_dmamap_t map;
7355         struct tx_bd *txbd = NULL;
7356         struct mbuf *m0;
7357         u16 prod, chain_prod, mss = 0, vlan_tag = 0, flags = 0;
7358         u32 prod_bseq;
7359
7360 #ifdef BCE_DEBUG
7361         u16 debug_prod;
7362 #endif
7363
7364         int i, error, nsegs, rc = 0;
7365
7366         DBENTER(BCE_VERBOSE_SEND);
7367
7368         /* Make sure we have room in the TX chain. */
7369         if (sc->used_tx_bd >= sc->max_tx_bd)
7370                 goto bce_tx_encap_exit;
7371
7372         /* Transfer any checksum offload flags to the bd. */
7373         m0 = *m_head;
7374         if (m0->m_pkthdr.csum_flags) {
7375                 if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
7376                         m0 = bce_tso_setup(sc, m_head, &flags);
7377                         if (m0 == NULL) {
7378                                 DBRUN(sc->tso_frames_failed++);
7379                                 goto bce_tx_encap_exit;
7380                         }
7381                         mss = htole16(m0->m_pkthdr.tso_segsz);
7382                 } else {
7383                         if (m0->m_pkthdr.csum_flags & CSUM_IP)
7384                                 flags |= TX_BD_FLAGS_IP_CKSUM;
7385                         if (m0->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
7386                                 flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
7387                 }
7388         }
7389
7390         /* Transfer any VLAN tags to the bd. */
7391         if (m0->m_flags & M_VLANTAG) {
7392                 flags |= TX_BD_FLAGS_VLAN_TAG;
7393                 vlan_tag = m0->m_pkthdr.ether_vtag;
7394         }
7395
7396         /* Map the mbuf into DMAable memory. */
7397         prod = sc->tx_prod;
7398         chain_prod = TX_CHAIN_IDX(prod);
7399         map = sc->tx_mbuf_map[chain_prod];
7400
7401         /* Map the mbuf into our DMA address space. */
7402         error = bus_dmamap_load_mbuf_sg(sc->tx_mbuf_tag, map, m0,
7403             segs, &nsegs, BUS_DMA_NOWAIT);
7404
7405         /* Check if the DMA mapping was successful */
7406         if (error == EFBIG) {
7407                 sc->mbuf_frag_count++;
7408
7409                 /* Try to defrag the mbuf. */
7410                 m0 = m_collapse(*m_head, M_NOWAIT, BCE_MAX_SEGMENTS);
7411                 if (m0 == NULL) {
7412                         /* Defrag was unsuccessful */
7413                         m_freem(*m_head);
7414                         *m_head = NULL;
7415                         sc->mbuf_alloc_failed_count++;
7416                         rc = ENOBUFS;
7417                         goto bce_tx_encap_exit;
7418                 }
7419
7420                 /* Defrag was successful, try mapping again */
7421                 *m_head = m0;
7422                 error = bus_dmamap_load_mbuf_sg(sc->tx_mbuf_tag,
7423                     map, m0, segs, &nsegs, BUS_DMA_NOWAIT);
7424
7425                 /* Still getting an error after a defrag. */
7426                 if (error == ENOMEM) {
7427                         /* Insufficient DMA buffers available. */
7428                         sc->dma_map_addr_tx_failed_count++;
7429                         rc = error;
7430                         goto bce_tx_encap_exit;
7431                 } else if (error != 0) {
7432                         /* Release it and return an error. */
7433                         BCE_PRINTF("%s(%d): Unknown error mapping mbuf into "
7434                             "TX chain!\n", __FILE__, __LINE__);
7435                         m_freem(m0);
7436                         *m_head = NULL;
7437                         sc->dma_map_addr_tx_failed_count++;
7438                         rc = ENOBUFS;
7439                         goto bce_tx_encap_exit;
7440                 }
7441         } else if (error == ENOMEM) {
7442                 /* Insufficient DMA buffers available. */
7443                 sc->dma_map_addr_tx_failed_count++;
7444                 rc = error;
7445                 goto bce_tx_encap_exit;
7446         } else if (error != 0) {
7447                 m_freem(m0);
7448                 *m_head = NULL;
7449                 sc->dma_map_addr_tx_failed_count++;
7450                 rc = error;
7451                 goto bce_tx_encap_exit;
7452         }
7453
7454         /* Make sure there's room in the chain */
7455         if (nsegs > (sc->max_tx_bd - sc->used_tx_bd)) {
7456                 bus_dmamap_unload(sc->tx_mbuf_tag, map);
7457                 rc = ENOBUFS;
7458                 goto bce_tx_encap_exit;
7459         }
7460
7461         /* prod points to an empty tx_bd at this point. */
7462         prod_bseq  = sc->tx_prod_bseq;
7463
7464 #ifdef BCE_DEBUG
7465         debug_prod = chain_prod;
7466 #endif
7467
7468         DBPRINT(sc, BCE_INFO_SEND,
7469             "%s(start): prod = 0x%04X, chain_prod = 0x%04X, "
7470             "prod_bseq = 0x%08X\n",
7471             __FUNCTION__, prod, chain_prod, prod_bseq);
7472
7473         /*
7474          * Cycle through each mbuf segment that makes up
7475          * the outgoing frame, gathering the mapping info
7476          * for that segment and creating a tx_bd for
7477          * the mbuf.
7478          */
7479         for (i = 0; i < nsegs ; i++) {
7480
7481                 chain_prod = TX_CHAIN_IDX(prod);
7482                 txbd= &sc->tx_bd_chain[TX_PAGE(chain_prod)]
7483                     [TX_IDX(chain_prod)];
7484
7485                 txbd->tx_bd_haddr_lo =
7486                     htole32(BCE_ADDR_LO(segs[i].ds_addr));
7487                 txbd->tx_bd_haddr_hi =
7488                     htole32(BCE_ADDR_HI(segs[i].ds_addr));
7489                 txbd->tx_bd_mss_nbytes = htole32(mss << 16) |
7490                     htole16(segs[i].ds_len);
7491                 txbd->tx_bd_vlan_tag = htole16(vlan_tag);
7492                 txbd->tx_bd_flags = htole16(flags);
7493                 prod_bseq += segs[i].ds_len;
7494                 if (i == 0)
7495                         txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_START);
7496                 prod = NEXT_TX_BD(prod);
7497         }
7498
7499         /* Set the END flag on the last TX buffer descriptor. */
7500         txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_END);
7501
7502         DBRUNMSG(BCE_EXTREME_SEND,
7503             bce_dump_tx_chain(sc, debug_prod, nsegs));
7504
7505         /*
7506          * Ensure that the mbuf pointer for this transmission
7507          * is placed at the array index of the last
7508          * descriptor in this chain.  This is done
7509          * because a single map is used for all
7510          * segments of the mbuf and we don't want to
7511          * unload the map before all of the segments
7512          * have been freed.
7513          */
7514         sc->tx_mbuf_ptr[chain_prod] = m0;
7515         sc->used_tx_bd += nsegs;
7516
7517         /* Update some debug statistic counters */
7518         DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
7519             sc->tx_hi_watermark = sc->used_tx_bd);
7520         DBRUNIF((sc->used_tx_bd == sc->max_tx_bd), sc->tx_full_count++);
7521         DBRUNIF(sc->debug_tx_mbuf_alloc++);
7522
7523         DBRUNMSG(BCE_EXTREME_SEND, bce_dump_tx_mbuf_chain(sc, chain_prod, 1));
7524
7525         /* prod points to the next free tx_bd at this point. */
7526         sc->tx_prod = prod;
7527         sc->tx_prod_bseq = prod_bseq;
7528
7529         /* Tell the chip about the waiting TX frames. */
7530         REG_WR16(sc, MB_GET_CID_ADDR(TX_CID) +
7531             BCE_L2MQ_TX_HOST_BIDX, sc->tx_prod);
7532         REG_WR(sc, MB_GET_CID_ADDR(TX_CID) +
7533             BCE_L2MQ_TX_HOST_BSEQ, sc->tx_prod_bseq);
7534
7535 bce_tx_encap_exit:
7536         DBEXIT(BCE_VERBOSE_SEND);
7537         return(rc);
7538 }
7539
7540
7541 /****************************************************************************/
7542 /* Main transmit routine when called from another routine with a lock.      */
7543 /*                                                                          */
7544 /* Returns:                                                                 */
7545 /*   Nothing.                                                               */
7546 /****************************************************************************/
7547 static void
7548 bce_start_locked(struct ifnet *ifp)
7549 {
7550         struct bce_softc *sc = ifp->if_softc;
7551         struct mbuf *m_head = NULL;
7552         int count = 0;
7553         u16 tx_prod, tx_chain_prod;
7554
7555         DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
7556
7557         BCE_LOCK_ASSERT(sc);
7558
7559         /* prod points to the next free tx_bd. */
7560         tx_prod = sc->tx_prod;
7561         tx_chain_prod = TX_CHAIN_IDX(tx_prod);
7562
7563         DBPRINT(sc, BCE_INFO_SEND,
7564             "%s(enter): tx_prod = 0x%04X, tx_chain_prod = 0x%04X, "
7565             "tx_prod_bseq = 0x%08X\n",
7566             __FUNCTION__, tx_prod, tx_chain_prod, sc->tx_prod_bseq);
7567
7568         /* If there's no link or the transmit queue is empty then just exit. */
7569         if (sc->bce_link_up == FALSE) {
7570                 DBPRINT(sc, BCE_INFO_SEND, "%s(): No link.\n",
7571                     __FUNCTION__);
7572                 goto bce_start_locked_exit;
7573         }
7574
7575         if (IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
7576                 DBPRINT(sc, BCE_INFO_SEND, "%s(): Transmit queue empty.\n",
7577                     __FUNCTION__);
7578                 goto bce_start_locked_exit;
7579         }
7580
7581         /*
7582          * Keep adding entries while there is space in the ring.
7583          */
7584         while (sc->used_tx_bd < sc->max_tx_bd) {
7585
7586                 /* Check for any frames to send. */
7587                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
7588
7589                 /* Stop when the transmit queue is empty. */
7590                 if (m_head == NULL)
7591                         break;
7592
7593                 /*
7594                  * Pack the data into the transmit ring. If we
7595                  * don't have room, place the mbuf back at the
7596                  * head of the queue and set the OACTIVE flag
7597                  * to wait for the NIC to drain the chain.
7598                  */
7599                 if (bce_tx_encap(sc, &m_head)) {
7600                         if (m_head != NULL)
7601                                 IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
7602                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
7603                         DBPRINT(sc, BCE_INFO_SEND,
7604                             "TX chain is closed for business! Total "
7605                             "tx_bd used = %d\n", sc->used_tx_bd);
7606                         break;
7607                 }
7608
7609                 count++;
7610
7611                 /* Send a copy of the frame to any BPF listeners. */
7612                 ETHER_BPF_MTAP(ifp, m_head);
7613         }
7614
7615         /* Exit if no packets were dequeued. */
7616         if (count == 0) {
7617                 DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): No packets were "
7618                     "dequeued\n", __FUNCTION__);
7619                 goto bce_start_locked_exit;
7620         }
7621
7622         DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): Inserted %d frames into "
7623             "send queue.\n", __FUNCTION__, count);
7624
7625         /* Set the tx timeout. */
7626         sc->watchdog_timer = BCE_TX_TIMEOUT;
7627
7628         DBRUNMSG(BCE_VERBOSE_SEND, bce_dump_ctx(sc, TX_CID));
7629         DBRUNMSG(BCE_VERBOSE_SEND, bce_dump_mq_regs(sc));
7630
7631 bce_start_locked_exit:
7632         DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
7633 }
7634
7635
7636 /****************************************************************************/
7637 /* Main transmit routine when called from another routine without a lock.   */
7638 /*                                                                          */
7639 /* Returns:                                                                 */
7640 /*   Nothing.                                                               */
7641 /****************************************************************************/
7642 static void
7643 bce_start(struct ifnet *ifp)
7644 {
7645         struct bce_softc *sc = ifp->if_softc;
7646
7647         DBENTER(BCE_VERBOSE_SEND);
7648
7649         BCE_LOCK(sc);
7650         bce_start_locked(ifp);
7651         BCE_UNLOCK(sc);
7652
7653         DBEXIT(BCE_VERBOSE_SEND);
7654 }
7655
7656
7657 /****************************************************************************/
7658 /* Handles any IOCTL calls from the operating system.                       */
7659 /*                                                                          */
7660 /* Returns:                                                                 */
7661 /*   0 for success, positive value for failure.                             */
7662 /****************************************************************************/
7663 static int
7664 bce_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
7665 {
7666         struct bce_softc *sc = ifp->if_softc;
7667         struct ifreq *ifr = (struct ifreq *) data;
7668         struct mii_data *mii;
7669         int mask, error = 0;
7670
7671         DBENTER(BCE_VERBOSE_MISC);
7672
7673         switch(command) {
7674
7675         /* Set the interface MTU. */
7676         case SIOCSIFMTU:
7677                 /* Check that the MTU setting is supported. */
7678                 if ((ifr->ifr_mtu < BCE_MIN_MTU) ||
7679                         (ifr->ifr_mtu > BCE_MAX_JUMBO_MTU)) {
7680                         error = EINVAL;
7681                         break;
7682                 }
7683
7684                 DBPRINT(sc, BCE_INFO_MISC,
7685                     "SIOCSIFMTU: Changing MTU from %d to %d\n",
7686                     (int) ifp->if_mtu, (int) ifr->ifr_mtu);
7687
7688                 BCE_LOCK(sc);
7689                 ifp->if_mtu = ifr->ifr_mtu;
7690                 if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
7691                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
7692                         bce_init_locked(sc);
7693                 }
7694                 BCE_UNLOCK(sc);
7695                 break;
7696
7697         /* Set interface flags. */
7698         case SIOCSIFFLAGS:
7699                 DBPRINT(sc, BCE_VERBOSE_SPECIAL, "Received SIOCSIFFLAGS\n");
7700
7701                 BCE_LOCK(sc);
7702
7703                 /* Check if the interface is up. */
7704                 if (ifp->if_flags & IFF_UP) {
7705                         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
7706                                 /* Change promiscuous/multicast flags as necessary. */
7707                                 bce_set_rx_mode(sc);
7708                         } else {
7709                                 /* Start the HW */
7710                                 bce_init_locked(sc);
7711                         }
7712                 } else {
7713                         /* The interface is down, check if driver is running. */
7714                         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
7715                                 bce_stop(sc);
7716
7717                                 /* If MFW is running, restart the controller a bit. */
7718                                 if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
7719                                         bce_reset(sc, BCE_DRV_MSG_CODE_RESET);
7720                                         bce_chipinit(sc);
7721                                         bce_mgmt_init_locked(sc);
7722                                 }
7723                         }
7724                 }
7725
7726                 BCE_UNLOCK(sc);
7727                 break;
7728
7729         /* Add/Delete multicast address */
7730         case SIOCADDMULTI:
7731         case SIOCDELMULTI:
7732                 DBPRINT(sc, BCE_VERBOSE_MISC,
7733                     "Received SIOCADDMULTI/SIOCDELMULTI\n");
7734
7735                 BCE_LOCK(sc);
7736                 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
7737                         bce_set_rx_mode(sc);
7738                 BCE_UNLOCK(sc);
7739
7740                 break;
7741
7742         /* Set/Get Interface media */
7743         case SIOCSIFMEDIA:
7744         case SIOCGIFMEDIA:
7745                 DBPRINT(sc, BCE_VERBOSE_MISC,
7746                     "Received SIOCSIFMEDIA/SIOCGIFMEDIA\n");
7747                 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0)
7748                         error = ifmedia_ioctl(ifp, ifr, &sc->bce_ifmedia,
7749                             command);
7750                 else {
7751                         mii = device_get_softc(sc->bce_miibus);
7752                         error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
7753                             command);
7754                 }
7755                 break;
7756
7757         /* Set interface capability */
7758         case SIOCSIFCAP:
7759                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
7760                 DBPRINT(sc, BCE_INFO_MISC,
7761                     "Received SIOCSIFCAP = 0x%08X\n", (u32) mask);
7762
7763                 /* Toggle the TX checksum capabilities enable flag. */
7764                 if (mask & IFCAP_TXCSUM &&
7765                     ifp->if_capabilities & IFCAP_TXCSUM) {
7766                         ifp->if_capenable ^= IFCAP_TXCSUM;
7767                         if (IFCAP_TXCSUM & ifp->if_capenable)
7768                                 ifp->if_hwassist |= BCE_IF_HWASSIST;
7769                         else
7770                                 ifp->if_hwassist &= ~BCE_IF_HWASSIST;
7771                 }
7772
7773                 /* Toggle the RX checksum capabilities enable flag. */
7774                 if (mask & IFCAP_RXCSUM &&
7775                     ifp->if_capabilities & IFCAP_RXCSUM)
7776                         ifp->if_capenable ^= IFCAP_RXCSUM;
7777
7778                 /* Toggle the TSO capabilities enable flag. */
7779                 if (bce_tso_enable && (mask & IFCAP_TSO4) &&
7780                     ifp->if_capabilities & IFCAP_TSO4) {
7781                         ifp->if_capenable ^= IFCAP_TSO4;
7782                         if (IFCAP_TSO4 & ifp->if_capenable)
7783                                 ifp->if_hwassist |= CSUM_TSO;
7784                         else
7785                                 ifp->if_hwassist &= ~CSUM_TSO;
7786                 }
7787
7788                 if (mask & IFCAP_VLAN_HWCSUM &&
7789                     ifp->if_capabilities & IFCAP_VLAN_HWCSUM)
7790                         ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
7791
7792                 if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
7793                     (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
7794                         ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
7795                 /*
7796                  * Don't actually disable VLAN tag stripping as
7797                  * management firmware (ASF/IPMI/UMP) requires the
7798                  * feature. If VLAN tag stripping is disabled driver
7799                  * will manually reconstruct the VLAN frame by
7800                  * appending stripped VLAN tag.
7801                  */
7802                 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
7803                     (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING)) {
7804                         ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
7805                         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
7806                             == 0)
7807                                 ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
7808                 }
7809                 VLAN_CAPABILITIES(ifp);
7810                 break;
7811         default:
7812                 /* We don't know how to handle the IOCTL, pass it on. */
7813                 error = ether_ioctl(ifp, command, data);
7814                 break;
7815         }
7816
7817         DBEXIT(BCE_VERBOSE_MISC);
7818         return(error);
7819 }
7820
7821
7822 /****************************************************************************/
7823 /* Transmit timeout handler.                                                */
7824 /*                                                                          */
7825 /* Returns:                                                                 */
7826 /*   Nothing.                                                               */
7827 /****************************************************************************/
7828 static void
7829 bce_watchdog(struct bce_softc *sc)
7830 {
7831         uint32_t status;
7832
7833         DBENTER(BCE_EXTREME_SEND);
7834
7835         BCE_LOCK_ASSERT(sc);
7836
7837         status = 0;
7838         /* If the watchdog timer hasn't expired then just exit. */
7839         if (sc->watchdog_timer == 0 || --sc->watchdog_timer)
7840                 goto bce_watchdog_exit;
7841
7842         status = REG_RD(sc, BCE_EMAC_RX_STATUS);
7843         /* If pause frames are active then don't reset the hardware. */
7844         if ((sc->bce_flags & BCE_USING_RX_FLOW_CONTROL) != 0) {
7845                 if ((status & BCE_EMAC_RX_STATUS_FFED) != 0) {
7846                         /*
7847                          * If link partner has us in XOFF state then wait for
7848                          * the condition to clear.
7849                          */
7850                         sc->watchdog_timer = BCE_TX_TIMEOUT;
7851                         goto bce_watchdog_exit;
7852                 } else if ((status & BCE_EMAC_RX_STATUS_FF_RECEIVED) != 0 &&
7853                         (status & BCE_EMAC_RX_STATUS_N_RECEIVED) != 0) {
7854                         /*
7855                          * If we're not currently XOFF'ed but have recently
7856                          * been XOFF'd/XON'd then assume that's delaying TX
7857                          * this time around.
7858                          */
7859                         sc->watchdog_timer = BCE_TX_TIMEOUT;
7860                         goto bce_watchdog_exit;
7861                 }
7862                 /*
7863                  * Any other condition is unexpected and the controller
7864                  * should be reset.
7865                  */
7866         }
7867
7868         BCE_PRINTF("%s(%d): Watchdog timeout occurred, resetting!\n",
7869             __FILE__, __LINE__);
7870
7871         DBRUNMSG(BCE_INFO,
7872             bce_dump_driver_state(sc);
7873             bce_dump_status_block(sc);
7874             bce_dump_stats_block(sc);
7875             bce_dump_ftqs(sc);
7876             bce_dump_txp_state(sc, 0);
7877             bce_dump_rxp_state(sc, 0);
7878             bce_dump_tpat_state(sc, 0);
7879             bce_dump_cp_state(sc, 0);
7880             bce_dump_com_state(sc, 0));
7881
7882         DBRUN(bce_breakpoint(sc));
7883
7884         sc->bce_ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
7885
7886         bce_init_locked(sc);
7887         sc->bce_ifp->if_oerrors++;
7888
7889 bce_watchdog_exit:
7890         REG_WR(sc, BCE_EMAC_RX_STATUS, status);
7891         DBEXIT(BCE_EXTREME_SEND);
7892 }
7893
7894
7895 /*
7896  * Interrupt handler.
7897  */
7898 /****************************************************************************/
7899 /* Main interrupt entry point.  Verifies that the controller generated the  */
7900 /* interrupt and then calls a separate routine for handle the various       */
7901 /* interrupt causes (PHY, TX, RX).                                          */
7902 /*                                                                          */
7903 /* Returns:                                                                 */
7904 /*   Nothing.                                                               */
7905 /****************************************************************************/
7906 static void
7907 bce_intr(void *xsc)
7908 {
7909         struct bce_softc *sc;
7910         struct ifnet *ifp;
7911         u32 status_attn_bits;
7912         u16 hw_rx_cons, hw_tx_cons;
7913
7914         sc = xsc;
7915         ifp = sc->bce_ifp;
7916
7917         DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
7918         DBRUNMSG(BCE_VERBOSE_INTR, bce_dump_status_block(sc));
7919         DBRUNMSG(BCE_VERBOSE_INTR, bce_dump_stats_block(sc));
7920
7921         BCE_LOCK(sc);
7922
7923         DBRUN(sc->interrupts_generated++);
7924
7925         /* Synchnorize before we read from interface's status block */
7926         bus_dmamap_sync(sc->status_tag, sc->status_map, BUS_DMASYNC_POSTREAD);
7927
7928         /*
7929          * If the hardware status block index matches the last value read
7930          * by the driver and we haven't asserted our interrupt then there's
7931          * nothing to do.  This may only happen in case of INTx due to the
7932          * interrupt arriving at the CPU before the status block is updated.
