]> CyberLeo.Net >> Repos - FreeBSD/releng/10.2.git/blob - sys/dev/bge/if_bge.c
- Copy stable/10@285827 to releng/10.2 in preparation for 10.2-RC1
[FreeBSD/releng/10.2.git] / sys / dev / bge / if_bge.c
1 /*-
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2001
4  *      Bill Paul <wpaul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *      This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36
37 /*
38  * Broadcom BCM57xx(x)/BCM590x NetXtreme and NetLink family Ethernet driver
39  *
40  * The Broadcom BCM5700 is based on technology originally developed by
41  * Alteon Networks as part of the Tigon I and Tigon II Gigabit Ethernet
42  * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
43  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
44  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
45  * frames, highly configurable RX filtering, and 16 RX and TX queues
46  * (which, along with RX filter rules, can be used for QOS applications).
47  * Other features, such as TCP segmentation, may be available as part
48  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
49  * firmware images can be stored in hardware and need not be compiled
50  * into the driver.
51  *
52  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
53  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
54  *
55  * The BCM5701 is a single-chip solution incorporating both the BCM5700
56  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
57  * does not support external SSRAM.
58  *
59  * Broadcom also produces a variation of the BCM5700 under the "Altima"
60  * brand name, which is functionally similar but lacks PCI-X support.
61  *
62  * Without external SSRAM, you can only have at most 4 TX rings,
63  * and the use of the mini RX ring is disabled. This seems to imply
64  * that these features are simply not available on the BCM5701. As a
65  * result, this driver does not implement any support for the mini RX
66  * ring.
67  */
68
69 #ifdef HAVE_KERNEL_OPTION_HEADERS
70 #include "opt_device_polling.h"
71 #endif
72
73 #include <sys/param.h>
74 #include <sys/endian.h>
75 #include <sys/systm.h>
76 #include <sys/sockio.h>
77 #include <sys/mbuf.h>
78 #include <sys/malloc.h>
79 #include <sys/kernel.h>
80 #include <sys/module.h>
81 #include <sys/socket.h>
82 #include <sys/sysctl.h>
83 #include <sys/taskqueue.h>
84
85 #include <net/if.h>
86 #include <net/if_arp.h>
87 #include <net/ethernet.h>
88 #include <net/if_dl.h>
89 #include <net/if_media.h>
90
91 #include <net/bpf.h>
92
93 #include <net/if_types.h>
94 #include <net/if_vlan_var.h>
95
96 #include <netinet/in_systm.h>
97 #include <netinet/in.h>
98 #include <netinet/ip.h>
99 #include <netinet/tcp.h>
100
101 #include <machine/bus.h>
102 #include <machine/resource.h>
103 #include <sys/bus.h>
104 #include <sys/rman.h>
105
106 #include <dev/mii/mii.h>
107 #include <dev/mii/miivar.h>
108 #include "miidevs.h"
109 #include <dev/mii/brgphyreg.h>
110
111 #ifdef __sparc64__
112 #include <dev/ofw/ofw_bus.h>
113 #include <dev/ofw/openfirm.h>
114 #include <machine/ofw_machdep.h>
115 #include <machine/ver.h>
116 #endif
117
118 #include <dev/pci/pcireg.h>
119 #include <dev/pci/pcivar.h>
120
121 #include <dev/bge/if_bgereg.h>
122
123 #define BGE_CSUM_FEATURES       (CSUM_IP | CSUM_TCP)
124 #define ETHER_MIN_NOPAD         (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
125
126 MODULE_DEPEND(bge, pci, 1, 1, 1);
127 MODULE_DEPEND(bge, ether, 1, 1, 1);
128 MODULE_DEPEND(bge, miibus, 1, 1, 1);
129
130 /* "device miibus" required.  See GENERIC if you get errors here. */
131 #include "miibus_if.h"
132
133 /*
134  * Various supported device vendors/types and their names. Note: the
135  * spec seems to indicate that the hardware still has Alteon's vendor
136  * ID burned into it, though it will always be overriden by the vendor
137  * ID in the EEPROM. Just to be safe, we cover all possibilities.
138  */
139 static const struct bge_type {
140         uint16_t        bge_vid;
141         uint16_t        bge_did;
142 } bge_devs[] = {
143         { ALTEON_VENDORID,      ALTEON_DEVICEID_BCM5700 },
144         { ALTEON_VENDORID,      ALTEON_DEVICEID_BCM5701 },
145
146         { ALTIMA_VENDORID,      ALTIMA_DEVICE_AC1000 },
147         { ALTIMA_VENDORID,      ALTIMA_DEVICE_AC1002 },
148         { ALTIMA_VENDORID,      ALTIMA_DEVICE_AC9100 },
149
150         { APPLE_VENDORID,       APPLE_DEVICE_BCM5701 },
151
152         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5700 },
153         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5701 },
154         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5702 },
155         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5702_ALT },
156         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5702X },
157         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5703 },
158         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5703_ALT },
159         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5703X },
160         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5704C },
161         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5704S },
162         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5704S_ALT },
163         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5705 },
164         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5705F },
165         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5705K },
166         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5705M },
167         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5705M_ALT },
168         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5714C },
169         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5714S },
170         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5715 },
171         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5715S },
172         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5717 },
173         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5718 },
174         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5719 },
175         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5720 },
176         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5721 },
177         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5722 },
178         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5723 },
179         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5725 },
180         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5727 },
181         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5750 },
182         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5750M },
183         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5751 },
184         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5751F },
185         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5751M },
186         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5752 },
187         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5752M },
188         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5753 },
189         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5753F },
190         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5753M },
191         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5754 },
192         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5754M },
193         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5755 },
194         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5755M },
195         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5756 },
196         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5761 },
197         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5761E },
198         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5761S },
199         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5761SE },
200         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5762 },
201         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5764 },
202         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5780 },
203         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5780S },
204         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5781 },
205         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5782 },
206         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5784 },
207         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5785F },
208         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5785G },
209         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5786 },
210         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5787 },
211         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5787F },
212         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5787M },
213         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5788 },
214         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5789 },
215         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5901 },
216         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5901A2 },
217         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5903M },
218         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5906 },
219         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5906M },
220         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57760 },
221         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57761 },
222         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57762 },
223         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57764 },
224         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57765 },
225         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57766 },
226         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57767 },
227         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57780 },
228         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57781 },
229         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57782 },
230         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57785 },
231         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57786 },
232         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57787 },
233         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57788 },
234         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57790 },
235         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57791 },
236         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57795 },
237
238         { SK_VENDORID,          SK_DEVICEID_ALTIMA },
239
240         { TC_VENDORID,          TC_DEVICEID_3C996 },
241
242         { FJTSU_VENDORID,       FJTSU_DEVICEID_PW008GE4 },
243         { FJTSU_VENDORID,       FJTSU_DEVICEID_PW008GE5 },
244         { FJTSU_VENDORID,       FJTSU_DEVICEID_PP250450 },
245
246         { 0, 0 }
247 };
248
249 static const struct bge_vendor {
250         uint16_t        v_id;
251         const char      *v_name;
252 } bge_vendors[] = {
253         { ALTEON_VENDORID,      "Alteon" },
254         { ALTIMA_VENDORID,      "Altima" },
255         { APPLE_VENDORID,       "Apple" },
256         { BCOM_VENDORID,        "Broadcom" },
257         { SK_VENDORID,          "SysKonnect" },
258         { TC_VENDORID,          "3Com" },
259         { FJTSU_VENDORID,       "Fujitsu" },
260
261         { 0, NULL }
262 };
263
264 static const struct bge_revision {
265         uint32_t        br_chipid;
266         const char      *br_name;
267 } bge_revisions[] = {
268         { BGE_CHIPID_BCM5700_A0,        "BCM5700 A0" },
269         { BGE_CHIPID_BCM5700_A1,        "BCM5700 A1" },
270         { BGE_CHIPID_BCM5700_B0,        "BCM5700 B0" },
271         { BGE_CHIPID_BCM5700_B1,        "BCM5700 B1" },
272         { BGE_CHIPID_BCM5700_B2,        "BCM5700 B2" },
273         { BGE_CHIPID_BCM5700_B3,        "BCM5700 B3" },
274         { BGE_CHIPID_BCM5700_ALTIMA,    "BCM5700 Altima" },
275         { BGE_CHIPID_BCM5700_C0,        "BCM5700 C0" },
276         { BGE_CHIPID_BCM5701_A0,        "BCM5701 A0" },
277         { BGE_CHIPID_BCM5701_B0,        "BCM5701 B0" },
278         { BGE_CHIPID_BCM5701_B2,        "BCM5701 B2" },
279         { BGE_CHIPID_BCM5701_B5,        "BCM5701 B5" },
280         { BGE_CHIPID_BCM5703_A0,        "BCM5703 A0" },
281         { BGE_CHIPID_BCM5703_A1,        "BCM5703 A1" },
282         { BGE_CHIPID_BCM5703_A2,        "BCM5703 A2" },
283         { BGE_CHIPID_BCM5703_A3,        "BCM5703 A3" },
284         { BGE_CHIPID_BCM5703_B0,        "BCM5703 B0" },
285         { BGE_CHIPID_BCM5704_A0,        "BCM5704 A0" },
286         { BGE_CHIPID_BCM5704_A1,        "BCM5704 A1" },
287         { BGE_CHIPID_BCM5704_A2,        "BCM5704 A2" },
288         { BGE_CHIPID_BCM5704_A3,        "BCM5704 A3" },
289         { BGE_CHIPID_BCM5704_B0,        "BCM5704 B0" },
290         { BGE_CHIPID_BCM5705_A0,        "BCM5705 A0" },
291         { BGE_CHIPID_BCM5705_A1,        "BCM5705 A1" },
292         { BGE_CHIPID_BCM5705_A2,        "BCM5705 A2" },
293         { BGE_CHIPID_BCM5705_A3,        "BCM5705 A3" },
294         { BGE_CHIPID_BCM5750_A0,        "BCM5750 A0" },
295         { BGE_CHIPID_BCM5750_A1,        "BCM5750 A1" },
296         { BGE_CHIPID_BCM5750_A3,        "BCM5750 A3" },
297         { BGE_CHIPID_BCM5750_B0,        "BCM5750 B0" },
298         { BGE_CHIPID_BCM5750_B1,        "BCM5750 B1" },
299         { BGE_CHIPID_BCM5750_C0,        "BCM5750 C0" },
300         { BGE_CHIPID_BCM5750_C1,        "BCM5750 C1" },
301         { BGE_CHIPID_BCM5750_C2,        "BCM5750 C2" },
302         { BGE_CHIPID_BCM5714_A0,        "BCM5714 A0" },
303         { BGE_CHIPID_BCM5752_A0,        "BCM5752 A0" },
304         { BGE_CHIPID_BCM5752_A1,        "BCM5752 A1" },
305         { BGE_CHIPID_BCM5752_A2,        "BCM5752 A2" },
306         { BGE_CHIPID_BCM5714_B0,        "BCM5714 B0" },
307         { BGE_CHIPID_BCM5714_B3,        "BCM5714 B3" },
308         { BGE_CHIPID_BCM5715_A0,        "BCM5715 A0" },
309         { BGE_CHIPID_BCM5715_A1,        "BCM5715 A1" },
310         { BGE_CHIPID_BCM5715_A3,        "BCM5715 A3" },
311         { BGE_CHIPID_BCM5717_A0,        "BCM5717 A0" },
312         { BGE_CHIPID_BCM5717_B0,        "BCM5717 B0" },
313         { BGE_CHIPID_BCM5719_A0,        "BCM5719 A0" },
314         { BGE_CHIPID_BCM5720_A0,        "BCM5720 A0" },
315         { BGE_CHIPID_BCM5755_A0,        "BCM5755 A0" },
316         { BGE_CHIPID_BCM5755_A1,        "BCM5755 A1" },
317         { BGE_CHIPID_BCM5755_A2,        "BCM5755 A2" },
318         { BGE_CHIPID_BCM5722_A0,        "BCM5722 A0" },
319         { BGE_CHIPID_BCM5761_A0,        "BCM5761 A0" },
320         { BGE_CHIPID_BCM5761_A1,        "BCM5761 A1" },
321         { BGE_CHIPID_BCM5762_A0,        "BCM5762 A0" },
322         { BGE_CHIPID_BCM5784_A0,        "BCM5784 A0" },
323         { BGE_CHIPID_BCM5784_A1,        "BCM5784 A1" },
324         /* 5754 and 5787 share the same ASIC ID */
325         { BGE_CHIPID_BCM5787_A0,        "BCM5754/5787 A0" },
326         { BGE_CHIPID_BCM5787_A1,        "BCM5754/5787 A1" },
327         { BGE_CHIPID_BCM5787_A2,        "BCM5754/5787 A2" },
328         { BGE_CHIPID_BCM5906_A1,        "BCM5906 A1" },
329         { BGE_CHIPID_BCM5906_A2,        "BCM5906 A2" },
330         { BGE_CHIPID_BCM57765_A0,       "BCM57765 A0" },
331         { BGE_CHIPID_BCM57765_B0,       "BCM57765 B0" },
332         { BGE_CHIPID_BCM57780_A0,       "BCM57780 A0" },
333         { BGE_CHIPID_BCM57780_A1,       "BCM57780 A1" },
334
335         { 0, NULL }
336 };
337
338 /*
339  * Some defaults for major revisions, so that newer steppings
340  * that we don't know about have a shot at working.
341  */
342 static const struct bge_revision bge_majorrevs[] = {
343         { BGE_ASICREV_BCM5700,          "unknown BCM5700" },
344         { BGE_ASICREV_BCM5701,          "unknown BCM5701" },
345         { BGE_ASICREV_BCM5703,          "unknown BCM5703" },
346         { BGE_ASICREV_BCM5704,          "unknown BCM5704" },
347         { BGE_ASICREV_BCM5705,          "unknown BCM5705" },
348         { BGE_ASICREV_BCM5750,          "unknown BCM5750" },
349         { BGE_ASICREV_BCM5714_A0,       "unknown BCM5714" },
350         { BGE_ASICREV_BCM5752,          "unknown BCM5752" },
351         { BGE_ASICREV_BCM5780,          "unknown BCM5780" },
352         { BGE_ASICREV_BCM5714,          "unknown BCM5714" },
353         { BGE_ASICREV_BCM5755,          "unknown BCM5755" },
354         { BGE_ASICREV_BCM5761,          "unknown BCM5761" },
355         { BGE_ASICREV_BCM5784,          "unknown BCM5784" },
356         { BGE_ASICREV_BCM5785,          "unknown BCM5785" },
357         /* 5754 and 5787 share the same ASIC ID */
358         { BGE_ASICREV_BCM5787,          "unknown BCM5754/5787" },
359         { BGE_ASICREV_BCM5906,          "unknown BCM5906" },
360         { BGE_ASICREV_BCM57765,         "unknown BCM57765" },
361         { BGE_ASICREV_BCM57766,         "unknown BCM57766" },
362         { BGE_ASICREV_BCM57780,         "unknown BCM57780" },
363         { BGE_ASICREV_BCM5717,          "unknown BCM5717" },
364         { BGE_ASICREV_BCM5719,          "unknown BCM5719" },
365         { BGE_ASICREV_BCM5720,          "unknown BCM5720" },
366         { BGE_ASICREV_BCM5762,          "unknown BCM5762" },
367
368         { 0, NULL }
369 };
370
371 #define BGE_IS_JUMBO_CAPABLE(sc)        ((sc)->bge_flags & BGE_FLAG_JUMBO)
372 #define BGE_IS_5700_FAMILY(sc)          ((sc)->bge_flags & BGE_FLAG_5700_FAMILY)
373 #define BGE_IS_5705_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_5705_PLUS)
374 #define BGE_IS_5714_FAMILY(sc)          ((sc)->bge_flags & BGE_FLAG_5714_FAMILY)
375 #define BGE_IS_575X_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_575X_PLUS)
376 #define BGE_IS_5755_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_5755_PLUS)
377 #define BGE_IS_5717_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_5717_PLUS)
378 #define BGE_IS_57765_PLUS(sc)           ((sc)->bge_flags & BGE_FLAG_57765_PLUS)
379
380 static uint32_t bge_chipid(device_t);
381 static const struct bge_vendor * bge_lookup_vendor(uint16_t);
382 static const struct bge_revision * bge_lookup_rev(uint32_t);
383
384 typedef int     (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
385
386 static int bge_probe(device_t);
387 static int bge_attach(device_t);
388 static int bge_detach(device_t);
389 static int bge_suspend(device_t);
390 static int bge_resume(device_t);
391 static void bge_release_resources(struct bge_softc *);
392 static void bge_dma_map_addr(void *, bus_dma_segment_t *, int, int);
393 static int bge_dma_alloc(struct bge_softc *);
394 static void bge_dma_free(struct bge_softc *);
395 static int bge_dma_ring_alloc(struct bge_softc *, bus_size_t, bus_size_t,
396     bus_dma_tag_t *, uint8_t **, bus_dmamap_t *, bus_addr_t *, const char *);
397
398 static void bge_devinfo(struct bge_softc *);
399 static int bge_mbox_reorder(struct bge_softc *);
400
401 static int bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[]);
402 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
403 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
404 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
405 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
406
407 static void bge_txeof(struct bge_softc *, uint16_t);
408 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
409 static int bge_rxeof(struct bge_softc *, uint16_t, int);
410
411 static void bge_asf_driver_up (struct bge_softc *);
412 static void bge_tick(void *);
413 static void bge_stats_clear_regs(struct bge_softc *);
414 static void bge_stats_update(struct bge_softc *);
415 static void bge_stats_update_regs(struct bge_softc *);
416 static struct mbuf *bge_check_short_dma(struct mbuf *);
417 static struct mbuf *bge_setup_tso(struct bge_softc *, struct mbuf *,
418     uint16_t *, uint16_t *);
419 static int bge_encap(struct bge_softc *, struct mbuf **, uint32_t *);
420
421 static void bge_intr(void *);
422 static int bge_msi_intr(void *);
423 static void bge_intr_task(void *, int);
424 static void bge_start_locked(struct ifnet *);
425 static void bge_start(struct ifnet *);
426 static int bge_ioctl(struct ifnet *, u_long, caddr_t);
427 static void bge_init_locked(struct bge_softc *);
428 static void bge_init(void *);
429 static void bge_stop_block(struct bge_softc *, bus_size_t, uint32_t);
430 static void bge_stop(struct bge_softc *);
431 static void bge_watchdog(struct bge_softc *);
432 static int bge_shutdown(device_t);
433 static int bge_ifmedia_upd_locked(struct ifnet *);
434 static int bge_ifmedia_upd(struct ifnet *);
435 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
436
437 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
438 static int bge_read_nvram(struct bge_softc *, caddr_t, int, int);
439
440 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
441 static int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
442
443 static void bge_setpromisc(struct bge_softc *);
444 static void bge_setmulti(struct bge_softc *);
445 static void bge_setvlan(struct bge_softc *);
446
447 static __inline void bge_rxreuse_std(struct bge_softc *, int);
448 static __inline void bge_rxreuse_jumbo(struct bge_softc *, int);
449 static int bge_newbuf_std(struct bge_softc *, int);
450 static int bge_newbuf_jumbo(struct bge_softc *, int);
451 static int bge_init_rx_ring_std(struct bge_softc *);
452 static void bge_free_rx_ring_std(struct bge_softc *);
453 static int bge_init_rx_ring_jumbo(struct bge_softc *);
454 static void bge_free_rx_ring_jumbo(struct bge_softc *);
455 static void bge_free_tx_ring(struct bge_softc *);
456 static int bge_init_tx_ring(struct bge_softc *);
457
458 static int bge_chipinit(struct bge_softc *);
459 static int bge_blockinit(struct bge_softc *);
460 static uint32_t bge_dma_swap_options(struct bge_softc *);
461
462 static int bge_has_eaddr(struct bge_softc *);
463 static uint32_t bge_readmem_ind(struct bge_softc *, int);
464 static void bge_writemem_ind(struct bge_softc *, int, int);
465 static void bge_writembx(struct bge_softc *, int, int);
466 #ifdef notdef
467 static uint32_t bge_readreg_ind(struct bge_softc *, int);
468 #endif
469 static void bge_writemem_direct(struct bge_softc *, int, int);
470 static void bge_writereg_ind(struct bge_softc *, int, int);
471
472 static int bge_miibus_readreg(device_t, int, int);
473 static int bge_miibus_writereg(device_t, int, int, int);
474 static void bge_miibus_statchg(device_t);
475 #ifdef DEVICE_POLLING
476 static int bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
477 #endif
478
479 #define BGE_RESET_SHUTDOWN      0
480 #define BGE_RESET_START         1
481 #define BGE_RESET_SUSPEND       2
482 static void bge_sig_post_reset(struct bge_softc *, int);
483 static void bge_sig_legacy(struct bge_softc *, int);
484 static void bge_sig_pre_reset(struct bge_softc *, int);
485 static void bge_stop_fw(struct bge_softc *);
486 static int bge_reset(struct bge_softc *);
487 static void bge_link_upd(struct bge_softc *);
488
489 static void bge_ape_lock_init(struct bge_softc *);
490 static void bge_ape_read_fw_ver(struct bge_softc *);
491 static int bge_ape_lock(struct bge_softc *, int);
492 static void bge_ape_unlock(struct bge_softc *, int);
493 static void bge_ape_send_event(struct bge_softc *, uint32_t);
494 static void bge_ape_driver_state_change(struct bge_softc *, int);
495
496 /*
497  * The BGE_REGISTER_DEBUG option is only for low-level debugging.  It may
498  * leak information to untrusted users.  It is also known to cause alignment
499  * traps on certain architectures.
500  */
501 #ifdef BGE_REGISTER_DEBUG
502 static int bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
503 static int bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS);
504 static int bge_sysctl_ape_read(SYSCTL_HANDLER_ARGS);
505 static int bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS);
506 #endif
507 static void bge_add_sysctls(struct bge_softc *);
508 static void bge_add_sysctl_stats_regs(struct bge_softc *,
509     struct sysctl_ctx_list *, struct sysctl_oid_list *);
510 static void bge_add_sysctl_stats(struct bge_softc *, struct sysctl_ctx_list *,
511     struct sysctl_oid_list *);
512 static int bge_sysctl_stats(SYSCTL_HANDLER_ARGS);
513
514 static device_method_t bge_methods[] = {
515         /* Device interface */
516         DEVMETHOD(device_probe,         bge_probe),
517         DEVMETHOD(device_attach,        bge_attach),
518         DEVMETHOD(device_detach,        bge_detach),
519         DEVMETHOD(device_shutdown,      bge_shutdown),
520         DEVMETHOD(device_suspend,       bge_suspend),
521         DEVMETHOD(device_resume,        bge_resume),
522
523         /* MII interface */
524         DEVMETHOD(miibus_readreg,       bge_miibus_readreg),
525         DEVMETHOD(miibus_writereg,      bge_miibus_writereg),
526         DEVMETHOD(miibus_statchg,       bge_miibus_statchg),
527
528         DEVMETHOD_END
529 };
530
531 static driver_t bge_driver = {
532         "bge",
533         bge_methods,
534         sizeof(struct bge_softc)
535 };
536
537 static devclass_t bge_devclass;
538
539 DRIVER_MODULE(bge, pci, bge_driver, bge_devclass, 0, 0);
540 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0);
541
542 static int bge_allow_asf = 1;
543
544 TUNABLE_INT("hw.bge.allow_asf", &bge_allow_asf);
545
546 static SYSCTL_NODE(_hw, OID_AUTO, bge, CTLFLAG_RD, 0, "BGE driver parameters");
547 SYSCTL_INT(_hw_bge, OID_AUTO, allow_asf, CTLFLAG_RD, &bge_allow_asf, 0,
548         "Allow ASF mode if available");
549
550 #define SPARC64_BLADE_1500_MODEL        "SUNW,Sun-Blade-1500"
551 #define SPARC64_BLADE_1500_PATH_BGE     "/pci@1f,700000/network@2"
552 #define SPARC64_BLADE_2500_MODEL        "SUNW,Sun-Blade-2500"
553 #define SPARC64_BLADE_2500_PATH_BGE     "/pci@1c,600000/network@3"
554 #define SPARC64_OFW_SUBVENDOR           "subsystem-vendor-id"
555
556 static int
557 bge_has_eaddr(struct bge_softc *sc)
558 {
559 #ifdef __sparc64__
560         char buf[sizeof(SPARC64_BLADE_1500_PATH_BGE)];
561         device_t dev;
562         uint32_t subvendor;
563
564         dev = sc->bge_dev;
565
566         /*
567          * The on-board BGEs found in sun4u machines aren't fitted with
568          * an EEPROM which means that we have to obtain the MAC address
569          * via OFW and that some tests will always fail.  We distinguish
570          * such BGEs by the subvendor ID, which also has to be obtained
571          * from OFW instead of the PCI configuration space as the latter
572          * indicates Broadcom as the subvendor of the netboot interface.
573          * For early Blade 1500 and 2500 we even have to check the OFW
574          * device path as the subvendor ID always defaults to Broadcom
575          * there.
576          */
577         if (OF_getprop(ofw_bus_get_node(dev), SPARC64_OFW_SUBVENDOR,
578             &subvendor, sizeof(subvendor)) == sizeof(subvendor) &&
579             (subvendor == FJTSU_VENDORID || subvendor == SUN_VENDORID))
580                 return (0);
581         memset(buf, 0, sizeof(buf));
582         if (OF_package_to_path(ofw_bus_get_node(dev), buf, sizeof(buf)) > 0) {
583                 if (strcmp(sparc64_model, SPARC64_BLADE_1500_MODEL) == 0 &&
584                     strcmp(buf, SPARC64_BLADE_1500_PATH_BGE) == 0)
585                         return (0);
586                 if (strcmp(sparc64_model, SPARC64_BLADE_2500_MODEL) == 0 &&
587                     strcmp(buf, SPARC64_BLADE_2500_PATH_BGE) == 0)
588                         return (0);
589         }
590 #endif
591         return (1);
592 }
593
594 static uint32_t
595 bge_readmem_ind(struct bge_softc *sc, int off)
596 {
597         device_t dev;
598         uint32_t val;
599
600         if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
601             off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
602                 return (0);
603
604         dev = sc->bge_dev;
605
606         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
607         val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4);
608         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
609         return (val);
610 }
611
612 static void
613 bge_writemem_ind(struct bge_softc *sc, int off, int val)
614 {
615         device_t dev;
616
617         if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
618             off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
619                 return;
620
621         dev = sc->bge_dev;
622
623         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
624         pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
625         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
626 }
627
628 #ifdef notdef
629 static uint32_t
630 bge_readreg_ind(struct bge_softc *sc, int off)
631 {
632         device_t dev;
633
634         dev = sc->bge_dev;
635
636         pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
637         return (pci_read_config(dev, BGE_PCI_REG_DATA, 4));
638 }
639 #endif
640
641 static void
642 bge_writereg_ind(struct bge_softc *sc, int off, int val)
643 {
644         device_t dev;
645
646         dev = sc->bge_dev;
647
648         pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
649         pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
650 }
651
652 static void
653 bge_writemem_direct(struct bge_softc *sc, int off, int val)
654 {
655         CSR_WRITE_4(sc, off, val);
656 }
657
658 static void
659 bge_writembx(struct bge_softc *sc, int off, int val)
660 {
661         if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
662                 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
663
664         CSR_WRITE_4(sc, off, val);
665         if ((sc->bge_flags & BGE_FLAG_MBOX_REORDER) != 0)
666                 CSR_READ_4(sc, off);
667 }
668
669 /*
670  * Clear all stale locks and select the lock for this driver instance.
671  */
672 static void
673 bge_ape_lock_init(struct bge_softc *sc)
674 {
675         uint32_t bit, regbase;
676         int i;
677
678         if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
679                 regbase = BGE_APE_LOCK_GRANT;
680         else
681                 regbase = BGE_APE_PER_LOCK_GRANT;
682
683         /* Clear any stale locks. */
684         for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
685                 switch (i) {
686                 case BGE_APE_LOCK_PHY0:
687                 case BGE_APE_LOCK_PHY1:
688                 case BGE_APE_LOCK_PHY2:
689                 case BGE_APE_LOCK_PHY3:
690                         bit = BGE_APE_LOCK_GRANT_DRIVER0;
691                         break;
692                 default:
693                         if (sc->bge_func_addr == 0)
694                                 bit = BGE_APE_LOCK_GRANT_DRIVER0;
695                         else
696                                 bit = (1 << sc->bge_func_addr);
697                 }
698                 APE_WRITE_4(sc, regbase + 4 * i, bit);
699         }
700
701         /* Select the PHY lock based on the device's function number. */
702         switch (sc->bge_func_addr) {
703         case 0:
704                 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
705                 break;
706         case 1:
707                 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
708                 break;
709         case 2:
710                 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
711                 break;
712         case 3:
713                 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
714                 break;
715         default:
716                 device_printf(sc->bge_dev,
717                     "PHY lock not supported on this function\n");
718         }
719 }
720
721 /*
722  * Check for APE firmware, set flags, and print version info.
723  */
724 static void
725 bge_ape_read_fw_ver(struct bge_softc *sc)
726 {
727         const char *fwtype;
728         uint32_t apedata, features;
729
730         /* Check for a valid APE signature in shared memory. */
731         apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
732         if (apedata != BGE_APE_SEG_SIG_MAGIC) {
733                 sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
734                 return;
735         }
736
737         /* Check if APE firmware is running. */
738         apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
739         if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
740                 device_printf(sc->bge_dev, "APE signature found "
741                     "but FW status not ready! 0x%08x\n", apedata);
742                 return;
743         }
744
745         sc->bge_mfw_flags |= BGE_MFW_ON_APE;
746
747         /* Fetch the APE firwmare type and version. */
748         apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
749         features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
750         if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
751                 sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
752                 fwtype = "NCSI";
753         } else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
754                 sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
755                 fwtype = "DASH";
756         } else
757                 fwtype = "UNKN";
758
759         /* Print the APE firmware version. */
760         device_printf(sc->bge_dev, "APE FW version: %s v%d.%d.%d.%d\n",
761             fwtype,
762             (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
763             (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
764             (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
765             (apedata & BGE_APE_FW_VERSION_BLDMSK));
766 }
767
768 static int
769 bge_ape_lock(struct bge_softc *sc, int locknum)
770 {
771         uint32_t bit, gnt, req, status;
772         int i, off;
773
774         if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
775                 return (0);
776
777         /* Lock request/grant registers have different bases. */
778         if (sc->bge_asicrev == BGE_ASICREV_BCM5761) {
779                 req = BGE_APE_LOCK_REQ;
780                 gnt = BGE_APE_LOCK_GRANT;
781         } else {
782                 req = BGE_APE_PER_LOCK_REQ;
783                 gnt = BGE_APE_PER_LOCK_GRANT;
784         }
785
786         off = 4 * locknum;
787
788         switch (locknum) {
789         case BGE_APE_LOCK_GPIO:
790                 /* Lock required when using GPIO. */
791                 if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
792                         return (0);
793                 if (sc->bge_func_addr == 0)
794                         bit = BGE_APE_LOCK_REQ_DRIVER0;
795                 else
796                         bit = (1 << sc->bge_func_addr);
797                 break;
798         case BGE_APE_LOCK_GRC:
799                 /* Lock required to reset the device. */
800                 if (sc->bge_func_addr == 0)
801                         bit = BGE_APE_LOCK_REQ_DRIVER0;
802                 else
803                         bit = (1 << sc->bge_func_addr);
804                 break;
805         case BGE_APE_LOCK_MEM:
806                 /* Lock required when accessing certain APE memory. */
807                 if (sc->bge_func_addr == 0)
808                         bit = BGE_APE_LOCK_REQ_DRIVER0;
809                 else
810                         bit = (1 << sc->bge_func_addr);
811                 break;
812         case BGE_APE_LOCK_PHY0:
813         case BGE_APE_LOCK_PHY1:
814         case BGE_APE_LOCK_PHY2:
815         case BGE_APE_LOCK_PHY3:
816                 /* Lock required when accessing PHYs. */
817                 bit = BGE_APE_LOCK_REQ_DRIVER0;
818                 break;
819         default:
820                 return (EINVAL);
821         }
822
823         /* Request a lock. */
824         APE_WRITE_4(sc, req + off, bit);
825
826         /* Wait up to 1 second to acquire lock. */
827         for (i = 0; i < 20000; i++) {
828                 status = APE_READ_4(sc, gnt + off);
829                 if (status == bit)
830                         break;
831                 DELAY(50);
832         }
833
834         /* Handle any errors. */
835         if (status != bit) {
836                 device_printf(sc->bge_dev, "APE lock %d request failed! "
837                     "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
838                     locknum, req + off, bit & 0xFFFF, gnt + off,
839                     status & 0xFFFF);
840                 /* Revoke the lock request. */
841                 APE_WRITE_4(sc, gnt + off, bit);
842                 return (EBUSY);
843         }
844
845         return (0);
846 }
847
848 static void
849 bge_ape_unlock(struct bge_softc *sc, int locknum)
850 {
851         uint32_t bit, gnt;
852         int off;
853
854         if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
855                 return;
856
857         if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
858                 gnt = BGE_APE_LOCK_GRANT;
859         else
860                 gnt = BGE_APE_PER_LOCK_GRANT;
861
862         off = 4 * locknum;
863
864         switch (locknum) {
865         case BGE_APE_LOCK_GPIO:
866                 if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
867                         return;
868                 if (sc->bge_func_addr == 0)
869                         bit = BGE_APE_LOCK_GRANT_DRIVER0;
870                 else
871                         bit = (1 << sc->bge_func_addr);
872                 break;
873         case BGE_APE_LOCK_GRC:
874                 if (sc->bge_func_addr == 0)
875                         bit = BGE_APE_LOCK_GRANT_DRIVER0;
876                 else
877                         bit = (1 << sc->bge_func_addr);
878                 break;
879         case BGE_APE_LOCK_MEM:
880                 if (sc->bge_func_addr == 0)
881                         bit = BGE_APE_LOCK_GRANT_DRIVER0;
882                 else
883                         bit = (1 << sc->bge_func_addr);
884                 break;
885         case BGE_APE_LOCK_PHY0:
886         case BGE_APE_LOCK_PHY1:
887         case BGE_APE_LOCK_PHY2:
888         case BGE_APE_LOCK_PHY3:
889                 bit = BGE_APE_LOCK_GRANT_DRIVER0;
890                 break;
891         default:
892                 return;
893         }
894
895         APE_WRITE_4(sc, gnt + off, bit);
896 }
897
898 /*
899  * Send an event to the APE firmware.
900  */
901 static void
902 bge_ape_send_event(struct bge_softc *sc, uint32_t event)
903 {
904         uint32_t apedata;
905         int i;
906
907         /* NCSI does not support APE events. */
908         if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
909                 return;
910
911         /* Wait up to 1ms for APE to service previous event. */
912         for (i = 10; i > 0; i--) {
913                 if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
914                         break;
915                 apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
916                 if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
917                         APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
918                             BGE_APE_EVENT_STATUS_EVENT_PENDING);
919                         bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
920                         APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
921                         break;
922                 }
923                 bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
924                 DELAY(100);
925         }
926         if (i == 0)
927                 device_printf(sc->bge_dev, "APE event 0x%08x send timed out\n",
928                     event);
929 }
930
931 static void
932 bge_ape_driver_state_change(struct bge_softc *sc, int kind)
933 {
934         uint32_t apedata, event;
935
936         if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
937                 return;
938
939         switch (kind) {
940         case BGE_RESET_START:
941                 /* If this is the first load, clear the load counter. */
942                 apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
943                 if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
944                         APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
945                 else {
946                         apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
947                         APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
948                 }
949                 APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
950                     BGE_APE_HOST_SEG_SIG_MAGIC);
951                 APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
952                     BGE_APE_HOST_SEG_LEN_MAGIC);
953
954                 /* Add some version info if bge(4) supports it. */
955                 APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
956                     BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
957                 APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
958                     BGE_APE_HOST_BEHAV_NO_PHYLOCK);
959                 APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
960                     BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
961                 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
962                     BGE_APE_HOST_DRVR_STATE_START);
963                 event = BGE_APE_EVENT_STATUS_STATE_START;
964                 break;
965         case BGE_RESET_SHUTDOWN:
966                 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
967                     BGE_APE_HOST_DRVR_STATE_UNLOAD);
968                 event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
969                 break;
970         case BGE_RESET_SUSPEND:
971                 event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
972                 break;
973         default:
974                 return;
975         }
976
977         bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
978             BGE_APE_EVENT_STATUS_STATE_CHNGE);
979 }
980
981 /*
982  * Map a single buffer address.
983  */
984
985 static void
986 bge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
987 {
988         struct bge_dmamap_arg *ctx;
989
990         if (error)
991                 return;
992
993         KASSERT(nseg == 1, ("%s: %d segments returned!", __func__, nseg));
994
995         ctx = arg;
996         ctx->bge_busaddr = segs->ds_addr;
997 }
998
999 static uint8_t
1000 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1001 {
1002         uint32_t access, byte = 0;
1003         int i;
1004
1005         /* Lock. */
1006         CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
1007         for (i = 0; i < 8000; i++) {
1008                 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
1009                         break;
1010                 DELAY(20);
1011         }
1012         if (i == 8000)
1013                 return (1);
1014
1015         /* Enable access. */
1016         access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
1017         CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
1018
1019         CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
1020         CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
1021         for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1022                 DELAY(10);
1023                 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
1024                         DELAY(10);
1025                         break;
1026                 }
1027         }
1028
1029         if (i == BGE_TIMEOUT * 10) {
1030                 if_printf(sc->bge_ifp, "nvram read timed out\n");
1031                 return (1);
1032         }
1033
1034         /* Get result. */
1035         byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
1036
1037         *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
1038
1039         /* Disable access. */
1040         CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
1041
1042         /* Unlock. */
1043         CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
1044         CSR_READ_4(sc, BGE_NVRAM_SWARB);
1045
1046         return (0);
1047 }
1048
1049 /*
1050  * Read a sequence of bytes from NVRAM.
1051  */
1052 static int
1053 bge_read_nvram(struct bge_softc *sc, caddr_t dest, int off, int cnt)
1054 {
1055         int err = 0, i;
1056         uint8_t byte = 0;
1057
1058         if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
1059                 return (1);
1060
1061         for (i = 0; i < cnt; i++) {
1062                 err = bge_nvram_getbyte(sc, off + i, &byte);
1063                 if (err)
1064                         break;
1065                 *(dest + i) = byte;
1066         }
1067
1068         return (err ? 1 : 0);
1069 }
1070
1071 /*
1072  * Read a byte of data stored in the EEPROM at address 'addr.' The
1073  * BCM570x supports both the traditional bitbang interface and an
1074  * auto access interface for reading the EEPROM. We use the auto
1075  * access method.
1076  */
1077 static uint8_t
1078 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1079 {
1080         int i;
1081         uint32_t byte = 0;
1082
1083         /*
1084          * Enable use of auto EEPROM access so we can avoid
1085          * having to use the bitbang method.
1086          */
1087         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
1088
1089         /* Reset the EEPROM, load the clock period. */
1090         CSR_WRITE_4(sc, BGE_EE_ADDR,
1091             BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
1092         DELAY(20);
1093
1094         /* Issue the read EEPROM command. */
1095         CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
1096
1097         /* Wait for completion */
1098         for(i = 0; i < BGE_TIMEOUT * 10; i++) {
1099                 DELAY(10);
1100                 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
1101                         break;
1102         }
1103
1104         if (i == BGE_TIMEOUT * 10) {
1105                 device_printf(sc->bge_dev, "EEPROM read timed out\n");
1106                 return (1);
1107         }
1108
1109         /* Get result. */
1110         byte = CSR_READ_4(sc, BGE_EE_DATA);
1111
1112         *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
1113
1114         return (0);
1115 }
1116
1117 /*
1118  * Read a sequence of bytes from the EEPROM.
1119  */
1120 static int
1121 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, int off, int cnt)
1122 {
1123         int i, error = 0;
1124         uint8_t byte = 0;
1125
1126         for (i = 0; i < cnt; i++) {
1127                 error = bge_eeprom_getbyte(sc, off + i, &byte);
1128                 if (error)
1129                         break;
1130                 *(dest + i) = byte;
1131         }
1132
1133         return (error ? 1 : 0);
1134 }
1135
1136 static int
1137 bge_miibus_readreg(device_t dev, int phy, int reg)
1138 {
1139         struct bge_softc *sc;
1140         uint32_t val;
1141         int i;
1142
1143         sc = device_get_softc(dev);
1144
1145         if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1146                 return (0);
1147
1148         /* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
1149         if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1150                 CSR_WRITE_4(sc, BGE_MI_MODE,
1151                     sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
1152                 DELAY(80);
1153         }
1154
1155         CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
1156             BGE_MIPHY(phy) | BGE_MIREG(reg));
1157
1158         /* Poll for the PHY register access to complete. */
1159         for (i = 0; i < BGE_TIMEOUT; i++) {
1160                 DELAY(10);
1161                 val = CSR_READ_4(sc, BGE_MI_COMM);
1162                 if ((val & BGE_MICOMM_BUSY) == 0) {
1163                         DELAY(5);
1164                         val = CSR_READ_4(sc, BGE_MI_COMM);
1165                         break;
1166                 }
1167         }
1168
1169         if (i == BGE_TIMEOUT) {
1170                 device_printf(sc->bge_dev,
1171                     "PHY read timed out (phy %d, reg %d, val 0x%08x)\n",
1172                     phy, reg, val);
1173                 val = 0;
1174         }
1175
1176         /* Restore the autopoll bit if necessary. */
1177         if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1178                 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
1179                 DELAY(80);
1180         }
1181
1182         bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1183
1184         if (val & BGE_MICOMM_READFAIL)
1185                 return (0);
1186
1187         return (val & 0xFFFF);
1188 }
1189
1190 static int
1191 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
1192 {
1193         struct bge_softc *sc;
1194         int i;
1195
1196         sc = device_get_softc(dev);
1197
1198         if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
1199             (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
1200                 return (0);
1201
1202         if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1203                 return (0);
1204
1205         /* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
1206         if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1207                 CSR_WRITE_4(sc, BGE_MI_MODE,
1208                     sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
1209                 DELAY(80);
1210         }
1211
1212         CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
1213             BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
1214
1215         for (i = 0; i < BGE_TIMEOUT; i++) {
1216                 DELAY(10);
1217                 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
1218                         DELAY(5);
1219                         CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */
1220                         break;
1221                 }
1222         }
1223
1224         /* Restore the autopoll bit if necessary. */
1225         if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1226                 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
1227                 DELAY(80);
1228         }
1229
1230         bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1231
1232         if (i == BGE_TIMEOUT)
1233                 device_printf(sc->bge_dev,
1234                     "PHY write timed out (phy %d, reg %d, val 0x%04x)\n",
1235                     phy, reg, val);
1236
1237         return (0);
1238 }
1239
1240 static void
1241 bge_miibus_statchg(device_t dev)
1242 {
1243         struct bge_softc *sc;
1244         struct mii_data *mii;
1245         uint32_t mac_mode, rx_mode, tx_mode;
1246
1247         sc = device_get_softc(dev);
1248         if ((sc->bge_ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1249                 return;
1250         mii = device_get_softc(sc->bge_miibus);
1251
1252         if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
1253             (IFM_ACTIVE | IFM_AVALID)) {
1254                 switch (IFM_SUBTYPE(mii->mii_media_active)) {
1255                 case IFM_10_T:
1256                 case IFM_100_TX:
1257                         sc->bge_link = 1;
1258                         break;
1259                 case IFM_1000_T:
1260                 case IFM_1000_SX:
1261                 case IFM_2500_SX:
1262                         if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
1263                                 sc->bge_link = 1;
1264                         else
1265                                 sc->bge_link = 0;
1266                         break;
1267                 default:
1268                         sc->bge_link = 0;
1269                         break;
1270                 }
1271         } else
1272                 sc->bge_link = 0;
1273         if (sc->bge_link == 0)
1274                 return;
1275
1276         /*
1277          * APE firmware touches these registers to keep the MAC
1278          * connected to the outside world.  Try to keep the
1279          * accesses atomic.
1280          */
1281
1282         /* Set the port mode (MII/GMII) to match the link speed. */
1283         mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
1284             ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
1285         tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
1286         rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
1287
1288         if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
1289             IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
1290                 mac_mode |= BGE_PORTMODE_GMII;
1291         else
1292                 mac_mode |= BGE_PORTMODE_MII;
1293
1294         /* Set MAC flow control behavior to match link flow control settings. */
1295         tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
1296         rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
1297         if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1298                 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1299                         tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
1300                 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1301                         rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
1302         } else
1303                 mac_mode |= BGE_MACMODE_HALF_DUPLEX;
1304
1305         CSR_WRITE_4(sc, BGE_MAC_MODE, mac_mode);
1306         DELAY(40);
1307         CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
1308         CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
1309 }
1310
1311 /*
1312  * Intialize a standard receive ring descriptor.
1313  */
1314 static int
1315 bge_newbuf_std(struct bge_softc *sc, int i)
1316 {
1317         struct mbuf *m;
1318         struct bge_rx_bd *r;
1319         bus_dma_segment_t segs[1];
1320         bus_dmamap_t map;
1321         int error, nsegs;
1322
1323         if (sc->bge_flags & BGE_FLAG_JUMBO_STD &&
1324             (sc->bge_ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN +
1325             ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN))) {
1326                 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
1327                 if (m == NULL)
1328                         return (ENOBUFS);
1329                 m->m_len = m->m_pkthdr.len = MJUM9BYTES;
1330         } else {
1331                 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1332                 if (m == NULL)
1333                         return (ENOBUFS);
1334                 m->m_len = m->m_pkthdr.len = MCLBYTES;
1335         }
1336         if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
1337                 m_adj(m, ETHER_ALIGN);
1338
1339         error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_rx_mtag,
1340             sc->bge_cdata.bge_rx_std_sparemap, m, segs, &nsegs, 0);
1341         if (error != 0) {
1342                 m_freem(m);
1343                 return (error);
1344         }
1345         if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1346                 bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1347                     sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_POSTREAD);
1348                 bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1349                     sc->bge_cdata.bge_rx_std_dmamap[i]);
1350         }
1351         map = sc->bge_cdata.bge_rx_std_dmamap[i];
1352         sc->bge_cdata.bge_rx_std_dmamap[i] = sc->bge_cdata.bge_rx_std_sparemap;
1353         sc->bge_cdata.bge_rx_std_sparemap = map;
1354         sc->bge_cdata.bge_rx_std_chain[i] = m;
1355         sc->bge_cdata.bge_rx_std_seglen[i] = segs[0].ds_len;
1356         r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std];
1357         r->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
1358         r->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
1359         r->bge_flags = BGE_RXBDFLAG_END;
1360         r->bge_len = segs[0].ds_len;
1361         r->bge_idx = i;
1362
1363         bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1364             sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_PREREAD);
1365
1366         return (0);
1367 }
1368
1369 /*
1370  * Initialize a jumbo receive ring descriptor. This allocates
1371  * a jumbo buffer from the pool managed internally by the driver.