7933          */
7934         if ((sc->bce_flags & (BCE_USING_MSI_FLAG | BCE_USING_MSIX_FLAG)) == 0 &&
7935             sc->status_block->status_idx == sc->last_status_idx &&
7936             (REG_RD(sc, BCE_PCICFG_MISC_STATUS) &
7937              BCE_PCICFG_MISC_STATUS_INTA_VALUE)) {
7938                 DBPRINT(sc, BCE_VERBOSE_INTR, "%s(): Spurious interrupt.\n",
7939                     __FUNCTION__);
7940                 goto bce_intr_exit;
7941         }
7942
7943         /* Ack the interrupt and stop others from occuring. */
7944         REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
7945             BCE_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
7946             BCE_PCICFG_INT_ACK_CMD_MASK_INT);
7947
7948         /* Check if the hardware has finished any work. */
7949         hw_rx_cons = bce_get_hw_rx_cons(sc);
7950         hw_tx_cons = bce_get_hw_tx_cons(sc);
7951
7952         /* Keep processing data as long as there is work to do. */
7953         for (;;) {
7954
7955                 status_attn_bits = sc->status_block->status_attn_bits;
7956
7957                 DBRUNIF(DB_RANDOMTRUE(unexpected_attention_sim_control),
7958                     BCE_PRINTF("Simulating unexpected status attention "
7959                     "bit set.");
7960                     sc->unexpected_attention_sim_count++;
7961                     status_attn_bits = status_attn_bits |
7962                     STATUS_ATTN_BITS_PARITY_ERROR);
7963
7964                 /* Was it a link change interrupt? */
7965                 if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
7966                     (sc->status_block->status_attn_bits_ack &
7967                      STATUS_ATTN_BITS_LINK_STATE)) {
7968                         bce_phy_intr(sc);
7969
7970                         /* Clear transient updates during link state change. */
7971                         REG_WR(sc, BCE_HC_COMMAND, sc->hc_command |
7972                             BCE_HC_COMMAND_COAL_NOW_WO_INT);
7973                         REG_RD(sc, BCE_HC_COMMAND);
7974                 }
7975
7976                 /* If any other attention is asserted, the chip is toast. */
7977                 if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
7978                     (sc->status_block->status_attn_bits_ack &
7979                     ~STATUS_ATTN_BITS_LINK_STATE))) {
7980
7981                         sc->unexpected_attention_count++;
7982
7983                         BCE_PRINTF("%s(%d): Fatal attention detected: "
7984                             "0x%08X\n", __FILE__, __LINE__,
7985                             sc->status_block->status_attn_bits);
7986
7987                         DBRUNMSG(BCE_FATAL,
7988                             if (unexpected_attention_sim_control == 0)
7989                                 bce_breakpoint(sc));
7990
7991                         bce_init_locked(sc);
7992                         goto bce_intr_exit;
7993                 }
7994
7995                 /* Check for any completed RX frames. */
7996                 if (hw_rx_cons != sc->hw_rx_cons)
7997                         bce_rx_intr(sc);
7998
7999                 /* Check for any completed TX frames. */
8000                 if (hw_tx_cons != sc->hw_tx_cons)
8001                         bce_tx_intr(sc);
8002
8003                 /* Save status block index value for the next interrupt. */
8004                 sc->last_status_idx = sc->status_block->status_idx;
8005
8006                 /*
8007                  * Prevent speculative reads from getting
8008                  * ahead of the status block.
8009                  */
8010                 bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
8011                     BUS_SPACE_BARRIER_READ);
8012
8013                 /*
8014                  * If there's no work left then exit the
8015                  * interrupt service routine.
8016                  */
8017                 hw_rx_cons = bce_get_hw_rx_cons(sc);
8018                 hw_tx_cons = bce_get_hw_tx_cons(sc);
8019
8020                 if ((hw_rx_cons == sc->hw_rx_cons) &&
8021                     (hw_tx_cons == sc->hw_tx_cons))
8022                         break;
8023         }
8024
8025         bus_dmamap_sync(sc->status_tag, sc->status_map, BUS_DMASYNC_PREREAD);
8026
8027         /* Re-enable interrupts. */
8028         bce_enable_intr(sc, 0);
8029
8030         /* Handle any frames that arrived while handling the interrupt. */
8031         if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
8032             !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
8033                 bce_start_locked(ifp);
8034
8035 bce_intr_exit:
8036         BCE_UNLOCK(sc);
8037
8038         DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
8039 }
8040
8041
8042 /****************************************************************************/
8043 /* Programs the various packet receive modes (broadcast and multicast).     */
8044 /*                                                                          */
8045 /* Returns:                                                                 */
8046 /*   Nothing.                                                               */
8047 /****************************************************************************/
8048 static void
8049 bce_set_rx_mode(struct bce_softc *sc)
8050 {
8051         struct ifnet *ifp;
8052         struct ifmultiaddr *ifma;
8053         u32 hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
8054         u32 rx_mode, sort_mode;
8055         int h, i;
8056
8057         DBENTER(BCE_VERBOSE_MISC);
8058
8059         BCE_LOCK_ASSERT(sc);
8060
8061         ifp = sc->bce_ifp;
8062
8063         /* Initialize receive mode default settings. */
8064         rx_mode   = sc->rx_mode & ~(BCE_EMAC_RX_MODE_PROMISCUOUS |
8065             BCE_EMAC_RX_MODE_KEEP_VLAN_TAG);
8066         sort_mode = 1 | BCE_RPM_SORT_USER0_BC_EN;
8067
8068         /*
8069          * ASF/IPMI/UMP firmware requires that VLAN tag stripping
8070          * be enbled.
8071          */
8072         if (!(BCE_IF_CAPABILITIES & IFCAP_VLAN_HWTAGGING) &&
8073             (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG)))
8074                 rx_mode |= BCE_EMAC_RX_MODE_KEEP_VLAN_TAG;
8075
8076         /*
8077          * Check for promiscuous, all multicast, or selected
8078          * multicast address filtering.
8079          */
8080         if (ifp->if_flags & IFF_PROMISC) {
8081                 DBPRINT(sc, BCE_INFO_MISC, "Enabling promiscuous mode.\n");
8082
8083                 /* Enable promiscuous mode. */
8084                 rx_mode |= BCE_EMAC_RX_MODE_PROMISCUOUS;
8085                 sort_mode |= BCE_RPM_SORT_USER0_PROM_EN;
8086         } else if (ifp->if_flags & IFF_ALLMULTI) {
8087                 DBPRINT(sc, BCE_INFO_MISC, "Enabling all multicast mode.\n");
8088
8089                 /* Enable all multicast addresses. */
8090                 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
8091                         REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4),
8092                             0xffffffff);
8093                 }
8094                 sort_mode |= BCE_RPM_SORT_USER0_MC_EN;
8095         } else {
8096                 /* Accept one or more multicast(s). */
8097                 DBPRINT(sc, BCE_INFO_MISC, "Enabling selective multicast mode.\n");
8098
8099                 if_maddr_rlock(ifp);
8100                 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
8101                         if (ifma->ifma_addr->sa_family != AF_LINK)
8102                                 continue;
8103                         h = ether_crc32_le(LLADDR((struct sockaddr_dl *)
8104                             ifma->ifma_addr), ETHER_ADDR_LEN) & 0xFF;
8105                             hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
8106                 }
8107                 if_maddr_runlock(ifp);
8108
8109                 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
8110                         REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4), hashes[i]);
8111
8112                 sort_mode |= BCE_RPM_SORT_USER0_MC_HSH_EN;
8113         }
8114
8115         /* Only make changes if the recive mode has actually changed. */
8116         if (rx_mode != sc->rx_mode) {
8117                 DBPRINT(sc, BCE_VERBOSE_MISC, "Enabling new receive mode: "
8118                     "0x%08X\n", rx_mode);
8119
8120                 sc->rx_mode = rx_mode;
8121                 REG_WR(sc, BCE_EMAC_RX_MODE, rx_mode);
8122         }
8123
8124         /* Disable and clear the exisitng sort before enabling a new sort. */
8125         REG_WR(sc, BCE_RPM_SORT_USER0, 0x0);
8126         REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode);
8127         REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode | BCE_RPM_SORT_USER0_ENA);
8128
8129         DBEXIT(BCE_VERBOSE_MISC);
8130 }
8131
8132
8133 /****************************************************************************/
8134 /* Called periodically to updates statistics from the controllers           */
8135 /* statistics block.                                                        */
8136 /*                                                                          */
8137 /* Returns:                                                                 */
8138 /*   Nothing.                                                               */
8139 /****************************************************************************/
8140 static void
8141 bce_stats_update(struct bce_softc *sc)
8142 {
8143         struct ifnet *ifp;
8144         struct statistics_block *stats;
8145
8146         DBENTER(BCE_EXTREME_MISC);
8147
8148         ifp = sc->bce_ifp;
8149
8150         bus_dmamap_sync(sc->stats_tag, sc->stats_map, BUS_DMASYNC_POSTREAD);
8151
8152         stats = (struct statistics_block *) sc->stats_block;
8153
8154         /*
8155          * Certain controllers don't report
8156          * carrier sense errors correctly.
8157          * See errata E11_5708CA0_1165.
8158          */
8159         if (!(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) &&
8160             !(BCE_CHIP_ID(sc) == BCE_CHIP_ID_5708_A0))
8161                 ifp->if_oerrors +=
8162                     (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
8163
8164         /*
8165          * Update the sysctl statistics from the
8166          * hardware statistics.
8167          */
8168         sc->stat_IfHCInOctets =
8169             ((u64) stats->stat_IfHCInOctets_hi << 32) +
8170              (u64) stats->stat_IfHCInOctets_lo;
8171
8172         sc->stat_IfHCInBadOctets =
8173             ((u64) stats->stat_IfHCInBadOctets_hi << 32) +
8174              (u64) stats->stat_IfHCInBadOctets_lo;
8175
8176         sc->stat_IfHCOutOctets =
8177             ((u64) stats->stat_IfHCOutOctets_hi << 32) +
8178              (u64) stats->stat_IfHCOutOctets_lo;
8179
8180         sc->stat_IfHCOutBadOctets =
8181             ((u64) stats->stat_IfHCOutBadOctets_hi << 32) +
8182              (u64) stats->stat_IfHCOutBadOctets_lo;
8183
8184         sc->stat_IfHCInUcastPkts =
8185             ((u64) stats->stat_IfHCInUcastPkts_hi << 32) +
8186              (u64) stats->stat_IfHCInUcastPkts_lo;
8187
8188         sc->stat_IfHCInMulticastPkts =
8189             ((u64) stats->stat_IfHCInMulticastPkts_hi << 32) +
8190              (u64) stats->stat_IfHCInMulticastPkts_lo;
8191
8192         sc->stat_IfHCInBroadcastPkts =
8193             ((u64) stats->stat_IfHCInBroadcastPkts_hi << 32) +
8194              (u64) stats->stat_IfHCInBroadcastPkts_lo;
8195
8196         sc->stat_IfHCOutUcastPkts =
8197             ((u64) stats->stat_IfHCOutUcastPkts_hi << 32) +
8198              (u64) stats->stat_IfHCOutUcastPkts_lo;
8199
8200         sc->stat_IfHCOutMulticastPkts =
8201             ((u64) stats->stat_IfHCOutMulticastPkts_hi << 32) +
8202              (u64) stats->stat_IfHCOutMulticastPkts_lo;
8203
8204         sc->stat_IfHCOutBroadcastPkts =
8205             ((u64) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
8206              (u64) stats->stat_IfHCOutBroadcastPkts_lo;
8207
8208         /* ToDo: Preserve counters beyond 32 bits? */
8209         /* ToDo: Read the statistics from auto-clear regs? */
8210
8211         sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
8212             stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
8213
8214         sc->stat_Dot3StatsCarrierSenseErrors =
8215             stats->stat_Dot3StatsCarrierSenseErrors;
8216
8217         sc->stat_Dot3StatsFCSErrors =
8218             stats->stat_Dot3StatsFCSErrors;
8219
8220         sc->stat_Dot3StatsAlignmentErrors =
8221             stats->stat_Dot3StatsAlignmentErrors;
8222
8223         sc->stat_Dot3StatsSingleCollisionFrames =
8224             stats->stat_Dot3StatsSingleCollisionFrames;
8225
8226         sc->stat_Dot3StatsMultipleCollisionFrames =
8227             stats->stat_Dot3StatsMultipleCollisionFrames;
8228
8229         sc->stat_Dot3StatsDeferredTransmissions =
8230             stats->stat_Dot3StatsDeferredTransmissions;
8231
8232         sc->stat_Dot3StatsExcessiveCollisions =
8233             stats->stat_Dot3StatsExcessiveCollisions;
8234
8235         sc->stat_Dot3StatsLateCollisions =
8236             stats->stat_Dot3StatsLateCollisions;
8237
8238         sc->stat_EtherStatsCollisions =
8239             stats->stat_EtherStatsCollisions;
8240
8241         sc->stat_EtherStatsFragments =
8242             stats->stat_EtherStatsFragments;
8243
8244         sc->stat_EtherStatsJabbers =
8245             stats->stat_EtherStatsJabbers;
8246
8247         sc->stat_EtherStatsUndersizePkts =
8248             stats->stat_EtherStatsUndersizePkts;
8249
8250         sc->stat_EtherStatsOversizePkts =
8251              stats->stat_EtherStatsOversizePkts;
8252
8253         sc->stat_EtherStatsPktsRx64Octets =
8254             stats->stat_EtherStatsPktsRx64Octets;
8255
8256         sc->stat_EtherStatsPktsRx65Octetsto127Octets =
8257             stats->stat_EtherStatsPktsRx65Octetsto127Octets;
8258
8259         sc->stat_EtherStatsPktsRx128Octetsto255Octets =
8260             stats->stat_EtherStatsPktsRx128Octetsto255Octets;
8261
8262         sc->stat_EtherStatsPktsRx256Octetsto511Octets =
8263             stats->stat_EtherStatsPktsRx256Octetsto511Octets;
8264
8265         sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
8266             stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
8267
8268         sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
8269             stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
8270
8271         sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
8272             stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
8273
8274         sc->stat_EtherStatsPktsTx64Octets =
8275             stats->stat_EtherStatsPktsTx64Octets;
8276
8277         sc->stat_EtherStatsPktsTx65Octetsto127Octets =
8278             stats->stat_EtherStatsPktsTx65Octetsto127Octets;
8279
8280         sc->stat_EtherStatsPktsTx128Octetsto255Octets =
8281             stats->stat_EtherStatsPktsTx128Octetsto255Octets;
8282
8283         sc->stat_EtherStatsPktsTx256Octetsto511Octets =
8284             stats->stat_EtherStatsPktsTx256Octetsto511Octets;
8285
8286         sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
8287             stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
8288
8289         sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
8290             stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
8291
8292         sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
8293             stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
8294
8295         sc->stat_XonPauseFramesReceived =
8296             stats->stat_XonPauseFramesReceived;
8297
8298         sc->stat_XoffPauseFramesReceived =
8299             stats->stat_XoffPauseFramesReceived;
8300
8301         sc->stat_OutXonSent =
8302             stats->stat_OutXonSent;
8303
8304         sc->stat_OutXoffSent =
8305             stats->stat_OutXoffSent;
8306
8307         sc->stat_FlowControlDone =
8308             stats->stat_FlowControlDone;
8309
8310         sc->stat_MacControlFramesReceived =
8311             stats->stat_MacControlFramesReceived;
8312
8313         sc->stat_XoffStateEntered =
8314             stats->stat_XoffStateEntered;
8315
8316         sc->stat_IfInFramesL2FilterDiscards =
8317             stats->stat_IfInFramesL2FilterDiscards;
8318
8319         sc->stat_IfInRuleCheckerDiscards =
8320             stats->stat_IfInRuleCheckerDiscards;
8321
8322         sc->stat_IfInFTQDiscards =
8323             stats->stat_IfInFTQDiscards;
8324
8325         sc->stat_IfInMBUFDiscards =
8326             stats->stat_IfInMBUFDiscards;
8327
8328         sc->stat_IfInRuleCheckerP4Hit =
8329             stats->stat_IfInRuleCheckerP4Hit;
8330
8331         sc->stat_CatchupInRuleCheckerDiscards =
8332             stats->stat_CatchupInRuleCheckerDiscards;
8333
8334         sc->stat_CatchupInFTQDiscards =
8335             stats->stat_CatchupInFTQDiscards;
8336
8337         sc->stat_CatchupInMBUFDiscards =
8338             stats->stat_CatchupInMBUFDiscards;
8339
8340         sc->stat_CatchupInRuleCheckerP4Hit =
8341             stats->stat_CatchupInRuleCheckerP4Hit;
8342
8343         sc->com_no_buffers = REG_RD_IND(sc, 0x120084);
8344
8345         /*
8346          * Update the interface statistics from the
8347          * hardware statistics.
8348          */
8349         ifp->if_collisions =
8350             (u_long) sc->stat_EtherStatsCollisions;
8351
8352         /* ToDo: This method loses soft errors. */
8353         ifp->if_ierrors =
8354             (u_long) sc->stat_EtherStatsUndersizePkts +
8355             (u_long) sc->stat_EtherStatsOversizePkts +
8356             (u_long) sc->stat_IfInMBUFDiscards +
8357             (u_long) sc->stat_Dot3StatsAlignmentErrors +
8358             (u_long) sc->stat_Dot3StatsFCSErrors +
8359             (u_long) sc->stat_IfInRuleCheckerDiscards +
8360             (u_long) sc->stat_IfInFTQDiscards +
8361             (u_long) sc->com_no_buffers;
8362
8363         /* ToDo: This method loses soft errors. */
8364         ifp->if_oerrors =
8365             (u_long) sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
8366             (u_long) sc->stat_Dot3StatsExcessiveCollisions +
8367             (u_long) sc->stat_Dot3StatsLateCollisions;
8368
8369         /* ToDo: Add additional statistics? */
8370
8371         DBEXIT(BCE_EXTREME_MISC);
8372 }
8373
8374
8375 /****************************************************************************/
8376 /* Periodic function to notify the bootcode that the driver is still        */
8377 /* present.                                                                 */
8378 /*                                                                          */
8379 /* Returns:                                                                 */
8380 /*   Nothing.                                                               */
8381 /****************************************************************************/
8382 static void
8383 bce_pulse(void *xsc)
8384 {
8385         struct bce_softc *sc = xsc;
8386         u32 msg;
8387
8388         DBENTER(BCE_EXTREME_MISC);
8389
8390         BCE_LOCK_ASSERT(sc);
8391
8392         /* Tell the firmware that the driver is still running. */
8393         msg = (u32) ++sc->bce_fw_drv_pulse_wr_seq;
8394         bce_shmem_wr(sc, BCE_DRV_PULSE_MB, msg);
8395
8396         /* Update the bootcode condition. */
8397         sc->bc_state = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
8398
8399         /* Report whether the bootcode still knows the driver is running. */
8400         if (bce_verbose || bootverbose) {
8401                 if (sc->bce_drv_cardiac_arrest == FALSE) {
8402                         if (!(sc->bc_state & BCE_CONDITION_DRV_PRESENT)) {
8403                                 sc->bce_drv_cardiac_arrest = TRUE;
8404                                 BCE_PRINTF("%s(): Warning: bootcode "
8405                                     "thinks driver is absent! "
8406                                     "(bc_state = 0x%08X)\n",
8407                                     __FUNCTION__, sc->bc_state);
8408                         }
8409                 } else {
8410                         /*
8411                          * Not supported by all bootcode versions.
8412                          * (v5.0.11+ and v5.2.1+)  Older bootcode
8413                          * will require the driver to reset the
8414                          * controller to clear this condition.