1372  */
1373 static int
1374 bge_newbuf_jumbo(struct bge_softc *sc, int i)
1375 {
1376         bus_dma_segment_t segs[BGE_NSEG_JUMBO];
1377         bus_dmamap_t map;
1378         struct bge_extrx_bd *r;
1379         struct mbuf *m;
1380         int error, nsegs;
1381
1382         MGETHDR(m, M_NOWAIT, MT_DATA);
1383         if (m == NULL)
1384                 return (ENOBUFS);
1385
1386         m_cljget(m, M_NOWAIT, MJUM9BYTES);
1387         if (!(m->m_flags & M_EXT)) {
1388                 m_freem(m);
1389                 return (ENOBUFS);
1390         }
1391         m->m_len = m->m_pkthdr.len = MJUM9BYTES;
1392         if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
1393                 m_adj(m, ETHER_ALIGN);
1394
1395         error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_mtag_jumbo,
1396             sc->bge_cdata.bge_rx_jumbo_sparemap, m, segs, &nsegs, 0);
1397         if (error != 0) {
1398                 m_freem(m);
1399                 return (error);
1400         }
1401
1402         if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1403                 bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1404                     sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_POSTREAD);
1405                 bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
1406                     sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
1407         }
1408         map = sc->bge_cdata.bge_rx_jumbo_dmamap[i];
1409         sc->bge_cdata.bge_rx_jumbo_dmamap[i] =
1410             sc->bge_cdata.bge_rx_jumbo_sparemap;
1411         sc->bge_cdata.bge_rx_jumbo_sparemap = map;
1412         sc->bge_cdata.bge_rx_jumbo_chain[i] = m;
1413         sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = 0;
1414         sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = 0;
1415         sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = 0;
1416         sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = 0;
1417
1418         /*
1419          * Fill in the extended RX buffer descriptor.
1420          */
1421         r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo];
1422         r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END;
1423         r->bge_idx = i;
1424         r->bge_len3 = r->bge_len2 = r->bge_len1 = 0;
1425         switch (nsegs) {
1426         case 4:
1427                 r->bge_addr3.bge_addr_lo = BGE_ADDR_LO(segs[3].ds_addr);
1428                 r->bge_addr3.bge_addr_hi = BGE_ADDR_HI(segs[3].ds_addr);
1429                 r->bge_len3 = segs[3].ds_len;
1430                 sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = segs[3].ds_len;
1431         case 3:
1432                 r->bge_addr2.bge_addr_lo = BGE_ADDR_LO(segs[2].ds_addr);
1433                 r->bge_addr2.bge_addr_hi = BGE_ADDR_HI(segs[2].ds_addr);
1434                 r->bge_len2 = segs[2].ds_len;
1435                 sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = segs[2].ds_len;
1436         case 2:
1437                 r->bge_addr1.bge_addr_lo = BGE_ADDR_LO(segs[1].ds_addr);
1438                 r->bge_addr1.bge_addr_hi = BGE_ADDR_HI(segs[1].ds_addr);
1439                 r->bge_len1 = segs[1].ds_len;
1440                 sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = segs[1].ds_len;
1441         case 1:
1442                 r->bge_addr0.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
1443                 r->bge_addr0.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
1444                 r->bge_len0 = segs[0].ds_len;
1445                 sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = segs[0].ds_len;
1446                 break;
1447         default:
1448                 panic("%s: %d segments\n", __func__, nsegs);
1449         }
1450
1451         bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1452             sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_PREREAD);
1453
1454         return (0);
1455 }
1456
1457 static int
1458 bge_init_rx_ring_std(struct bge_softc *sc)
1459 {
1460         int error, i;
1461
1462         bzero(sc->bge_ldata.bge_rx_std_ring, BGE_STD_RX_RING_SZ);
1463         sc->bge_std = 0;
1464         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1465                 if ((error = bge_newbuf_std(sc, i)) != 0)
1466                         return (error);
1467                 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
1468         }
1469
1470         bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
1471             sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
1472
1473         sc->bge_std = 0;
1474         bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, BGE_STD_RX_RING_CNT - 1);
1475
1476         return (0);
1477 }
1478
1479 static void
1480 bge_free_rx_ring_std(struct bge_softc *sc)
1481 {
1482         int i;
1483
1484         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1485                 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1486                         bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1487                             sc->bge_cdata.bge_rx_std_dmamap[i],
1488                             BUS_DMASYNC_POSTREAD);
1489                         bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1490                             sc->bge_cdata.bge_rx_std_dmamap[i]);
1491                         m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1492                         sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1493                 }
1494                 bzero((char *)&sc->bge_ldata.bge_rx_std_ring[i],
1495                     sizeof(struct bge_rx_bd));
1496         }
1497 }
1498
1499 static int
1500 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1501 {
1502         struct bge_rcb *rcb;
1503         int error, i;
1504
1505         bzero(sc->bge_ldata.bge_rx_jumbo_ring, BGE_JUMBO_RX_RING_SZ);
1506         sc->bge_jumbo = 0;
1507         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1508                 if ((error = bge_newbuf_jumbo(sc, i)) != 0)
1509                         return (error);
1510                 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
1511         }
1512
1513         bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
1514             sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
1515
1516         sc->bge_jumbo = 0;
1517
1518         /* Enable the jumbo receive producer ring. */
1519         rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1520         rcb->bge_maxlen_flags =
1521             BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_USE_EXT_RX_BD);
1522         CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1523
1524         bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, BGE_JUMBO_RX_RING_CNT - 1);
1525
1526         return (0);
1527 }
1528
1529 static void
1530 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1531 {
1532         int i;
1533
1534         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1535                 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1536                         bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1537                             sc->bge_cdata.bge_rx_jumbo_dmamap[i],
1538                             BUS_DMASYNC_POSTREAD);
1539                         bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
1540                             sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
1541                         m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1542                         sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1543                 }
1544                 bzero((char *)&sc->bge_ldata.bge_rx_jumbo_ring[i],
1545                     sizeof(struct bge_extrx_bd));
1546         }
1547 }
1548
1549 static void
1550 bge_free_tx_ring(struct bge_softc *sc)
1551 {
1552         int i;
1553
1554         if (sc->bge_ldata.bge_tx_ring == NULL)
1555                 return;
1556
1557         for (i = 0; i < BGE_TX_RING_CNT; i++) {
1558                 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1559                         bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag,
1560                             sc->bge_cdata.bge_tx_dmamap[i],
1561                             BUS_DMASYNC_POSTWRITE);
1562                         bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
1563                             sc->bge_cdata.bge_tx_dmamap[i]);
1564                         m_freem(sc->bge_cdata.bge_tx_chain[i]);
1565                         sc->bge_cdata.bge_tx_chain[i] = NULL;
1566                 }
1567                 bzero((char *)&sc->bge_ldata.bge_tx_ring[i],
1568                     sizeof(struct bge_tx_bd));
1569         }
1570 }
1571
1572 static int
1573 bge_init_tx_ring(struct bge_softc *sc)
1574 {
1575         sc->bge_txcnt = 0;
1576         sc->bge_tx_saved_considx = 0;
1577
1578         bzero(sc->bge_ldata.bge_tx_ring, BGE_TX_RING_SZ);
1579         bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
1580             sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE);
1581
1582         /* Initialize transmit producer index for host-memory send ring. */
1583         sc->bge_tx_prodidx = 0;
1584         bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1585
1586         /* 5700 b2 errata */
1587         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1588                 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1589
1590         /* NIC-memory send ring not used; initialize to zero. */
1591         bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1592         /* 5700 b2 errata */
1593         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1594                 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1595
1596         return (0);
1597 }
1598
1599 static void
1600 bge_setpromisc(struct bge_softc *sc)
1601 {
1602         struct ifnet *ifp;
1603
1604         BGE_LOCK_ASSERT(sc);
1605
1606         ifp = sc->bge_ifp;
1607
1608         /* Enable or disable promiscuous mode as needed. */
1609         if (ifp->if_flags & IFF_PROMISC)
1610                 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
1611         else
1612                 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
1613 }
1614
1615 static void
1616 bge_setmulti(struct bge_softc *sc)
1617 {
1618         struct ifnet *ifp;
1619         struct ifmultiaddr *ifma;
1620         uint32_t hashes[4] = { 0, 0, 0, 0 };
1621         int h, i;
1622
1623         BGE_LOCK_ASSERT(sc);
1624
1625         ifp = sc->bge_ifp;
1626
1627         if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
1628                 for (i = 0; i < 4; i++)
1629                         CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
1630                 return;
1631         }
1632
1633         /* First, zot all the existing filters. */
1634         for (i = 0; i < 4; i++)
1635                 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
1636
1637         /* Now program new ones. */
1638         if_maddr_rlock(ifp);
1639         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1640                 if (ifma->ifma_addr->sa_family != AF_LINK)
1641                         continue;
1642                 h = ether_crc32_le(LLADDR((struct sockaddr_dl *)
1643                     ifma->ifma_addr), ETHER_ADDR_LEN) & 0x7F;
1644                 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1645         }
1646         if_maddr_runlock(ifp);
1647
1648         for (i = 0; i < 4; i++)
1649                 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1650 }
1651
1652 static void
1653 bge_setvlan(struct bge_softc *sc)
1654 {
1655         struct ifnet *ifp;
1656
1657         BGE_LOCK_ASSERT(sc);
1658
1659         ifp = sc->bge_ifp;
1660
1661         /* Enable or disable VLAN tag stripping as needed. */
1662         if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
1663                 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
1664         else
1665                 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
1666 }
1667
1668 static void
1669 bge_sig_pre_reset(struct bge_softc *sc, int type)
1670 {
1671
1672         /*
1673          * Some chips don't like this so only do this if ASF is enabled
1674          */
1675         if (sc->bge_asf_mode)
1676                 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
1677
1678         if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1679                 switch (type) {
1680                 case BGE_RESET_START:
1681                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1682                             BGE_FW_DRV_STATE_START);
1683                         break;
1684                 case BGE_RESET_SHUTDOWN:
1685                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1686                             BGE_FW_DRV_STATE_UNLOAD);
1687                         break;
1688                 case BGE_RESET_SUSPEND:
1689                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1690                             BGE_FW_DRV_STATE_SUSPEND);
1691                         break;
1692                 }
1693         }
1694
1695         if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
1696                 bge_ape_driver_state_change(sc, type);
1697 }
1698
1699 static void
1700 bge_sig_post_reset(struct bge_softc *sc, int type)
1701 {
1702
1703         if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1704                 switch (type) {
1705                 case BGE_RESET_START:
1706                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1707                             BGE_FW_DRV_STATE_START_DONE);
1708                         /* START DONE */
1709                         break;
1710                 case BGE_RESET_SHUTDOWN:
1711                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1712                             BGE_FW_DRV_STATE_UNLOAD_DONE);
1713                         break;
1714                 }
1715         }
1716         if (type == BGE_RESET_SHUTDOWN)
1717                 bge_ape_driver_state_change(sc, type);
1718 }
1719
1720 static void
1721 bge_sig_legacy(struct bge_softc *sc, int type)
1722 {
1723
1724         if (sc->bge_asf_mode) {
1725                 switch (type) {
1726                 case BGE_RESET_START:
1727                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1728                             BGE_FW_DRV_STATE_START);
1729                         break;
1730                 case BGE_RESET_SHUTDOWN:
1731                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1732                             BGE_FW_DRV_STATE_UNLOAD);
1733                         break;
1734                 }
1735         }
1736 }
1737
1738 static void
1739 bge_stop_fw(struct bge_softc *sc)
1740 {
1741         int i;
1742
1743         if (sc->bge_asf_mode) {
1744                 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
1745                 CSR_WRITE_4(sc, BGE_RX_CPU_EVENT,
1746                     CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
1747
1748                 for (i = 0; i < 100; i++ ) {
1749                         if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
1750                             BGE_RX_CPU_DRV_EVENT))
1751                                 break;
1752                         DELAY(10);
1753                 }
1754         }
1755 }
1756
1757 static uint32_t
1758 bge_dma_swap_options(struct bge_softc *sc)
1759 {
1760         uint32_t dma_options;
1761
1762         dma_options = BGE_MODECTL_WORDSWAP_NONFRAME |
1763             BGE_MODECTL_BYTESWAP_DATA | BGE_MODECTL_WORDSWAP_DATA;
1764 #if BYTE_ORDER == BIG_ENDIAN
1765         dma_options |= BGE_MODECTL_BYTESWAP_NONFRAME;
1766 #endif
1767         return (dma_options);
1768 }
1769
1770 /*
1771  * Do endian, PCI and DMA initialization.
1772  */
1773 static int
1774 bge_chipinit(struct bge_softc *sc)
1775 {
1776         uint32_t dma_rw_ctl, misc_ctl, mode_ctl;
1777         uint16_t val;
1778         int i;
1779
1780         /* Set endianness before we access any non-PCI registers. */
1781         misc_ctl = BGE_INIT;
1782         if (sc->bge_flags & BGE_FLAG_TAGGED_STATUS)
1783                 misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS;
1784         pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, misc_ctl, 4);
1785
1786         /*
1787          * Clear the MAC statistics block in the NIC's
1788          * internal memory.
1789          */
1790         for (i = BGE_STATS_BLOCK;
1791             i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1792                 BGE_MEMWIN_WRITE(sc, i, 0);
1793
1794         for (i = BGE_STATUS_BLOCK;
1795             i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1796                 BGE_MEMWIN_WRITE(sc, i, 0);
1797
1798         if (sc->bge_chiprev == BGE_CHIPREV_5704_BX) {
1799                 /*
1800                  *  Fix data corruption caused by non-qword write with WB.
1801                  *  Fix master abort in PCI mode.
1802                  *  Fix PCI latency timer.
1803                  */
1804                 val = pci_read_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, 2);
1805                 val |= (1 << 10) | (1 << 12) | (1 << 13);
1806                 pci_write_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, val, 2);
1807         }
1808
1809         if (sc->bge_asicrev == BGE_ASICREV_BCM57765 ||
1810             sc->bge_asicrev == BGE_ASICREV_BCM57766) {
1811                 /*
1812                  * For the 57766 and non Ax versions of 57765, bootcode
1813                  * needs to setup the PCIE Fast Training Sequence (FTS)
1814                  * value to prevent transmit hangs.
1815                  */
1816                 if (sc->bge_chiprev != BGE_CHIPREV_57765_AX) {
1817                         CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
1818                             CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL) |
1819                             BGE_CPMU_PADRNG_CTL_RDIV2);
1820                 }
1821         }
1822
1823         /*
1824          * Set up the PCI DMA control register.
1825          */
1826         dma_rw_ctl = BGE_PCIDMARWCTL_RD_CMD_SHIFT(6) |
1827             BGE_PCIDMARWCTL_WR_CMD_SHIFT(7);
1828         if (sc->bge_flags & BGE_FLAG_PCIE) {
1829                 if (sc->bge_mps >= 256)
1830                         dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
1831                 else
1832                         dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1833         } else if (sc->bge_flags & BGE_FLAG_PCIX) {
1834                 if (BGE_IS_5714_FAMILY(sc)) {
1835                         /* 256 bytes for read and write. */
1836                         dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
1837                             BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
1838                         dma_rw_ctl |= (sc->bge_asicrev == BGE_ASICREV_BCM5780) ?
1839                             BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL :
1840                             BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
1841                 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
1842                         /*
1843                          * In the BCM5703, the DMA read watermark should
1844                          * be set to less than or equal to the maximum
1845                          * memory read byte count of the PCI-X command
1846                          * register.
1847                          */
1848                         dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) |
1849                             BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1850                 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1851                         /* 1536 bytes for read, 384 bytes for write. */
1852                         dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1853                             BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1854                 } else {
1855                         /* 384 bytes for read and write. */
1856                         dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
1857                             BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
1858                             0x0F;
1859                 }
1860                 if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1861                     sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1862                         uint32_t tmp;
1863
1864                         /* Set ONE_DMA_AT_ONCE for hardware workaround. */
1865                         tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F;
1866                         if (tmp == 6 || tmp == 7)
1867                                 dma_rw_ctl |=
1868                                     BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1869
1870                         /* Set PCI-X DMA write workaround. */
1871                         dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
1872                 }
1873         } else {
1874                 /* Conventional PCI bus: 256 bytes for read and write. */
1875                 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1876                     BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
1877
1878                 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1879                     sc->bge_asicrev != BGE_ASICREV_BCM5750)
1880                         dma_rw_ctl |= 0x0F;
1881         }
1882         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
1883             sc->bge_asicrev == BGE_ASICREV_BCM5701)
1884                 dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
1885                     BGE_PCIDMARWCTL_ASRT_ALL_BE;
1886         if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1887             sc->bge_asicrev == BGE_ASICREV_BCM5704)
1888                 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1889         if (BGE_IS_5717_PLUS(sc)) {
1890                 dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
1891                 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
1892                         dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
1893                 /*
1894                  * Enable HW workaround for controllers that misinterpret
1895                  * a status tag update and leave interrupts permanently
1896                  * disabled.
1897                  */
1898                 if (!BGE_IS_57765_PLUS(sc) &&
1899                     sc->bge_asicrev != BGE_ASICREV_BCM5717 &&
1900                     sc->bge_asicrev != BGE_ASICREV_BCM5762)
1901                         dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
1902         }
1903         pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1904
1905         /*
1906          * Set up general mode register.
1907          */
1908         mode_ctl = bge_dma_swap_options(sc);
1909         if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
1910             sc->bge_asicrev == BGE_ASICREV_BCM5762) {
1911                 /* Retain Host-2-BMC settings written by APE firmware. */
1912                 mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
1913                     (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
1914                     BGE_MODECTL_WORDSWAP_B2HRX_DATA |
1915                     BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
1916         }
1917         mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
1918             BGE_MODECTL_TX_NO_PHDR_CSUM;
1919
1920         /*
1921          * BCM5701 B5 have a bug causing data corruption when using
1922          * 64-bit DMA reads, which can be terminated early and then
1923          * completed later as 32-bit accesses, in combination with
1924          * certain bridges.
1925          */
1926         if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
1927             sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
1928                 mode_ctl |= BGE_MODECTL_FORCE_PCI32;
1929
1930         /*
1931          * Tell the firmware the driver is running
1932          */
1933         if (sc->bge_asf_mode & ASF_STACKUP)
1934                 mode_ctl |= BGE_MODECTL_STACKUP;
1935
1936         CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
1937
1938         /*
1939          * Disable memory write invalidate.  Apparently it is not supported
1940          * properly by these devices.
1941          */
1942         PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD, PCIM_CMD_MWIEN, 4);
1943
1944         /* Set the timer prescaler (always 66 MHz). */
1945         CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
1946
1947         /* XXX: The Linux tg3 driver does this at the start of brgphy_reset. */
1948         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1949                 DELAY(40);      /* XXX */
1950
1951                 /* Put PHY into ready state */
1952                 BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
1953                 CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
1954                 DELAY(40);
1955         }
1956
1957         return (0);
1958 }
1959
1960 static int
1961 bge_blockinit(struct bge_softc *sc)
1962 {
1963         struct bge_rcb *rcb;
1964         bus_size_t vrcb;
1965         bge_hostaddr taddr;
1966         uint32_t dmactl, rdmareg, val;
1967         int i, limit;
1968
1969         /*
1970          * Initialize the memory window pointer register so that
1971          * we can access the first 32K of internal NIC RAM. This will
1972          * allow us to set up the TX send ring RCBs and the RX return
1973          * ring RCBs, plus other things which live in NIC memory.
1974          */
1975         CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1976
1977         /* Note: the BCM5704 has a smaller mbuf space than other chips. */
1978
1979         if (!(BGE_IS_5705_PLUS(sc))) {
1980                 /* Configure mbuf memory pool */
1981                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1982                 if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1983                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1984                 else
1985                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1986
1987                 /* Configure DMA resource pool */
1988                 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1989                     BGE_DMA_DESCRIPTORS);
1990                 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1991         }
1992
1993         /* Configure mbuf pool watermarks */
1994         if (BGE_IS_5717_PLUS(sc)) {
1995                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1996                 if (sc->bge_ifp->if_mtu > ETHERMTU) {
1997                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x7e);
1998                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xea);
1999                 } else {
2000                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
2001                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
2002                 }
2003         } else if (!BGE_IS_5705_PLUS(sc)) {
2004                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
2005                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
2006                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2007         } else if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2008                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2009                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
2010                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
2011         } else {
2012                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2013                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
2014                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2015         }
2016
2017         /* Configure DMA resource watermarks */
2018         CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
2019         CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
2020
2021         /* Enable buffer manager */
2022         val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN;
2023         /*
2024          * Change the arbitration algorithm of TXMBUF read request to
2025          * round-robin instead of priority based for BCM5719.  When
2026          * TXFIFO is almost empty, RDMA will hold its request until
2027          * TXFIFO is not almost empty.
2028          */
2029         if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
2030                 val |= BGE_BMANMODE_NO_TX_UNDERRUN;
2031         CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
2032
2033         /* Poll for buffer manager start indication */
2034         for (i = 0; i < BGE_TIMEOUT; i++) {
2035                 DELAY(10);
2036                 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
2037                         break;
2038         }
2039
2040         if (i == BGE_TIMEOUT) {
2041                 device_printf(sc->bge_dev, "buffer manager failed to start\n");
2042                 return (ENXIO);
2043         }
2044
2045         /* Enable flow-through queues */
2046         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2047         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2048
2049         /* Wait until queue initialization is complete */
2050         for (i = 0; i < BGE_TIMEOUT; i++) {
2051                 DELAY(10);
2052                 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
2053                         break;
2054         }
2055
2056         if (i == BGE_TIMEOUT) {
2057                 device_printf(sc->bge_dev, "flow-through queue init failed\n");
2058                 return (ENXIO);
2059         }
2060
2061         /*
2062          * Summary of rings supported by the controller:
2063          *
2064          * Standard Receive Producer Ring
2065          * - This ring is used to feed receive buffers for "standard"
2066          *   sized frames (typically 1536 bytes) to the controller.
2067          *
2068          * Jumbo Receive Producer Ring
2069          * - This ring is used to feed receive buffers for jumbo sized
2070          *   frames (i.e. anything bigger than the "standard" frames)
2071          *   to the controller.
2072          *
2073          * Mini Receive Producer Ring
2074          * - This ring is used to feed receive buffers for "mini"
2075          *   sized frames to the controller.
2076          * - This feature required external memory for the controller
2077          *   but was never used in a production system.  Should always
2078          *   be disabled.
2079          *
2080          * Receive Return Ring
2081          * - After the controller has placed an incoming frame into a
2082          *   receive buffer that buffer is moved into a receive return
2083          *   ring.  The driver is then responsible to passing the
2084          *   buffer up to the stack.  Many versions of the controller
2085          *   support multiple RR rings.
2086          *
2087          * Send Ring
2088          * - This ring is used for outgoing frames.  Many versions of
2089          *   the controller support multiple send rings.
2090          */
2091
2092         /* Initialize the standard receive producer ring control block. */
2093         rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb;
2094         rcb->bge_hostaddr.bge_addr_lo =
2095             BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr);
2096         rcb->bge_hostaddr.bge_addr_hi =
2097             BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr);
2098         bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
2099             sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREREAD);
2100         if (BGE_IS_5717_PLUS(sc)) {
2101                 /*
2102                  * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
2103                  * Bits 15-2 : Maximum RX frame size
2104                  * Bit 1     : 1 = Ring Disabled, 0 = Ring ENabled
2105                  * Bit 0     : Reserved
2106                  */
2107                 rcb->bge_maxlen_flags =
2108                     BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
2109         } else if (BGE_IS_5705_PLUS(sc)) {
2110                 /*
2111                  * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
2112                  * Bits 15-2 : Reserved (should be 0)
2113                  * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
2114                  * Bit 0     : Reserved
2115                  */
2116                 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
2117         } else {
2118                 /*
2119                  * Ring size is always XXX entries
2120                  * Bits 31-16: Maximum RX frame size
2121                  * Bits 15-2 : Reserved (should be 0)
2122                  * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
2123                  * Bit 0     : Reserved
2124                  */
2125                 rcb->bge_maxlen_flags =
2126                     BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
2127         }
2128         if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2129             sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2130             sc->bge_asicrev == BGE_ASICREV_BCM5720)
2131                 rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
2132         else
2133                 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
2134         /* Write the standard receive producer ring control block. */
2135         CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
2136         CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
2137         CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
2138         CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
2139
2140         /* Reset the standard receive producer ring producer index. */
2141         bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
2142
2143         /*
2144          * Initialize the jumbo RX producer ring control
2145          * block.  We set the 'ring disabled' bit in the
2146          * flags field until we're actually ready to start
2147          * using this ring (i.e. once we set the MTU
2148          * high enough to require it).
2149          */
2150         if (BGE_IS_JUMBO_CAPABLE(sc)) {
2151                 rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
2152                 /* Get the jumbo receive producer ring RCB parameters. */
2153                 rcb->bge_hostaddr.bge_addr_lo =
2154                     BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
2155                 rcb->bge_hostaddr.bge_addr_hi =
2156                     BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
2157                 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2158                     sc->bge_cdata.bge_rx_jumbo_ring_map,
2159                     BUS_DMASYNC_PREREAD);
2160                 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
2161                     BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
2162                 if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2163                     sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2164                     sc->bge_asicrev == BGE_ASICREV_BCM5720)
2165                         rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
2166                 else
2167                         rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
2168                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
2169                     rcb->bge_hostaddr.bge_addr_hi);
2170                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
2171                     rcb->bge_hostaddr.bge_addr_lo);
2172                 /* Program the jumbo receive producer ring RCB parameters. */
2173                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
2174                     rcb->bge_maxlen_flags);
2175                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
2176                 /* Reset the jumbo receive producer ring producer index. */
2177                 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
2178         }
2179
2180         /* Disable the mini receive producer ring RCB. */
2181         if (BGE_IS_5700_FAMILY(sc)) {
2182                 rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb;
2183                 rcb->bge_maxlen_flags =
2184                     BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
2185                 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
2186                     rcb->bge_maxlen_flags);
2187                 /* Reset the mini receive producer ring producer index. */
2188                 bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
2189         }
2190
2191         /* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
2192         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2193                 if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
2194                     sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
2195                     sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
2196                         CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
2197                             (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
2198         }
2199         /*
2200          * The BD ring replenish thresholds control how often the
2201          * hardware fetches new BD's from the producer rings in host
2202          * memory.  Setting the value too low on a busy system can
2203          * starve the hardware and recue the throughpout.
2204          *
2205          * Set the BD ring replentish thresholds. The recommended
2206          * values are 1/8th the number of descriptors allocated to
2207          * each ring.
2208          * XXX The 5754 requires a lower threshold, so it might be a
2209          * requirement of all 575x family chips.  The Linux driver sets
2210          * the lower threshold for all 5705 family chips as well, but there
2211          * are reports that it might not need to be so strict.
2212          *
2213          * XXX Linux does some extra fiddling here for the 5906 parts as
2214          * well.
2215          */
2216         if (BGE_IS_5705_PLUS(sc))
2217                 val = 8;
2218         else
2219                 val = BGE_STD_RX_RING_CNT / 8;
2220         CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val);
2221         if (BGE_IS_JUMBO_CAPABLE(sc))
2222                 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH,
2223                     BGE_JUMBO_RX_RING_CNT/8);
2224         if (BGE_IS_5717_PLUS(sc)) {
2225                 CSR_WRITE_4(sc, BGE_STD_REPLENISH_LWM, 32);
2226                 CSR_WRITE_4(sc, BGE_JMB_REPLENISH_LWM, 16);
2227         }
2228
2229         /*
2230          * Disable all send rings by setting the 'ring disabled' bit
2231          * in the flags field of all the TX send ring control blocks,
2232          * located in NIC memory.
2233          */
2234         if (!BGE_IS_5705_PLUS(sc))
2235                 /* 5700 to 5704 had 16 send rings. */
2236                 limit = BGE_TX_RINGS_EXTSSRAM_MAX;
2237         else if (BGE_IS_57765_PLUS(sc) ||
2238             sc->bge_asicrev == BGE_ASICREV_BCM5762)
2239                 limit = 2;
2240         else if (BGE_IS_5717_PLUS(sc))
2241                 limit = 4;
2242         else
2243                 limit = 1;
2244         vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2245         for (i = 0; i < limit; i++) {
2246                 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2247                     BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
2248                 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
2249                 vrcb += sizeof(struct bge_rcb);
2250         }
2251
2252         /* Configure send ring RCB 0 (we use only the first ring) */
2253         vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2254         BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr);
2255         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2256         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2257         if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2258             sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2259             sc->bge_asicrev == BGE_ASICREV_BCM5720)
2260                 RCB_WRITE_4(sc, vrcb, bge_nicaddr, BGE_SEND_RING_5717);
2261         else
2262                 RCB_WRITE_4(sc, vrcb, bge_nicaddr,
2263                     BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
2264         RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2265             BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
2266
2267         /*
2268          * Disable all receive return rings by setting the
2269          * 'ring diabled' bit in the flags field of all the receive
2270          * return ring control blocks, located in NIC memory.
2271          */
2272         if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2273             sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2274             sc->bge_asicrev == BGE_ASICREV_BCM5720) {
2275                 /* Should be 17, use 16 until we get an SRAM map. */
2276                 limit = 16;
2277         } else if (!BGE_IS_5705_PLUS(sc))
2278                 limit = BGE_RX_RINGS_MAX;
2279         else if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
2280             sc->bge_asicrev == BGE_ASICREV_BCM5762 ||
2281             BGE_IS_57765_PLUS(sc))
2282                 limit = 4;
2283         else
2284                 limit = 1;
2285         /* Disable all receive return rings. */
2286         vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2287         for (i = 0; i < limit; i++) {
2288                 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0);
2289                 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0);
2290                 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2291                     BGE_RCB_FLAG_RING_DISABLED);
2292                 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
2293                 bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
2294                     (i * (sizeof(uint64_t))), 0);
2295                 vrcb += sizeof(struct bge_rcb);
2296         }
2297
2298         /*
2299          * Set up receive return ring 0.  Note that the NIC address
2300          * for RX return rings is 0x0.  The return rings live entirely
2301          * within the host, so the nicaddr field in the RCB isn't used.
2302          */
2303         vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2304         BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr);
2305         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2306         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2307         RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
2308         RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2309             BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
2310
2311         /* Set random backoff seed for TX */
2312         CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
2313             (IF_LLADDR(sc->bge_ifp)[0] + IF_LLADDR(sc->bge_ifp)[1] +
2314             IF_LLADDR(sc->bge_ifp)[2] + IF_LLADDR(sc->bge_ifp)[3] +
2315             IF_LLADDR(sc->bge_ifp)[4] + IF_LLADDR(sc->bge_ifp)[5]) &
2316             BGE_TX_BACKOFF_SEED_MASK);
2317
2318         /* Set inter-packet gap */
2319         val = 0x2620;
2320         if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
2321             sc->bge_asicrev == BGE_ASICREV_BCM5762)
2322                 val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
2323                     (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
2324         CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
2325
2326         /*
2327          * Specify which ring to use for packets that don't match
2328          * any RX rules.
2329          */
2330         CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
2331
2332         /*
2333          * Configure number of RX lists. One interrupt distribution
2334          * list, sixteen active lists, one bad frames class.
2335          */
2336         CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
2337
2338         /* Inialize RX list placement stats mask. */
2339         CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
2340         CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
2341
2342         /* Disable host coalescing until we get it set up */
2343         CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
2344
2345         /* Poll to make sure it's shut down. */
2346         for (i = 0; i < BGE_TIMEOUT; i++) {
2347                 DELAY(10);
2348                 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
2349                         break;
2350         }
2351
2352         if (i == BGE_TIMEOUT) {
2353                 device_printf(sc->bge_dev,
2354                     "host coalescing engine failed to idle\n");
2355                 return (ENXIO);
2356         }
2357
2358         /* Set up host coalescing defaults */
2359         CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
2360         CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
2361         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
2362         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
2363         if (!(BGE_IS_5705_PLUS(sc))) {
2364                 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
2365                 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
2366         }
2367         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 1);
2368         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 1);
2369
2370         /* Set up address of statistics block */
2371         if (!(BGE_IS_5705_PLUS(sc))) {
2372                 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI,
2373                     BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr));
2374                 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
2375                     BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr));
2376                 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
2377                 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
2378                 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
2379         }
2380
2381         /* Set up address of status block */
2382         CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI,
2383             BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr));
2384         CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
2385             BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr));
2386
2387         /* Set up status block size. */
2388         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2389             sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
2390                 val = BGE_STATBLKSZ_FULL;
2391                 bzero(sc->bge_ldata.bge_status_block, BGE_STATUS_BLK_SZ);
2392         } else {
2393                 val = BGE_STATBLKSZ_32BYTE;
2394                 bzero(sc->bge_ldata.bge_status_block, 32);
2395         }
2396         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
2397             sc->bge_cdata.bge_status_map,
2398             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2399
2400         /* Turn on host coalescing state machine */
2401         CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
2402
2403         /* Turn on RX BD completion state machine and enable attentions */
2404         CSR_WRITE_4(sc, BGE_RBDC_MODE,
2405             BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
2406
2407         /* Turn on RX list placement state machine */
2408         CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2409
2410         /* Turn on RX list selector state machine. */
2411         if (!(BGE_IS_5705_PLUS(sc)))
2412                 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2413
2414         /* Turn on DMA, clear stats. */
2415         val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
2416             BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
2417             BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
2418             BGE_MACMODE_FRMHDR_DMA_ENB;
2419
2420         if (sc->bge_flags & BGE_FLAG_TBI)
2421                 val |= BGE_PORTMODE_TBI;
2422         else if (sc->bge_flags & BGE_FLAG_MII_SERDES)
2423                 val |= BGE_PORTMODE_GMII;
2424         else
2425                 val |= BGE_PORTMODE_MII;
2426
2427         /* Allow APE to send/receive frames. */
2428         if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
2429                 val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
2430
2431         CSR_WRITE_4(sc, BGE_MAC_MODE, val);
2432         DELAY(40);
2433
2434         /* Set misc. local control, enable interrupts on attentions */
2435         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
2436
2437 #ifdef notdef
2438         /* Assert GPIO pins for PHY reset */
2439         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0 |
2440             BGE_MLC_MISCIO_OUT1 | BGE_MLC_MISCIO_OUT2);
2441         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0 |
2442             BGE_MLC_MISCIO_OUTEN1 | BGE_MLC_MISCIO_OUTEN2);
2443 #endif
2444
2445         /* Turn on DMA completion state machine */
2446         if (!(BGE_IS_5705_PLUS(sc)))
2447                 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2448
2449         val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
2450
2451         /* Enable host coalescing bug fix. */
2452         if (BGE_IS_5755_PLUS(sc))
2453                 val |= BGE_WDMAMODE_STATUS_TAG_FIX;
2454
2455         /* Request larger DMA burst size to get better performance. */
2456         if (sc->bge_asicrev == BGE_ASICREV_BCM5785)
2457                 val |= BGE_WDMAMODE_BURST_ALL_DATA;
2458
2459         /* Turn on write DMA state machine */
2460         CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
2461         DELAY(40);
2462
2463         /* Turn on read DMA state machine */
2464         val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
2465
2466         if (sc->bge_asicrev == BGE_ASICREV_BCM5717)
2467                 val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
2468
2469         if (sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2470             sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2471             sc->bge_asicrev == BGE_ASICREV_BCM57780)
2472                 val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
2473                     BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
2474                     BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
2475         if (sc->bge_flags & BGE_FLAG_PCIE)
2476                 val |= BGE_RDMAMODE_FIFO_LONG_BURST;
2477         if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) {
2478                 val |= BGE_RDMAMODE_TSO4_ENABLE;
2479                 if (sc->bge_flags & BGE_FLAG_TSO3 ||
2480                     sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2481                     sc->bge_asicrev == BGE_ASICREV_BCM57780)
2482                         val |= BGE_RDMAMODE_TSO6_ENABLE;
2483         }
2484
2485         if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
2486             sc->bge_asicrev == BGE_ASICREV_BCM5762) {
2487                 val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
2488                         BGE_RDMAMODE_H2BNC_VLAN_DET;
2489                 /*
2490                  * Allow multiple outstanding read requests from
2491                  * non-LSO read DMA engine.
2492                  */
2493                 val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
2494         }
2495
2496         if (sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
2497             sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2498             sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2499             sc->bge_asicrev == BGE_ASICREV_BCM57780 ||
2500             BGE_IS_5717_PLUS(sc) || BGE_IS_57765_PLUS(sc)) {
2501                 if (sc->bge_asicrev == BGE_ASICREV_BCM5762)
2502                         rdmareg = BGE_RDMA_RSRVCTRL_REG2;
2503                 else
2504                         rdmareg = BGE_RDMA_RSRVCTRL;
2505                 dmactl = CSR_READ_4(sc, rdmareg);
2506                 /*
2507                  * Adjust tx margin to prevent TX data corruption and
2508                  * fix internal FIFO overflow.
2509                  */
2510                 if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
2511                     sc->bge_asicrev == BGE_ASICREV_BCM5762) {
2512                         dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
2513                             BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
2514                             BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
2515                         dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
2516                             BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
2517                             BGE_RDMA_RSRVCTRL_TXMRGN_320B;
2518                 }
2519                 /*
2520                  * Enable fix for read DMA FIFO overruns.
2521                  * The fix is to limit the number of RX BDs
2522                  * the hardware would fetch at a fime.
2523                  */
2524                 CSR_WRITE_4(sc, rdmareg, dmactl |
2525                     BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
2526         }
2527
2528         if (sc->bge_asicrev == BGE_ASICREV_BCM5719) {
2529                 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2530                     CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2531                     BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2532                     BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2533         } else if (sc->bge_asicrev == BGE_ASICREV_BCM5720) {
2534                 /*
2535                  * Allow 4KB burst length reads for non-LSO frames.
2536                  * Enable 512B burst length reads for buffer descriptors.
2537                  */
2538                 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2539                     CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2540                     BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
2541                     BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2542         } else if (sc->bge_asicrev == BGE_ASICREV_BCM5762) {
2543                 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2,
2544                     CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2) |
2545                     BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2546                     BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2547         }
2548
2549         CSR_WRITE_4(sc, BGE_RDMA_MODE, val);
2550         DELAY(40);
2551
2552         if (sc->bge_flags & BGE_FLAG_RDMA_BUG) {
2553                 for (i = 0; i < BGE_NUM_RDMA_CHANNELS / 2; i++) {
2554                         val = CSR_READ_4(sc, BGE_RDMA_LENGTH + i * 4);
2555                         if ((val & 0xFFFF) > BGE_FRAMELEN)
2556                                 break;
2557                         if (((val >> 16) & 0xFFFF) > BGE_FRAMELEN)
2558                                 break;
2559                 }
2560                 if (i != BGE_NUM_RDMA_CHANNELS / 2) {
2561                         val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
2562                         if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
2563                                 val |= BGE_RDMA_TX_LENGTH_WA_5719;
2564                         else
2565                                 val |= BGE_RDMA_TX_LENGTH_WA_5720;
2566                         CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
2567                 }
2568         }
2569
2570         /* Turn on RX data completion state machine */
2571         CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2572
2573         /* Turn on RX BD initiator state machine */
2574         CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2575
2576         /* Turn on RX data and RX BD initiator state machine */
2577         CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
2578
2579         /* Turn on Mbuf cluster free state machine */
2580         if (!(BGE_IS_5705_PLUS(sc)))
2581                 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2582
2583         /* Turn on send BD completion state machine */
2584         CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2585
2586         /* Turn on send data completion state machine */
2587         val = BGE_SDCMODE_ENABLE;
2588         if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
2589                 val |= BGE_SDCMODE_CDELAY;
2590         CSR_WRITE_4(sc, BGE_SDC_MODE, val);
2591
2592         /* Turn on send data initiator state machine */
2593         if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3))
2594                 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
2595                     BGE_SDIMODE_HW_LSO_PRE_DMA);
2596         else
2597                 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2598
2599         /* Turn on send BD initiator state machine */
2600         CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2601
2602         /* Turn on send BD selector state machine */
2603         CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2604
2605         CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
2606         CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
2607             BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
2608
2609         /* ack/clear link change events */
2610         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2611             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2612             BGE_MACSTAT_LINK_CHANGED);
2613         CSR_WRITE_4(sc, BGE_MI_STS, 0);
2614
2615         /*
2616          * Enable attention when the link has changed state for
2617          * devices that use auto polling.
2618          */
2619         if (sc->bge_flags & BGE_FLAG_TBI) {
2620                 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
2621         } else {
2622                 if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
2623                         CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
2624                         DELAY(80);
2625                 }
2626                 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2627                     sc->bge_chipid != BGE_CHIPID_BCM5700_B2)
2628                         CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2629                             BGE_EVTENB_MI_INTERRUPT);
2630         }
2631
2632         /*
2633          * Clear any pending link state attention.
2634          * Otherwise some link state change events may be lost until attention
2635          * is cleared by bge_intr() -> bge_link_upd() sequence.
2636          * It's not necessary on newer BCM chips - perhaps enabling link
2637          * state change attentions implies clearing pending attention.
2638          */
2639         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2640             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2641             BGE_MACSTAT_LINK_CHANGED);
2642
2643         /* Enable link state change attentions. */
2644         BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
2645
2646         return (0);
2647 }
2648
2649 static const struct bge_revision *
2650 bge_lookup_rev(uint32_t chipid)
2651 {
2652         const struct bge_revision *br;
2653
2654         for (br = bge_revisions; br->br_name != NULL; br++) {
2655                 if (br->br_chipid == chipid)
2656                         return (br);
2657         }
2658
2659         for (br = bge_majorrevs; br->br_name != NULL; br++) {
2660                 if (br->br_chipid == BGE_ASICREV(chipid))
2661                         return (br);
2662         }
2663
2664         return (NULL);
2665 }
2666
2667 static const struct bge_vendor *
2668 bge_lookup_vendor(uint16_t vid)
2669 {
2670         const struct bge_vendor *v;
2671
2672         for (v = bge_vendors; v->v_name != NULL; v++)
2673                 if (v->v_id == vid)
2674                         return (v);
2675
2676         return (NULL);
2677 }
2678
2679 static uint32_t
2680 bge_chipid(device_t dev)
2681 {
2682         uint32_t id;
2683
2684         id = pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >>
2685             BGE_PCIMISCCTL_ASICREV_SHIFT;
2686         if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
2687                 /*
2688                  * Find the ASCI revision.  Different chips use different
2689                  * registers.
2690                  */
2691                 switch (pci_get_device(dev)) {
2692                 case BCOM_DEVICEID_BCM5717:
2693                 case BCOM_DEVICEID_BCM5718:
2694                 case BCOM_DEVICEID_BCM5719:
2695                 case BCOM_DEVICEID_BCM5720:
2696                 case BCOM_DEVICEID_BCM5725:
2697                 case BCOM_DEVICEID_BCM5727:
2698                 case BCOM_DEVICEID_BCM5762:
2699                 case BCOM_DEVICEID_BCM57764:
2700                 case BCOM_DEVICEID_BCM57767:
2701                 case BCOM_DEVICEID_BCM57787:
2702                         id = pci_read_config(dev,
2703                             BGE_PCI_GEN2_PRODID_ASICREV, 4);
2704                         break;
2705                 case BCOM_DEVICEID_BCM57761:
2706                 case BCOM_DEVICEID_BCM57762:
2707                 case BCOM_DEVICEID_BCM57765:
2708                 case BCOM_DEVICEID_BCM57766:
2709                 case BCOM_DEVICEID_BCM57781:
2710                 case BCOM_DEVICEID_BCM57782:
2711                 case BCOM_DEVICEID_BCM57785:
2712                 case BCOM_DEVICEID_BCM57786:
2713                 case BCOM_DEVICEID_BCM57791:
2714                 case BCOM_DEVICEID_BCM57795:
2715                         id = pci_read_config(dev,
2716                             BGE_PCI_GEN15_PRODID_ASICREV, 4);
2717                         break;
2718                 default:
2719                         id = pci_read_config(dev, BGE_PCI_PRODID_ASICREV, 4);
2720                 }
2721         }
2722         return (id);
2723 }
2724
2725 /*
2726  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
2727  * against our list and return its name if we find a match.
2728  *
2729  * Note that since the Broadcom controller contains VPD support, we
2730  * try to get the device name string from the controller itself instead
2731  * of the compiled-in string. It guarantees we'll always announce the
2732  * right product name. We fall back to the compiled-in string when
2733  * VPD is unavailable or corrupt.