8415                          */
8416                         if (sc->bc_state & BCE_CONDITION_DRV_PRESENT) {
8417                                 sc->bce_drv_cardiac_arrest = FALSE;
8418                                 BCE_PRINTF("%s(): Bootcode found the "
8419                                     "driver pulse! (bc_state = 0x%08X)\n",
8420                                     __FUNCTION__, sc->bc_state);
8421                         }
8422                 }
8423         }
8424
8425
8426         /* Schedule the next pulse. */
8427         callout_reset(&sc->bce_pulse_callout, hz, bce_pulse, sc);
8428
8429         DBEXIT(BCE_EXTREME_MISC);
8430 }
8431
8432
8433 /****************************************************************************/
8434 /* Periodic function to perform maintenance tasks.                          */
8435 /*                                                                          */
8436 /* Returns:                                                                 */
8437 /*   Nothing.                                                               */
8438 /****************************************************************************/
8439 static void
8440 bce_tick(void *xsc)
8441 {
8442         struct bce_softc *sc = xsc;
8443         struct mii_data *mii;
8444         struct ifnet *ifp;
8445         struct ifmediareq ifmr;
8446
8447         ifp = sc->bce_ifp;
8448
8449         DBENTER(BCE_EXTREME_MISC);
8450
8451         BCE_LOCK_ASSERT(sc);
8452
8453         /* Schedule the next tick. */
8454         callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc);
8455
8456         /* Update the statistics from the hardware statistics block. */
8457         bce_stats_update(sc);
8458
8459         /* Ensure page and RX chains get refilled in low-memory situations. */
8460         if (bce_hdr_split == TRUE)
8461                 bce_fill_pg_chain(sc);
8462         bce_fill_rx_chain(sc);
8463
8464         /* Check that chip hasn't hung. */
8465         bce_watchdog(sc);
8466
8467         /* If link is up already up then we're done. */
8468         if (sc->bce_link_up == TRUE)
8469                 goto bce_tick_exit;
8470
8471         /* Link is down.  Check what the PHY's doing. */
8472         if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
8473                 bzero(&ifmr, sizeof(ifmr));
8474                 bce_ifmedia_sts_rphy(sc, &ifmr);
8475                 if ((ifmr.ifm_status & (IFM_ACTIVE | IFM_AVALID)) ==
8476                     (IFM_ACTIVE | IFM_AVALID)) {
8477                         sc->bce_link_up = TRUE;
8478                         bce_miibus_statchg(sc->bce_dev);
8479                 }
8480         } else {
8481                 mii = device_get_softc(sc->bce_miibus);
8482                 mii_tick(mii);
8483                 /* Check if the link has come up. */
8484                 if ((mii->mii_media_status & IFM_ACTIVE) &&
8485                     (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)) {
8486                         DBPRINT(sc, BCE_VERBOSE_MISC, "%s(): Link up!\n",
8487                             __FUNCTION__);
8488                         sc->bce_link_up = TRUE;
8489                         if ((IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
8490                             IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX ||
8491                             IFM_SUBTYPE(mii->mii_media_active) == IFM_2500_SX) &&
8492                             (bce_verbose || bootverbose))
8493                                 BCE_PRINTF("Gigabit link up!\n");
8494                 }
8495
8496         }
8497         if (sc->bce_link_up == TRUE) {
8498                 /* Now that link is up, handle any outstanding TX traffic. */
8499                 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
8500                         DBPRINT(sc, BCE_VERBOSE_MISC, "%s(): Found "
8501                             "pending TX traffic.\n", __FUNCTION__);
8502                         bce_start_locked(ifp);
8503                 }
8504         }
8505
8506 bce_tick_exit:
8507         DBEXIT(BCE_EXTREME_MISC);
8508 }
8509
8510 static void
8511 bce_fw_cap_init(struct bce_softc *sc)
8512 {
8513         u32 ack, cap, link;
8514
8515         ack = 0;
8516         cap = bce_shmem_rd(sc, BCE_FW_CAP_MB);
8517         if ((cap & BCE_FW_CAP_SIGNATURE_MAGIC_MASK) !=
8518             BCE_FW_CAP_SIGNATURE_MAGIC)
8519                 return;
8520         if ((cap & (BCE_FW_CAP_MFW_KEEP_VLAN | BCE_FW_CAP_BC_KEEP_VLAN)) ==
8521             (BCE_FW_CAP_MFW_KEEP_VLAN | BCE_FW_CAP_BC_KEEP_VLAN))
8522                 ack |= BCE_DRV_ACK_CAP_SIGNATURE_MAGIC |
8523                     BCE_FW_CAP_MFW_KEEP_VLAN | BCE_FW_CAP_BC_KEEP_VLAN;
8524         if ((sc->bce_phy_flags & BCE_PHY_SERDES_FLAG) != 0 &&
8525             (cap & BCE_FW_CAP_REMOTE_PHY_CAP) != 0) {
8526                 sc->bce_phy_flags &= ~BCE_PHY_REMOTE_PORT_FIBER_FLAG;
8527                 sc->bce_phy_flags |= BCE_PHY_REMOTE_CAP_FLAG;
8528                 link = bce_shmem_rd(sc, BCE_LINK_STATUS);
8529                 if ((link & BCE_LINK_STATUS_SERDES_LINK) != 0)
8530                         sc->bce_phy_flags |= BCE_PHY_REMOTE_PORT_FIBER_FLAG;
8531                 ack |= BCE_DRV_ACK_CAP_SIGNATURE_MAGIC |
8532                     BCE_FW_CAP_REMOTE_PHY_CAP;
8533         }
8534
8535         if (ack != 0)
8536                 bce_shmem_wr(sc, BCE_DRV_ACK_CAP_MB, ack);
8537 }
8538
8539
8540 #ifdef BCE_DEBUG
8541 /****************************************************************************/
8542 /* Allows the driver state to be dumped through the sysctl interface.       */
8543 /*                                                                          */
8544 /* Returns:                                                                 */
8545 /*   0 for success, positive value for failure.                             */
8546 /****************************************************************************/
8547 static int
8548 bce_sysctl_driver_state(SYSCTL_HANDLER_ARGS)
8549 {
8550         int error;
8551         int result;
8552         struct bce_softc *sc;
8553
8554         result = -1;
8555         error = sysctl_handle_int(oidp, &result, 0, req);
8556
8557         if (error || !req->newptr)
8558                 return (error);
8559
8560         if (result == 1) {
8561                 sc = (struct bce_softc *)arg1;
8562                 bce_dump_driver_state(sc);
8563         }
8564
8565         return error;
8566 }
8567
8568
8569 /****************************************************************************/
8570 /* Allows the hardware state to be dumped through the sysctl interface.     */
8571 /*                                                                          */
8572 /* Returns:                                                                 */
8573 /*   0 for success, positive value for failure.                             */
8574 /****************************************************************************/
8575 static int
8576 bce_sysctl_hw_state(SYSCTL_HANDLER_ARGS)
8577 {
8578         int error;
8579         int result;
8580         struct bce_softc *sc;
8581
8582         result = -1;
8583         error = sysctl_handle_int(oidp, &result, 0, req);
8584
8585         if (error || !req->newptr)
8586                 return (error);
8587
8588         if (result == 1) {
8589                 sc = (struct bce_softc *)arg1;
8590                 bce_dump_hw_state(sc);
8591         }
8592
8593         return error;
8594 }
8595
8596
8597 /****************************************************************************/
8598 /* Allows the status block to be dumped through the sysctl interface.       */
8599 /*                                                                          */
8600 /* Returns:                                                                 */
8601 /*   0 for success, positive value for failure.                             */
8602 /****************************************************************************/
8603 static int
8604 bce_sysctl_status_block(SYSCTL_HANDLER_ARGS)
8605 {
8606         int error;
8607         int result;
8608         struct bce_softc *sc;
8609
8610         result = -1;
8611         error = sysctl_handle_int(oidp, &result, 0, req);
8612
8613         if (error || !req->newptr)
8614                 return (error);
8615
8616         if (result == 1) {
8617                 sc = (struct bce_softc *)arg1;
8618                 bce_dump_status_block(sc);
8619         }
8620
8621         return error;
8622 }
8623
8624
8625 /****************************************************************************/
8626 /* Allows the stats block to be dumped through the sysctl interface.        */
8627 /*                                                                          */
8628 /* Returns:                                                                 */
8629 /*   0 for success, positive value for failure.                             */
8630 /****************************************************************************/
8631 static int
8632 bce_sysctl_stats_block(SYSCTL_HANDLER_ARGS)
8633 {
8634         int error;
8635         int result;
8636         struct bce_softc *sc;
8637
8638         result = -1;
8639         error = sysctl_handle_int(oidp, &result, 0, req);
8640
8641         if (error || !req->newptr)
8642                 return (error);
8643
8644         if (result == 1) {
8645                 sc = (struct bce_softc *)arg1;
8646                 bce_dump_stats_block(sc);
8647         }
8648
8649         return error;
8650 }
8651
8652
8653 /****************************************************************************/
8654 /* Allows the stat counters to be cleared without unloading/reloading the   */
8655 /* driver.                                                                  */
8656 /*                                                                          */
8657 /* Returns:                                                                 */
8658 /*   0 for success, positive value for failure.                             */
8659 /****************************************************************************/
8660 static int
8661 bce_sysctl_stats_clear(SYSCTL_HANDLER_ARGS)
8662 {
8663         int error;
8664         int result;
8665         struct bce_softc *sc;
8666
8667         result = -1;
8668         error = sysctl_handle_int(oidp, &result, 0, req);
8669
8670         if (error || !req->newptr)
8671                 return (error);
8672
8673         if (result == 1) {
8674                 sc = (struct bce_softc *)arg1;
8675                 struct statistics_block *stats;
8676
8677                 stats = (struct statistics_block *) sc->stats_block;
8678                 bzero(stats, sizeof(struct statistics_block));
8679                 bus_dmamap_sync(sc->stats_tag, sc->stats_map,
8680                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
8681
8682                 /* Clear the internal H/W statistics counters. */
8683                 REG_WR(sc, BCE_HC_COMMAND, BCE_HC_COMMAND_CLR_STAT_NOW);
8684
8685                 /* Reset the driver maintained statistics. */
8686                 sc->interrupts_rx =
8687                     sc->interrupts_tx = 0;
8688                 sc->tso_frames_requested =
8689                     sc->tso_frames_completed =
8690                     sc->tso_frames_failed = 0;
8691                 sc->rx_empty_count =
8692                     sc->tx_full_count = 0;
8693                 sc->rx_low_watermark = USABLE_RX_BD_ALLOC;
8694                 sc->tx_hi_watermark = 0;
8695                 sc->l2fhdr_error_count =
8696                     sc->l2fhdr_error_sim_count = 0;
8697                 sc->mbuf_alloc_failed_count =
8698                     sc->mbuf_alloc_failed_sim_count = 0;
8699                 sc->dma_map_addr_rx_failed_count =
8700                     sc->dma_map_addr_tx_failed_count = 0;
8701                 sc->mbuf_frag_count = 0;
8702                 sc->csum_offload_tcp_udp =
8703                     sc->csum_offload_ip = 0;
8704                 sc->vlan_tagged_frames_rcvd =
8705                     sc->vlan_tagged_frames_stripped = 0;
8706                 sc->split_header_frames_rcvd =
8707                     sc->split_header_tcp_frames_rcvd = 0;
8708
8709                 /* Clear firmware maintained statistics. */
8710                 REG_WR_IND(sc, 0x120084, 0);
8711         }
8712
8713         return error;
8714 }
8715
8716
8717 /****************************************************************************/
8718 /* Allows the shared memory contents to be dumped through the sysctl  .     */
8719 /* interface.                                                               */
8720 /*                                                                          */
8721 /* Returns:                                                                 */
8722 /*   0 for success, positive value for failure.                             */
8723 /****************************************************************************/
8724 static int
8725 bce_sysctl_shmem_state(SYSCTL_HANDLER_ARGS)
8726 {
8727         int error;
8728         int result;
8729         struct bce_softc *sc;
8730
8731         result = -1;
8732         error = sysctl_handle_int(oidp, &result, 0, req);
8733
8734         if (error || !req->newptr)
8735                 return (error);
8736
8737         if (result == 1) {
8738                 sc = (struct bce_softc *)arg1;
8739                 bce_dump_shmem_state(sc);
8740         }
8741
8742         return error;
8743 }
8744
8745
8746 /****************************************************************************/
8747 /* Allows the bootcode state to be dumped through the sysctl interface.     */
8748 /*                                                                          */
8749 /* Returns:                                                                 */
8750 /*   0 for success, positive value for failure.                             */
8751 /****************************************************************************/
8752 static int
8753 bce_sysctl_bc_state(SYSCTL_HANDLER_ARGS)
8754 {
8755         int error;
8756         int result;
8757         struct bce_softc *sc;
8758
8759         result = -1;
8760         error = sysctl_handle_int(oidp, &result, 0, req);
8761
8762         if (error || !req->newptr)
8763                 return (error);
8764
8765         if (result == 1) {
8766                 sc = (struct bce_softc *)arg1;
8767                 bce_dump_bc_state(sc);
8768         }
8769
8770         return error;
8771 }
8772
8773
8774 /****************************************************************************/
8775 /* Provides a sysctl interface to allow dumping the RX BD chain.            */
8776 /*                                                                          */
8777 /* Returns:                                                                 */
8778 /*   0 for success, positive value for failure.                             */
8779 /****************************************************************************/
8780 static int
8781 bce_sysctl_dump_rx_bd_chain(SYSCTL_HANDLER_ARGS)
8782 {
8783         int error;
8784         int result;
8785         struct bce_softc *sc;
8786
8787         result = -1;
8788         error = sysctl_handle_int(oidp, &result, 0, req);
8789
8790         if (error || !req->newptr)
8791                 return (error);
8792
8793         if (result == 1) {
8794                 sc = (struct bce_softc *)arg1;
8795                 bce_dump_rx_bd_chain(sc, 0, TOTAL_RX_BD_ALLOC);
8796         }
8797
8798         return error;
8799 }
8800
8801
8802 /****************************************************************************/
8803 /* Provides a sysctl interface to allow dumping the RX MBUF chain.          */
8804 /*                                                                          */
8805 /* Returns:                                                                 */
8806 /*   0 for success, positive value for failure.                             */
8807 /****************************************************************************/
8808 static int
8809 bce_sysctl_dump_rx_mbuf_chain(SYSCTL_HANDLER_ARGS)
8810 {
8811         int error;
8812         int result;
8813         struct bce_softc *sc;
8814
8815         result = -1;
8816         error = sysctl_handle_int(oidp, &result, 0, req);
8817
8818         if (error || !req->newptr)
8819                 return (error);
8820
8821         if (result == 1) {
8822                 sc = (struct bce_softc *)arg1;
8823                 bce_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD_ALLOC);
8824         }
8825
8826         return error;
8827 }
8828
8829
8830 /****************************************************************************/
8831 /* Provides a sysctl interface to allow dumping the TX chain.               */
8832 /*                                                                          */
8833 /* Returns:                                                                 */
8834 /*   0 for success, positive value for failure.                             */
8835 /****************************************************************************/
8836 static int
8837 bce_sysctl_dump_tx_chain(SYSCTL_HANDLER_ARGS)
8838 {
8839         int error;
8840         int result;
8841         struct bce_softc *sc;
8842
8843         result = -1;
8844         error = sysctl_handle_int(oidp, &result, 0, req);
8845
8846         if (error || !req->newptr)
8847                 return (error);
8848
8849         if (result == 1) {
8850                 sc = (struct bce_softc *)arg1;
8851                 bce_dump_tx_chain(sc, 0, TOTAL_TX_BD_ALLOC);
8852         }
8853
8854         return error;
8855 }
8856
8857
8858 /****************************************************************************/
8859 /* Provides a sysctl interface to allow dumping the page chain.             */
8860 /*                                                                          */
8861 /* Returns:                                                                 */
8862 /*   0 for success, positive value for failure.                             */
8863 /****************************************************************************/
8864 static int
8865 bce_sysctl_dump_pg_chain(SYSCTL_HANDLER_ARGS)
8866 {
8867         int error;
8868         int result;
8869         struct bce_softc *sc;
8870
8871         result = -1;
8872         error = sysctl_handle_int(oidp, &result, 0, req);
8873
8874         if (error || !req->newptr)
8875                 return (error);
8876
8877         if (result == 1) {
8878                 sc = (struct bce_softc *)arg1;
8879                 bce_dump_pg_chain(sc, 0, TOTAL_PG_BD_ALLOC);
8880         }
8881
8882         return error;
8883 }
8884
8885 /****************************************************************************/
8886 /* Provides a sysctl interface to allow reading arbitrary NVRAM offsets in  */
8887 /* the device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                        */
8888 /*                                                                          */
8889 /* Returns:                                                                 */
8890 /*   0 for success, positive value for failure.                             */
8891 /****************************************************************************/
8892 static int
8893 bce_sysctl_nvram_read(SYSCTL_HANDLER_ARGS)
8894 {
8895         struct bce_softc *sc = (struct bce_softc *)arg1;
8896         int error;
8897         u32 result;
8898         u32 val[1];
8899         u8 *data = (u8 *) val;
8900
8901         result = -1;
8902         error = sysctl_handle_int(oidp, &result, 0, req);
8903         if (error || (req->newptr == NULL))
8904                 return (error);
8905
8906         error = bce_nvram_read(sc, result, data, 4);
8907
8908         BCE_PRINTF("offset 0x%08X = 0x%08X\n", result, bce_be32toh(val[0]));
8909
8910         return (error);
8911 }
8912
8913
8914 /****************************************************************************/
8915 /* Provides a sysctl interface to allow reading arbitrary registers in the  */
8916 /* device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                            */
8917 /*                                                                          */
8918 /* Returns:                                                                 */
8919 /*   0 for success, positive value for failure.                             */
8920 /****************************************************************************/
8921 static int
8922 bce_sysctl_reg_read(SYSCTL_HANDLER_ARGS)
8923 {
8924         struct bce_softc *sc = (struct bce_softc *)arg1;
8925         int error;
8926         u32 val, result;
8927
8928         result = -1;
8929         error = sysctl_handle_int(oidp, &result, 0, req);
8930         if (error || (req->newptr == NULL))
8931                 return (error);
8932
8933         /* Make sure the register is accessible. */
8934         if (result < 0x8000) {
8935                 val = REG_RD(sc, result);
8936                 BCE_PRINTF("reg 0x%08X = 0x%08X\n", result, val);
8937         } else if (result < 0x0280000) {
8938                 val = REG_RD_IND(sc, result);
8939                 BCE_PRINTF("reg 0x%08X = 0x%08X\n", result, val);
8940         }
8941
8942         return (error);
8943 }
8944
8945
8946 /****************************************************************************/
8947 /* Provides a sysctl interface to allow reading arbitrary PHY registers in  */
8948 /* the device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                        */
8949 /*                                                                          */
8950 /* Returns:                                                                 */
8951 /*   0 for success, positive value for failure.                             */
8952 /****************************************************************************/
8953 static int
8954 bce_sysctl_phy_read(SYSCTL_HANDLER_ARGS)
8955 {
8956         struct bce_softc *sc;
8957         device_t dev;
8958         int error, result;
8959         u16 val;
8960
8961         result = -1;
8962         error = sysctl_handle_int(oidp, &result, 0, req);
8963         if (error || (req->newptr == NULL))
8964                 return (error);
8965
8966         /* Make sure the register is accessible. */
8967         if (result < 0x20) {
8968                 sc = (struct bce_softc *)arg1;
8969                 dev = sc->bce_dev;
8970                 val = bce_miibus_read_reg(dev, sc->bce_phy_addr, result);
8971                 BCE_PRINTF("phy 0x%02X = 0x%04X\n", result, val);
8972         }
8973         return (error);
8974 }
8975
8976
8977 /****************************************************************************/
8978 /* Provides a sysctl interface for dumping the nvram contents.              */
8979 /* DO NOT ENABLE ON PRODUCTION SYSTEMS!                                     */
8980 /*                                                                          */
8981 /* Returns:                                                                 */
8982 /*   0 for success, positive errno for failure.                             */
8983 /****************************************************************************/
8984 static int
8985 bce_sysctl_nvram_dump(SYSCTL_HANDLER_ARGS)
8986 {
8987         struct bce_softc *sc = (struct bce_softc *)arg1;
8988         int error, i;
8989
8990         if (sc->nvram_buf == NULL)
8991                 sc->nvram_buf = malloc(sc->bce_flash_size,
8992                                     M_TEMP, M_ZERO | M_WAITOK);
8993
8994         error = 0;
8995         if (req->oldlen == sc->bce_flash_size) {
8996                 for (i = 0; i < sc->bce_flash_size && error == 0; i++)
8997                         error = bce_nvram_read(sc, i, &sc->nvram_buf[i], 1);
8998         }
8999
9000         if (error == 0)
9001                 error = SYSCTL_OUT(req, sc->nvram_buf, sc->bce_flash_size);
9002
9003         return error;
9004 }
9005
9006 #ifdef BCE_NVRAM_WRITE_SUPPORT
9007 /****************************************************************************/
9008 /* Provides a sysctl interface for writing to nvram.                        */
9009 /* DO NOT ENABLE ON PRODUCTION SYSTEMS!                                     */
9010 /*                                                                          */
9011 /* Returns:                                                                 */
9012 /*   0 for success, positive errno for failure.                             */
9013 /****************************************************************************/
9014 static int
9015 bce_sysctl_nvram_write(SYSCTL_HANDLER_ARGS)
9016 {
9017         struct bce_softc *sc = (struct bce_softc *)arg1;
9018         int error;
9019
9020         if (sc->nvram_buf == NULL)
9021                 sc->nvram_buf = malloc(sc->bce_flash_size,
9022                                     M_TEMP, M_ZERO | M_WAITOK);
9023         else
9024                 bzero(sc->nvram_buf, sc->bce_flash_size);
9025
9026         error = SYSCTL_IN(req, sc->nvram_buf, sc->bce_flash_size);
9027         if (error == 0)
9028                 return (error);
9029
9030         if (req->newlen == sc->bce_flash_size)
9031                 error = bce_nvram_write(sc, 0, sc->nvram_buf,
9032                             sc->bce_flash_size);
9033
9034
9035         return error;
9036 }
9037 #endif
9038
9039
9040 /****************************************************************************/
9041 /* Provides a sysctl interface to allow reading a CID.                      */
9042 /*                                                                          */
9043 /* Returns:                                                                 */
9044 /*   0 for success, positive value for failure.                             */
9045 /****************************************************************************/
9046 static int
9047 bce_sysctl_dump_ctx(SYSCTL_HANDLER_ARGS)
9048 {
9049         struct bce_softc *sc;
9050         int error, result;
9051
9052         result = -1;
9053         error = sysctl_handle_int(oidp, &result, 0, req);
9054         if (error || (req->newptr == NULL))
9055                 return (error);
9056
9057         /* Make sure the register is accessible. */
9058         if (result <= TX_CID) {
9059                 sc = (struct bce_softc *)arg1;
9060                 bce_dump_ctx(sc, result);
9061         }
9062
9063         return (error);
9064 }
9065
9066
9067 /****************************************************************************/
9068 /* Provides a sysctl interface to forcing the driver to dump state and      */
9069 /* enter the debugger.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                */
9070 /*                                                                          */
9071 /* Returns:                                                                 */
9072 /*   0 for success, positive value for failure.                             */
9073 /****************************************************************************/
9074 static int
9075 bce_sysctl_breakpoint(SYSCTL_HANDLER_ARGS)
9076 {
9077         int error;
9078         int result;
9079         struct bce_softc *sc;
9080
9081         result = -1;
9082         error = sysctl_handle_int(oidp, &result, 0, req);
9083
9084         if (error || !req->newptr)
9085                 return (error);
9086
9087         if (result == 1) {
9088                 sc = (struct bce_softc *)arg1;
9089                 bce_breakpoint(sc);
9090         }
9091
9092         return error;
9093 }
9094 #endif
9095
9096 /****************************************************************************/
9097 /* Adds any sysctl parameters for tuning or debugging purposes.             */
9098 /*                                                                          */
9099 /* Returns:                                                                 */
9100 /*   0 for success, positive value for failure.                             */
9101 /****************************************************************************/
9102 static void
9103 bce_add_sysctls(struct bce_softc *sc)
9104 {
9105         struct sysctl_ctx_list *ctx;
9106         struct sysctl_oid_list *children;
9107
9108         DBENTER(BCE_VERBOSE_MISC);
9109
9110         ctx = device_get_sysctl_ctx(sc->bce_dev);
9111         children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bce_dev));
9112
9113 #ifdef BCE_DEBUG
9114         SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9115             "l2fhdr_error_sim_control",
9116             CTLFLAG_RW, &l2fhdr_error_sim_control,
9117             0, "Debug control to force l2fhdr errors");
9118
9119         SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9120             "l2fhdr_error_sim_count",
9121             CTLFLAG_RD, &sc->l2fhdr_error_sim_count,
9122             0, "Number of simulated l2_fhdr errors");
9123 #endif
9124
9125         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9126             "l2fhdr_error_count",
9127             CTLFLAG_RD, &sc->l2fhdr_error_count,
9128             0, "Number of l2_fhdr errors");
9129
9130 #ifdef BCE_DEBUG
9131         SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9132             "mbuf_alloc_failed_sim_control",
9133             CTLFLAG_RW, &mbuf_alloc_failed_sim_control,
9134             0, "Debug control to force mbuf allocation failures");
9135
9136         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9137             "mbuf_alloc_failed_sim_count",
9138             CTLFLAG_RD, &sc->mbuf_alloc_failed_sim_count,
9139             0, "Number of simulated mbuf cluster allocation failures");
9140 #endif
9141
9142         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9143             "mbuf_alloc_failed_count",
9144             CTLFLAG_RD, &sc->mbuf_alloc_failed_count,
9145             0, "Number of mbuf allocation failures");
9146
9147         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9148             "mbuf_frag_count",
9149             CTLFLAG_RD, &sc->mbuf_frag_count,
9150             0, "Number of fragmented mbufs");
9151
9152 #ifdef BCE_DEBUG
9153         SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9154             "dma_map_addr_failed_sim_control",
9155             CTLFLAG_RW, &dma_map_addr_failed_sim_control,
9156             0, "Debug control to force DMA mapping failures");
9157
9158         /* ToDo: Figure out how to update this value in bce_dma_map_addr(). */
9159         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9160             "dma_map_addr_failed_sim_count",
9161             CTLFLAG_RD, &sc->dma_map_addr_failed_sim_count,
9162             0, "Number of simulated DMA mapping failures");
9163
9164 #endif
9165
9166         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9167             "dma_map_addr_rx_failed_count",
9168             CTLFLAG_RD, &sc->dma_map_addr_rx_failed_count,
9169             0, "Number of RX DMA mapping failures");
9170
9171         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9172             "dma_map_addr_tx_failed_count",
9173             CTLFLAG_RD, &sc->dma_map_addr_tx_failed_count,
9174             0, "Number of TX DMA mapping failures");
9175
9176 #ifdef BCE_DEBUG
9177         SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9178             "unexpected_attention_sim_control",
9179             CTLFLAG_RW, &unexpected_attention_sim_control,
9180             0, "Debug control to simulate unexpected attentions");
9181
9182         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9183             "unexpected_attention_sim_count",
9184             CTLFLAG_RW, &sc->unexpected_attention_sim_count,
9185             0, "Number of simulated unexpected attentions");
9186 #endif
9187
9188         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9189             "unexpected_attention_count",
9190             CTLFLAG_RW, &sc->unexpected_attention_count,
9191             0, "Number of unexpected attentions");
9192
9193 #ifdef BCE_DEBUG
9194         SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9195             "debug_bootcode_running_failure",
9196             CTLFLAG_RW, &bootcode_running_failure_sim_control,
9197             0, "Debug control to force bootcode running failures");
9198
9199         SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9200             "rx_low_watermark",
9201             CTLFLAG_RD, &sc->rx_low_watermark,
9202             0, "Lowest level of free rx_bd's");
9203
9204         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9205             "rx_empty_count",
9206             CTLFLAG_RD, &sc->rx_empty_count,
9207             "Number of times the RX chain was empty");
9208
9209         SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9210             "tx_hi_watermark",
9211             CTLFLAG_RD, &sc->tx_hi_watermark,
9212             0, "Highest level of used tx_bd's");
9213
9214         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9215             "tx_full_count",
9216             CTLFLAG_RD, &sc->tx_full_count,
9217             "Number of times the TX chain was full");
9218
9219         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9220             "tso_frames_requested",
9221             CTLFLAG_RD, &sc->tso_frames_requested,
9222             "Number of TSO frames requested");
9223
9224         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9225             "tso_frames_completed",
9226             CTLFLAG_RD, &sc->tso_frames_completed,
9227             "Number of TSO frames completed");
9228
9229         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9230             "tso_frames_failed",
9231             CTLFLAG_RD, &sc->tso_frames_failed,
9232             "Number of TSO frames failed");
9233
9234         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9235             "csum_offload_ip",
9236             CTLFLAG_RD, &sc->csum_offload_ip,
9237             "Number of IP checksum offload frames");
9238
9239         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9240             "csum_offload_tcp_udp",
9241             CTLFLAG_RD, &sc->csum_offload_tcp_udp,
9242             "Number of TCP/UDP checksum offload frames");
9243
9244         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9245             "vlan_tagged_frames_rcvd",
9246             CTLFLAG_RD, &sc->vlan_tagged_frames_rcvd,
9247             "Number of VLAN tagged frames received");
9248
9249         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9250             "vlan_tagged_frames_stripped",
9251             CTLFLAG_RD, &sc->vlan_tagged_frames_stripped,
9252             "Number of VLAN tagged frames stripped");
9253
9254         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9255             "interrupts_rx",
9256             CTLFLAG_RD, &sc->interrupts_rx,
9257             "Number of RX interrupts");
9258
9259         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9260             "interrupts_tx",
9261             CTLFLAG_RD, &sc->interrupts_tx,
9262             "Number of TX interrupts");
9263
9264         if (bce_hdr_split == TRUE) {
9265                 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9266                     "split_header_frames_rcvd",
9267                     CTLFLAG_RD, &sc->split_header_frames_rcvd,
9268                     "Number of split header frames received");
9269
9270                 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9271                     "split_header_tcp_frames_rcvd",
9272                     CTLFLAG_RD, &sc->split_header_tcp_frames_rcvd,
9273                     "Number of split header TCP frames received");
9274         }
9275
9276         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9277             "nvram_dump", CTLTYPE_OPAQUE | CTLFLAG_RD,
9278             (void *)sc, 0,
9279             bce_sysctl_nvram_dump, "S", "");
9280
9281 #ifdef BCE_NVRAM_WRITE_SUPPORT
9282         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9283             "nvram_write", CTLTYPE_OPAQUE | CTLFLAG_WR,
9284             (void *)sc, 0,
9285             bce_sysctl_nvram_write, "S", "");
9286 #endif
9287 #endif /* BCE_DEBUG */
9288
9289         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9290             "stat_IfHcInOctets",
9291             CTLFLAG_RD, &sc->stat_IfHCInOctets,
9292             "Bytes received");
9293
9294         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9295             "stat_IfHCInBadOctets",
9296             CTLFLAG_RD, &sc->stat_IfHCInBadOctets,
9297             "Bad bytes received");
9298
9299         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9300             "stat_IfHCOutOctets",
9301             CTLFLAG_RD, &sc->stat_IfHCOutOctets,
9302             "Bytes sent");
9303
9304         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9305             "stat_IfHCOutBadOctets",
9306             CTLFLAG_RD, &sc->stat_IfHCOutBadOctets,
9307             "Bad bytes sent");
9308
9309         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9310             "stat_IfHCInUcastPkts",
9311             CTLFLAG_RD, &sc->stat_IfHCInUcastPkts,
9312             "Unicast packets received");
9313
9314         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9315             "stat_IfHCInMulticastPkts",
9316             CTLFLAG_RD, &sc->stat_IfHCInMulticastPkts,
9317             "Multicast packets received");
9318
9319         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9320             "stat_IfHCInBroadcastPkts",
9321             CTLFLAG_RD, &sc->stat_IfHCInBroadcastPkts,
9322             "Broadcast packets received");
9323
9324         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9325             "stat_IfHCOutUcastPkts",
9326             CTLFLAG_RD, &sc->stat_IfHCOutUcastPkts,
9327             "Unicast packets sent");
9328
9329         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9330             "stat_IfHCOutMulticastPkts",
9331             CTLFLAG_RD, &sc->stat_IfHCOutMulticastPkts,
9332             "Multicast packets sent");
9333
9334         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9335             "stat_IfHCOutBroadcastPkts",
9336             CTLFLAG_RD, &sc->stat_IfHCOutBroadcastPkts,
9337             "Broadcast packets sent");
9338
9339         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9340             "stat_emac_tx_stat_dot3statsinternalmactransmiterrors",
9341             CTLFLAG_RD, &sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors,
9342             0, "Internal MAC transmit errors");
9343
9344         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9345             "stat_Dot3StatsCarrierSenseErrors",
9346             CTLFLAG_RD, &sc->stat_Dot3StatsCarrierSenseErrors,
9347             0, "Carrier sense errors");
9348
9349         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9350             "stat_Dot3StatsFCSErrors",
9351             CTLFLAG_RD, &sc->stat_Dot3StatsFCSErrors,
9352             0, "Frame check sequence errors");
9353
9354         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9355             "stat_Dot3StatsAlignmentErrors",
9356             CTLFLAG_RD, &sc->stat_Dot3StatsAlignmentErrors,
9357             0, "Alignment errors");
9358
9359         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9360             "stat_Dot3StatsSingleCollisionFrames",
9361             CTLFLAG_RD, &sc->stat_Dot3StatsSingleCollisionFrames,
9362             0, "Single Collision Frames");
9363
9364         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9365             "stat_Dot3StatsMultipleCollisionFrames",
9366             CTLFLAG_RD, &sc->stat_Dot3StatsMultipleCollisionFrames,
9367             0, "Multiple Collision Frames");
9368
9369         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9370             "stat_Dot3StatsDeferredTransmissions",
9371             CTLFLAG_RD, &sc->stat_Dot3StatsDeferredTransmissions,
9372             0, "Deferred Transmissions");
9373
9374         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9375             "stat_Dot3StatsExcessiveCollisions",
9376             CTLFLAG_RD, &sc->stat_Dot3StatsExcessiveCollisions,
9377             0, "Excessive Collisions");
9378
9379         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9380             "stat_Dot3StatsLateCollisions",
9381             CTLFLAG_RD, &sc->stat_Dot3StatsLateCollisions,
9382             0, "Late Collisions");
9383
9384         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9385             "stat_EtherStatsCollisions",
9386             CTLFLAG_RD, &sc->stat_EtherStatsCollisions,
9387             0, "Collisions");
9388
9389         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9390             "stat_EtherStatsFragments",
9391             CTLFLAG_RD, &sc->stat_EtherStatsFragments,
9392             0, "Fragments");
9393
9394         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9395             "stat_EtherStatsJabbers",
9396             CTLFLAG_RD, &sc->stat_EtherStatsJabbers,
9397             0, "Jabbers");
9398
9399         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9400             "stat_EtherStatsUndersizePkts",
9401             CTLFLAG_RD, &sc->stat_EtherStatsUndersizePkts,
9402             0, "Undersize packets");
9403
9404         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9405             "stat_EtherStatsOversizePkts",
9406             CTLFLAG_RD, &sc->stat_EtherStatsOversizePkts,
9407             0, "stat_EtherStatsOversizePkts");
9408
9409         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9410             "stat_EtherStatsPktsRx64Octets",
9411             CTLFLAG_RD, &sc->stat_EtherStatsPktsRx64Octets,
9412             0, "Bytes received in 64 byte packets");
9413
9414         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9415             "stat_EtherStatsPktsRx65Octetsto127Octets",
9416             CTLFLAG_RD, &sc->stat_EtherStatsPktsRx65Octetsto127Octets,
9417             0, "Bytes received in 65 to 127 byte packets");
9418
9419         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9420             "stat_EtherStatsPktsRx128Octetsto255Octets",
9421             CTLFLAG_RD, &sc->stat_EtherStatsPktsRx128Octetsto255Octets,
9422             0, "Bytes received in 128 to 255 byte packets");
9423
9424         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9425             "stat_EtherStatsPktsRx256Octetsto511Octets",
9426             CTLFLAG_RD, &sc->stat_EtherStatsPktsRx256Octetsto511Octets,
9427             0, "Bytes received in 256 to 511 byte packets");
9428
9429         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9430             "stat_EtherStatsPktsRx512Octetsto1023Octets",
9431             CTLFLAG_RD, &sc->stat_EtherStatsPktsRx512Octetsto1023Octets,
9432             0, "Bytes received in 512 to 1023 byte packets");
9433
9434         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9435             "stat_EtherStatsPktsRx1024Octetsto1522Octets",
9436             CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1024Octetsto1522Octets,
9437             0, "Bytes received in 1024 t0 1522 byte packets");
9438
9439         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9440             "stat_EtherStatsPktsRx1523Octetsto9022Octets",
9441             CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1523Octetsto9022Octets,
9442             0, "Bytes received in 1523 to 9022 byte packets");
9443
9444         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9445             "stat_EtherStatsPktsTx64Octets",
9446             CTLFLAG_RD, &sc->stat_EtherStatsPktsTx64Octets,
9447             0, "Bytes sent in 64 byte packets");
9448
9449         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9450             "stat_EtherStatsPktsTx65Octetsto127Octets",
9451             CTLFLAG_RD, &sc->stat_EtherStatsPktsTx65Octetsto127Octets,
9452             0, "Bytes sent in 65 to 127 byte packets");
9453
9454         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9455             "stat_EtherStatsPktsTx128Octetsto255Octets",
9456             CTLFLAG_RD, &sc->stat_EtherStatsPktsTx128Octetsto255Octets,
9457             0, "Bytes sent in 128 to 255 byte packets");
9458
9459         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9460             "stat_EtherStatsPktsTx256Octetsto511Octets",
9461             CTLFLAG_RD, &sc->stat_EtherStatsPktsTx256Octetsto511Octets,
9462             0, "Bytes sent in 256 to 511 byte packets");
9463
9464         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9465             "stat_EtherStatsPktsTx512Octetsto1023Octets",
9466             CTLFLAG_RD, &sc->stat_EtherStatsPktsTx512Octetsto1023Octets,
9467             0, "Bytes sent in 512 to 1023 byte packets");
9468
9469         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9470             "stat_EtherStatsPktsTx1024Octetsto1522Octets",
9471             CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1024Octetsto1522Octets,
9472             0, "Bytes sent in 1024 to 1522 byte packets");
9473
9474         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9475             "stat_EtherStatsPktsTx1523Octetsto9022Octets",
9476             CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1523Octetsto9022Octets,
9477             0, "Bytes sent in 1523 to 9022 byte packets");
9478
9479         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9480             "stat_XonPauseFramesReceived",
9481             CTLFLAG_RD, &sc->stat_XonPauseFramesReceived,
9482             0, "XON pause frames receved");
9483
9484         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9485             "stat_XoffPauseFramesReceived",
9486             CTLFLAG_RD, &sc->stat_XoffPauseFramesReceived,
9487             0, "XOFF pause frames received");
9488
9489         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9490             "stat_OutXonSent",
9491             CTLFLAG_RD, &sc->stat_OutXonSent,
9492             0, "XON pause frames sent");
9493
9494         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9495             "stat_OutXoffSent",
9496             CTLFLAG_RD, &sc->stat_OutXoffSent,
9497             0, "XOFF pause frames sent");
9498
9499         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9500             "stat_FlowControlDone",
9501             CTLFLAG_RD, &sc->stat_FlowControlDone,
9502             0, "Flow control done");
9503
9504         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9505             "stat_MacControlFramesReceived",
9506             CTLFLAG_RD, &sc->stat_MacControlFramesReceived,
9507             0, "MAC control frames received");
9508
9509         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9510             "stat_XoffStateEntered",
9511             CTLFLAG_RD, &sc->stat_XoffStateEntered,
9512             0, "XOFF state entered");
9513
9514         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9515             "stat_IfInFramesL2FilterDiscards",
9516             CTLFLAG_RD, &sc->stat_IfInFramesL2FilterDiscards,
9517             0, "Received L2 packets discarded");
9518
9519         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9520             "stat_IfInRuleCheckerDiscards",
9521             CTLFLAG_RD, &sc->stat_IfInRuleCheckerDiscards,
9522             0, "Received packets discarded by rule");
9523
9524         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9525             "stat_IfInFTQDiscards",
9526             CTLFLAG_RD, &sc->stat_IfInFTQDiscards,
9527             0, "Received packet FTQ discards");
9528
9529         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9530             "stat_IfInMBUFDiscards",
9531             CTLFLAG_RD, &sc->stat_IfInMBUFDiscards,
9532             0, "Received packets discarded due to lack "
9533             "of controller buffer memory");
9534
9535         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9536             "stat_IfInRuleCheckerP4Hit",
9537             CTLFLAG_RD, &sc->stat_IfInRuleCheckerP4Hit,
9538             0, "Received packets rule checker hits");
9539
9540         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9541             "stat_CatchupInRuleCheckerDiscards",
9542             CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerDiscards,
9543             0, "Received packets discarded in Catchup path");
9544
9545         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9546             "stat_CatchupInFTQDiscards",
9547             CTLFLAG_RD, &sc->stat_CatchupInFTQDiscards,
9548             0, "Received packets discarded in FTQ in Catchup path");
9549
9550         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9551             "stat_CatchupInMBUFDiscards",
9552             CTLFLAG_RD, &sc->stat_CatchupInMBUFDiscards,
9553             0, "Received packets discarded in controller "
9554             "buffer memory in Catchup path");
9555
9556         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9557             "stat_CatchupInRuleCheckerP4Hit",
9558             CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerP4Hit,
9559             0, "Received packets rule checker hits in Catchup path");
9560
9561         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9562             "com_no_buffers",
9563             CTLFLAG_RD, &sc->com_no_buffers,
9564             0, "Valid packets received but no RX buffers available");
9565
9566 #ifdef BCE_DEBUG
9567         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9568             "driver_state", CTLTYPE_INT | CTLFLAG_RW,
9569             (void *)sc, 0,
9570             bce_sysctl_driver_state, "I", "Drive state information");