2734  */
2735 static int
2736 bge_probe(device_t dev)
2737 {
2738         char buf[96];
2739         char model[64];
2740         const struct bge_revision *br;
2741         const char *pname;
2742         struct bge_softc *sc;
2743         const struct bge_type *t = bge_devs;
2744         const struct bge_vendor *v;
2745         uint32_t id;
2746         uint16_t did, vid;
2747
2748         sc = device_get_softc(dev);
2749         sc->bge_dev = dev;
2750         vid = pci_get_vendor(dev);
2751         did = pci_get_device(dev);
2752         while(t->bge_vid != 0) {
2753                 if ((vid == t->bge_vid) && (did == t->bge_did)) {
2754                         id = bge_chipid(dev);
2755                         br = bge_lookup_rev(id);
2756                         if (bge_has_eaddr(sc) &&
2757                             pci_get_vpd_ident(dev, &pname) == 0)
2758                                 snprintf(model, sizeof(model), "%s", pname);
2759                         else {
2760                                 v = bge_lookup_vendor(vid);
2761                                 snprintf(model, sizeof(model), "%s %s",
2762                                     v != NULL ? v->v_name : "Unknown",
2763                                     br != NULL ? br->br_name :
2764                                     "NetXtreme/NetLink Ethernet Controller");
2765                         }
2766                         snprintf(buf, sizeof(buf), "%s, %sASIC rev. %#08x",
2767                             model, br != NULL ? "" : "unknown ", id);
2768                         device_set_desc_copy(dev, buf);
2769                         return (BUS_PROBE_DEFAULT);
2770                 }
2771                 t++;
2772         }
2773
2774         return (ENXIO);
2775 }
2776
2777 static void
2778 bge_dma_free(struct bge_softc *sc)
2779 {
2780         int i;
2781
2782         /* Destroy DMA maps for RX buffers. */
2783         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
2784                 if (sc->bge_cdata.bge_rx_std_dmamap[i])
2785                         bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
2786                             sc->bge_cdata.bge_rx_std_dmamap[i]);
2787         }
2788         if (sc->bge_cdata.bge_rx_std_sparemap)
2789                 bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
2790                     sc->bge_cdata.bge_rx_std_sparemap);
2791
2792         /* Destroy DMA maps for jumbo RX buffers. */
2793         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
2794                 if (sc->bge_cdata.bge_rx_jumbo_dmamap[i])
2795                         bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
2796                             sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
2797         }
2798         if (sc->bge_cdata.bge_rx_jumbo_sparemap)
2799                 bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
2800                     sc->bge_cdata.bge_rx_jumbo_sparemap);
2801
2802         /* Destroy DMA maps for TX buffers. */
2803         for (i = 0; i < BGE_TX_RING_CNT; i++) {
2804                 if (sc->bge_cdata.bge_tx_dmamap[i])
2805                         bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag,
2806                             sc->bge_cdata.bge_tx_dmamap[i]);
2807         }
2808
2809         if (sc->bge_cdata.bge_rx_mtag)
2810                 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
2811         if (sc->bge_cdata.bge_mtag_jumbo)
2812                 bus_dma_tag_destroy(sc->bge_cdata.bge_mtag_jumbo);
2813         if (sc->bge_cdata.bge_tx_mtag)
2814                 bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag);
2815
2816         /* Destroy standard RX ring. */
2817         if (sc->bge_cdata.bge_rx_std_ring_map)
2818                 bus_dmamap_unload(sc->bge_cdata.bge_rx_std_ring_tag,
2819                     sc->bge_cdata.bge_rx_std_ring_map);
2820         if (sc->bge_cdata.bge_rx_std_ring_map && sc->bge_ldata.bge_rx_std_ring)
2821                 bus_dmamem_free(sc->bge_cdata.bge_rx_std_ring_tag,
2822                     sc->bge_ldata.bge_rx_std_ring,
2823                     sc->bge_cdata.bge_rx_std_ring_map);
2824
2825         if (sc->bge_cdata.bge_rx_std_ring_tag)
2826                 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_std_ring_tag);
2827
2828         /* Destroy jumbo RX ring. */
2829         if (sc->bge_cdata.bge_rx_jumbo_ring_map)
2830                 bus_dmamap_unload(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2831                     sc->bge_cdata.bge_rx_jumbo_ring_map);
2832
2833         if (sc->bge_cdata.bge_rx_jumbo_ring_map &&
2834             sc->bge_ldata.bge_rx_jumbo_ring)
2835                 bus_dmamem_free(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2836                     sc->bge_ldata.bge_rx_jumbo_ring,
2837                     sc->bge_cdata.bge_rx_jumbo_ring_map);
2838
2839         if (sc->bge_cdata.bge_rx_jumbo_ring_tag)
2840                 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_jumbo_ring_tag);
2841
2842         /* Destroy RX return ring. */
2843         if (sc->bge_cdata.bge_rx_return_ring_map)
2844                 bus_dmamap_unload(sc->bge_cdata.bge_rx_return_ring_tag,
2845                     sc->bge_cdata.bge_rx_return_ring_map);
2846
2847         if (sc->bge_cdata.bge_rx_return_ring_map &&
2848             sc->bge_ldata.bge_rx_return_ring)
2849                 bus_dmamem_free(sc->bge_cdata.bge_rx_return_ring_tag,
2850                     sc->bge_ldata.bge_rx_return_ring,
2851                     sc->bge_cdata.bge_rx_return_ring_map);
2852
2853         if (sc->bge_cdata.bge_rx_return_ring_tag)
2854                 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_return_ring_tag);
2855
2856         /* Destroy TX ring. */
2857         if (sc->bge_cdata.bge_tx_ring_map)
2858                 bus_dmamap_unload(sc->bge_cdata.bge_tx_ring_tag,
2859                     sc->bge_cdata.bge_tx_ring_map);
2860
2861         if (sc->bge_cdata.bge_tx_ring_map && sc->bge_ldata.bge_tx_ring)
2862                 bus_dmamem_free(sc->bge_cdata.bge_tx_ring_tag,
2863                     sc->bge_ldata.bge_tx_ring,
2864                     sc->bge_cdata.bge_tx_ring_map);
2865
2866         if (sc->bge_cdata.bge_tx_ring_tag)
2867                 bus_dma_tag_destroy(sc->bge_cdata.bge_tx_ring_tag);
2868
2869         /* Destroy status block. */
2870         if (sc->bge_cdata.bge_status_map)
2871                 bus_dmamap_unload(sc->bge_cdata.bge_status_tag,
2872                     sc->bge_cdata.bge_status_map);
2873
2874         if (sc->bge_cdata.bge_status_map && sc->bge_ldata.bge_status_block)
2875                 bus_dmamem_free(sc->bge_cdata.bge_status_tag,
2876                     sc->bge_ldata.bge_status_block,
2877                     sc->bge_cdata.bge_status_map);
2878
2879         if (sc->bge_cdata.bge_status_tag)
2880                 bus_dma_tag_destroy(sc->bge_cdata.bge_status_tag);
2881
2882         /* Destroy statistics block. */
2883         if (sc->bge_cdata.bge_stats_map)
2884                 bus_dmamap_unload(sc->bge_cdata.bge_stats_tag,
2885                     sc->bge_cdata.bge_stats_map);
2886
2887         if (sc->bge_cdata.bge_stats_map && sc->bge_ldata.bge_stats)
2888                 bus_dmamem_free(sc->bge_cdata.bge_stats_tag,
2889                     sc->bge_ldata.bge_stats,
2890                     sc->bge_cdata.bge_stats_map);
2891
2892         if (sc->bge_cdata.bge_stats_tag)
2893                 bus_dma_tag_destroy(sc->bge_cdata.bge_stats_tag);
2894
2895         if (sc->bge_cdata.bge_buffer_tag)
2896                 bus_dma_tag_destroy(sc->bge_cdata.bge_buffer_tag);
2897
2898         /* Destroy the parent tag. */
2899         if (sc->bge_cdata.bge_parent_tag)
2900                 bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag);
2901 }
2902
2903 static int
2904 bge_dma_ring_alloc(struct bge_softc *sc, bus_size_t alignment,
2905     bus_size_t maxsize, bus_dma_tag_t *tag, uint8_t **ring, bus_dmamap_t *map,
2906     bus_addr_t *paddr, const char *msg)
2907 {
2908         struct bge_dmamap_arg ctx;
2909         int error;
2910
2911         error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2912             alignment, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2913             NULL, maxsize, 1, maxsize, 0, NULL, NULL, tag);
2914         if (error != 0) {
2915                 device_printf(sc->bge_dev,
2916                     "could not create %s dma tag\n", msg);
2917                 return (ENOMEM);
2918         }
2919         /* Allocate DMA'able memory for ring. */
2920         error = bus_dmamem_alloc(*tag, (void **)ring,
2921             BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, map);
2922         if (error != 0) {
2923                 device_printf(sc->bge_dev,
2924                     "could not allocate DMA'able memory for %s\n", msg);
2925                 return (ENOMEM);
2926         }
2927         /* Load the address of the ring. */
2928         ctx.bge_busaddr = 0;
2929         error = bus_dmamap_load(*tag, *map, *ring, maxsize, bge_dma_map_addr,
2930             &ctx, BUS_DMA_NOWAIT);
2931         if (error != 0) {
2932                 device_printf(sc->bge_dev,
2933                     "could not load DMA'able memory for %s\n", msg);
2934                 return (ENOMEM);
2935         }
2936         *paddr = ctx.bge_busaddr;
2937         return (0);
2938 }
2939
2940 static int
2941 bge_dma_alloc(struct bge_softc *sc)
2942 {
2943         bus_addr_t lowaddr;
2944         bus_size_t rxmaxsegsz, sbsz, txsegsz, txmaxsegsz;
2945         int i, error;
2946
2947         lowaddr = BUS_SPACE_MAXADDR;
2948         if ((sc->bge_flags & BGE_FLAG_40BIT_BUG) != 0)
2949                 lowaddr = BGE_DMA_MAXADDR;
2950         /*
2951          * Allocate the parent bus DMA tag appropriate for PCI.
2952          */
2953         error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev),
2954             1, 0, lowaddr, BUS_SPACE_MAXADDR, NULL,
2955             NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
2956             0, NULL, NULL, &sc->bge_cdata.bge_parent_tag);
2957         if (error != 0) {
2958                 device_printf(sc->bge_dev,
2959                     "could not allocate parent dma tag\n");
2960                 return (ENOMEM);
2961         }
2962
2963         /* Create tag for standard RX ring. */
2964         error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STD_RX_RING_SZ,
2965             &sc->bge_cdata.bge_rx_std_ring_tag,
2966             (uint8_t **)&sc->bge_ldata.bge_rx_std_ring,
2967             &sc->bge_cdata.bge_rx_std_ring_map,
2968             &sc->bge_ldata.bge_rx_std_ring_paddr, "RX ring");
2969         if (error)
2970                 return (error);
2971
2972         /* Create tag for RX return ring. */
2973         error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_RX_RTN_RING_SZ(sc),
2974             &sc->bge_cdata.bge_rx_return_ring_tag,
2975             (uint8_t **)&sc->bge_ldata.bge_rx_return_ring,
2976             &sc->bge_cdata.bge_rx_return_ring_map,
2977             &sc->bge_ldata.bge_rx_return_ring_paddr, "RX return ring");
2978         if (error)
2979                 return (error);
2980
2981         /* Create tag for TX ring. */
2982         error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_TX_RING_SZ,
2983             &sc->bge_cdata.bge_tx_ring_tag,
2984             (uint8_t **)&sc->bge_ldata.bge_tx_ring,
2985             &sc->bge_cdata.bge_tx_ring_map,
2986             &sc->bge_ldata.bge_tx_ring_paddr, "TX ring");
2987         if (error)
2988                 return (error);
2989
2990         /*
2991          * Create tag for status block.
2992          * Because we only use single Tx/Rx/Rx return ring, use
2993          * minimum status block size except BCM5700 AX/BX which
2994          * seems to want to see full status block size regardless
2995          * of configured number of ring.
2996          */
2997         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2998             sc->bge_chipid != BGE_CHIPID_BCM5700_C0)
2999                 sbsz = BGE_STATUS_BLK_SZ;
3000         else
3001                 sbsz = 32;
3002         error = bge_dma_ring_alloc(sc, PAGE_SIZE, sbsz,
3003             &sc->bge_cdata.bge_status_tag,
3004             (uint8_t **)&sc->bge_ldata.bge_status_block,
3005             &sc->bge_cdata.bge_status_map,
3006             &sc->bge_ldata.bge_status_block_paddr, "status block");
3007         if (error)
3008                 return (error);
3009
3010         /* Create tag for statistics block. */
3011         error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STATS_SZ,
3012             &sc->bge_cdata.bge_stats_tag,
3013             (uint8_t **)&sc->bge_ldata.bge_stats,
3014             &sc->bge_cdata.bge_stats_map,
3015             &sc->bge_ldata.bge_stats_paddr, "statistics block");
3016         if (error)
3017                 return (error);
3018
3019         /* Create tag for jumbo RX ring. */
3020         if (BGE_IS_JUMBO_CAPABLE(sc)) {
3021                 error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_JUMBO_RX_RING_SZ,
3022                     &sc->bge_cdata.bge_rx_jumbo_ring_tag,
3023                     (uint8_t **)&sc->bge_ldata.bge_rx_jumbo_ring,
3024                     &sc->bge_cdata.bge_rx_jumbo_ring_map,
3025                     &sc->bge_ldata.bge_rx_jumbo_ring_paddr, "jumbo RX ring");
3026                 if (error)
3027                         return (error);
3028         }
3029
3030         /* Create parent tag for buffers. */
3031         if ((sc->bge_flags & BGE_FLAG_4G_BNDRY_BUG) != 0) {
3032                 /*
3033                  * XXX
3034                  * watchdog timeout issue was observed on BCM5704 which
3035                  * lives behind PCI-X bridge(e.g AMD 8131 PCI-X bridge).
3036                  * Both limiting DMA address space to 32bits and flushing
3037                  * mailbox write seem to address the issue.
3038                  */
3039                 if (sc->bge_pcixcap != 0)
3040                         lowaddr = BUS_SPACE_MAXADDR_32BIT;
3041         }
3042         error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev), 1, 0, lowaddr,
3043             BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE_32BIT, 0,
3044             BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL,
3045             &sc->bge_cdata.bge_buffer_tag);
3046         if (error != 0) {
3047                 device_printf(sc->bge_dev,
3048                     "could not allocate buffer dma tag\n");
3049                 return (ENOMEM);
3050         }
3051         /* Create tag for Tx mbufs. */
3052         if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) {
3053                 txsegsz = BGE_TSOSEG_SZ;
3054                 txmaxsegsz = 65535 + sizeof(struct ether_vlan_header);
3055         } else {
3056                 txsegsz = MCLBYTES;
3057                 txmaxsegsz = MCLBYTES * BGE_NSEG_NEW;
3058         }
3059         error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1,
3060             0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
3061             txmaxsegsz, BGE_NSEG_NEW, txsegsz, 0, NULL, NULL,
3062             &sc->bge_cdata.bge_tx_mtag);
3063
3064         if (error) {
3065                 device_printf(sc->bge_dev, "could not allocate TX dma tag\n");
3066                 return (ENOMEM);
3067         }
3068
3069         /* Create tag for Rx mbufs. */
3070         if (sc->bge_flags & BGE_FLAG_JUMBO_STD)
3071                 rxmaxsegsz = MJUM9BYTES;
3072         else
3073                 rxmaxsegsz = MCLBYTES;
3074         error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1, 0,
3075             BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, rxmaxsegsz, 1,
3076             rxmaxsegsz, 0, NULL, NULL, &sc->bge_cdata.bge_rx_mtag);
3077
3078         if (error) {
3079                 device_printf(sc->bge_dev, "could not allocate RX dma tag\n");
3080                 return (ENOMEM);
3081         }
3082
3083         /* Create DMA maps for RX buffers. */
3084         error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0,
3085             &sc->bge_cdata.bge_rx_std_sparemap);
3086         if (error) {
3087                 device_printf(sc->bge_dev,
3088                     "can't create spare DMA map for RX\n");
3089                 return (ENOMEM);
3090         }
3091         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
3092                 error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0,
3093                             &sc->bge_cdata.bge_rx_std_dmamap[i]);
3094                 if (error) {
3095                         device_printf(sc->bge_dev,
3096                             "can't create DMA map for RX\n");
3097                         return (ENOMEM);
3098                 }
3099         }
3100
3101         /* Create DMA maps for TX buffers. */
3102         for (i = 0; i < BGE_TX_RING_CNT; i++) {
3103                 error = bus_dmamap_create(sc->bge_cdata.bge_tx_mtag, 0,
3104                             &sc->bge_cdata.bge_tx_dmamap[i]);
3105                 if (error) {
3106                         device_printf(sc->bge_dev,
3107                             "can't create DMA map for TX\n");
3108                         return (ENOMEM);
3109                 }
3110         }
3111
3112         /* Create tags for jumbo RX buffers. */
3113         if (BGE_IS_JUMBO_CAPABLE(sc)) {
3114                 error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag,
3115                     1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
3116                     NULL, MJUM9BYTES, BGE_NSEG_JUMBO, PAGE_SIZE,
3117                     0, NULL, NULL, &sc->bge_cdata.bge_mtag_jumbo);
3118                 if (error) {
3119                         device_printf(sc->bge_dev,
3120                             "could not allocate jumbo dma tag\n");
3121                         return (ENOMEM);
3122                 }
3123                 /* Create DMA maps for jumbo RX buffers. */
3124                 error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
3125                     0, &sc->bge_cdata.bge_rx_jumbo_sparemap);
3126                 if (error) {
3127                         device_printf(sc->bge_dev,
3128                             "can't create spare DMA map for jumbo RX\n");
3129                         return (ENOMEM);
3130                 }
3131                 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
3132                         error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
3133                                     0, &sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
3134                         if (error) {
3135                                 device_printf(sc->bge_dev,
3136                                     "can't create DMA map for jumbo RX\n");
3137                                 return (ENOMEM);
3138                         }
3139                 }
3140         }
3141
3142         return (0);
3143 }
3144
3145 /*
3146  * Return true if this device has more than one port.
3147  */
3148 static int
3149 bge_has_multiple_ports(struct bge_softc *sc)
3150 {
3151         device_t dev = sc->bge_dev;
3152         u_int b, d, f, fscan, s;
3153
3154         d = pci_get_domain(dev);
3155         b = pci_get_bus(dev);
3156         s = pci_get_slot(dev);
3157         f = pci_get_function(dev);
3158         for (fscan = 0; fscan <= PCI_FUNCMAX; fscan++)
3159                 if (fscan != f && pci_find_dbsf(d, b, s, fscan) != NULL)
3160                         return (1);
3161         return (0);
3162 }
3163
3164 /*
3165  * Return true if MSI can be used with this device.
3166  */
3167 static int
3168 bge_can_use_msi(struct bge_softc *sc)
3169 {
3170         int can_use_msi = 0;
3171
3172         if (sc->bge_msi == 0)
3173                 return (0);
3174
3175         /* Disable MSI for polling(4). */
3176 #ifdef DEVICE_POLLING
3177         return (0);
3178 #endif
3179         switch (sc->bge_asicrev) {
3180         case BGE_ASICREV_BCM5714_A0:
3181         case BGE_ASICREV_BCM5714:
3182                 /*
3183                  * Apparently, MSI doesn't work when these chips are
3184                  * configured in single-port mode.
3185                  */
3186                 if (bge_has_multiple_ports(sc))
3187                         can_use_msi = 1;
3188                 break;
3189         case BGE_ASICREV_BCM5750:
3190                 if (sc->bge_chiprev != BGE_CHIPREV_5750_AX &&
3191                     sc->bge_chiprev != BGE_CHIPREV_5750_BX)
3192                         can_use_msi = 1;
3193                 break;
3194         default:
3195                 if (BGE_IS_575X_PLUS(sc))
3196                         can_use_msi = 1;
3197         }
3198         return (can_use_msi);
3199 }
3200
3201 static int
3202 bge_mbox_reorder(struct bge_softc *sc)
3203 {
3204         /* Lists of PCI bridges that are known to reorder mailbox writes. */
3205         static const struct mbox_reorder {
3206                 const uint16_t vendor;
3207                 const uint16_t device;
3208                 const char *desc;
3209         } mbox_reorder_lists[] = {
3210                 { 0x1022, 0x7450, "AMD-8131 PCI-X Bridge" },
3211         };
3212         devclass_t pci, pcib;
3213         device_t bus, dev;
3214         int i;
3215
3216         pci = devclass_find("pci");
3217         pcib = devclass_find("pcib");
3218         dev = sc->bge_dev;
3219         bus = device_get_parent(dev);
3220         for (;;) {
3221                 dev = device_get_parent(bus);
3222                 bus = device_get_parent(dev);
3223                 if (device_get_devclass(dev) != pcib)
3224                         break;
3225                 for (i = 0; i < nitems(mbox_reorder_lists); i++) {
3226                         if (pci_get_vendor(dev) ==
3227                             mbox_reorder_lists[i].vendor &&
3228                             pci_get_device(dev) ==
3229                             mbox_reorder_lists[i].device) {
3230                                 device_printf(sc->bge_dev,
3231                                     "enabling MBOX workaround for %s\n",
3232                                     mbox_reorder_lists[i].desc);
3233                                 return (1);
3234                         }
3235                 }
3236                 if (device_get_devclass(bus) != pci)
3237                         break;
3238         }
3239         return (0);
3240 }
3241
3242 static void
3243 bge_devinfo(struct bge_softc *sc)
3244 {
3245         uint32_t cfg, clk;
3246
3247         device_printf(sc->bge_dev,
3248             "CHIP ID 0x%08x; ASIC REV 0x%02x; CHIP REV 0x%02x; ",
3249             sc->bge_chipid, sc->bge_asicrev, sc->bge_chiprev);
3250         if (sc->bge_flags & BGE_FLAG_PCIE)
3251                 printf("PCI-E\n");
3252         else if (sc->bge_flags & BGE_FLAG_PCIX) {
3253                 printf("PCI-X ");
3254                 cfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK;
3255                 if (cfg == BGE_MISCCFG_BOARD_ID_5704CIOBE)
3256                         clk = 133;
3257                 else {
3258                         clk = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F;
3259                         switch (clk) {
3260                         case 0:
3261                                 clk = 33;
3262                                 break;
3263                         case 2:
3264                                 clk = 50;
3265                                 break;
3266                         case 4:
3267                                 clk = 66;
3268                                 break;
3269                         case 6:
3270                                 clk = 100;
3271                                 break;
3272                         case 7:
3273                                 clk = 133;
3274                                 break;
3275                         }
3276                 }
3277                 printf("%u MHz\n", clk);
3278         } else {
3279                 if (sc->bge_pcixcap != 0)
3280                         printf("PCI on PCI-X ");
3281                 else
3282                         printf("PCI ");
3283                 cfg = pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4);
3284                 if (cfg & BGE_PCISTATE_PCI_BUSSPEED)
3285                         clk = 66;
3286                 else
3287                         clk = 33;
3288                 if (cfg & BGE_PCISTATE_32BIT_BUS)
3289                         printf("%u MHz; 32bit\n", clk);
3290                 else
3291                         printf("%u MHz; 64bit\n", clk);
3292         }
3293 }
3294
3295 static int
3296 bge_attach(device_t dev)
3297 {
3298         struct ifnet *ifp;
3299         struct bge_softc *sc;
3300         uint32_t hwcfg = 0, misccfg, pcistate;
3301         u_char eaddr[ETHER_ADDR_LEN];
3302         int capmask, error, reg, rid, trys;
3303
3304         sc = device_get_softc(dev);
3305         sc->bge_dev = dev;
3306
3307         BGE_LOCK_INIT(sc, device_get_nameunit(dev));
3308         TASK_INIT(&sc->bge_intr_task, 0, bge_intr_task, sc);
3309         callout_init_mtx(&sc->bge_stat_ch, &sc->bge_mtx, 0);
3310
3311         pci_enable_busmaster(dev);
3312
3313         /*
3314          * Allocate control/status registers.
3315          */
3316         rid = PCIR_BAR(0);
3317         sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
3318             RF_ACTIVE);
3319
3320         if (sc->bge_res == NULL) {
3321                 device_printf (sc->bge_dev, "couldn't map BAR0 memory\n");
3322                 error = ENXIO;
3323                 goto fail;
3324         }
3325
3326         /* Save various chip information. */
3327         sc->bge_func_addr = pci_get_function(dev);
3328         sc->bge_chipid = bge_chipid(dev);
3329         sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
3330         sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
3331
3332         /* Set default PHY address. */
3333         sc->bge_phy_addr = 1;
3334          /*
3335           * PHY address mapping for various devices.