9571
9572         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9573             "hw_state", CTLTYPE_INT | CTLFLAG_RW,
9574             (void *)sc, 0,
9575             bce_sysctl_hw_state, "I", "Hardware state information");
9576
9577         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9578             "status_block", CTLTYPE_INT | CTLFLAG_RW,
9579             (void *)sc, 0,
9580             bce_sysctl_status_block, "I", "Dump status block");
9581
9582         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9583             "stats_block", CTLTYPE_INT | CTLFLAG_RW,
9584             (void *)sc, 0,
9585             bce_sysctl_stats_block, "I", "Dump statistics block");
9586
9587         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9588             "stats_clear", CTLTYPE_INT | CTLFLAG_RW,
9589             (void *)sc, 0,
9590             bce_sysctl_stats_clear, "I", "Clear statistics block");
9591
9592         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9593             "shmem_state", CTLTYPE_INT | CTLFLAG_RW,
9594             (void *)sc, 0,
9595             bce_sysctl_shmem_state, "I", "Shared memory state information");
9596
9597         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9598             "bc_state", CTLTYPE_INT | CTLFLAG_RW,
9599             (void *)sc, 0,
9600             bce_sysctl_bc_state, "I", "Bootcode state information");
9601
9602         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9603             "dump_rx_bd_chain", CTLTYPE_INT | CTLFLAG_RW,
9604             (void *)sc, 0,
9605             bce_sysctl_dump_rx_bd_chain, "I", "Dump RX BD chain");
9606
9607         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9608             "dump_rx_mbuf_chain", CTLTYPE_INT | CTLFLAG_RW,
9609             (void *)sc, 0,
9610             bce_sysctl_dump_rx_mbuf_chain, "I", "Dump RX MBUF chain");
9611
9612         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9613             "dump_tx_chain", CTLTYPE_INT | CTLFLAG_RW,
9614             (void *)sc, 0,
9615             bce_sysctl_dump_tx_chain, "I", "Dump tx_bd chain");
9616
9617         if (bce_hdr_split == TRUE) {
9618                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9619                     "dump_pg_chain", CTLTYPE_INT | CTLFLAG_RW,
9620                     (void *)sc, 0,
9621                     bce_sysctl_dump_pg_chain, "I", "Dump page chain");
9622         }
9623
9624         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9625             "dump_ctx", CTLTYPE_INT | CTLFLAG_RW,
9626             (void *)sc, 0,
9627             bce_sysctl_dump_ctx, "I", "Dump context memory");
9628
9629         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9630             "breakpoint", CTLTYPE_INT | CTLFLAG_RW,
9631             (void *)sc, 0,
9632             bce_sysctl_breakpoint, "I", "Driver breakpoint");
9633
9634         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9635             "reg_read", CTLTYPE_INT | CTLFLAG_RW,
9636             (void *)sc, 0,
9637             bce_sysctl_reg_read, "I", "Register read");
9638
9639         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9640             "nvram_read", CTLTYPE_INT | CTLFLAG_RW,
9641             (void *)sc, 0,
9642             bce_sysctl_nvram_read, "I", "NVRAM read");
9643
9644         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9645             "phy_read", CTLTYPE_INT | CTLFLAG_RW,
9646             (void *)sc, 0,
9647             bce_sysctl_phy_read, "I", "PHY register read");
9648
9649 #endif
9650
9651         DBEXIT(BCE_VERBOSE_MISC);
9652 }
9653
9654
9655 /****************************************************************************/
9656 /* BCE Debug Routines                                                       */
9657 /****************************************************************************/
9658 #ifdef BCE_DEBUG
9659
9660 /****************************************************************************/
9661 /* Freezes the controller to allow for a cohesive state dump.               */
9662 /*                                                                          */
9663 /* Returns:                                                                 */
9664 /*   Nothing.                                                               */
9665 /****************************************************************************/
9666 static __attribute__ ((noinline)) void
9667 bce_freeze_controller(struct bce_softc *sc)
9668 {
9669         u32 val;
9670         val = REG_RD(sc, BCE_MISC_COMMAND);
9671         val |= BCE_MISC_COMMAND_DISABLE_ALL;
9672         REG_WR(sc, BCE_MISC_COMMAND, val);
9673 }
9674
9675
9676 /****************************************************************************/
9677 /* Unfreezes the controller after a freeze operation.  This may not always  */
9678 /* work and the controller will require a reset!                            */
9679 /*                                                                          */
9680 /* Returns:                                                                 */
9681 /*   Nothing.                                                               */
9682 /****************************************************************************/
9683 static __attribute__ ((noinline)) void
9684 bce_unfreeze_controller(struct bce_softc *sc)
9685 {
9686         u32 val;
9687         val = REG_RD(sc, BCE_MISC_COMMAND);
9688         val |= BCE_MISC_COMMAND_ENABLE_ALL;
9689         REG_WR(sc, BCE_MISC_COMMAND, val);
9690 }
9691
9692
9693 /****************************************************************************/
9694 /* Prints out Ethernet frame information from an mbuf.                      */
9695 /*                                                                          */
9696 /* Partially decode an Ethernet frame to look at some important headers.    */
9697 /*                                                                          */
9698 /* Returns:                                                                 */
9699 /*   Nothing.                                                               */
9700 /****************************************************************************/
9701 static __attribute__ ((noinline)) void
9702 bce_dump_enet(struct bce_softc *sc, struct mbuf *m)
9703 {
9704         struct ether_vlan_header *eh;
9705         u16 etype;
9706         int ehlen;
9707         struct ip *ip;
9708         struct tcphdr *th;
9709         struct udphdr *uh;
9710         struct arphdr *ah;
9711
9712         BCE_PRINTF(
9713             "-----------------------------"
9714             " Frame Decode "
9715             "-----------------------------\n");
9716
9717         eh = mtod(m, struct ether_vlan_header *);
9718
9719         /* Handle VLAN encapsulation if present. */
9720         if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
9721                 etype = ntohs(eh->evl_proto);
9722                 ehlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
9723         } else {
9724                 etype = ntohs(eh->evl_encap_proto);
9725                 ehlen = ETHER_HDR_LEN;
9726         }
9727
9728         /* ToDo: Add VLAN output. */
9729         BCE_PRINTF("enet: dest = %6D, src = %6D, type = 0x%04X, hlen = %d\n",
9730             eh->evl_dhost, ":", eh->evl_shost, ":", etype, ehlen);
9731
9732         switch (etype) {
9733         case ETHERTYPE_IP:
9734                 ip = (struct ip *)(m->m_data + ehlen);
9735                 BCE_PRINTF("--ip: dest = 0x%08X , src = 0x%08X, "
9736                     "len = %d bytes, protocol = 0x%02X, xsum = 0x%04X\n",
9737                     ntohl(ip->ip_dst.s_addr), ntohl(ip->ip_src.s_addr),
9738                     ntohs(ip->ip_len), ip->ip_p, ntohs(ip->ip_sum));
9739
9740                 switch (ip->ip_p) {
9741                 case IPPROTO_TCP:
9742                         th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
9743                         BCE_PRINTF("-tcp: dest = %d, src = %d, hlen = "
9744                             "%d bytes, flags = 0x%b, csum = 0x%04X\n",
9745                             ntohs(th->th_dport), ntohs(th->th_sport),
9746                             (th->th_off << 2), th->th_flags,
9747                             "\20\10CWR\07ECE\06URG\05ACK\04PSH\03RST"
9748                             "\02SYN\01FIN", ntohs(th->th_sum));
9749                         break;
9750                 case IPPROTO_UDP:
9751                         uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2));
9752                         BCE_PRINTF("-udp: dest = %d, src = %d, len = %d "
9753                             "bytes, csum = 0x%04X\n", ntohs(uh->uh_dport),
9754                             ntohs(uh->uh_sport), ntohs(uh->uh_ulen),
9755                             ntohs(uh->uh_sum));
9756                         break;
9757                 case IPPROTO_ICMP:
9758                         BCE_PRINTF("icmp:\n");
9759                         break;
9760                 default:
9761                         BCE_PRINTF("----: Other IP protocol.\n");
9762                         }
9763                 break;
9764         case ETHERTYPE_IPV6:
9765                 BCE_PRINTF("ipv6: No decode supported.\n");
9766                 break;
9767         case ETHERTYPE_ARP:
9768                 BCE_PRINTF("-arp: ");
9769                 ah = (struct arphdr *) (m->m_data + ehlen);
9770                 switch (ntohs(ah->ar_op)) {
9771                 case ARPOP_REVREQUEST:
9772                         printf("reverse ARP request\n");
9773                         break;
9774                 case ARPOP_REVREPLY:
9775                         printf("reverse ARP reply\n");
9776                         break;
9777                 case ARPOP_REQUEST:
9778                         printf("ARP request\n");
9779                         break;
9780                 case ARPOP_REPLY:
9781                         printf("ARP reply\n");
9782                         break;
9783                 default:
9784                         printf("other ARP operation\n");
9785                 }
9786                 break;
9787         default:
9788                 BCE_PRINTF("----: Other protocol.\n");
9789         }
9790
9791         BCE_PRINTF(
9792                 "-----------------------------"
9793                 "--------------"
9794                 "-----------------------------\n");
9795 }
9796
9797
9798 /****************************************************************************/
9799 /* Prints out information about an mbuf.                                    */
9800 /*                                                                          */
9801 /* Returns:                                                                 */
9802 /*   Nothing.                                                               */
9803 /****************************************************************************/
9804 static __attribute__ ((noinline)) void
9805 bce_dump_mbuf(struct bce_softc *sc, struct mbuf *m)
9806 {
9807         struct mbuf *mp = m;
9808
9809         if (m == NULL) {
9810                 BCE_PRINTF("mbuf: null pointer\n");
9811                 return;
9812         }
9813
9814         while (mp) {
9815                 BCE_PRINTF("mbuf: %p, m_len = %d, m_flags = 0x%b, "
9816                     "m_data = %p\n", mp, mp->m_len, mp->m_flags,
9817                     "\20\1M_EXT\2M_PKTHDR\3M_EOR\4M_RDONLY", mp->m_data);
9818
9819                 if (mp->m_flags & M_PKTHDR) {
9820                         BCE_PRINTF("- m_pkthdr: len = %d, flags = 0x%b, "
9821                             "csum_flags = %b\n", mp->m_pkthdr.len,
9822                             mp->m_flags, M_FLAG_PRINTF,
9823                             mp->m_pkthdr.csum_flags,
9824                             "\20\1CSUM_IP\2CSUM_TCP\3CSUM_UDP"
9825                             "\5CSUM_FRAGMENT\6CSUM_TSO\11CSUM_IP_CHECKED"
9826                             "\12CSUM_IP_VALID\13CSUM_DATA_VALID"
9827                             "\14CSUM_PSEUDO_HDR");
9828                 }
9829
9830                 if (mp->m_flags & M_EXT) {
9831                         BCE_PRINTF("- m_ext: %p, ext_size = %d, type = ",
9832                             mp->m_ext.ext_buf, mp->m_ext.ext_size);
9833                         switch (mp->m_ext.ext_type) {
9834                         case EXT_CLUSTER:
9835                                 printf("EXT_CLUSTER\n"); break;
9836                         case EXT_SFBUF:
9837                                 printf("EXT_SFBUF\n"); break;
9838                         case EXT_JUMBO9:
9839                                 printf("EXT_JUMBO9\n"); break;
9840                         case EXT_JUMBO16:
9841                                 printf("EXT_JUMBO16\n"); break;
9842                         case EXT_PACKET:
9843                                 printf("EXT_PACKET\n"); break;
9844                         case EXT_MBUF:
9845                                 printf("EXT_MBUF\n"); break;
9846                         case EXT_NET_DRV:
9847                                 printf("EXT_NET_DRV\n"); break;
9848                         case EXT_MOD_TYPE:
9849                                 printf("EXT_MDD_TYPE\n"); break;
9850                         case EXT_DISPOSABLE:
9851                                 printf("EXT_DISPOSABLE\n"); break;
9852                         case EXT_EXTREF:
9853                                 printf("EXT_EXTREF\n"); break;
9854                         default:
9855                                 printf("UNKNOWN\n");
9856                         }
9857                 }
9858
9859                 mp = mp->m_next;
9860         }
9861 }
9862
9863
9864 /****************************************************************************/
9865 /* Prints out the mbufs in the TX mbuf chain.                               */
9866 /*                                                                          */
9867 /* Returns:                                                                 */
9868 /*   Nothing.                                                               */
9869 /****************************************************************************/
9870 static __attribute__ ((noinline)) void
9871 bce_dump_tx_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
9872 {
9873         struct mbuf *m;
9874
9875         BCE_PRINTF(
9876                 "----------------------------"
9877                 "  tx mbuf data  "
9878                 "----------------------------\n");
9879
9880         for (int i = 0; i < count; i++) {
9881                 m = sc->tx_mbuf_ptr[chain_prod];
9882                 BCE_PRINTF("txmbuf[0x%04X]\n", chain_prod);
9883                 bce_dump_mbuf(sc, m);
9884                 chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
9885         }
9886
9887         BCE_PRINTF(
9888                 "----------------------------"
9889                 "----------------"
9890                 "----------------------------\n");
9891 }
9892
9893
9894 /****************************************************************************/
9895 /* Prints out the mbufs in the RX mbuf chain.                               */
9896 /*                                                                          */
9897 /* Returns:                                                                 */
9898 /*   Nothing.                                                               */
9899 /****************************************************************************/
9900 static __attribute__ ((noinline)) void
9901 bce_dump_rx_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
9902 {
9903         struct mbuf *m;
9904
9905         BCE_PRINTF(
9906                 "----------------------------"
9907                 "  rx mbuf data  "
9908                 "----------------------------\n");
9909
9910         for (int i = 0; i < count; i++) {
9911                 m = sc->rx_mbuf_ptr[chain_prod];
9912                 BCE_PRINTF("rxmbuf[0x%04X]\n", chain_prod);
9913                 bce_dump_mbuf(sc, m);
9914                 chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
9915         }
9916
9917
9918         BCE_PRINTF(
9919                 "----------------------------"
9920                 "----------------"
9921                 "----------------------------\n");
9922 }
9923
9924
9925 /****************************************************************************/
9926 /* Prints out the mbufs in the mbuf page chain.                             */
9927 /*                                                                          */
9928 /* Returns:                                                                 */
9929 /*   Nothing.                                                               */
9930 /****************************************************************************/
9931 static __attribute__ ((noinline)) void
9932 bce_dump_pg_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
9933 {
9934         struct mbuf *m;
9935
9936         BCE_PRINTF(
9937                 "----------------------------"
9938                 "  pg mbuf data  "
9939                 "----------------------------\n");
9940
9941         for (int i = 0; i < count; i++) {
9942                 m = sc->pg_mbuf_ptr[chain_prod];
9943                 BCE_PRINTF("pgmbuf[0x%04X]\n", chain_prod);
9944                 bce_dump_mbuf(sc, m);
9945                 chain_prod = PG_CHAIN_IDX(NEXT_PG_BD(chain_prod));
9946         }
9947
9948
9949         BCE_PRINTF(
9950                 "----------------------------"
9951                 "----------------"
9952                 "----------------------------\n");
9953 }
9954
9955
9956 /****************************************************************************/
9957 /* Prints out a tx_bd structure.                                            */
9958 /*                                                                          */
9959 /* Returns:                                                                 */
9960 /*   Nothing.                                                               */
9961 /****************************************************************************/
9962 static __attribute__ ((noinline)) void
9963 bce_dump_txbd(struct bce_softc *sc, int idx, struct tx_bd *txbd)
9964 {
9965         int i = 0;
9966
9967         if (idx > MAX_TX_BD_ALLOC)
9968                 /* Index out of range. */
9969                 BCE_PRINTF("tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
9970         else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
9971                 /* TX Chain page pointer. */
9972                 BCE_PRINTF("tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
9973                     "pointer\n", idx, txbd->tx_bd_haddr_hi,
9974                     txbd->tx_bd_haddr_lo);
9975         else {
9976                 /* Normal tx_bd entry. */
9977                 BCE_PRINTF("tx_bd[0x%04X]: haddr = 0x%08X:%08X, "
9978                     "mss_nbytes = 0x%08X, vlan tag = 0x%04X, flags = "
9979                     "0x%04X (", idx, txbd->tx_bd_haddr_hi,
9980                     txbd->tx_bd_haddr_lo, txbd->tx_bd_mss_nbytes,
9981                     txbd->tx_bd_vlan_tag, txbd->tx_bd_flags);
9982
9983                 if (txbd->tx_bd_flags & TX_BD_FLAGS_CONN_FAULT) {
9984                         if (i>0)
9985                                 printf("|");
9986                         printf("CONN_FAULT");
9987                         i++;
9988                 }
9989
9990                 if (txbd->tx_bd_flags & TX_BD_FLAGS_TCP_UDP_CKSUM) {
9991                         if (i>0)
9992                                 printf("|");
9993                         printf("TCP_UDP_CKSUM");
9994                         i++;
9995                 }
9996
9997                 if (txbd->tx_bd_flags & TX_BD_FLAGS_IP_CKSUM) {
9998                         if (i>0)
9999                                 printf("|");
10000                         printf("IP_CKSUM");
10001                         i++;
10002                 }
10003
10004                 if (txbd->tx_bd_flags & TX_BD_FLAGS_VLAN_TAG) {
10005                         if (i>0)
10006                                 printf("|");
10007                         printf("VLAN");
10008                         i++;
10009                 }
10010
10011                 if (txbd->tx_bd_flags & TX_BD_FLAGS_COAL_NOW) {
10012                         if (i>0)
10013                                 printf("|");
10014                         printf("COAL_NOW");
10015                         i++;
10016                 }
10017
10018                 if (txbd->tx_bd_flags & TX_BD_FLAGS_DONT_GEN_CRC) {
10019                         if (i>0)
10020                                 printf("|");
10021                         printf("DONT_GEN_CRC");
10022                         i++;
10023                 }
10024
10025                 if (txbd->tx_bd_flags & TX_BD_FLAGS_START) {
10026                         if (i>0)
10027                                 printf("|");
10028                         printf("START");
10029                         i++;
10030                 }
10031
10032                 if (txbd->tx_bd_flags & TX_BD_FLAGS_END) {
10033                         if (i>0)
10034                                 printf("|");
10035                         printf("END");
10036                         i++;
10037                 }
10038
10039                 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_LSO) {
10040                         if (i>0)
10041                                 printf("|");
10042                         printf("LSO");
10043                         i++;
10044                 }
10045
10046                 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_OPTION_WORD) {
10047                         if (i>0)
10048                                 printf("|");
10049                         printf("SW_OPTION=%d", ((txbd->tx_bd_flags &
10050                             TX_BD_FLAGS_SW_OPTION_WORD) >> 8)); i++;
10051                 }
10052
10053                 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_FLAGS) {
10054                         if (i>0)
10055                                 printf("|");
10056                         printf("SW_FLAGS");
10057                         i++;
10058                 }
10059
10060                 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_SNAP) {
10061                         if (i>0)
10062                                 printf("|");
10063                         printf("SNAP)");
10064                 } else {
10065                         printf(")\n");
10066                 }
10067         }
10068 }
10069
10070
10071 /****************************************************************************/
10072 /* Prints out a rx_bd structure.                                            */
10073 /*                                                                          */
10074 /* Returns:                                                                 */
10075 /*   Nothing.                                                               */
10076 /****************************************************************************/
10077 static __attribute__ ((noinline)) void
10078 bce_dump_rxbd(struct bce_softc *sc, int idx, struct rx_bd *rxbd)
10079 {
10080         if (idx > MAX_RX_BD_ALLOC)
10081                 /* Index out of range. */
10082                 BCE_PRINTF("rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
10083         else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
10084                 /* RX Chain page pointer. */
10085                 BCE_PRINTF("rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
10086                     "pointer\n", idx, rxbd->rx_bd_haddr_hi,
10087                     rxbd->rx_bd_haddr_lo);
10088         else
10089                 /* Normal rx_bd entry. */
10090                 BCE_PRINTF("rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
10091                     "0x%08X, flags = 0x%08X\n", idx, rxbd->rx_bd_haddr_hi,
10092                     rxbd->rx_bd_haddr_lo, rxbd->rx_bd_len,
10093                     rxbd->rx_bd_flags);
10094 }
10095
10096
10097 /****************************************************************************/
10098 /* Prints out a rx_bd structure in the page chain.                          */
10099 /*                                                                          */
10100 /* Returns:                                                                 */
10101 /*   Nothing.                                                               */
10102 /****************************************************************************/
10103 static __attribute__ ((noinline)) void
10104 bce_dump_pgbd(struct bce_softc *sc, int idx, struct rx_bd *pgbd)
10105 {
10106         if (idx > MAX_PG_BD_ALLOC)
10107                 /* Index out of range. */
10108                 BCE_PRINTF("pg_bd[0x%04X]: Invalid pg_bd index!\n", idx);
10109         else if ((idx & USABLE_PG_BD_PER_PAGE) == USABLE_PG_BD_PER_PAGE)
10110                 /* Page Chain page pointer. */
10111                 BCE_PRINTF("px_bd[0x%04X]: haddr = 0x%08X:%08X, chain page pointer\n",
10112                         idx, pgbd->rx_bd_haddr_hi, pgbd->rx_bd_haddr_lo);
10113         else
10114                 /* Normal rx_bd entry. */
10115                 BCE_PRINTF("pg_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = 0x%08X, "
10116                         "flags = 0x%08X\n", idx,
10117                         pgbd->rx_bd_haddr_hi, pgbd->rx_bd_haddr_lo,
10118                         pgbd->rx_bd_len, pgbd->rx_bd_flags);
10119 }
10120
10121
10122 /****************************************************************************/
10123 /* Prints out a l2_fhdr structure.                                          */
10124 /*                                                                          */
10125 /* Returns:                                                                 */
10126 /*   Nothing.                                                               */
10127 /****************************************************************************/
10128 static __attribute__ ((noinline)) void
10129 bce_dump_l2fhdr(struct bce_softc *sc, int idx, struct l2_fhdr *l2fhdr)
10130 {
10131         BCE_PRINTF("l2_fhdr[0x%04X]: status = 0x%b, "
10132                 "pkt_len = %d, vlan = 0x%04x, ip_xsum/hdr_len = 0x%04X, "
10133                 "tcp_udp_xsum = 0x%04X\n", idx,
10134                 l2fhdr->l2_fhdr_status, BCE_L2FHDR_PRINTFB,
10135                 l2fhdr->l2_fhdr_pkt_len, l2fhdr->l2_fhdr_vlan_tag,
10136                 l2fhdr->l2_fhdr_ip_xsum, l2fhdr->l2_fhdr_tcp_udp_xsum);
10137 }
10138
10139
10140 /****************************************************************************/
10141 /* Prints out context memory info.  (Only useful for CID 0 to 16.)          */
10142 /*                                                                          */
10143 /* Returns:                                                                 */
10144 /*   Nothing.                                                               */
10145 /****************************************************************************/
10146 static __attribute__ ((noinline)) void
10147 bce_dump_ctx(struct bce_softc *sc, u16 cid)
10148 {
10149         if (cid > TX_CID) {
10150                 BCE_PRINTF(" Unknown CID\n");
10151                 return;
10152         }
10153
10154         BCE_PRINTF(
10155             "----------------------------"
10156             "    CTX Data    "
10157             "----------------------------\n");
10158
10159         BCE_PRINTF("     0x%04X - (CID) Context ID\n", cid);
10160
10161         if (cid == RX_CID) {
10162                 BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_BDIDX) host rx "
10163                    "producer index\n",
10164                     CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_HOST_BDIDX));
10165                 BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_BSEQ) host "
10166                     "byte sequence\n", CTX_RD(sc, GET_CID_ADDR(cid),
10167                     BCE_L2CTX_RX_HOST_BSEQ));
10168                 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BSEQ) h/w byte sequence\n",
10169                     CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BSEQ));
10170                 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDHADDR_HI) h/w buffer "
10171                     "descriptor address\n",
10172                     CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDHADDR_HI));
10173                 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDHADDR_LO) h/w buffer "
10174                     "descriptor address\n",
10175                     CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDHADDR_LO));
10176                 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDIDX) h/w rx consumer "
10177                     "index\n", CTX_RD(sc, GET_CID_ADDR(cid),
10178                     BCE_L2CTX_RX_NX_BDIDX));
10179                 BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_PG_BDIDX) host page "
10180                     "producer index\n", CTX_RD(sc, GET_CID_ADDR(cid),
10181                     BCE_L2CTX_RX_HOST_PG_BDIDX));
10182                 BCE_PRINTF(" 0x%08X - (L2CTX_RX_PG_BUF_SIZE) host rx_bd/page "
10183                     "buffer size\n", CTX_RD(sc, GET_CID_ADDR(cid),
10184                     BCE_L2CTX_RX_PG_BUF_SIZE));
10185                 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDHADDR_HI) h/w page "
10186                     "chain address\n", CTX_RD(sc, GET_CID_ADDR(cid),
10187                     BCE_L2CTX_RX_NX_PG_BDHADDR_HI));
10188                 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDHADDR_LO) h/w page "
10189                     "chain address\n", CTX_RD(sc, GET_CID_ADDR(cid),
10190                     BCE_L2CTX_RX_NX_PG_BDHADDR_LO));
10191                 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDIDX) h/w page "
10192                     "consumer index\n", CTX_RD(sc, GET_CID_ADDR(cid),
10193                     BCE_L2CTX_RX_NX_PG_BDIDX));
10194         } else if (cid == TX_CID) {
10195                 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
10196                         BCE_PRINTF(" 0x%08X - (L2CTX_TX_TYPE_XI) ctx type\n",
10197                             CTX_RD(sc, GET_CID_ADDR(cid),
10198                             BCE_L2CTX_TX_TYPE_XI));
10199                         BCE_PRINTF(" 0x%08X - (L2CTX_CMD_TX_TYPE_XI) ctx "
10200                             "cmd\n", CTX_RD(sc, GET_CID_ADDR(cid),
10201                             BCE_L2CTX_TX_CMD_TYPE_XI));
10202                         BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BDHADDR_HI_XI) "
10203                             "h/w buffer descriptor address\n",
10204                             CTX_RD(sc, GET_CID_ADDR(cid),
10205                             BCE_L2CTX_TX_TBDR_BHADDR_HI_XI));
10206                         BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BHADDR_LO_XI) "
10207                             "h/w buffer descriptor address\n",
10208                             CTX_RD(sc, GET_CID_ADDR(cid),
10209                             BCE_L2CTX_TX_TBDR_BHADDR_LO_XI));
10210                         BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BIDX_XI) "
10211                             "host producer index\n",
10212                             CTX_RD(sc, GET_CID_ADDR(cid),
10213                             BCE_L2CTX_TX_HOST_BIDX_XI));
10214                         BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BSEQ_XI) "
10215                             "host byte sequence\n",
10216                             CTX_RD(sc, GET_CID_ADDR(cid),
10217                             BCE_L2CTX_TX_HOST_BSEQ_XI));
10218                 } else {
10219                         BCE_PRINTF(" 0x%08X - (L2CTX_TX_TYPE) ctx type\n",
10220                             CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_TX_TYPE));
10221                         BCE_PRINTF(" 0x%08X - (L2CTX_TX_CMD_TYPE) ctx cmd\n",
10222                             CTX_RD(sc, GET_CID_ADDR(cid),
10223                             BCE_L2CTX_TX_CMD_TYPE));
10224                         BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BDHADDR_HI) "
10225                             "h/w buffer descriptor address\n",
10226                             CTX_RD(sc, GET_CID_ADDR(cid),
10227                             BCE_L2CTX_TX_TBDR_BHADDR_HI));
10228                         BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BHADDR_LO) "
10229                             "h/w buffer descriptor address\n",
10230                             CTX_RD(sc, GET_CID_ADDR(cid),
10231                             BCE_L2CTX_TX_TBDR_BHADDR_LO));
10232                         BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BIDX) host "
10233                             "producer index\n", CTX_RD(sc, GET_CID_ADDR(cid),
10234                             BCE_L2CTX_TX_HOST_BIDX));
10235                         BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BSEQ) host byte "
10236                             "sequence\n", CTX_RD(sc, GET_CID_ADDR(cid),
10237                             BCE_L2CTX_TX_HOST_BSEQ));
10238                 }
10239         }
10240
10241         BCE_PRINTF(
10242            "----------------------------"
10243            "    Raw CTX     "
10244            "----------------------------\n");
10245
10246         for (int i = 0x0; i < 0x300; i += 0x10) {
10247                 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", i,
10248                    CTX_RD(sc, GET_CID_ADDR(cid), i),
10249                    CTX_RD(sc, GET_CID_ADDR(cid), i + 0x4),
10250                    CTX_RD(sc, GET_CID_ADDR(cid), i + 0x8),
10251                    CTX_RD(sc, GET_CID_ADDR(cid), i + 0xc));
10252         }
10253
10254
10255         BCE_PRINTF(
10256            "----------------------------"
10257            "----------------"
10258            "----------------------------\n");
10259 }
10260
10261
10262 /****************************************************************************/
10263 /* Prints out the FTQ data.                                                 */
10264 /*                                                                          */
10265 /* Returns:                                                                */
10266 /*   Nothing.                                                               */
10267 /****************************************************************************/
10268 static __attribute__ ((noinline)) void
10269 bce_dump_ftqs(struct bce_softc *sc)
10270 {
10271         u32 cmd, ctl, cur_depth, max_depth, valid_cnt, val;
10272
10273         BCE_PRINTF(
10274             "----------------------------"
10275             "    FTQ Data    "
10276             "----------------------------\n");
10277
10278         BCE_PRINTF("   FTQ    Command    Control   Depth_Now  "
10279             "Max_Depth  Valid_Cnt \n");
10280         BCE_PRINTF(" ------- ---------- ---------- ---------- "
10281             "---------- ----------\n");
10282
10283         /* Setup the generic statistic counters for the FTQ valid count. */
10284         val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PPQ_VALID_CNT << 24) |
10285             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RXPCQ_VALID_CNT  << 16) |
10286             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RXPQ_VALID_CNT   <<  8) |
10287             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RLUPQ_VALID_CNT);
10288         REG_WR(sc, BCE_HC_STAT_GEN_SEL_0, val);
10289
10290         val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TSCHQ_VALID_CNT  << 24) |
10291             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RDMAQ_VALID_CNT  << 16) |
10292             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PTQ_VALID_CNT <<  8) |
10293             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PMQ_VALID_CNT);
10294         REG_WR(sc, BCE_HC_STAT_GEN_SEL_1, val);
10295
10296         val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TPATQ_VALID_CNT  << 24) |
10297             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TDMAQ_VALID_CNT  << 16) |
10298             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TXPQ_VALID_CNT   <<  8) |
10299             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TBDRQ_VALID_CNT);
10300         REG_WR(sc, BCE_HC_STAT_GEN_SEL_2, val);
10301
10302         val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMQ_VALID_CNT   << 24) |
10303             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMTQ_VALID_CNT  << 16) |
10304             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMXQ_VALID_CNT  <<  8) |
10305             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TASQ_VALID_CNT);
10306         REG_WR(sc, BCE_HC_STAT_GEN_SEL_3, val);
10307
10308         /* Input queue to the Receive Lookup state machine */
10309         cmd = REG_RD(sc, BCE_RLUP_FTQ_CMD);
10310         ctl = REG_RD(sc, BCE_RLUP_FTQ_CTL);
10311         cur_depth = (ctl & BCE_RLUP_FTQ_CTL_CUR_DEPTH) >> 22;
10312         max_depth = (ctl & BCE_RLUP_FTQ_CTL_MAX_DEPTH) >> 12;
10313         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT0);
10314         BCE_PRINTF(" RLUP    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10315             cmd, ctl, cur_depth, max_depth, valid_cnt);
10316
10317         /* Input queue to the Receive Processor */
10318         cmd = REG_RD_IND(sc, BCE_RXP_FTQ_CMD);
10319         ctl = REG_RD_IND(sc, BCE_RXP_FTQ_CTL);
10320         cur_depth = (ctl & BCE_RXP_FTQ_CTL_CUR_DEPTH) >> 22;
10321         max_depth = (ctl & BCE_RXP_FTQ_CTL_MAX_DEPTH) >> 12;
10322         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT1);
10323         BCE_PRINTF(" RXP     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10324             cmd, ctl, cur_depth, max_depth, valid_cnt);
10325
10326         /* Input queue to the Recevie Processor */
10327         cmd = REG_RD_IND(sc, BCE_RXP_CFTQ_CMD);
10328         ctl = REG_RD_IND(sc, BCE_RXP_CFTQ_CTL);
10329         cur_depth = (ctl & BCE_RXP_CFTQ_CTL_CUR_DEPTH) >> 22;
10330         max_depth = (ctl & BCE_RXP_CFTQ_CTL_MAX_DEPTH) >> 12;
10331         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT2);
10332         BCE_PRINTF(" RXPC    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10333             cmd, ctl, cur_depth, max_depth, valid_cnt);
10334
10335         /* Input queue to the Receive Virtual to Physical state machine */
10336         cmd = REG_RD(sc, BCE_RV2P_PFTQ_CMD);
10337         ctl = REG_RD(sc, BCE_RV2P_PFTQ_CTL);
10338         cur_depth = (ctl & BCE_RV2P_PFTQ_CTL_CUR_DEPTH) >> 22;
10339         max_depth = (ctl & BCE_RV2P_PFTQ_CTL_MAX_DEPTH) >> 12;
10340         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT3);
10341         BCE_PRINTF(" RV2PP   0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10342             cmd, ctl, cur_depth, max_depth, valid_cnt);
10343
10344         /* Input queue to the Recevie Virtual to Physical state machine */
10345         cmd = REG_RD(sc, BCE_RV2P_MFTQ_CMD);
10346         ctl = REG_RD(sc, BCE_RV2P_MFTQ_CTL);
10347         cur_depth = (ctl & BCE_RV2P_MFTQ_CTL_CUR_DEPTH) >> 22;
10348         max_depth = (ctl & BCE_RV2P_MFTQ_CTL_MAX_DEPTH) >> 12;
10349         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT4);
10350         BCE_PRINTF(" RV2PM   0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10351             cmd, ctl, cur_depth, max_depth, valid_cnt);
10352
10353         /* Input queue to the Receive Virtual to Physical state machine */
10354         cmd = REG_RD(sc, BCE_RV2P_TFTQ_CMD);
10355         ctl = REG_RD(sc, BCE_RV2P_TFTQ_CTL);
10356         cur_depth = (ctl & BCE_RV2P_TFTQ_CTL_CUR_DEPTH) >> 22;
10357         max_depth = (ctl & BCE_RV2P_TFTQ_CTL_MAX_DEPTH) >> 12;
10358         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT5);
10359         BCE_PRINTF(" RV2PT   0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10360             cmd, ctl, cur_depth, max_depth, valid_cnt);
10361
10362         /* Input queue to the Receive DMA state machine */
10363         cmd = REG_RD(sc, BCE_RDMA_FTQ_CMD);
10364         ctl = REG_RD(sc, BCE_RDMA_FTQ_CTL);
10365         cur_depth = (ctl & BCE_RDMA_FTQ_CTL_CUR_DEPTH) >> 22;
10366         max_depth = (ctl & BCE_RDMA_FTQ_CTL_MAX_DEPTH) >> 12;
10367         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT6);
10368         BCE_PRINTF(" RDMA    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10369             cmd, ctl, cur_depth, max_depth, valid_cnt);
10370
10371         /* Input queue to the Transmit Scheduler state machine */
10372         cmd = REG_RD(sc, BCE_TSCH_FTQ_CMD);
10373         ctl = REG_RD(sc, BCE_TSCH_FTQ_CTL);
10374         cur_depth = (ctl & BCE_TSCH_FTQ_CTL_CUR_DEPTH) >> 22;
10375         max_depth = (ctl & BCE_TSCH_FTQ_CTL_MAX_DEPTH) >> 12;
10376         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT7);
10377         BCE_PRINTF(" TSCH    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10378             cmd, ctl, cur_depth, max_depth, valid_cnt);
10379
10380         /* Input queue to the Transmit Buffer Descriptor state machine */
10381         cmd = REG_RD(sc, BCE_TBDR_FTQ_CMD);
10382         ctl = REG_RD(sc, BCE_TBDR_FTQ_CTL);
10383         cur_depth = (ctl & BCE_TBDR_FTQ_CTL_CUR_DEPTH) >> 22;
10384         max_depth = (ctl & BCE_TBDR_FTQ_CTL_MAX_DEPTH) >> 12;
10385         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT8);
10386         BCE_PRINTF(" TBDR    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10387             cmd, ctl, cur_depth, max_depth, valid_cnt);
10388
10389         /* Input queue to the Transmit Processor */
10390         cmd = REG_RD_IND(sc, BCE_TXP_FTQ_CMD);
10391         ctl = REG_RD_IND(sc, BCE_TXP_FTQ_CTL);
10392         cur_depth = (ctl & BCE_TXP_FTQ_CTL_CUR_DEPTH) >> 22;
10393         max_depth = (ctl & BCE_TXP_FTQ_CTL_MAX_DEPTH) >> 12;
10394         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT9);
10395         BCE_PRINTF(" TXP     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10396             cmd, ctl, cur_depth, max_depth, valid_cnt);
10397
10398         /* Input queue to the Transmit DMA state machine */
10399         cmd = REG_RD(sc, BCE_TDMA_FTQ_CMD);
10400         ctl = REG_RD(sc, BCE_TDMA_FTQ_CTL);
10401         cur_depth = (ctl & BCE_TDMA_FTQ_CTL_CUR_DEPTH) >> 22;
10402         max_depth = (ctl & BCE_TDMA_FTQ_CTL_MAX_DEPTH) >> 12;
10403         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT10);
10404         BCE_PRINTF(" TDMA    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10405             cmd, ctl, cur_depth, max_depth, valid_cnt);
10406
10407         /* Input queue to the Transmit Patch-Up Processor */
10408         cmd = REG_RD_IND(sc, BCE_TPAT_FTQ_CMD);
10409         ctl = REG_RD_IND(sc, BCE_TPAT_FTQ_CTL);
10410         cur_depth = (ctl & BCE_TPAT_FTQ_CTL_CUR_DEPTH) >> 22;
10411         max_depth = (ctl & BCE_TPAT_FTQ_CTL_MAX_DEPTH) >> 12;
10412         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT11);
10413         BCE_PRINTF(" TPAT    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10414             cmd, ctl, cur_depth, max_depth, valid_cnt);
10415
10416         /* Input queue to the Transmit Assembler state machine */
10417         cmd = REG_RD_IND(sc, BCE_TAS_FTQ_CMD);
10418         ctl = REG_RD_IND(sc, BCE_TAS_FTQ_CTL);
10419         cur_depth = (ctl & BCE_TAS_FTQ_CTL_CUR_DEPTH) >> 22;
10420         max_depth = (ctl & BCE_TAS_FTQ_CTL_MAX_DEPTH) >> 12;
10421         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT12);
10422         BCE_PRINTF(" TAS     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10423             cmd, ctl, cur_depth, max_depth, valid_cnt);
10424
10425         /* Input queue to the Completion Processor */
10426         cmd = REG_RD_IND(sc, BCE_COM_COMXQ_FTQ_CMD);
10427         ctl = REG_RD_IND(sc, BCE_COM_COMXQ_FTQ_CTL);
10428         cur_depth = (ctl & BCE_COM_COMXQ_FTQ_CTL_CUR_DEPTH) >> 22;
10429         max_depth = (ctl & BCE_COM_COMXQ_FTQ_CTL_MAX_DEPTH) >> 12;
10430         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT13);
10431         BCE_PRINTF(" COMX    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10432             cmd, ctl, cur_depth, max_depth, valid_cnt);
10433
10434         /* Input queue to the Completion Processor */
10435         cmd = REG_RD_IND(sc, BCE_COM_COMTQ_FTQ_CMD);
10436         ctl = REG_RD_IND(sc, BCE_COM_COMTQ_FTQ_CTL);
10437         cur_depth = (ctl & BCE_COM_COMTQ_FTQ_CTL_CUR_DEPTH) >> 22;
10438         max_depth = (ctl & BCE_COM_COMTQ_FTQ_CTL_MAX_DEPTH) >> 12;
10439         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT14);
10440         BCE_PRINTF(" COMT    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10441             cmd, ctl, cur_depth, max_depth, valid_cnt);
10442
10443         /* Input queue to the Completion Processor */
10444         cmd = REG_RD_IND(sc, BCE_COM_COMQ_FTQ_CMD);
10445         ctl = REG_RD_IND(sc, BCE_COM_COMQ_FTQ_CTL);
10446         cur_depth = (ctl & BCE_COM_COMQ_FTQ_CTL_CUR_DEPTH) >> 22;
10447         max_depth = (ctl & BCE_COM_COMQ_FTQ_CTL_MAX_DEPTH) >> 12;
10448         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT15);
10449         BCE_PRINTF(" COMX    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10450             cmd, ctl, cur_depth, max_depth, valid_cnt);
10451
10452         /* Setup the generic statistic counters for the FTQ valid count. */
10453         val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_CSQ_VALID_CNT  << 16) |
10454             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_CPQ_VALID_CNT  <<  8) |
10455             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_MGMQ_VALID_CNT);
10456
10457         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
10458                 val = val |
10459                     (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PCSQ_VALID_CNT_XI <<
10460                      24);
10461         REG_WR(sc, BCE_HC_STAT_GEN_SEL_0, val);
10462
10463         /* Input queue to the Management Control Processor */
10464         cmd = REG_RD_IND(sc, BCE_MCP_MCPQ_FTQ_CMD);
10465         ctl = REG_RD_IND(sc, BCE_MCP_MCPQ_FTQ_CTL);
10466         cur_depth = (ctl & BCE_MCP_MCPQ_FTQ_CTL_CUR_DEPTH) >> 22;
10467         max_depth = (ctl & BCE_MCP_MCPQ_FTQ_CTL_MAX_DEPTH) >> 12;
10468         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT0);
10469         BCE_PRINTF(" MCP     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10470             cmd, ctl, cur_depth, max_depth, valid_cnt);
10471
10472         /* Input queue to the Command Processor */
10473         cmd = REG_RD_IND(sc, BCE_CP_CPQ_FTQ_CMD);
10474         ctl = REG_RD_IND(sc, BCE_CP_CPQ_FTQ_CTL);
10475         cur_depth = (ctl & BCE_CP_CPQ_FTQ_CTL_CUR_DEPTH) >> 22;
10476         max_depth = (ctl & BCE_CP_CPQ_FTQ_CTL_MAX_DEPTH) >> 12;
10477         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT1);
10478         BCE_PRINTF(" CP      0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10479             cmd, ctl, cur_depth, max_depth, valid_cnt);
10480
10481         /* Input queue to the Completion Scheduler state machine */
10482         cmd = REG_RD(sc, BCE_CSCH_CH_FTQ_CMD);
10483         ctl = REG_RD(sc, BCE_CSCH_CH_FTQ_CTL);
10484         cur_depth = (ctl & BCE_CSCH_CH_FTQ_CTL_CUR_DEPTH) >> 22;
10485         max_depth = (ctl & BCE_CSCH_CH_FTQ_CTL_MAX_DEPTH) >> 12;
10486         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT2);
10487         BCE_PRINTF(" CS      0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10488             cmd, ctl, cur_depth, max_depth, valid_cnt);
10489
10490         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
10491                 /* Input queue to the RV2P Command Scheduler */
10492                 cmd = REG_RD(sc, BCE_RV2PCSR_FTQ_CMD);
10493                 ctl = REG_RD(sc, BCE_RV2PCSR_FTQ_CTL);
10494                 cur_depth = (ctl & 0xFFC00000) >> 22;
10495                 max_depth = (ctl & 0x003FF000) >> 12;
10496                 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT3);
10497                 BCE_PRINTF(" RV2PCSR 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10498                     cmd, ctl, cur_depth, max_depth, valid_cnt);
10499         }
10500
10501         BCE_PRINTF(
10502             "----------------------------"
10503             "----------------"
10504             "----------------------------\n");
10505 }
10506
10507
10508 /****************************************************************************/
10509 /* Prints out the TX chain.                                                 */
10510 /*                                                                          */
10511 /* Returns:                                                                 */
10512 /*   Nothing.                                                               */
10513 /****************************************************************************/
10514 static __attribute__ ((noinline)) void
10515 bce_dump_tx_chain(struct bce_softc *sc, u16 tx_prod, int count)
10516 {
10517         struct tx_bd *txbd;
10518
10519         /* First some info about the tx_bd chain structure. */
10520         BCE_PRINTF(
10521             "----------------------------"
10522             "  tx_bd  chain  "
10523             "----------------------------\n");
10524
10525         BCE_PRINTF("page size      = 0x%08X, tx chain pages        = 0x%08X\n",
10526             (u32) BCM_PAGE_SIZE, (u32) sc->tx_pages);