3336           *
3337           *          | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
3338           * ---------+-------+-------+-------+-------+
3339           * BCM57XX  |   1   |   X   |   X   |   X   |
3340           * BCM5704  |   1   |   X   |   1   |   X   |
3341           * BCM5717  |   1   |   8   |   2   |   9   |
3342           * BCM5719  |   1   |   8   |   2   |   9   |
3343           * BCM5720  |   1   |   8   |   2   |   9   |
3344           *
3345           *          | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
3346           * ---------+-------+-------+-------+-------+
3347           * BCM57XX  |   X   |   X   |   X   |   X   |
3348           * BCM5704  |   X   |   X   |   X   |   X   |
3349           * BCM5717  |   X   |   X   |   X   |   X   |
3350           * BCM5719  |   3   |   10  |   4   |   11  |
3351           * BCM5720  |   X   |   X   |   X   |   X   |
3352           *
3353           * Other addresses may respond but they are not
3354           * IEEE compliant PHYs and should be ignored.
3355           */
3356         if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
3357             sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
3358             sc->bge_asicrev == BGE_ASICREV_BCM5720) {
3359                 if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) {
3360                         if (CSR_READ_4(sc, BGE_SGDIG_STS) &
3361                             BGE_SGDIGSTS_IS_SERDES)
3362                                 sc->bge_phy_addr = sc->bge_func_addr + 8;
3363                         else
3364                                 sc->bge_phy_addr = sc->bge_func_addr + 1;
3365                 } else {
3366                         if (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
3367                             BGE_CPMU_PHY_STRAP_IS_SERDES)
3368                                 sc->bge_phy_addr = sc->bge_func_addr + 8;
3369                         else
3370                                 sc->bge_phy_addr = sc->bge_func_addr + 1;
3371                 }
3372         }
3373
3374         if (bge_has_eaddr(sc))
3375                 sc->bge_flags |= BGE_FLAG_EADDR;
3376
3377         /* Save chipset family. */
3378         switch (sc->bge_asicrev) {
3379         case BGE_ASICREV_BCM5762:
3380         case BGE_ASICREV_BCM57765:
3381         case BGE_ASICREV_BCM57766:
3382                 sc->bge_flags |= BGE_FLAG_57765_PLUS;
3383                 /* FALLTHROUGH */
3384         case BGE_ASICREV_BCM5717:
3385         case BGE_ASICREV_BCM5719:
3386         case BGE_ASICREV_BCM5720:
3387                 sc->bge_flags |= BGE_FLAG_5717_PLUS | BGE_FLAG_5755_PLUS |
3388                     BGE_FLAG_575X_PLUS | BGE_FLAG_5705_PLUS | BGE_FLAG_JUMBO |
3389                     BGE_FLAG_JUMBO_FRAME;
3390                 if (sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
3391                     sc->bge_asicrev == BGE_ASICREV_BCM5720) {
3392                         /*
3393                          * Enable work around for DMA engine miscalculation
3394                          * of TXMBUF available space.
3395                          */
3396                         sc->bge_flags |= BGE_FLAG_RDMA_BUG;
3397                         if (sc->bge_asicrev == BGE_ASICREV_BCM5719 &&
3398                             sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
3399                                 /* Jumbo frame on BCM5719 A0 does not work. */
3400                                 sc->bge_flags &= ~BGE_FLAG_JUMBO;
3401                         }
3402                 }
3403                 break;
3404         case BGE_ASICREV_BCM5755:
3405         case BGE_ASICREV_BCM5761:
3406         case BGE_ASICREV_BCM5784:
3407         case BGE_ASICREV_BCM5785:
3408         case BGE_ASICREV_BCM5787:
3409         case BGE_ASICREV_BCM57780:
3410                 sc->bge_flags |= BGE_FLAG_5755_PLUS | BGE_FLAG_575X_PLUS |
3411                     BGE_FLAG_5705_PLUS;
3412                 break;
3413         case BGE_ASICREV_BCM5700:
3414         case BGE_ASICREV_BCM5701:
3415         case BGE_ASICREV_BCM5703:
3416         case BGE_ASICREV_BCM5704:
3417                 sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO;
3418                 break;
3419         case BGE_ASICREV_BCM5714_A0:
3420         case BGE_ASICREV_BCM5780:
3421         case BGE_ASICREV_BCM5714:
3422                 sc->bge_flags |= BGE_FLAG_5714_FAMILY | BGE_FLAG_JUMBO_STD;
3423                 /* FALLTHROUGH */
3424         case BGE_ASICREV_BCM5750:
3425         case BGE_ASICREV_BCM5752:
3426         case BGE_ASICREV_BCM5906:
3427                 sc->bge_flags |= BGE_FLAG_575X_PLUS;
3428                 /* FALLTHROUGH */
3429         case BGE_ASICREV_BCM5705:
3430                 sc->bge_flags |= BGE_FLAG_5705_PLUS;
3431                 break;
3432         }
3433
3434         /* Identify chips with APE processor. */
3435         switch (sc->bge_asicrev) {
3436         case BGE_ASICREV_BCM5717:
3437         case BGE_ASICREV_BCM5719:
3438         case BGE_ASICREV_BCM5720:
3439         case BGE_ASICREV_BCM5761:
3440         case BGE_ASICREV_BCM5762:
3441                 sc->bge_flags |= BGE_FLAG_APE;
3442                 break;
3443         }
3444
3445         /* Chips with APE need BAR2 access for APE registers/memory. */
3446         if ((sc->bge_flags & BGE_FLAG_APE) != 0) {
3447                 rid = PCIR_BAR(2);
3448                 sc->bge_res2 = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
3449                     RF_ACTIVE);
3450                 if (sc->bge_res2 == NULL) {
3451                         device_printf (sc->bge_dev,
3452                             "couldn't map BAR2 memory\n");
3453                         error = ENXIO;
3454                         goto fail;
3455                 }
3456
3457                 /* Enable APE register/memory access by host driver. */
3458                 pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
3459                 pcistate |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
3460                     BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
3461                     BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
3462                 pci_write_config(dev, BGE_PCI_PCISTATE, pcistate, 4);
3463
3464                 bge_ape_lock_init(sc);
3465                 bge_ape_read_fw_ver(sc);
3466         }
3467
3468         /* Add SYSCTLs, requires the chipset family to be set. */
3469         bge_add_sysctls(sc);
3470
3471         /* Identify the chips that use an CPMU. */
3472         if (BGE_IS_5717_PLUS(sc) ||
3473             sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
3474             sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
3475             sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
3476             sc->bge_asicrev == BGE_ASICREV_BCM57780)
3477                 sc->bge_flags |= BGE_FLAG_CPMU_PRESENT;
3478         if ((sc->bge_flags & BGE_FLAG_CPMU_PRESENT) != 0)
3479                 sc->bge_mi_mode = BGE_MIMODE_500KHZ_CONST;
3480         else
3481                 sc->bge_mi_mode = BGE_MIMODE_BASE;
3482         /* Enable auto polling for BCM570[0-5]. */
3483         if (BGE_IS_5700_FAMILY(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5705)
3484                 sc->bge_mi_mode |= BGE_MIMODE_AUTOPOLL;
3485
3486         /*
3487          * All Broadcom controllers have 4GB boundary DMA bug.
3488          * Whenever an address crosses a multiple of the 4GB boundary
3489          * (including 4GB, 8Gb, 12Gb, etc.) and makes the transition
3490          * from 0xX_FFFF_FFFF to 0x(X+1)_0000_0000 an internal DMA
3491          * state machine will lockup and cause the device to hang.
3492          */
3493         sc->bge_flags |= BGE_FLAG_4G_BNDRY_BUG;
3494
3495         /* BCM5755 or higher and BCM5906 have short DMA bug. */
3496         if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
3497                 sc->bge_flags |= BGE_FLAG_SHORT_DMA_BUG;
3498
3499         /*
3500          * BCM5719 cannot handle DMA requests for DMA segments that
3501          * have larger than 4KB in size.  However the maximum DMA
3502          * segment size created in DMA tag is 4KB for TSO, so we
3503          * wouldn't encounter the issue here.
3504          */
3505         if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
3506                 sc->bge_flags |= BGE_FLAG_4K_RDMA_BUG;
3507
3508         misccfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK;
3509         if (sc->bge_asicrev == BGE_ASICREV_BCM5705) {
3510                 if (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
3511                     misccfg == BGE_MISCCFG_BOARD_ID_5788M)
3512                         sc->bge_flags |= BGE_FLAG_5788;
3513         }
3514
3515         capmask = BMSR_DEFCAPMASK;
3516         if ((sc->bge_asicrev == BGE_ASICREV_BCM5703 &&
3517             (misccfg == 0x4000 || misccfg == 0x8000)) ||
3518             (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
3519             pci_get_vendor(dev) == BCOM_VENDORID &&
3520             (pci_get_device(dev) == BCOM_DEVICEID_BCM5901 ||
3521             pci_get_device(dev) == BCOM_DEVICEID_BCM5901A2 ||
3522             pci_get_device(dev) == BCOM_DEVICEID_BCM5705F)) ||
3523             (pci_get_vendor(dev) == BCOM_VENDORID &&
3524             (pci_get_device(dev) == BCOM_DEVICEID_BCM5751F ||
3525             pci_get_device(dev) == BCOM_DEVICEID_BCM5753F ||
3526             pci_get_device(dev) == BCOM_DEVICEID_BCM5787F)) ||
3527             pci_get_device(dev) == BCOM_DEVICEID_BCM57790 ||
3528             pci_get_device(dev) == BCOM_DEVICEID_BCM57791 ||
3529             pci_get_device(dev) == BCOM_DEVICEID_BCM57795 ||
3530             sc->bge_asicrev == BGE_ASICREV_BCM5906) {
3531                 /* These chips are 10/100 only. */
3532                 capmask &= ~BMSR_EXTSTAT;
3533                 sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
3534         }
3535
3536         /*
3537          * Some controllers seem to require a special firmware to use
3538          * TSO. But the firmware is not available to FreeBSD and Linux
3539          * claims that the TSO performed by the firmware is slower than
3540          * hardware based TSO. Moreover the firmware based TSO has one
3541          * known bug which can't handle TSO if Ethernet header + IP/TCP
3542          * header is greater than 80 bytes. A workaround for the TSO
3543          * bug exist but it seems it's too expensive than not using
3544          * TSO at all. Some hardwares also have the TSO bug so limit
3545          * the TSO to the controllers that are not affected TSO issues
3546          * (e.g. 5755 or higher).
3547          */
3548         if (BGE_IS_5717_PLUS(sc)) {
3549                 /* BCM5717 requires different TSO configuration. */
3550                 sc->bge_flags |= BGE_FLAG_TSO3;
3551                 if (sc->bge_asicrev == BGE_ASICREV_BCM5719 &&
3552                     sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
3553                         /* TSO on BCM5719 A0 does not work. */
3554                         sc->bge_flags &= ~BGE_FLAG_TSO3;
3555                 }
3556         } else if (BGE_IS_5755_PLUS(sc)) {
3557                 /*
3558                  * BCM5754 and BCM5787 shares the same ASIC id so
3559                  * explicit device id check is required.
3560                  * Due to unknown reason TSO does not work on BCM5755M.
3561                  */
3562                 if (pci_get_device(dev) != BCOM_DEVICEID_BCM5754 &&
3563                     pci_get_device(dev) != BCOM_DEVICEID_BCM5754M &&
3564                     pci_get_device(dev) != BCOM_DEVICEID_BCM5755M)
3565                         sc->bge_flags |= BGE_FLAG_TSO;
3566         }
3567
3568         /*
3569          * Check if this is a PCI-X or PCI Express device.
3570          */
3571         if (pci_find_cap(dev, PCIY_EXPRESS, &reg) == 0) {
3572                 /*
3573                  * Found a PCI Express capabilities register, this
3574                  * must be a PCI Express device.
3575                  */
3576                 sc->bge_flags |= BGE_FLAG_PCIE;
3577                 sc->bge_expcap = reg;
3578                 /* Extract supported maximum payload size. */
3579                 sc->bge_mps = pci_read_config(dev, sc->bge_expcap +
3580                     PCIER_DEVICE_CAP, 2);
3581                 sc->bge_mps = 128 << (sc->bge_mps & PCIEM_CAP_MAX_PAYLOAD);
3582                 if (sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
3583                     sc->bge_asicrev == BGE_ASICREV_BCM5720)
3584                         sc->bge_expmrq = 2048;
3585                 else
3586                         sc->bge_expmrq = 4096;
3587                 pci_set_max_read_req(dev, sc->bge_expmrq);
3588         } else {
3589                 /*
3590                  * Check if the device is in PCI-X Mode.
3591                  * (This bit is not valid on PCI Express controllers.)
3592                  */
3593                 if (pci_find_cap(dev, PCIY_PCIX, &reg) == 0)
3594                         sc->bge_pcixcap = reg;
3595                 if ((pci_read_config(dev, BGE_PCI_PCISTATE, 4) &
3596                     BGE_PCISTATE_PCI_BUSMODE) == 0)
3597                         sc->bge_flags |= BGE_FLAG_PCIX;
3598         }
3599
3600         /*
3601          * The 40bit DMA bug applies to the 5714/5715 controllers and is
3602          * not actually a MAC controller bug but an issue with the embedded
3603          * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
3604          */
3605         if (BGE_IS_5714_FAMILY(sc) && (sc->bge_flags & BGE_FLAG_PCIX))
3606                 sc->bge_flags |= BGE_FLAG_40BIT_BUG;
3607         /*
3608          * Some PCI-X bridges are known to trigger write reordering to
3609          * the mailbox registers. Typical phenomena is watchdog timeouts
3610          * caused by out-of-order TX completions.  Enable workaround for
3611          * PCI-X devices that live behind these bridges.
3612          * Note, PCI-X controllers can run in PCI mode so we can't use
3613          * BGE_FLAG_PCIX flag to detect PCI-X controllers.
3614          */
3615         if (sc->bge_pcixcap != 0 && bge_mbox_reorder(sc) != 0)
3616                 sc->bge_flags |= BGE_FLAG_MBOX_REORDER;
3617         /*
3618          * Allocate the interrupt, using MSI if possible.  These devices
3619          * support 8 MSI messages, but only the first one is used in
3620          * normal operation.
3621          */
3622         rid = 0;
3623         if (pci_find_cap(sc->bge_dev, PCIY_MSI, &reg) == 0) {
3624                 sc->bge_msicap = reg;
3625                 reg = 1;
3626                 if (bge_can_use_msi(sc) && pci_alloc_msi(dev, &reg) == 0) {
3627                         rid = 1;
3628                         sc->bge_flags |= BGE_FLAG_MSI;
3629                 }
3630         }
3631
3632         /*
3633          * All controllers except BCM5700 supports tagged status but
3634          * we use tagged status only for MSI case on BCM5717. Otherwise
3635          * MSI on BCM5717 does not work.
3636          */
3637 #ifndef DEVICE_POLLING
3638         if (sc->bge_flags & BGE_FLAG_MSI && BGE_IS_5717_PLUS(sc))
3639                 sc->bge_flags |= BGE_FLAG_TAGGED_STATUS;
3640 #endif
3641
3642         sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
3643             RF_ACTIVE | (rid != 0 ? 0 : RF_SHAREABLE));
3644
3645         if (sc->bge_irq == NULL) {
3646                 device_printf(sc->bge_dev, "couldn't map interrupt\n");
3647                 error = ENXIO;
3648                 goto fail;
3649         }
3650
3651         bge_devinfo(sc);
3652
3653         sc->bge_asf_mode = 0;
3654         /* No ASF if APE present. */
3655         if ((sc->bge_flags & BGE_FLAG_APE) == 0) {
3656                 if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3657                     BGE_SRAM_DATA_SIG_MAGIC)) {
3658                         if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
3659                             BGE_HWCFG_ASF) {
3660                                 sc->bge_asf_mode |= ASF_ENABLE;
3661                                 sc->bge_asf_mode |= ASF_STACKUP;
3662                                 if (BGE_IS_575X_PLUS(sc))
3663                                         sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
3664                         }
3665                 }
3666         }
3667
3668         bge_stop_fw(sc);
3669         bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
3670         if (bge_reset(sc)) {
3671                 device_printf(sc->bge_dev, "chip reset failed\n");
3672                 error = ENXIO;
3673                 goto fail;
3674         }
3675
3676         bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
3677         bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
3678
3679         if (bge_chipinit(sc)) {
3680                 device_printf(sc->bge_dev, "chip initialization failed\n");
3681                 error = ENXIO;
3682                 goto fail;
3683         }
3684
3685         error = bge_get_eaddr(sc, eaddr);
3686         if (error) {
3687                 device_printf(sc->bge_dev,
3688                     "failed to read station address\n");
3689                 error = ENXIO;
3690                 goto fail;
3691         }
3692
3693         /* 5705 limits RX return ring to 512 entries. */
3694         if (BGE_IS_5717_PLUS(sc))
3695                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3696         else if (BGE_IS_5705_PLUS(sc))
3697                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
3698         else
3699                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3700
3701         if (bge_dma_alloc(sc)) {
3702                 device_printf(sc->bge_dev,
3703                     "failed to allocate DMA resources\n");
3704                 error = ENXIO;
3705                 goto fail;
3706         }
3707
3708         /* Set default tuneable values. */
3709         sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
3710         sc->bge_rx_coal_ticks = 150;
3711         sc->bge_tx_coal_ticks = 150;
3712         sc->bge_rx_max_coal_bds = 10;
3713         sc->bge_tx_max_coal_bds = 10;
3714
3715         /* Initialize checksum features to use. */
3716         sc->bge_csum_features = BGE_CSUM_FEATURES;
3717         if (sc->bge_forced_udpcsum != 0)
3718                 sc->bge_csum_features |= CSUM_UDP;
3719
3720         /* Set up ifnet structure */
3721         ifp = sc->bge_ifp = if_alloc(IFT_ETHER);
3722         if (ifp == NULL) {
3723                 device_printf(sc->bge_dev, "failed to if_alloc()\n");
3724                 error = ENXIO;
3725                 goto fail;
3726         }
3727         ifp->if_softc = sc;
3728         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
3729         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
3730         ifp->if_ioctl = bge_ioctl;
3731         ifp->if_start = bge_start;
3732         ifp->if_init = bge_init;
3733         ifp->if_snd.ifq_drv_maxlen = BGE_TX_RING_CNT - 1;
3734         IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
3735         IFQ_SET_READY(&ifp->if_snd);
3736         ifp->if_hwassist = sc->bge_csum_features;
3737         ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING |
3738             IFCAP_VLAN_MTU;
3739         if ((sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) != 0) {
3740                 ifp->if_hwassist |= CSUM_TSO;
3741                 ifp->if_capabilities |= IFCAP_TSO4 | IFCAP_VLAN_HWTSO;
3742         }
3743 #ifdef IFCAP_VLAN_HWCSUM
3744         ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
3745 #endif
3746         ifp->if_capenable = ifp->if_capabilities;
3747 #ifdef DEVICE_POLLING
3748         ifp->if_capabilities |= IFCAP_POLLING;
3749 #endif
3750
3751         /*
3752          * 5700 B0 chips do not support checksumming correctly due
3753          * to hardware bugs.
3754          */
3755         if (sc->bge_chipid == BGE_CHIPID_BCM5700_B0) {
3756                 ifp->if_capabilities &= ~IFCAP_HWCSUM;
3757                 ifp->if_capenable &= ~IFCAP_HWCSUM;
3758                 ifp->if_hwassist = 0;
3759         }
3760
3761         /*
3762          * Figure out what sort of media we have by checking the
3763          * hardware config word in the first 32k of NIC internal memory,
3764          * or fall back to examining the EEPROM if necessary.
3765          * Note: on some BCM5700 cards, this value appears to be unset.
3766          * If that's the case, we have to rely on identifying the NIC
3767          * by its PCI subsystem ID, as we do below for the SysKonnect
3768          * SK-9D41.
3769          */
3770         if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) == BGE_SRAM_DATA_SIG_MAGIC)
3771                 hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
3772         else if ((sc->bge_flags & BGE_FLAG_EADDR) &&
3773             (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
3774                 if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
3775                     sizeof(hwcfg))) {
3776                         device_printf(sc->bge_dev, "failed to read EEPROM\n");
3777                         error = ENXIO;
3778                         goto fail;
3779                 }
3780                 hwcfg = ntohl(hwcfg);
3781         }
3782
3783         /* The SysKonnect SK-9D41 is a 1000baseSX card. */
3784         if ((pci_read_config(dev, BGE_PCI_SUBSYS, 4) >> 16) ==
3785             SK_SUBSYSID_9D41 || (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
3786                 if (BGE_IS_5705_PLUS(sc)) {
3787                         sc->bge_flags |= BGE_FLAG_MII_SERDES;
3788                         sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
3789                 } else
3790                         sc->bge_flags |= BGE_FLAG_TBI;
3791         }
3792
3793         /* Set various PHY bug flags. */
3794         if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
3795             sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
3796                 sc->bge_phy_flags |= BGE_PHY_CRC_BUG;
3797         if (sc->bge_chiprev == BGE_CHIPREV_5703_AX ||
3798             sc->bge_chiprev == BGE_CHIPREV_5704_AX)
3799                 sc->bge_phy_flags |= BGE_PHY_ADC_BUG;
3800         if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
3801                 sc->bge_phy_flags |= BGE_PHY_5704_A0_BUG;
3802         if (pci_get_subvendor(dev) == DELL_VENDORID)
3803                 sc->bge_phy_flags |= BGE_PHY_NO_3LED;
3804         if ((BGE_IS_5705_PLUS(sc)) &&
3805             sc->bge_asicrev != BGE_ASICREV_BCM5906 &&
3806             sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
3807             sc->bge_asicrev != BGE_ASICREV_BCM57780 &&
3808             !BGE_IS_5717_PLUS(sc)) {
3809                 if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
3810                     sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
3811                     sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
3812                     sc->bge_asicrev == BGE_ASICREV_BCM5787) {
3813                         if (pci_get_device(dev) != BCOM_DEVICEID_BCM5722 &&
3814                             pci_get_device(dev) != BCOM_DEVICEID_BCM5756)
3815                                 sc->bge_phy_flags |= BGE_PHY_JITTER_BUG;
3816                         if (pci_get_device(dev) == BCOM_DEVICEID_BCM5755M)
3817                                 sc->bge_phy_flags |= BGE_PHY_ADJUST_TRIM;
3818                 } else
3819                         sc->bge_phy_flags |= BGE_PHY_BER_BUG;
3820         }
3821
3822         /*
3823          * Don't enable Ethernet@WireSpeed for the 5700 or the
3824          * 5705 A0 and A1 chips.
3825          */
3826         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
3827             (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
3828             (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
3829             sc->bge_chipid != BGE_CHIPID_BCM5705_A1)))
3830                 sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
3831
3832         if (sc->bge_flags & BGE_FLAG_TBI) {
3833                 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
3834                     bge_ifmedia_sts);
3835                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX, 0, NULL);
3836                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX | IFM_FDX,
3837                     0, NULL);
3838                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
3839                 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
3840                 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
3841         } else {
3842                 /*
3843                  * Do transceiver setup and tell the firmware the
3844                  * driver is down so we can try to get access the
3845                  * probe if ASF is running.  Retry a couple of times
3846                  * if we get a conflict with the ASF firmware accessing
3847                  * the PHY.