10527         BCE_PRINTF("tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
10528             (u32) TOTAL_TX_BD_PER_PAGE, (u32) USABLE_TX_BD_PER_PAGE);
10529         BCE_PRINTF("total tx_bd    = 0x%08X\n", (u32) TOTAL_TX_BD_ALLOC);
10530
10531         BCE_PRINTF(
10532             "----------------------------"
10533             "   tx_bd data   "
10534             "----------------------------\n");
10535
10536         /* Now print out a decoded list of TX buffer descriptors. */
10537         for (int i = 0; i < count; i++) {
10538                 txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
10539                 bce_dump_txbd(sc, tx_prod, txbd);
10540                 tx_prod++;
10541         }
10542
10543         BCE_PRINTF(
10544             "----------------------------"
10545             "----------------"
10546             "----------------------------\n");
10547 }
10548
10549
10550 /****************************************************************************/
10551 /* Prints out the RX chain.                                                 */
10552 /*                                                                          */
10553 /* Returns:                                                                 */
10554 /*   Nothing.                                                               */
10555 /****************************************************************************/
10556 static __attribute__ ((noinline)) void
10557 bce_dump_rx_bd_chain(struct bce_softc *sc, u16 rx_prod, int count)
10558 {
10559         struct rx_bd *rxbd;
10560
10561         /* First some info about the rx_bd chain structure. */
10562         BCE_PRINTF(
10563             "----------------------------"
10564             "  rx_bd  chain  "
10565             "----------------------------\n");
10566
10567         BCE_PRINTF("page size      = 0x%08X, rx chain pages        = 0x%08X\n",
10568             (u32) BCM_PAGE_SIZE, (u32) sc->rx_pages);
10569
10570         BCE_PRINTF("rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
10571             (u32) TOTAL_RX_BD_PER_PAGE, (u32) USABLE_RX_BD_PER_PAGE);
10572
10573         BCE_PRINTF("total rx_bd    = 0x%08X\n", (u32) TOTAL_RX_BD_ALLOC);
10574
10575         BCE_PRINTF(
10576             "----------------------------"
10577             "   rx_bd data   "
10578             "----------------------------\n");
10579
10580         /* Now print out the rx_bd's themselves. */
10581         for (int i = 0; i < count; i++) {
10582                 rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
10583                 bce_dump_rxbd(sc, rx_prod, rxbd);
10584                 rx_prod = RX_CHAIN_IDX(rx_prod + 1);
10585         }
10586
10587         BCE_PRINTF(
10588             "----------------------------"
10589             "----------------"
10590             "----------------------------\n");
10591 }
10592
10593
10594 /****************************************************************************/
10595 /* Prints out the page chain.                                               */
10596 /*                                                                          */
10597 /* Returns:                                                                 */
10598 /*   Nothing.                                                               */
10599 /****************************************************************************/
10600 static __attribute__ ((noinline)) void
10601 bce_dump_pg_chain(struct bce_softc *sc, u16 pg_prod, int count)
10602 {
10603         struct rx_bd *pgbd;
10604
10605         /* First some info about the page chain structure. */
10606         BCE_PRINTF(
10607             "----------------------------"
10608             "   page chain   "
10609             "----------------------------\n");
10610
10611         BCE_PRINTF("page size      = 0x%08X, pg chain pages        = 0x%08X\n",
10612             (u32) BCM_PAGE_SIZE, (u32) sc->pg_pages);
10613
10614         BCE_PRINTF("rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
10615             (u32) TOTAL_PG_BD_PER_PAGE, (u32) USABLE_PG_BD_PER_PAGE);
10616
10617         BCE_PRINTF("total pg_bd             = 0x%08X\n", (u32) TOTAL_PG_BD_ALLOC);
10618
10619         BCE_PRINTF(
10620             "----------------------------"
10621             "   page data    "
10622             "----------------------------\n");
10623
10624         /* Now print out the rx_bd's themselves. */
10625         for (int i = 0; i < count; i++) {
10626                 pgbd = &sc->pg_bd_chain[PG_PAGE(pg_prod)][PG_IDX(pg_prod)];
10627                 bce_dump_pgbd(sc, pg_prod, pgbd);
10628                 pg_prod = PG_CHAIN_IDX(pg_prod + 1);
10629         }
10630
10631         BCE_PRINTF(
10632             "----------------------------"
10633             "----------------"
10634             "----------------------------\n");
10635 }
10636
10637
10638 #define BCE_PRINT_RX_CONS(arg)                                          \
10639 if (sblk->status_rx_quick_consumer_index##arg)                          \
10640         BCE_PRINTF("0x%04X(0x%04X) - rx_quick_consumer_index%d\n",      \
10641             sblk->status_rx_quick_consumer_index##arg, (u16)            \
10642             RX_CHAIN_IDX(sblk->status_rx_quick_consumer_index##arg),    \
10643             arg);
10644
10645
10646 #define BCE_PRINT_TX_CONS(arg)                                          \
10647 if (sblk->status_tx_quick_consumer_index##arg)                          \
10648         BCE_PRINTF("0x%04X(0x%04X) - tx_quick_consumer_index%d\n",      \
10649             sblk->status_tx_quick_consumer_index##arg, (u16)            \
10650             TX_CHAIN_IDX(sblk->status_tx_quick_consumer_index##arg),    \
10651             arg);
10652
10653 /****************************************************************************/
10654 /* Prints out the status block from host memory.                            */
10655 /*                                                                          */
10656 /* Returns:                                                                 */
10657 /*   Nothing.                                                               */
10658 /****************************************************************************/
10659 static __attribute__ ((noinline)) void
10660 bce_dump_status_block(struct bce_softc *sc)
10661 {
10662         struct status_block *sblk;
10663
10664         bus_dmamap_sync(sc->status_tag, sc->status_map, BUS_DMASYNC_POSTREAD);
10665
10666         sblk = sc->status_block;
10667
10668         BCE_PRINTF(
10669             "----------------------------"
10670             "  Status Block  "
10671             "----------------------------\n");
10672
10673         /* Theses indices are used for normal L2 drivers. */
10674         BCE_PRINTF("    0x%08X - attn_bits\n",
10675             sblk->status_attn_bits);
10676
10677         BCE_PRINTF("    0x%08X - attn_bits_ack\n",
10678             sblk->status_attn_bits_ack);
10679
10680         BCE_PRINT_RX_CONS(0);
10681         BCE_PRINT_TX_CONS(0)
10682
10683         BCE_PRINTF("        0x%04X - status_idx\n", sblk->status_idx);
10684
10685         /* Theses indices are not used for normal L2 drivers. */
10686         BCE_PRINT_RX_CONS(1);   BCE_PRINT_RX_CONS(2);   BCE_PRINT_RX_CONS(3);
10687         BCE_PRINT_RX_CONS(4);   BCE_PRINT_RX_CONS(5);   BCE_PRINT_RX_CONS(6);
10688         BCE_PRINT_RX_CONS(7);   BCE_PRINT_RX_CONS(8);   BCE_PRINT_RX_CONS(9);
10689         BCE_PRINT_RX_CONS(10);  BCE_PRINT_RX_CONS(11);  BCE_PRINT_RX_CONS(12);
10690         BCE_PRINT_RX_CONS(13);  BCE_PRINT_RX_CONS(14);  BCE_PRINT_RX_CONS(15);
10691
10692         BCE_PRINT_TX_CONS(1);   BCE_PRINT_TX_CONS(2);   BCE_PRINT_TX_CONS(3);
10693
10694         if (sblk->status_completion_producer_index ||
10695             sblk->status_cmd_consumer_index)
10696                 BCE_PRINTF("com_prod  = 0x%08X, cmd_cons      = 0x%08X\n",
10697                     sblk->status_completion_producer_index,
10698                     sblk->status_cmd_consumer_index);
10699
10700         BCE_PRINTF(
10701             "----------------------------"
10702             "----------------"
10703             "----------------------------\n");
10704 }
10705
10706
10707 #define BCE_PRINT_64BIT_STAT(arg)                               \
10708 if (sblk->arg##_lo || sblk->arg##_hi)                           \
10709         BCE_PRINTF("0x%08X:%08X : %s\n", sblk->arg##_hi,        \
10710             sblk->arg##_lo, #arg);
10711
10712 #define BCE_PRINT_32BIT_STAT(arg)                               \
10713 if (sblk->arg)                                                  \
10714         BCE_PRINTF("         0x%08X : %s\n",                    \
10715             sblk->arg, #arg);
10716
10717 /****************************************************************************/
10718 /* Prints out the statistics block from host memory.                        */
10719 /*                                                                          */
10720 /* Returns:                                                                 */
10721 /*   Nothing.                                                               */
10722 /****************************************************************************/
10723 static __attribute__ ((noinline)) void
10724 bce_dump_stats_block(struct bce_softc *sc)
10725 {
10726         struct statistics_block *sblk;
10727
10728         bus_dmamap_sync(sc->stats_tag, sc->stats_map, BUS_DMASYNC_POSTREAD);
10729
10730         sblk = sc->stats_block;
10731
10732         BCE_PRINTF(
10733             "---------------"
10734             " Stats Block  (All Stats Not Shown Are 0) "
10735             "---------------\n");
10736
10737         BCE_PRINT_64BIT_STAT(stat_IfHCInOctets);
10738         BCE_PRINT_64BIT_STAT(stat_IfHCInBadOctets);
10739         BCE_PRINT_64BIT_STAT(stat_IfHCOutOctets);
10740         BCE_PRINT_64BIT_STAT(stat_IfHCOutBadOctets);
10741         BCE_PRINT_64BIT_STAT(stat_IfHCInUcastPkts);
10742         BCE_PRINT_64BIT_STAT(stat_IfHCInBroadcastPkts);
10743         BCE_PRINT_64BIT_STAT(stat_IfHCInMulticastPkts);
10744         BCE_PRINT_64BIT_STAT(stat_IfHCOutUcastPkts);
10745         BCE_PRINT_64BIT_STAT(stat_IfHCOutBroadcastPkts);
10746         BCE_PRINT_64BIT_STAT(stat_IfHCOutMulticastPkts);
10747         BCE_PRINT_32BIT_STAT(
10748             stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
10749         BCE_PRINT_32BIT_STAT(stat_Dot3StatsCarrierSenseErrors);
10750         BCE_PRINT_32BIT_STAT(stat_Dot3StatsFCSErrors);
10751         BCE_PRINT_32BIT_STAT(stat_Dot3StatsAlignmentErrors);
10752         BCE_PRINT_32BIT_STAT(stat_Dot3StatsSingleCollisionFrames);
10753         BCE_PRINT_32BIT_STAT(stat_Dot3StatsMultipleCollisionFrames);
10754         BCE_PRINT_32BIT_STAT(stat_Dot3StatsDeferredTransmissions);
10755         BCE_PRINT_32BIT_STAT(stat_Dot3StatsExcessiveCollisions);
10756         BCE_PRINT_32BIT_STAT(stat_Dot3StatsLateCollisions);
10757         BCE_PRINT_32BIT_STAT(stat_EtherStatsCollisions);
10758         BCE_PRINT_32BIT_STAT(stat_EtherStatsFragments);
10759         BCE_PRINT_32BIT_STAT(stat_EtherStatsJabbers);
10760         BCE_PRINT_32BIT_STAT(stat_EtherStatsUndersizePkts);
10761         BCE_PRINT_32BIT_STAT(stat_EtherStatsOversizePkts);
10762         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx64Octets);
10763         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx65Octetsto127Octets);
10764         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx128Octetsto255Octets);
10765         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx256Octetsto511Octets);
10766         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx512Octetsto1023Octets);
10767         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx1024Octetsto1522Octets);
10768         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx1523Octetsto9022Octets);
10769         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx64Octets);
10770         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx65Octetsto127Octets);
10771         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx128Octetsto255Octets);
10772         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx256Octetsto511Octets);
10773         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx512Octetsto1023Octets);
10774         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx1024Octetsto1522Octets);
10775         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx1523Octetsto9022Octets);
10776         BCE_PRINT_32BIT_STAT(stat_XonPauseFramesReceived);
10777         BCE_PRINT_32BIT_STAT(stat_XoffPauseFramesReceived);
10778         BCE_PRINT_32BIT_STAT(stat_OutXonSent);
10779         BCE_PRINT_32BIT_STAT(stat_OutXoffSent);
10780         BCE_PRINT_32BIT_STAT(stat_FlowControlDone);
10781         BCE_PRINT_32BIT_STAT(stat_MacControlFramesReceived);
10782         BCE_PRINT_32BIT_STAT(stat_XoffStateEntered);
10783         BCE_PRINT_32BIT_STAT(stat_IfInFramesL2FilterDiscards);
10784         BCE_PRINT_32BIT_STAT(stat_IfInRuleCheckerDiscards);
10785         BCE_PRINT_32BIT_STAT(stat_IfInFTQDiscards);
10786         BCE_PRINT_32BIT_STAT(stat_IfInMBUFDiscards);
10787         BCE_PRINT_32BIT_STAT(stat_IfInRuleCheckerP4Hit);
10788         BCE_PRINT_32BIT_STAT(stat_CatchupInRuleCheckerDiscards);
10789         BCE_PRINT_32BIT_STAT(stat_CatchupInFTQDiscards);
10790         BCE_PRINT_32BIT_STAT(stat_CatchupInMBUFDiscards);
10791         BCE_PRINT_32BIT_STAT(stat_CatchupInRuleCheckerP4Hit);
10792
10793         BCE_PRINTF(
10794             "----------------------------"
10795             "----------------"
10796             "----------------------------\n");
10797 }
10798
10799
10800 /****************************************************************************/
10801 /* Prints out a summary of the driver state.                                */
10802 /*                                                                          */
10803 /* Returns:                                                                 */
10804 /*   Nothing.                                                               */
10805 /****************************************************************************/
10806 static __attribute__ ((noinline)) void
10807 bce_dump_driver_state(struct bce_softc *sc)
10808 {
10809         u32 val_hi, val_lo;
10810
10811         BCE_PRINTF(
10812             "-----------------------------"
10813             " Driver State "
10814             "-----------------------------\n");
10815
10816         val_hi = BCE_ADDR_HI(sc);
10817         val_lo = BCE_ADDR_LO(sc);
10818         BCE_PRINTF("0x%08X:%08X - (sc) driver softc structure virtual "
10819             "address\n", val_hi, val_lo);
10820
10821         val_hi = BCE_ADDR_HI(sc->bce_vhandle);
10822         val_lo = BCE_ADDR_LO(sc->bce_vhandle);
10823         BCE_PRINTF("0x%08X:%08X - (sc->bce_vhandle) PCI BAR virtual "
10824             "address\n", val_hi, val_lo);
10825
10826         val_hi = BCE_ADDR_HI(sc->status_block);
10827         val_lo = BCE_ADDR_LO(sc->status_block);
10828         BCE_PRINTF("0x%08X:%08X - (sc->status_block) status block "
10829             "virtual address\n",        val_hi, val_lo);
10830
10831         val_hi = BCE_ADDR_HI(sc->stats_block);
10832         val_lo = BCE_ADDR_LO(sc->stats_block);
10833         BCE_PRINTF("0x%08X:%08X - (sc->stats_block) statistics block "
10834             "virtual address\n", val_hi, val_lo);
10835
10836         val_hi = BCE_ADDR_HI(sc->tx_bd_chain);
10837         val_lo = BCE_ADDR_LO(sc->tx_bd_chain);
10838         BCE_PRINTF("0x%08X:%08X - (sc->tx_bd_chain) tx_bd chain "
10839             "virtual adddress\n", val_hi, val_lo);
10840
10841         val_hi = BCE_ADDR_HI(sc->rx_bd_chain);
10842         val_lo = BCE_ADDR_LO(sc->rx_bd_chain);
10843         BCE_PRINTF("0x%08X:%08X - (sc->rx_bd_chain) rx_bd chain "
10844             "virtual address\n", val_hi, val_lo);
10845
10846         if (bce_hdr_split == TRUE) {
10847                 val_hi = BCE_ADDR_HI(sc->pg_bd_chain);
10848                 val_lo = BCE_ADDR_LO(sc->pg_bd_chain);
10849                 BCE_PRINTF("0x%08X:%08X - (sc->pg_bd_chain) page chain "
10850                     "virtual address\n", val_hi, val_lo);
10851         }
10852
10853         val_hi = BCE_ADDR_HI(sc->tx_mbuf_ptr);
10854         val_lo = BCE_ADDR_LO(sc->tx_mbuf_ptr);
10855         BCE_PRINTF("0x%08X:%08X - (sc->tx_mbuf_ptr) tx mbuf chain "
10856             "virtual address\n",        val_hi, val_lo);
10857
10858         val_hi = BCE_ADDR_HI(sc->rx_mbuf_ptr);
10859         val_lo = BCE_ADDR_LO(sc->rx_mbuf_ptr);
10860         BCE_PRINTF("0x%08X:%08X - (sc->rx_mbuf_ptr) rx mbuf chain "
10861             "virtual address\n", val_hi, val_lo);
10862
10863         if (bce_hdr_split == TRUE) {
10864                 val_hi = BCE_ADDR_HI(sc->pg_mbuf_ptr);
10865                 val_lo = BCE_ADDR_LO(sc->pg_mbuf_ptr);
10866                 BCE_PRINTF("0x%08X:%08X - (sc->pg_mbuf_ptr) page mbuf chain "
10867                     "virtual address\n", val_hi, val_lo);
10868         }
10869
10870         BCE_PRINTF(" 0x%016llX - (sc->interrupts_generated) "
10871             "h/w intrs\n",
10872             (long long unsigned int) sc->interrupts_generated);
10873
10874         BCE_PRINTF(" 0x%016llX - (sc->interrupts_rx) "
10875             "rx interrupts handled\n",
10876             (long long unsigned int) sc->interrupts_rx);
10877
10878         BCE_PRINTF(" 0x%016llX - (sc->interrupts_tx) "
10879             "tx interrupts handled\n",
10880             (long long unsigned int) sc->interrupts_tx);
10881
10882         BCE_PRINTF(" 0x%016llX - (sc->phy_interrupts) "
10883             "phy interrupts handled\n",
10884             (long long unsigned int) sc->phy_interrupts);
10885
10886         BCE_PRINTF("         0x%08X - (sc->last_status_idx) "
10887             "status block index\n", sc->last_status_idx);
10888
10889         BCE_PRINTF("     0x%04X(0x%04X) - (sc->tx_prod) tx producer "
10890             "index\n", sc->tx_prod, (u16) TX_CHAIN_IDX(sc->tx_prod));
10891
10892         BCE_PRINTF("     0x%04X(0x%04X) - (sc->tx_cons) tx consumer "
10893             "index\n", sc->tx_cons, (u16) TX_CHAIN_IDX(sc->tx_cons));
10894
10895         BCE_PRINTF("         0x%08X - (sc->tx_prod_bseq) tx producer "
10896             "byte seq index\n", sc->tx_prod_bseq);
10897
10898         BCE_PRINTF("         0x%08X - (sc->debug_tx_mbuf_alloc) tx "
10899             "mbufs allocated\n", sc->debug_tx_mbuf_alloc);
10900
10901         BCE_PRINTF("         0x%08X - (sc->used_tx_bd) used "
10902             "tx_bd's\n", sc->used_tx_bd);
10903
10904         BCE_PRINTF("      0x%04X/0x%04X - (sc->tx_hi_watermark)/"
10905             "(sc->max_tx_bd)\n", sc->tx_hi_watermark, sc->max_tx_bd);
10906
10907         BCE_PRINTF("     0x%04X(0x%04X) - (sc->rx_prod) rx producer "
10908             "index\n", sc->rx_prod, (u16) RX_CHAIN_IDX(sc->rx_prod));
10909
10910         BCE_PRINTF("     0x%04X(0x%04X) - (sc->rx_cons) rx consumer "
10911             "index\n", sc->rx_cons, (u16) RX_CHAIN_IDX(sc->rx_cons));
10912
10913         BCE_PRINTF("         0x%08X - (sc->rx_prod_bseq) rx producer "
10914             "byte seq index\n", sc->rx_prod_bseq);
10915
10916         BCE_PRINTF("      0x%04X/0x%04X - (sc->rx_low_watermark)/"
10917                    "(sc->max_rx_bd)\n", sc->rx_low_watermark, sc->max_rx_bd);
10918
10919         BCE_PRINTF("         0x%08X - (sc->debug_rx_mbuf_alloc) rx "
10920             "mbufs allocated\n", sc->debug_rx_mbuf_alloc);
10921
10922         BCE_PRINTF("         0x%08X - (sc->free_rx_bd) free "
10923             "rx_bd's\n", sc->free_rx_bd);
10924
10925         if (bce_hdr_split == TRUE) {
10926                 BCE_PRINTF("     0x%04X(0x%04X) - (sc->pg_prod) page producer "
10927                     "index\n", sc->pg_prod, (u16) PG_CHAIN_IDX(sc->pg_prod));
10928
10929                 BCE_PRINTF("     0x%04X(0x%04X) - (sc->pg_cons) page consumer "
10930                     "index\n", sc->pg_cons, (u16) PG_CHAIN_IDX(sc->pg_cons));
10931
10932                 BCE_PRINTF("         0x%08X - (sc->debug_pg_mbuf_alloc) page "
10933                     "mbufs allocated\n", sc->debug_pg_mbuf_alloc);
10934         }
10935
10936         BCE_PRINTF("         0x%08X - (sc->free_pg_bd) free page "
10937             "rx_bd's\n", sc->free_pg_bd);
10938
10939         BCE_PRINTF("      0x%04X/0x%04X - (sc->pg_low_watermark)/"
10940             "(sc->max_pg_bd)\n", sc->pg_low_watermark, sc->max_pg_bd);
10941
10942         BCE_PRINTF("         0x%08X - (sc->mbuf_alloc_failed_count) "
10943             "mbuf alloc failures\n", sc->mbuf_alloc_failed_count);
10944
10945         BCE_PRINTF("         0x%08X - (sc->bce_flags) "
10946             "bce mac flags\n", sc->bce_flags);
10947
10948         BCE_PRINTF("         0x%08X - (sc->bce_phy_flags) "
10949             "bce phy flags\n", sc->bce_phy_flags);
10950
10951         BCE_PRINTF(
10952             "----------------------------"
10953             "----------------"
10954             "----------------------------\n");
10955 }
10956
10957
10958 /****************************************************************************/
10959 /* Prints out the hardware state through a summary of important register,   */
10960 /* followed by a complete register dump.                                    */
10961 /*                                                                          */
10962 /* Returns:                                                                 */
10963 /*   Nothing.                                                               */
10964 /****************************************************************************/
10965 static __attribute__ ((noinline)) void
10966 bce_dump_hw_state(struct bce_softc *sc)
10967 {
10968         u32 val;
10969
10970         BCE_PRINTF(
10971             "----------------------------"
10972             " Hardware State "
10973             "----------------------------\n");
10974
10975         BCE_PRINTF("%s - bootcode version\n", sc->bce_bc_ver);
10976
10977         val = REG_RD(sc, BCE_MISC_ENABLE_STATUS_BITS);
10978         BCE_PRINTF("0x%08X - (0x%06X) misc_enable_status_bits\n",
10979             val, BCE_MISC_ENABLE_STATUS_BITS);
10980
10981         val = REG_RD(sc, BCE_DMA_STATUS);
10982         BCE_PRINTF("0x%08X - (0x%06X) dma_status\n",
10983             val, BCE_DMA_STATUS);
10984
10985         val = REG_RD(sc, BCE_CTX_STATUS);
10986         BCE_PRINTF("0x%08X - (0x%06X) ctx_status\n",
10987             val, BCE_CTX_STATUS);
10988
10989         val = REG_RD(sc, BCE_EMAC_STATUS);
10990         BCE_PRINTF("0x%08X - (0x%06X) emac_status\n",
10991             val, BCE_EMAC_STATUS);
10992
10993         val = REG_RD(sc, BCE_RPM_STATUS);
10994         BCE_PRINTF("0x%08X - (0x%06X) rpm_status\n",
10995             val, BCE_RPM_STATUS);
10996
10997         /* ToDo: Create a #define for this constant. */
10998         val = REG_RD(sc, 0x2004);
10999         BCE_PRINTF("0x%08X - (0x%06X) rlup_status\n",
11000             val, 0x2004);
11001
11002         val = REG_RD(sc, BCE_RV2P_STATUS);
11003         BCE_PRINTF("0x%08X - (0x%06X) rv2p_status\n",
11004             val, BCE_RV2P_STATUS);
11005
11006         /* ToDo: Create a #define for this constant. */
11007         val = REG_RD(sc, 0x2c04);
11008         BCE_PRINTF("0x%08X - (0x%06X) rdma_status\n",
11009             val, 0x2c04);
11010
11011         val = REG_RD(sc, BCE_TBDR_STATUS);
11012         BCE_PRINTF("0x%08X - (0x%06X) tbdr_status\n",
11013             val, BCE_TBDR_STATUS);
11014
11015         val = REG_RD(sc, BCE_TDMA_STATUS);
11016         BCE_PRINTF("0x%08X - (0x%06X) tdma_status\n",
11017             val, BCE_TDMA_STATUS);
11018
11019         val = REG_RD(sc, BCE_HC_STATUS);
11020         BCE_PRINTF("0x%08X - (0x%06X) hc_status\n",
11021             val, BCE_HC_STATUS);
11022
11023         val = REG_RD_IND(sc, BCE_TXP_CPU_STATE);
11024         BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_state\n",
11025             val, BCE_TXP_CPU_STATE);
11026
11027         val = REG_RD_IND(sc, BCE_TPAT_CPU_STATE);
11028         BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_state\n",
11029             val, BCE_TPAT_CPU_STATE);
11030
11031         val = REG_RD_IND(sc, BCE_RXP_CPU_STATE);
11032         BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_state\n",
11033             val, BCE_RXP_CPU_STATE);
11034
11035         val = REG_RD_IND(sc, BCE_COM_CPU_STATE);
11036         BCE_PRINTF("0x%08X - (0x%06X) com_cpu_state\n",
11037             val, BCE_COM_CPU_STATE);
11038
11039         val = REG_RD_IND(sc, BCE_MCP_CPU_STATE);
11040         BCE_PRINTF("0x%08X - (0x%06X) mcp_cpu_state\n",
11041             val, BCE_MCP_CPU_STATE);
11042
11043         val = REG_RD_IND(sc, BCE_CP_CPU_STATE);
11044         BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_state\n",
11045             val, BCE_CP_CPU_STATE);
11046
11047         BCE_PRINTF(
11048             "----------------------------"
11049             "----------------"
11050             "----------------------------\n");
11051
11052         BCE_PRINTF(
11053             "----------------------------"
11054             " Register  Dump "
11055             "----------------------------\n");
11056
11057         for (int i = 0x400; i < 0x8000; i += 0x10) {
11058                 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
11059                     i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
11060                     REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
11061         }
11062
11063         BCE_PRINTF(
11064             "----------------------------"
11065             "----------------"
11066             "----------------------------\n");
11067 }
11068
11069
11070 /****************************************************************************/
11071 /* Prints out the contentst of shared memory which is used for host driver  */
11072 /* to bootcode firmware communication.                                      */
11073 /*                                                                          */
11074 /* Returns:                                                                 */
11075 /*   Nothing.                                                               */
11076 /****************************************************************************/
11077 static __attribute__ ((noinline)) void
11078 bce_dump_shmem_state(struct bce_softc *sc)
11079 {
11080         BCE_PRINTF(
11081             "----------------------------"
11082             " Hardware State "
11083             "----------------------------\n");
11084
11085         BCE_PRINTF("0x%08X - Shared memory base address\n",
11086             sc->bce_shmem_base);
11087         BCE_PRINTF("%s - bootcode version\n",
11088             sc->bce_bc_ver);
11089
11090         BCE_PRINTF(
11091             "----------------------------"
11092             "   Shared Mem   "
11093             "----------------------------\n");
11094
11095         for (int i = 0x0; i < 0x200; i += 0x10) {
11096                 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
11097                     i, bce_shmem_rd(sc, i), bce_shmem_rd(sc, i + 0x4),
11098                     bce_shmem_rd(sc, i + 0x8), bce_shmem_rd(sc, i + 0xC));
11099         }
11100
11101         BCE_PRINTF(
11102             "----------------------------"
11103             "----------------"
11104             "----------------------------\n");
11105 }
11106
11107
11108 /****************************************************************************/
11109 /* Prints out the mailbox queue registers.                                  */
11110 /*                                                                          */
11111 /* Returns:                                                                 */
11112 /*   Nothing.                                                               */
11113 /****************************************************************************/
11114 static __attribute__ ((noinline)) void
11115 bce_dump_mq_regs(struct bce_softc *sc)
11116 {
11117         BCE_PRINTF(
11118             "----------------------------"
11119             "    MQ Regs     "
11120             "----------------------------\n");
11121
11122         BCE_PRINTF(
11123             "----------------------------"
11124             "----------------"
11125             "----------------------------\n");
11126
11127         for (int i = 0x3c00; i < 0x4000; i += 0x10) {
11128                 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
11129                     i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
11130                     REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
11131         }
11132
11133         BCE_PRINTF(
11134             "----------------------------"
11135             "----------------"
11136             "----------------------------\n");
11137 }
11138
11139
11140 /****************************************************************************/
11141 /* Prints out the bootcode state.                                           */
11142 /*                                                                          */
11143 /* Returns:                                                                 */
11144 /*   Nothing.                                                               */
11145 /****************************************************************************/
11146 static __attribute__ ((noinline)) void
11147 bce_dump_bc_state(struct bce_softc *sc)
11148 {
11149         u32 val;
11150
11151         BCE_PRINTF(
11152             "----------------------------"
11153             " Bootcode State "
11154             "----------------------------\n");
11155
11156         BCE_PRINTF("%s - bootcode version\n", sc->bce_bc_ver);
11157
11158         val = bce_shmem_rd(sc, BCE_BC_RESET_TYPE);
11159         BCE_PRINTF("0x%08X - (0x%06X) reset_type\n",
11160             val, BCE_BC_RESET_TYPE);
11161
11162         val = bce_shmem_rd(sc, BCE_BC_STATE);
11163         BCE_PRINTF("0x%08X - (0x%06X) state\n",
11164             val, BCE_BC_STATE);
11165
11166         val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
11167         BCE_PRINTF("0x%08X - (0x%06X) condition\n",
11168             val, BCE_BC_STATE_CONDITION);
11169
11170         val = bce_shmem_rd(sc, BCE_BC_STATE_DEBUG_CMD);
11171         BCE_PRINTF("0x%08X - (0x%06X) debug_cmd\n",
11172             val, BCE_BC_STATE_DEBUG_CMD);
11173
11174         BCE_PRINTF(
11175             "----------------------------"
11176             "----------------"
11177             "----------------------------\n");
11178 }
11179
11180
11181 /****************************************************************************/
11182 /* Prints out the TXP processor state.                                      */
11183 /*                                                                          */
11184 /* Returns:                                                                 */
11185 /*   Nothing.                                                               */
11186 /****************************************************************************/
11187 static __attribute__ ((noinline)) void
11188 bce_dump_txp_state(struct bce_softc *sc, int regs)
11189 {
11190         u32 val;
11191         u32 fw_version[3];
11192
11193         BCE_PRINTF(
11194             "----------------------------"
11195             "   TXP  State   "
11196             "----------------------------\n");
11197
11198         for (int i = 0; i < 3; i++)
11199                 fw_version[i] = htonl(REG_RD_IND(sc,
11200                     (BCE_TXP_SCRATCH + 0x10 + i * 4)));
11201         BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11202
11203         val = REG_RD_IND(sc, BCE_TXP_CPU_MODE);
11204         BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_mode\n",
11205             val, BCE_TXP_CPU_MODE);
11206
11207         val = REG_RD_IND(sc, BCE_TXP_CPU_STATE);
11208         BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_state\n",
11209             val, BCE_TXP_CPU_STATE);
11210
11211         val = REG_RD_IND(sc, BCE_TXP_CPU_EVENT_MASK);
11212         BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_event_mask\n",
11213             val, BCE_TXP_CPU_EVENT_MASK);
11214
11215         if (regs) {
11216                 BCE_PRINTF(
11217                     "----------------------------"
11218                     " Register  Dump "
11219                     "----------------------------\n");
11220
11221                 for (int i = BCE_TXP_CPU_MODE; i < 0x68000; i += 0x10) {
11222                         /* Skip the big blank spaces */
11223                         if (i < 0x454000 && i > 0x5ffff)
11224                                 BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11225                                     "0x%08X 0x%08X\n", i,
11226                                     REG_RD_IND(sc, i),
11227                                     REG_RD_IND(sc, i + 0x4),
11228                                     REG_RD_IND(sc, i + 0x8),
11229                                     REG_RD_IND(sc, i + 0xC));
11230                 }
11231         }
11232
11233         BCE_PRINTF(
11234             "----------------------------"
11235             "----------------"
11236             "----------------------------\n");
11237 }
11238
11239
11240 /****************************************************************************/
11241 /* Prints out the RXP processor state.                                      */
11242 /*                                                                          */
11243 /* Returns:                                                                 */
11244 /*   Nothing.                                                               */
11245 /****************************************************************************/
11246 static __attribute__ ((noinline)) void
11247 bce_dump_rxp_state(struct bce_softc *sc, int regs)
11248 {
11249         u32 val;
11250         u32 fw_version[3];
11251
11252         BCE_PRINTF(
11253             "----------------------------"
11254             "   RXP  State   "
11255             "----------------------------\n");
11256
11257         for (int i = 0; i < 3; i++)
11258                 fw_version[i] = htonl(REG_RD_IND(sc,
11259                     (BCE_RXP_SCRATCH + 0x10 + i * 4)));
11260
11261         BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11262
11263         val = REG_RD_IND(sc, BCE_RXP_CPU_MODE);
11264         BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_mode\n",
11265             val, BCE_RXP_CPU_MODE);
11266
11267         val = REG_RD_IND(sc, BCE_RXP_CPU_STATE);
11268         BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_state\n",
11269             val, BCE_RXP_CPU_STATE);
11270
11271         val = REG_RD_IND(sc, BCE_RXP_CPU_EVENT_MASK);
11272         BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_event_mask\n",
11273             val, BCE_RXP_CPU_EVENT_MASK);
11274
11275         if (regs) {
11276                 BCE_PRINTF(
11277                     "----------------------------"
11278                     " Register  Dump "
11279                     "----------------------------\n");
11280
11281                 for (int i = BCE_RXP_CPU_MODE; i < 0xe8fff; i += 0x10) {
11282                         /* Skip the big blank sapces */
11283                         if (i < 0xc5400 && i > 0xdffff)
11284                                 BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11285                                     "0x%08X 0x%08X\n", i,
11286                                     REG_RD_IND(sc, i),
11287                                     REG_RD_IND(sc, i + 0x4),
11288                                     REG_RD_IND(sc, i + 0x8),
11289                                     REG_RD_IND(sc, i + 0xC));
11290                 }
11291         }
11292
11293         BCE_PRINTF(
11294             "----------------------------"
11295             "----------------"
11296             "----------------------------\n");
11297 }
11298
11299
11300 /****************************************************************************/
11301 /* Prints out the TPAT processor state.                                     */
11302 /*                                                                          */
11303 /* Returns:                                                                 */
11304 /*   Nothing.                                                               */
11305 /****************************************************************************/
11306 static __attribute__ ((noinline)) void
11307 bce_dump_tpat_state(struct bce_softc *sc, int regs)
11308 {
11309         u32 val;
11310         u32 fw_version[3];
11311
11312         BCE_PRINTF(
11313             "----------------------------"
11314             "   TPAT State   "
11315             "----------------------------\n");
11316
11317         for (int i = 0; i < 3; i++)
11318                 fw_version[i] = htonl(REG_RD_IND(sc,
11319                     (BCE_TPAT_SCRATCH + 0x410 + i * 4)));
11320
11321         BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11322
11323         val = REG_RD_IND(sc, BCE_TPAT_CPU_MODE);
11324         BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_mode\n",
11325             val, BCE_TPAT_CPU_MODE);
11326
11327         val = REG_RD_IND(sc, BCE_TPAT_CPU_STATE);
11328         BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_state\n",
11329             val, BCE_TPAT_CPU_STATE);
11330
11331         val = REG_RD_IND(sc, BCE_TPAT_CPU_EVENT_MASK);
11332         BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_event_mask\n",
11333             val, BCE_TPAT_CPU_EVENT_MASK);
11334
11335         if (regs) {
11336                 BCE_PRINTF(
11337                     "----------------------------"
11338                     " Register  Dump "
11339                     "----------------------------\n");
11340
11341                 for (int i = BCE_TPAT_CPU_MODE; i < 0xa3fff; i += 0x10) {
11342                         /* Skip the big blank spaces */
11343                         if (i < 0x854000 && i > 0x9ffff)
11344                                 BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11345                                     "0x%08X 0x%08X\n", i,
11346                                     REG_RD_IND(sc, i),
11347                                     REG_RD_IND(sc, i + 0x4),
11348                                     REG_RD_IND(sc, i + 0x8),
11349                                     REG_RD_IND(sc, i + 0xC));
11350                 }
11351         }
11352
11353         BCE_PRINTF(
11354                 "----------------------------"
11355                 "----------------"
11356                 "----------------------------\n");
11357 }
11358
11359
11360 /****************************************************************************/
11361 /* Prints out the Command Procesor (CP) state.                              */
11362 /*                                                                          */
11363 /* Returns:                                                                 */
11364 /*   Nothing.                                                               */
11365 /****************************************************************************/
11366 static __attribute__ ((noinline)) void
11367 bce_dump_cp_state(struct bce_softc *sc, int regs)
11368 {
11369         u32 val;
11370         u32 fw_version[3];
11371
11372         BCE_PRINTF(
11373             "----------------------------"
11374             "    CP State    "
11375             "----------------------------\n");
11376
11377         for (int i = 0; i < 3; i++)
11378                 fw_version[i] = htonl(REG_RD_IND(sc,
11379                     (BCE_CP_SCRATCH + 0x10 + i * 4)));
11380
11381         BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11382
11383         val = REG_RD_IND(sc, BCE_CP_CPU_MODE);
11384         BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_mode\n",
11385             val, BCE_CP_CPU_MODE);
11386
11387         val = REG_RD_IND(sc, BCE_CP_CPU_STATE);
11388         BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_state\n",
11389             val, BCE_CP_CPU_STATE);
11390
11391         val = REG_RD_IND(sc, BCE_CP_CPU_EVENT_MASK);
11392         BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_event_mask\n", val,
11393             BCE_CP_CPU_EVENT_MASK);
11394
11395         if (regs) {
11396                 BCE_PRINTF(
11397                     "----------------------------"
11398                     " Register  Dump "
11399                     "----------------------------\n");
11400
11401                 for (int i = BCE_CP_CPU_MODE; i < 0x1aa000; i += 0x10) {
11402                         /* Skip the big blank spaces */
11403                         if (i < 0x185400 && i > 0x19ffff)
11404                                 BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11405                                     "0x%08X 0x%08X\n", i,
11406                                     REG_RD_IND(sc, i),
11407                                     REG_RD_IND(sc, i + 0x4),
11408                                     REG_RD_IND(sc, i + 0x8),
11409                                     REG_RD_IND(sc, i + 0xC));
11410                 }
11411         }
11412
11413         BCE_PRINTF(
11414             "----------------------------"
11415             "----------------"
11416             "----------------------------\n");
11417 }
11418
11419
11420 /****************************************************************************/
11421 /* Prints out the Completion Procesor (COM) state.                          */
11422 /*                                                                          */
11423 /* Returns:                                                                 */
11424 /*   Nothing.                                                               */
11425 /****************************************************************************/
11426 static __attribute__ ((noinline)) void
11427 bce_dump_com_state(struct bce_softc *sc, int regs)
11428 {
11429         u32 val;
11430         u32 fw_version[4];
11431
11432         BCE_PRINTF(
11433             "----------------------------"
11434             "   COM State    "
11435             "----------------------------\n");
11436
11437         for (int i = 0; i < 3; i++)
11438                 fw_version[i] = htonl(REG_RD_IND(sc,
11439                     (BCE_COM_SCRATCH + 0x10 + i * 4)));
11440
11441         BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11442
11443         val = REG_RD_IND(sc, BCE_COM_CPU_MODE);
11444         BCE_PRINTF("0x%08X - (0x%06X) com_cpu_mode\n",
11445             val, BCE_COM_CPU_MODE);
11446
11447         val = REG_RD_IND(sc, BCE_COM_CPU_STATE);
11448         BCE_PRINTF("0x%08X - (0x%06X) com_cpu_state\n",
11449             val, BCE_COM_CPU_STATE);
11450
11451         val = REG_RD_IND(sc, BCE_COM_CPU_EVENT_MASK);
11452         BCE_PRINTF("0x%08X - (0x%06X) com_cpu_event_mask\n", val,
11453             BCE_COM_CPU_EVENT_MASK);
11454
11455         if (regs) {
11456                 BCE_PRINTF(
11457                     "----------------------------"
11458                     " Register  Dump "
11459                     "----------------------------\n");
11460
11461                 for (int i = BCE_COM_CPU_MODE; i < 0x1053e8; i += 0x10) {
11462                         BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11463                             "0x%08X 0x%08X\n", i,
11464                             REG_RD_IND(sc, i),
11465                             REG_RD_IND(sc, i + 0x4),
11466                             REG_RD_IND(sc, i + 0x8),
11467                             REG_RD_IND(sc, i + 0xC));
11468                 }
11469         }
11470
11471         BCE_PRINTF(
11472                 "----------------------------"
11473                 "----------------"
11474                 "----------------------------\n");
11475 }
11476
11477
11478 /****************************************************************************/
11479 /* Prints out the Receive Virtual 2 Physical (RV2P) state.                  */
11480 /*                                                                          */
11481 /* Returns:                                                                 */
11482 /*   Nothing.                                                               */
11483 /****************************************************************************/
11484 static __attribute__ ((noinline)) void
11485 bce_dump_rv2p_state(struct bce_softc *sc)
11486 {
11487         u32 val, pc1, pc2, fw_ver_high, fw_ver_low;
11488
11489         BCE_PRINTF(
11490             "----------------------------"
11491             "   RV2P State   "
11492             "----------------------------\n");
11493
11494         /* Stall the RV2P processors. */
11495         val = REG_RD_IND(sc, BCE_RV2P_CONFIG);
11496         val |= BCE_RV2P_CONFIG_STALL_PROC1 | BCE_RV2P_CONFIG_STALL_PROC2;
11497         REG_WR_IND(sc, BCE_RV2P_CONFIG, val);
11498
11499         /* Read the firmware version. */
11500         val = 0x00000001;
11501         REG_WR_IND(sc, BCE_RV2P_PROC1_ADDR_CMD, val);
11502         fw_ver_low = REG_RD_IND(sc, BCE_RV2P_INSTR_LOW);
11503         fw_ver_high = REG_RD_IND(sc, BCE_RV2P_INSTR_HIGH) &
11504             BCE_RV2P_INSTR_HIGH_HIGH;
11505         BCE_PRINTF("RV2P1 Firmware version - 0x%08X:0x%08X\n",
11506             fw_ver_high, fw_ver_low);
11507
11508         val = 0x00000001;
11509         REG_WR_IND(sc, BCE_RV2P_PROC2_ADDR_CMD, val);
11510         fw_ver_low = REG_RD_IND(sc, BCE_RV2P_INSTR_LOW);
11511         fw_ver_high = REG_RD_IND(sc, BCE_RV2P_INSTR_HIGH) &
11512             BCE_RV2P_INSTR_HIGH_HIGH;
11513         BCE_PRINTF("RV2P2 Firmware version - 0x%08X:0x%08X\n",
11514             fw_ver_high, fw_ver_low);
11515
11516         /* Resume the RV2P processors. */
11517         val = REG_RD_IND(sc, BCE_RV2P_CONFIG);
11518         val &= ~(BCE_RV2P_CONFIG_STALL_PROC1 | BCE_RV2P_CONFIG_STALL_PROC2);
11519         REG_WR_IND(sc, BCE_RV2P_CONFIG, val);
11520
11521         /* Fetch the program counter value. */
11522         val = 0x68007800;
11523         REG_WR_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK, val);
11524         val = REG_RD_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK);
11525         pc1 = (val & BCE_RV2P_DEBUG_VECT_PEEK_1_VALUE);
11526         pc2 = (val & BCE_RV2P_DEBUG_VECT_PEEK_2_VALUE) >> 16;
11527         BCE_PRINTF("0x%08X - RV2P1 program counter (1st read)\n", pc1);
11528         BCE_PRINTF("0x%08X - RV2P2 program counter (1st read)\n", pc2);
11529
11530         /* Fetch the program counter value again to see if it is advancing. */
11531         val = 0x68007800;
11532         REG_WR_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK, val);
11533         val = REG_RD_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK);
11534         pc1 = (val & BCE_RV2P_DEBUG_VECT_PEEK_1_VALUE);
11535         pc2 = (val & BCE_RV2P_DEBUG_VECT_PEEK_2_VALUE) >> 16;
11536         BCE_PRINTF("0x%08X - RV2P1 program counter (2nd read)\n", pc1);
11537         BCE_PRINTF("0x%08X - RV2P2 program counter (2nd read)\n", pc2);
11538
11539         BCE_PRINTF(
11540             "----------------------------"
11541             "----------------"
11542             "----------------------------\n");
11543 }
11544
11545
11546 /****************************************************************************/
11547 /* Prints out the driver state and then enters the debugger.                */
11548 /*                                                                          */
11549 /* Returns:                                                                 */
11550 /*   Nothing.                                                               */
11551 /****************************************************************************/
11552 static __attribute__ ((noinline)) void
11553 bce_breakpoint(struct bce_softc *sc)
11554 {
11555
11556         /*
11557          * Unreachable code to silence compiler warnings
11558          * about unused functions.
11559          */
11560         if (0) {
11561                 bce_freeze_controller(sc);
11562                 bce_unfreeze_controller(sc);
11563                 bce_dump_enet(sc, NULL);
11564                 bce_dump_txbd(sc, 0, NULL);
11565                 bce_dump_rxbd(sc, 0, NULL);
11566                 bce_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD_ALLOC);
11567                 bce_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD_ALLOC);
11568                 bce_dump_pg_mbuf_chain(sc, 0, USABLE_PG_BD_ALLOC);
11569                 bce_dump_l2fhdr(sc, 0, NULL);
11570                 bce_dump_ctx(sc, RX_CID);
11571                 bce_dump_ftqs(sc);
11572                 bce_dump_tx_chain(sc, 0, USABLE_TX_BD_ALLOC);
11573                 bce_dump_rx_bd_chain(sc, 0, USABLE_RX_BD_ALLOC);
11574                 bce_dump_pg_chain(sc, 0, USABLE_PG_BD_ALLOC);
11575                 bce_dump_status_block(sc);
11576                 bce_dump_stats_block(sc);
11577                 bce_dump_driver_state(sc);
11578                 bce_dump_hw_state(sc);
11579                 bce_dump_bc_state(sc);
11580                 bce_dump_txp_state(sc, 0);
11581                 bce_dump_rxp_state(sc, 0);
11582                 bce_dump_tpat_state(sc, 0);
11583                 bce_dump_cp_state(sc, 0);
11584                 bce_dump_com_state(sc, 0);
11585                 bce_dump_rv2p_state(sc);
11586                 bce_dump_pgbd(sc, 0, NULL);
11587         }
11588
11589         bce_dump_status_block(sc);
11590         bce_dump_driver_state(sc);
11591
11592         /* Call the debugger. */
11593         breakpoint();
11594 }
11595 #endif