3848                  */
3849                 trys = 0;
3850                 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3851 again:
3852                 bge_asf_driver_up(sc);
3853
3854                 error = mii_attach(dev, &sc->bge_miibus, ifp, bge_ifmedia_upd,
3855                     bge_ifmedia_sts, capmask, sc->bge_phy_addr, MII_OFFSET_ANY,
3856                     MIIF_DOPAUSE);
3857                 if (error != 0) {
3858                         if (trys++ < 4) {
3859                                 device_printf(sc->bge_dev, "Try again\n");
3860                                 bge_miibus_writereg(sc->bge_dev,
3861                                     sc->bge_phy_addr, MII_BMCR, BMCR_RESET);
3862                                 goto again;
3863                         }
3864                         device_printf(sc->bge_dev, "attaching PHYs failed\n");
3865                         goto fail;
3866                 }
3867
3868                 /*
3869                  * Now tell the firmware we are going up after probing the PHY
3870                  */
3871                 if (sc->bge_asf_mode & ASF_STACKUP)
3872                         BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3873         }
3874
3875         /*
3876          * When using the BCM5701 in PCI-X mode, data corruption has
3877          * been observed in the first few bytes of some received packets.
3878          * Aligning the packet buffer in memory eliminates the corruption.
3879          * Unfortunately, this misaligns the packet payloads.  On platforms
3880          * which do not support unaligned accesses, we will realign the
3881          * payloads by copying the received packets.
3882          */
3883         if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
3884             sc->bge_flags & BGE_FLAG_PCIX)
3885                 sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG;
3886
3887         /*
3888          * Call MI attach routine.
3889          */
3890         ether_ifattach(ifp, eaddr);
3891
3892         /* Tell upper layer we support long frames. */
3893         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
3894
3895         /*
3896          * Hookup IRQ last.
3897          */
3898         if (BGE_IS_5755_PLUS(sc) && sc->bge_flags & BGE_FLAG_MSI) {
3899                 /* Take advantage of single-shot MSI. */
3900                 CSR_WRITE_4(sc, BGE_MSI_MODE, CSR_READ_4(sc, BGE_MSI_MODE) &
3901                     ~BGE_MSIMODE_ONE_SHOT_DISABLE);
3902                 sc->bge_tq = taskqueue_create_fast("bge_taskq", M_WAITOK,
3903                     taskqueue_thread_enqueue, &sc->bge_tq);
3904                 if (sc->bge_tq == NULL) {
3905                         device_printf(dev, "could not create taskqueue.\n");
3906                         ether_ifdetach(ifp);
3907                         error = ENOMEM;
3908                         goto fail;
3909                 }
3910                 error = taskqueue_start_threads(&sc->bge_tq, 1, PI_NET,
3911                     "%s taskq", device_get_nameunit(sc->bge_dev));
3912                 if (error != 0) {
3913                         device_printf(dev, "could not start threads.\n");
3914                         ether_ifdetach(ifp);
3915                         goto fail;
3916                 }
3917                 error = bus_setup_intr(dev, sc->bge_irq,
3918                     INTR_TYPE_NET | INTR_MPSAFE, bge_msi_intr, NULL, sc,
3919                     &sc->bge_intrhand);
3920         } else
3921                 error = bus_setup_intr(dev, sc->bge_irq,
3922                     INTR_TYPE_NET | INTR_MPSAFE, NULL, bge_intr, sc,
3923                     &sc->bge_intrhand);
3924
3925         if (error) {
3926                 ether_ifdetach(ifp);
3927                 device_printf(sc->bge_dev, "couldn't set up irq\n");
3928         }
3929
3930 fail:
3931         if (error)
3932                 bge_detach(dev);
3933         return (error);
3934 }
3935
3936 static int
3937 bge_detach(device_t dev)
3938 {
3939         struct bge_softc *sc;
3940         struct ifnet *ifp;
3941
3942         sc = device_get_softc(dev);
3943         ifp = sc->bge_ifp;
3944
3945 #ifdef DEVICE_POLLING
3946         if (ifp->if_capenable & IFCAP_POLLING)
3947                 ether_poll_deregister(ifp);
3948 #endif
3949
3950         if (device_is_attached(dev)) {
3951                 ether_ifdetach(ifp);
3952                 BGE_LOCK(sc);
3953                 bge_stop(sc);
3954                 BGE_UNLOCK(sc);
3955                 callout_drain(&sc->bge_stat_ch);
3956         }
3957
3958         if (sc->bge_tq)
3959                 taskqueue_drain(sc->bge_tq, &sc->bge_intr_task);
3960
3961         if (sc->bge_flags & BGE_FLAG_TBI)
3962                 ifmedia_removeall(&sc->bge_ifmedia);
3963         else if (sc->bge_miibus != NULL) {
3964                 bus_generic_detach(dev);
3965                 device_delete_child(dev, sc->bge_miibus);
3966         }
3967
3968         bge_release_resources(sc);
3969
3970         return (0);
3971 }
3972
3973 static void
3974 bge_release_resources(struct bge_softc *sc)
3975 {
3976         device_t dev;
3977
3978         dev = sc->bge_dev;
3979
3980         if (sc->bge_tq != NULL)
3981                 taskqueue_free(sc->bge_tq);
3982
3983         if (sc->bge_intrhand != NULL)
3984                 bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
3985
3986         if (sc->bge_irq != NULL) {
3987                 bus_release_resource(dev, SYS_RES_IRQ,
3988                     rman_get_rid(sc->bge_irq), sc->bge_irq);
3989                 pci_release_msi(dev);
3990         }
3991
3992         if (sc->bge_res != NULL)
3993                 bus_release_resource(dev, SYS_RES_MEMORY,
3994                     rman_get_rid(sc->bge_res), sc->bge_res);
3995
3996         if (sc->bge_res2 != NULL)
3997                 bus_release_resource(dev, SYS_RES_MEMORY,
3998                     rman_get_rid(sc->bge_res2), sc->bge_res2);
3999
4000         if (sc->bge_ifp != NULL)
4001                 if_free(sc->bge_ifp);
4002
4003         bge_dma_free(sc);
4004
4005         if (mtx_initialized(&sc->bge_mtx))      /* XXX */
4006                 BGE_LOCK_DESTROY(sc);
4007 }
4008
4009 static int
4010 bge_reset(struct bge_softc *sc)
4011 {
4012         device_t dev;
4013         uint32_t cachesize, command, mac_mode, mac_mode_mask, reset, val;
4014         void (*write_op)(struct bge_softc *, int, int);
4015         uint16_t devctl;
4016         int i;
4017
4018         dev = sc->bge_dev;
4019
4020         mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
4021         if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4022                 mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
4023         mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
4024
4025         if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
4026             (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
4027                 if (sc->bge_flags & BGE_FLAG_PCIE)
4028                         write_op = bge_writemem_direct;
4029                 else
4030                         write_op = bge_writemem_ind;
4031         } else
4032                 write_op = bge_writereg_ind;
4033
4034         if (sc->bge_asicrev != BGE_ASICREV_BCM5700 &&
4035             sc->bge_asicrev != BGE_ASICREV_BCM5701) {
4036                 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
4037                 for (i = 0; i < 8000; i++) {
4038                         if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
4039                             BGE_NVRAMSWARB_GNT1)
4040                                 break;
4041                         DELAY(20);
4042                 }
4043                 if (i == 8000) {
4044                         if (bootverbose)
4045                                 device_printf(dev, "NVRAM lock timedout!\n");
4046                 }
4047         }
4048         /* Take APE lock when performing reset. */
4049         bge_ape_lock(sc, BGE_APE_LOCK_GRC);
4050
4051         /* Save some important PCI state. */
4052         cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
4053         command = pci_read_config(dev, BGE_PCI_CMD, 4);
4054
4055         pci_write_config(dev, BGE_PCI_MISC_CTL,
4056             BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4057             BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
4058
4059         /* Disable fastboot on controllers that support it. */
4060         if (sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
4061             BGE_IS_5755_PLUS(sc)) {
4062                 if (bootverbose)
4063                         device_printf(dev, "Disabling fastboot\n");
4064                 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0);
4065         }
4066
4067         /*
4068          * Write the magic number to SRAM at offset 0xB50.
4069          * When firmware finishes its initialization it will
4070          * write ~BGE_SRAM_FW_MB_MAGIC to the same location.
4071          */
4072         bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
4073
4074         reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
4075
4076         /* XXX: Broadcom Linux driver. */
4077         if (sc->bge_flags & BGE_FLAG_PCIE) {
4078                 if (sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
4079                     (sc->bge_flags & BGE_FLAG_5717_PLUS) == 0) {
4080                         if (CSR_READ_4(sc, 0x7E2C) == 0x60)     /* PCIE 1.0 */
4081                                 CSR_WRITE_4(sc, 0x7E2C, 0x20);
4082                 }
4083                 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
4084                         /* Prevent PCIE link training during global reset */
4085                         CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
4086                         reset |= 1 << 29;
4087                 }
4088         }
4089
4090         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
4091                 val = CSR_READ_4(sc, BGE_VCPU_STATUS);
4092                 CSR_WRITE_4(sc, BGE_VCPU_STATUS,
4093                     val | BGE_VCPU_STATUS_DRV_RESET);
4094                 val = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
4095                 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
4096                     val & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
4097         }
4098
4099         /*
4100          * Set GPHY Power Down Override to leave GPHY
4101          * powered up in D0 uninitialized.
4102          */
4103         if (BGE_IS_5705_PLUS(sc) &&
4104             (sc->bge_flags & BGE_FLAG_CPMU_PRESENT) == 0)
4105                 reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
4106
4107         /* Issue global reset */
4108         write_op(sc, BGE_MISC_CFG, reset);
4109
4110         if (sc->bge_flags & BGE_FLAG_PCIE)
4111                 DELAY(100 * 1000);
4112         else
4113                 DELAY(1000);
4114
4115         /* XXX: Broadcom Linux driver. */
4116         if (sc->bge_flags & BGE_FLAG_PCIE) {
4117                 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
4118                         DELAY(500000); /* wait for link training to complete */
4119                         val = pci_read_config(dev, 0xC4, 4);
4120                         pci_write_config(dev, 0xC4, val | (1 << 15), 4);
4121                 }
4122                 devctl = pci_read_config(dev,
4123                     sc->bge_expcap + PCIER_DEVICE_CTL, 2);
4124                 /* Clear enable no snoop and disable relaxed ordering. */
4125                 devctl &= ~(PCIEM_CTL_RELAXED_ORD_ENABLE |
4126                     PCIEM_CTL_NOSNOOP_ENABLE);
4127                 pci_write_config(dev, sc->bge_expcap + PCIER_DEVICE_CTL,
4128                     devctl, 2);
4129                 pci_set_max_read_req(dev, sc->bge_expmrq);
4130                 /* Clear error status. */
4131                 pci_write_config(dev, sc->bge_expcap + PCIER_DEVICE_STA,
4132                     PCIEM_STA_CORRECTABLE_ERROR |
4133                     PCIEM_STA_NON_FATAL_ERROR | PCIEM_STA_FATAL_ERROR |
4134                     PCIEM_STA_UNSUPPORTED_REQ, 2);
4135         }
4136
4137         /* Reset some of the PCI state that got zapped by reset. */
4138         pci_write_config(dev, BGE_PCI_MISC_CTL,
4139             BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4140             BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
4141         val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
4142         if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
4143             (sc->bge_flags & BGE_FLAG_PCIX) != 0)
4144                 val |= BGE_PCISTATE_RETRY_SAME_DMA;
4145         if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4146                 val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
4147                     BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
4148                     BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
4149         pci_write_config(dev, BGE_PCI_PCISTATE, val, 4);
4150         pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
4151         pci_write_config(dev, BGE_PCI_CMD, command, 4);
4152         /*
4153          * Disable PCI-X relaxed ordering to ensure status block update
4154          * comes first then packet buffer DMA. Otherwise driver may
4155          * read stale status block.
4156          */
4157         if (sc->bge_flags & BGE_FLAG_PCIX) {
4158                 devctl = pci_read_config(dev,
4159                     sc->bge_pcixcap + PCIXR_COMMAND, 2);
4160                 devctl &= ~PCIXM_COMMAND_ERO;
4161                 if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
4162                         devctl &= ~PCIXM_COMMAND_MAX_READ;
4163                         devctl |= PCIXM_COMMAND_MAX_READ_2048;
4164                 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
4165                         devctl &= ~(PCIXM_COMMAND_MAX_SPLITS |
4166                             PCIXM_COMMAND_MAX_READ);
4167                         devctl |= PCIXM_COMMAND_MAX_READ_2048;
4168                 }
4169                 pci_write_config(dev, sc->bge_pcixcap + PCIXR_COMMAND,
4170                     devctl, 2);
4171         }
4172         /* Re-enable MSI, if necessary, and enable the memory arbiter. */
4173         if (BGE_IS_5714_FAMILY(sc)) {
4174                 /* This chip disables MSI on reset. */
4175                 if (sc->bge_flags & BGE_FLAG_MSI) {
4176                         val = pci_read_config(dev,
4177                             sc->bge_msicap + PCIR_MSI_CTRL, 2);
4178                         pci_write_config(dev,
4179                             sc->bge_msicap + PCIR_MSI_CTRL,
4180                             val | PCIM_MSICTRL_MSI_ENABLE, 2);
4181                         val = CSR_READ_4(sc, BGE_MSI_MODE);
4182                         CSR_WRITE_4(sc, BGE_MSI_MODE,
4183                             val | BGE_MSIMODE_ENABLE);
4184                 }
4185                 val = CSR_READ_4(sc, BGE_MARB_MODE);
4186                 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
4187         } else
4188                 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4189
4190         /* Fix up byte swapping. */
4191         CSR_WRITE_4(sc, BGE_MODE_CTL, bge_dma_swap_options(sc));
4192
4193         val = CSR_READ_4(sc, BGE_MAC_MODE);
4194         val = (val & ~mac_mode_mask) | mac_mode;
4195         CSR_WRITE_4(sc, BGE_MAC_MODE, val);
4196         DELAY(40);
4197
4198         bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
4199
4200         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
4201                 for (i = 0; i < BGE_TIMEOUT; i++) {
4202                         val = CSR_READ_4(sc, BGE_VCPU_STATUS);
4203                         if (val & BGE_VCPU_STATUS_INIT_DONE)
4204                                 break;
4205                         DELAY(100);
4206                 }
4207                 if (i == BGE_TIMEOUT) {
4208                         device_printf(dev, "reset timed out\n");
4209                         return (1);
4210                 }
4211         } else {
4212                 /*
4213                  * Poll until we see the 1's complement of the magic number.
4214                  * This indicates that the firmware initialization is complete.
4215                  * We expect this to fail if no chip containing the Ethernet
4216                  * address is fitted though.
4217                  */
4218                 for (i = 0; i < BGE_TIMEOUT; i++) {
4219                         DELAY(10);
4220                         val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
4221                         if (val == ~BGE_SRAM_FW_MB_MAGIC)
4222                                 break;
4223                 }
4224
4225                 if ((sc->bge_flags & BGE_FLAG_EADDR) && i == BGE_TIMEOUT)
4226                         device_printf(dev,
4227                             "firmware handshake timed out, found 0x%08x\n",
4228                             val);
4229                 /* BCM57765 A0 needs additional time before accessing. */
4230                 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
4231                         DELAY(10 * 1000);       /* XXX */
4232         }
4233
4234         /*
4235          * The 5704 in TBI mode apparently needs some special
4236          * adjustment to insure the SERDES drive level is set
4237          * to 1.2V.
4238          */
4239         if (sc->bge_asicrev == BGE_ASICREV_BCM5704 &&
4240             sc->bge_flags & BGE_FLAG_TBI) {
4241                 val = CSR_READ_4(sc, BGE_SERDES_CFG);
4242                 val = (val & ~0xFFF) | 0x880;
4243                 CSR_WRITE_4(sc, BGE_SERDES_CFG, val);
4244         }
4245
4246         /* XXX: Broadcom Linux driver. */
4247         if (sc->bge_flags & BGE_FLAG_PCIE &&
4248             !BGE_IS_5717_PLUS(sc) &&
4249             sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
4250             sc->bge_asicrev != BGE_ASICREV_BCM5785) {
4251                 /* Enable Data FIFO protection. */
4252                 val = CSR_READ_4(sc, 0x7C00);
4253                 CSR_WRITE_4(sc, 0x7C00, val | (1 << 25));
4254         }
4255
4256         if (sc->bge_asicrev == BGE_ASICREV_BCM5720)
4257                 BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
4258                     CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
4259
4260         return (0);
4261 }
4262
4263 static __inline void
4264 bge_rxreuse_std(struct bge_softc *sc, int i)
4265 {
4266         struct bge_rx_bd *r;
4267
4268         r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std];
4269         r->bge_flags = BGE_RXBDFLAG_END;
4270         r->bge_len = sc->bge_cdata.bge_rx_std_seglen[i];
4271         r->bge_idx = i;
4272         BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
4273 }
4274
4275 static __inline void
4276 bge_rxreuse_jumbo(struct bge_softc *sc, int i)
4277 {
4278         struct bge_extrx_bd *r;
4279
4280         r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo];
4281         r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END;
4282         r->bge_len0 = sc->bge_cdata.bge_rx_jumbo_seglen[i][0];
4283         r->bge_len1 = sc->bge_cdata.bge_rx_jumbo_seglen[i][1];
4284         r->bge_len2 = sc->bge_cdata.bge_rx_jumbo_seglen[i][2];
4285         r->bge_len3 = sc->bge_cdata.bge_rx_jumbo_seglen[i][3];
4286         r->bge_idx = i;
4287         BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4288 }
4289
4290 /*
4291  * Frame reception handling. This is called if there's a frame
4292  * on the receive return list.
4293  *
4294  * Note: we have to be able to handle two possibilities here:
4295  * 1) the frame is from the jumbo receive ring
4296  * 2) the frame is from the standard receive ring
4297  */
4298
4299 static int
4300 bge_rxeof(struct bge_softc *sc, uint16_t rx_prod, int holdlck)
4301 {
4302         struct ifnet *ifp;
4303         int rx_npkts = 0, stdcnt = 0, jumbocnt = 0;
4304         uint16_t rx_cons;
4305
4306         rx_cons = sc->bge_rx_saved_considx;
4307
4308         /* Nothing to do. */
4309         if (rx_cons == rx_prod)
4310                 return (rx_npkts);
4311
4312         ifp = sc->bge_ifp;
4313
4314         bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
4315             sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_POSTREAD);
4316         bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
4317             sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_POSTWRITE);
4318         if (BGE_IS_JUMBO_CAPABLE(sc) &&
4319             ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN >
4320             (MCLBYTES - ETHER_ALIGN))
4321                 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
4322                     sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_POSTWRITE);
4323
4324         while (rx_cons != rx_prod) {
4325                 struct bge_rx_bd        *cur_rx;
4326                 uint32_t                rxidx;
4327                 struct mbuf             *m = NULL;
4328                 uint16_t                vlan_tag = 0;
4329                 int                     have_tag = 0;
4330
4331 #ifdef DEVICE_POLLING
4332                 if (ifp->if_capenable & IFCAP_POLLING) {
4333                         if (sc->rxcycles <= 0)
4334                                 break;
4335                         sc->rxcycles--;
4336                 }
4337 #endif
4338
4339                 cur_rx = &sc->bge_ldata.bge_rx_return_ring[rx_cons];
4340
4341                 rxidx = cur_rx->bge_idx;
4342                 BGE_INC(rx_cons, sc->bge_return_ring_cnt);
4343
4344                 if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING &&
4345                     cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
4346                         have_tag = 1;
4347                         vlan_tag = cur_rx->bge_vlan_tag;
4348                 }
4349
4350                 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
4351                         jumbocnt++;
4352                         m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
4353                         if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4354                                 bge_rxreuse_jumbo(sc, rxidx);
4355                                 continue;
4356                         }
4357                         if (bge_newbuf_jumbo(sc, rxidx) != 0) {
4358                                 bge_rxreuse_jumbo(sc, rxidx);
4359                                 ifp->if_iqdrops++;
4360                                 continue;
4361                         }
4362                         BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4363                 } else {
4364                         stdcnt++;
4365                         m = sc->bge_cdata.bge_rx_std_chain[rxidx];
4366                         if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4367                                 bge_rxreuse_std(sc, rxidx);
4368                                 continue;
4369                         }
4370                         if (bge_newbuf_std(sc, rxidx) != 0) {
4371                                 bge_rxreuse_std(sc, rxidx);
4372                                 ifp->if_iqdrops++;
4373                                 continue;
4374                         }
4375                         BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
4376                 }
4377
4378                 ifp->if_ipackets++;
4379 #ifndef __NO_STRICT_ALIGNMENT
4380                 /*
4381                  * For architectures with strict alignment we must make sure
4382                  * the payload is aligned.
4383                  */
4384                 if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) {
4385                         bcopy(m->m_data, m->m_data + ETHER_ALIGN,
4386                             cur_rx->bge_len);
4387                         m->m_data += ETHER_ALIGN;
4388                 }
4389 #endif
4390                 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
4391                 m->m_pkthdr.rcvif = ifp;
4392
4393                 if (ifp->if_capenable & IFCAP_RXCSUM)
4394                         bge_rxcsum(sc, cur_rx, m);
4395
4396                 /*
4397                  * If we received a packet with a vlan tag,
4398                  * attach that information to the packet.
4399                  */
4400                 if (have_tag) {
4401                         m->m_pkthdr.ether_vtag = vlan_tag;
4402                         m->m_flags |= M_VLANTAG;
4403                 }
4404
4405                 if (holdlck != 0) {
4406                         BGE_UNLOCK(sc);
4407                         (*ifp->if_input)(ifp, m);
4408                         BGE_LOCK(sc);
4409                 } else
4410                         (*ifp->if_input)(ifp, m);
4411                 rx_npkts++;
4412
4413                 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
4414                         return (rx_npkts);
4415         }
4416
4417         bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
4418             sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_PREREAD);
4419         if (stdcnt > 0)
4420                 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
4421                     sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
4422
4423         if (jumbocnt > 0)
4424                 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
4425                     sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
4426
4427         sc->bge_rx_saved_considx = rx_cons;
4428         bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
4429         if (stdcnt)
4430                 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, (sc->bge_std +
4431                     BGE_STD_RX_RING_CNT - 1) % BGE_STD_RX_RING_CNT);
4432         if (jumbocnt)
4433                 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, (sc->bge_jumbo +
4434                     BGE_JUMBO_RX_RING_CNT - 1) % BGE_JUMBO_RX_RING_CNT);
4435 #ifdef notyet
4436         /*
4437          * This register wraps very quickly under heavy packet drops.
4438          * If you need correct statistics, you can enable this check.
4439          */
4440         if (BGE_IS_5705_PLUS(sc))
4441                 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4442 #endif
4443         return (rx_npkts);
4444 }
4445
4446 static void
4447 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
4448 {
4449
4450         if (BGE_IS_5717_PLUS(sc)) {
4451                 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
4452                         if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
4453                                 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
4454                                 if ((cur_rx->bge_error_flag &
4455                                     BGE_RXERRFLAG_IP_CSUM_NOK) == 0)
4456                                         m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
4457                         }
4458                         if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
4459                                 m->m_pkthdr.csum_data =
4460                                     cur_rx->bge_tcp_udp_csum;
4461                                 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
4462                                     CSUM_PSEUDO_HDR;
4463                         }
4464                 }
4465         } else {
4466                 if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
4467                         m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
4468                         if ((cur_rx->bge_ip_csum ^ 0xFFFF) == 0)
4469                                 m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
4470                 }
4471                 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
4472                     m->m_pkthdr.len >= ETHER_MIN_NOPAD) {
4473                         m->m_pkthdr.csum_data =
4474                             cur_rx->bge_tcp_udp_csum;
4475                         m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
4476                             CSUM_PSEUDO_HDR;
4477                 }
4478         }
4479 }
4480
4481 static void
4482 bge_txeof(struct bge_softc *sc, uint16_t tx_cons)
4483 {
4484         struct bge_tx_bd *cur_tx;
4485         struct ifnet *ifp;
4486
4487         BGE_LOCK_ASSERT(sc);
4488
4489         /* Nothing to do. */
4490         if (sc->bge_tx_saved_considx == tx_cons)
4491                 return;
4492
4493         ifp = sc->bge_ifp;
4494
4495         bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
4496             sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_POSTWRITE);
4497         /*
4498          * Go through our tx ring and free mbufs for those
4499          * frames that have been sent.
4500          */
4501         while (sc->bge_tx_saved_considx != tx_cons) {
4502                 uint32_t                idx;
4503
4504                 idx = sc->bge_tx_saved_considx;
4505                 cur_tx = &sc->bge_ldata.bge_tx_ring[idx];
4506                 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
4507                         ifp->if_opackets++;
4508                 if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
4509                         bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag,
4510                             sc->bge_cdata.bge_tx_dmamap[idx],
4511                             BUS_DMASYNC_POSTWRITE);
4512                         bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
4513                             sc->bge_cdata.bge_tx_dmamap[idx]);
4514                         m_freem(sc->bge_cdata.bge_tx_chain[idx]);
4515                         sc->bge_cdata.bge_tx_chain[idx] = NULL;
4516                 }
4517                 sc->bge_txcnt--;
4518                 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
4519         }
4520
4521         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4522         if (sc->bge_txcnt == 0)
4523                 sc->bge_timer = 0;
4524 }
4525
4526 #ifdef DEVICE_POLLING
4527 static int
4528 bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
4529 {
4530         struct bge_softc *sc = ifp->if_softc;
4531         uint16_t rx_prod, tx_cons;
4532         uint32_t statusword;
4533         int rx_npkts = 0;
4534
4535         BGE_LOCK(sc);
4536         if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
4537                 BGE_UNLOCK(sc);
4538                 return (rx_npkts);
4539         }
4540
4541         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4542             sc->bge_cdata.bge_status_map,
4543             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4544         /* Fetch updates from the status block. */
4545         rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
4546         tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
4547
4548         statusword = sc->bge_ldata.bge_status_block->bge_status;
4549         /* Clear the status so the next pass only sees the changes. */
4550         sc->bge_ldata.bge_status_block->bge_status = 0;
4551
4552         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4553             sc->bge_cdata.bge_status_map,
4554             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4555
4556         /* Note link event. It will be processed by POLL_AND_CHECK_STATUS. */
4557         if (statusword & BGE_STATFLAG_LINKSTATE_CHANGED)
4558                 sc->bge_link_evt++;
4559
4560         if (cmd == POLL_AND_CHECK_STATUS)
4561                 if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
4562                     sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
4563                     sc->bge_link_evt || (sc->bge_flags & BGE_FLAG_TBI))
4564                         bge_link_upd(sc);
4565
4566         sc->rxcycles = count;
4567         rx_npkts = bge_rxeof(sc, rx_prod, 1);
4568         if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
4569                 BGE_UNLOCK(sc);
4570                 return (rx_npkts);
4571         }
4572         bge_txeof(sc, tx_cons);
4573         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
4574                 bge_start_locked(ifp);
4575
4576         BGE_UNLOCK(sc);
4577         return (rx_npkts);
4578 }
4579 #endif /* DEVICE_POLLING */
4580
4581 static int
4582 bge_msi_intr(void *arg)
4583 {
4584         struct bge_softc *sc;
4585
4586         sc = (struct bge_softc *)arg;
4587         /*
4588          * This interrupt is not shared and controller already
4589          * disabled further interrupt.
4590          */
4591         taskqueue_enqueue(sc->bge_tq, &sc->bge_intr_task);
4592         return (FILTER_HANDLED);
4593 }
4594
4595 static void
4596 bge_intr_task(void *arg, int pending)
4597 {
4598         struct bge_softc *sc;
4599         struct ifnet *ifp;
4600         uint32_t status, status_tag;
4601         uint16_t rx_prod, tx_cons;
4602
4603         sc = (struct bge_softc *)arg;
4604         ifp = sc->bge_ifp;
4605
4606         BGE_LOCK(sc);
4607         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
4608                 BGE_UNLOCK(sc);
4609                 return;
4610         }
4611
4612         /* Get updated status block. */
4613         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4614             sc->bge_cdata.bge_status_map,
4615             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4616
4617         /* Save producer/consumer indices. */
4618         rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
4619         tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
4620         status = sc->bge_ldata.bge_status_block->bge_status;
4621         status_tag = sc->bge_ldata.bge_status_block->bge_status_tag << 24;
4622         /* Dirty the status flag. */
4623         sc->bge_ldata.bge_status_block->bge_status = 0;
4624         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4625             sc->bge_cdata.bge_status_map,
4626             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4627         if ((sc->bge_flags & BGE_FLAG_TAGGED_STATUS) == 0)
4628                 status_tag = 0;
4629
4630         if ((status & BGE_STATFLAG_LINKSTATE_CHANGED) != 0)
4631                 bge_link_upd(sc);
4632
4633         /* Let controller work. */
4634         bge_writembx(sc, BGE_MBX_IRQ0_LO, status_tag);
4635
4636         if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
4637             sc->bge_rx_saved_considx != rx_prod) {
4638                 /* Check RX return ring producer/consumer. */
4639                 BGE_UNLOCK(sc);
4640                 bge_rxeof(sc, rx_prod, 0);
4641                 BGE_LOCK(sc);
4642         }
4643         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4644                 /* Check TX ring producer/consumer. */
4645                 bge_txeof(sc, tx_cons);
4646                 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
4647                         bge_start_locked(ifp);
4648         }
4649         BGE_UNLOCK(sc);
4650 }
4651
4652 static void
4653 bge_intr(void *xsc)
4654 {
4655         struct bge_softc *sc;
4656         struct ifnet *ifp;
4657         uint32_t statusword;
4658         uint16_t rx_prod, tx_cons;
4659
4660         sc = xsc;
4661
4662         BGE_LOCK(sc);
4663
4664         ifp = sc->bge_ifp;
4665
4666 #ifdef DEVICE_POLLING
4667         if (ifp->if_capenable & IFCAP_POLLING) {
4668                 BGE_UNLOCK(sc);
4669                 return;
4670         }
4671 #endif
4672
4673         /*
4674          * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO.  Don't
4675          * disable interrupts by writing nonzero like we used to, since with
4676          * our current organization this just gives complications and
4677          * pessimizations for re-enabling interrupts.  We used to have races
4678          * instead of the necessary complications.  Disabling interrupts
4679          * would just reduce the chance of a status update while we are
4680          * running (by switching to the interrupt-mode coalescence
4681          * parameters), but this chance is already very low so it is more
4682          * efficient to get another interrupt than prevent it.
4683          *
4684          * We do the ack first to ensure another interrupt if there is a
4685          * status update after the ack.  We don't check for the status
4686          * changing later because it is more efficient to get another
4687          * interrupt than prevent it, not quite as above (not checking is
4688          * a smaller optimization than not toggling the interrupt enable,
4689          * since checking doesn't involve PCI accesses and toggling require
4690          * the status check).  So toggling would probably be a pessimization
4691          * even with MSI.  It would only be needed for using a task queue.
4692          */
4693         bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
4694
4695         /*
4696          * Do the mandatory PCI flush as well as get the link status.
4697          */
4698         statusword = CSR_READ_4(sc, BGE_MAC_STS) & BGE_MACSTAT_LINK_CHANGED;
4699
4700         /* Make sure the descriptor ring indexes are coherent. */
4701         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4702             sc->bge_cdata.bge_status_map,
4703             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4704         rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
4705         tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
4706         sc->bge_ldata.bge_status_block->bge_status = 0;
4707         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4708             sc->bge_cdata.bge_status_map,
4709             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4710
4711         if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
4712             sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
4713             statusword || sc->bge_link_evt)
4714                 bge_link_upd(sc);
4715
4716         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4717                 /* Check RX return ring producer/consumer. */
4718                 bge_rxeof(sc, rx_prod, 1);
4719         }
4720
4721         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4722                 /* Check TX ring producer/consumer. */
4723                 bge_txeof(sc, tx_cons);
4724         }
4725
4726         if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
4727             !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
4728                 bge_start_locked(ifp);
4729
4730         BGE_UNLOCK(sc);
4731 }
4732
4733 static void
4734 bge_asf_driver_up(struct bge_softc *sc)
4735 {
4736         if (sc->bge_asf_mode & ASF_STACKUP) {
4737                 /* Send ASF heartbeat aprox. every 2s */
4738                 if (sc->bge_asf_count)
4739                         sc->bge_asf_count --;
4740                 else {
4741                         sc->bge_asf_count = 2;
4742                         bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
4743                             BGE_FW_CMD_DRV_ALIVE);
4744                         bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
4745                         bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
4746                             BGE_FW_HB_TIMEOUT_SEC);
4747                         CSR_WRITE_4(sc, BGE_RX_CPU_EVENT,
4748                             CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
4749                             BGE_RX_CPU_DRV_EVENT);
4750                 }
4751         }
4752 }
4753
4754 static void
4755 bge_tick(void *xsc)
4756 {
4757         struct bge_softc *sc = xsc;
4758         struct mii_data *mii = NULL;
4759
4760         BGE_LOCK_ASSERT(sc);
4761
4762         /* Synchronize with possible callout reset/stop. */
4763         if (callout_pending(&sc->bge_stat_ch) ||
4764             !callout_active(&sc->bge_stat_ch))
4765                 return;
4766
4767         if (BGE_IS_5705_PLUS(sc))
4768                 bge_stats_update_regs(sc);
4769         else
4770                 bge_stats_update(sc);
4771
4772         /* XXX Add APE heartbeat check here? */
4773
4774         if ((sc->bge_flags & BGE_FLAG_TBI) == 0) {
4775                 mii = device_get_softc(sc->bge_miibus);
4776                 /*
4777                  * Do not touch PHY if we have link up. This could break
4778                  * IPMI/ASF mode or produce extra input errors
4779                  * (extra errors was reported for bcm5701 & bcm5704).
4780                  */
4781                 if (!sc->bge_link)
4782                         mii_tick(mii);
4783         } else {
4784                 /*
4785                  * Since in TBI mode auto-polling can't be used we should poll
4786                  * link status manually. Here we register pending link event
4787                  * and trigger interrupt.
4788                  */
4789 #ifdef DEVICE_POLLING
4790                 /* In polling mode we poll link state in bge_poll(). */
4791                 if (!(sc->bge_ifp->if_capenable & IFCAP_POLLING))
4792 #endif
4793                 {
4794                 sc->bge_link_evt++;
4795                 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
4796                     sc->bge_flags & BGE_FLAG_5788)
4797                         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4798                 else
4799                         BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
4800                 }
4801         }
4802
4803         bge_asf_driver_up(sc);
4804         bge_watchdog(sc);
4805
4806         callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
4807 }
4808
4809 static void
4810 bge_stats_update_regs(struct bge_softc *sc)
4811 {
4812         struct ifnet *ifp;
4813         struct bge_mac_stats *stats;
4814         uint32_t val;
4815
4816         ifp = sc->bge_ifp;
4817         stats = &sc->bge_mac_stats;
4818
4819         stats->ifHCOutOctets +=
4820             CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS);
4821         stats->etherStatsCollisions +=
4822             CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS);
4823         stats->outXonSent +=
4824             CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT);
4825         stats->outXoffSent +=
4826             CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT);
4827         stats->dot3StatsInternalMacTransmitErrors +=
4828             CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS);
4829         stats->dot3StatsSingleCollisionFrames +=
4830             CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL);
4831         stats->dot3StatsMultipleCollisionFrames +=
4832             CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL);
4833         stats->dot3StatsDeferredTransmissions +=
4834             CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED);
4835         stats->dot3StatsExcessiveCollisions +=
4836             CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL);
4837         stats->dot3StatsLateCollisions +=
4838             CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL);
4839         stats->ifHCOutUcastPkts +=
4840             CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST);
4841         stats->ifHCOutMulticastPkts +=
4842             CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST);
4843         stats->ifHCOutBroadcastPkts +=
4844             CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST);
4845
4846         stats->ifHCInOctets +=
4847             CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS);
4848         stats->etherStatsFragments +=
4849             CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS);
4850         stats->ifHCInUcastPkts +=
4851             CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST);
4852         stats->ifHCInMulticastPkts +=
4853             CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST);
4854         stats->ifHCInBroadcastPkts +=
4855             CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST);
4856         stats->dot3StatsFCSErrors +=
4857             CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS);
4858         stats->dot3StatsAlignmentErrors +=
4859             CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS);
4860         stats->xonPauseFramesReceived +=
4861             CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD);
4862         stats->xoffPauseFramesReceived +=
4863             CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD);
4864         stats->macControlFramesReceived +=
4865             CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD);
4866         stats->xoffStateEntered +=
4867             CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED);
4868         stats->dot3StatsFramesTooLong +=
4869             CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG);
4870         stats->etherStatsJabbers +=
4871             CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS);
4872         stats->etherStatsUndersizePkts +=
4873             CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE);
4874
4875         stats->FramesDroppedDueToFilters +=
4876             CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP);
4877         stats->DmaWriteQueueFull +=
4878             CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL);
4879         stats->DmaWriteHighPriQueueFull +=
4880             CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL);
4881         stats->NoMoreRxBDs +=
4882             CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4883         /*
4884          * XXX
4885          * Unlike other controllers, BGE_RXLP_LOCSTAT_IFIN_DROPS
4886          * counter of BCM5717, BCM5718, BCM5719 A0 and BCM5720 A0
4887          * includes number of unwanted multicast frames.  This comes
4888          * from silicon bug and known workaround to get rough(not
4889          * exact) counter is to enable interrupt on MBUF low water
4890          * attention.  This can be accomplished by setting
4891          * BGE_HCCMODE_ATTN bit of BGE_HCC_MODE,
4892          * BGE_BMANMODE_LOMBUF_ATTN bit of BGE_BMAN_MODE and
4893          * BGE_MODECTL_FLOWCTL_ATTN_INTR bit of BGE_MODE_CTL.
4894          * However that change would generate more interrupts and
4895          * there are still possibilities of losing multiple frames
4896          * during BGE_MODECTL_FLOWCTL_ATTN_INTR interrupt handling.
4897          * Given that the workaround still would not get correct
4898          * counter I don't think it's worth to implement it.  So
4899          * ignore reading the counter on controllers that have the
4900          * silicon bug.
4901          */
4902         if (sc->bge_asicrev != BGE_ASICREV_BCM5717 &&
4903             sc->bge_chipid != BGE_CHIPID_BCM5719_A0 &&
4904             sc->bge_chipid != BGE_CHIPID_BCM5720_A0)
4905                 stats->InputDiscards +=
4906                     CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4907         stats->InputErrors +=
4908             CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4909         stats->RecvThresholdHit +=
4910             CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT);
4911
4912         ifp->if_collisions = (u_long)stats->etherStatsCollisions;
4913         ifp->if_ierrors = (u_long)(stats->NoMoreRxBDs + stats->InputDiscards +
4914             stats->InputErrors);
4915
4916         if (sc->bge_flags & BGE_FLAG_RDMA_BUG) {
4917                 /*
4918                  * If controller transmitted more than BGE_NUM_RDMA_CHANNELS
4919                  * frames, it's safe to disable workaround for DMA engine's
4920                  * miscalculation of TXMBUF space.
4921                  */
4922                 if (stats->ifHCOutUcastPkts + stats->ifHCOutMulticastPkts +
4923                     stats->ifHCOutBroadcastPkts > BGE_NUM_RDMA_CHANNELS) {
4924                         val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
4925                         if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
4926                                 val &= ~BGE_RDMA_TX_LENGTH_WA_5719;
4927                         else
4928                                 val &= ~BGE_RDMA_TX_LENGTH_WA_5720;
4929                         CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
4930                         sc->bge_flags &= ~BGE_FLAG_RDMA_BUG;
4931                 }
4932         }
4933 }
4934
4935 static void
4936 bge_stats_clear_regs(struct bge_softc *sc)
4937 {
4938
4939         CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS);
4940         CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS);
4941         CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT);
4942         CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT);
4943         CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS);
4944         CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL);
4945         CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL);
4946         CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED);
4947         CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL);
4948         CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL);
4949         CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST);
4950         CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST);
4951         CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST);
4952
4953         CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS);
4954         CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS);
4955         CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST);
4956         CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST);
4957         CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST);
4958         CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS);
4959         CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS);
4960         CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD);
4961         CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD);
4962         CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD);
4963         CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED);
4964         CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG);
4965         CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS);
4966         CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE);
4967
4968         CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP);
4969         CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL);
4970         CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL);
4971         CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4972         CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4973         CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4974         CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT);
4975 }
4976
4977 static void
4978 bge_stats_update(struct bge_softc *sc)
4979 {
4980         struct ifnet *ifp;
4981         bus_size_t stats;
4982         uint32_t cnt;   /* current register value */
4983
4984         ifp = sc->bge_ifp;
4985
4986         stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
4987
4988 #define READ_STAT(sc, stats, stat) \
4989         CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
4990
4991         cnt = READ_STAT(sc, stats, txstats.etherStatsCollisions.bge_addr_lo);
4992         ifp->if_collisions += (uint32_t)(cnt - sc->bge_tx_collisions);
4993         sc->bge_tx_collisions = cnt;
4994
4995         cnt = READ_STAT(sc, stats, nicNoMoreRxBDs.bge_addr_lo);
4996         ifp->if_ierrors += (uint32_t)(cnt - sc->bge_rx_nobds);
4997         sc->bge_rx_nobds = cnt;
4998         cnt = READ_STAT(sc, stats, ifInErrors.bge_addr_lo);
4999         ifp->if_ierrors += (uint32_t)(cnt - sc->bge_rx_inerrs);
5000         sc->bge_rx_inerrs = cnt;
5001         cnt = READ_STAT(sc, stats, ifInDiscards.bge_addr_lo);
5002         ifp->if_ierrors += (uint32_t)(cnt - sc->bge_rx_discards);
5003         sc->bge_rx_discards = cnt;
5004
5005         cnt = READ_STAT(sc, stats, txstats.ifOutDiscards.bge_addr_lo);
5006         ifp->if_oerrors += (uint32_t)(cnt - sc->bge_tx_discards);
5007         sc->bge_tx_discards = cnt;
5008
5009 #undef  READ_STAT
5010 }
5011
5012 /*
5013  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
5014  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
5015  * but when such padded frames employ the bge IP/TCP checksum offload,
5016  * the hardware checksum assist gives incorrect results (possibly
5017  * from incorporating its own padding into the UDP/TCP checksum; who knows).
5018  * If we pad such runts with zeros, the onboard checksum comes out correct.
5019  */
5020 static __inline int
5021 bge_cksum_pad(struct mbuf *m)
5022 {
5023         int padlen = ETHER_MIN_NOPAD - m->m_pkthdr.len;
5024         struct mbuf *last;
5025
5026         /* If there's only the packet-header and we can pad there, use it. */
5027         if (m->m_pkthdr.len == m->m_len && M_WRITABLE(m) &&
5028             M_TRAILINGSPACE(m) >= padlen) {
5029                 last = m;
5030         } else {
5031                 /*
5032                  * Walk packet chain to find last mbuf. We will either
5033                  * pad there, or append a new mbuf and pad it.
5034                  */
5035                 for (last = m; last->m_next != NULL; last = last->m_next);
5036                 if (!(M_WRITABLE(last) && M_TRAILINGSPACE(last) >= padlen)) {
5037                         /* Allocate new empty mbuf, pad it. Compact later. */
5038                         struct mbuf *n;
5039
5040                         MGET(n, M_NOWAIT, MT_DATA);
5041                         if (n == NULL)
5042                                 return (ENOBUFS);
5043                         n->m_len = 0;
5044                         last->m_next = n;
5045                         last = n;
5046                 }
5047         }
5048
5049         /* Now zero the pad area, to avoid the bge cksum-assist bug. */
5050         memset(mtod(last, caddr_t) + last->m_len, 0, padlen);
5051         last->m_len += padlen;
5052         m->m_pkthdr.len += padlen;
5053
5054         return (0);
5055 }
5056
5057 static struct mbuf *
5058 bge_check_short_dma(struct mbuf *m)
5059 {
5060         struct mbuf *n;
5061         int found;
5062
5063         /*
5064          * If device receive two back-to-back send BDs with less than
5065          * or equal to 8 total bytes then the device may hang.  The two
5066          * back-to-back send BDs must in the same frame for this failure
5067          * to occur.  Scan mbuf chains and see whether two back-to-back
5068          * send BDs are there. If this is the case, allocate new mbuf
5069          * and copy the frame to workaround the silicon bug.
5070          */
5071         for (n = m, found = 0; n != NULL; n = n->m_next) {
5072                 if (n->m_len < 8) {
5073                         found++;
5074                         if (found > 1)
5075                                 break;
5076                         continue;
5077                 }
5078                 found = 0;
5079         }
5080
5081         if (found > 1) {
5082                 n = m_defrag(m, M_NOWAIT);
5083                 if (n == NULL)
5084                         m_freem(m);
5085         } else
5086                 n = m;
5087         return (n);
5088 }
5089
5090 static struct mbuf *
5091 bge_setup_tso(struct bge_softc *sc, struct mbuf *m, uint16_t *mss,
5092     uint16_t *flags)
5093 {
5094         struct ip *ip;
5095         struct tcphdr *tcp;
5096         struct mbuf *n;
5097         uint16_t hlen;
5098         uint32_t poff;
5099
5100         if (M_WRITABLE(m) == 0) {
5101                 /* Get a writable copy. */
5102                 n = m_dup(m, M_NOWAIT);
5103                 m_freem(m);
5104                 if (n == NULL)
5105                         return (NULL);
5106                 m = n;
5107         }
5108         m = m_pullup(m, sizeof(struct ether_header) + sizeof(struct ip));
5109         if (m == NULL)
5110                 return (NULL);
5111         ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header));
5112         poff = sizeof(struct ether_header) + (ip->ip_hl << 2);
5113         m = m_pullup(m, poff + sizeof(struct tcphdr));
5114         if (m == NULL)
5115                 return (NULL);
5116         tcp = (struct tcphdr *)(mtod(m, char *) + poff);
5117         m = m_pullup(m, poff + (tcp->th_off << 2));
5118         if (m == NULL)
5119                 return (NULL);
5120         /*
5121          * It seems controller doesn't modify IP length and TCP pseudo
5122          * checksum. These checksum computed by upper stack should be 0.
5123          */
5124         *mss = m->m_pkthdr.tso_segsz;
5125         ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header));
5126         ip->ip_sum = 0;
5127         ip->ip_len = htons(*mss + (ip->ip_hl << 2) + (tcp->th_off << 2));
5128         /* Clear pseudo checksum computed by TCP stack. */
5129         tcp = (struct tcphdr *)(mtod(m, char *) + poff);
5130         tcp->th_sum = 0;
5131         /*
5132          * Broadcom controllers uses different descriptor format for
5133          * TSO depending on ASIC revision. Due to TSO-capable firmware
5134          * license issue and lower performance of firmware based TSO
5135          * we only support hardware based TSO.
5136          */
5137         /* Calculate header length, incl. TCP/IP options, in 32 bit units. */
5138         hlen = ((ip->ip_hl << 2) + (tcp->th_off << 2)) >> 2;
5139         if (sc->bge_flags & BGE_FLAG_TSO3) {
5140                 /*
5141                  * For BCM5717 and newer controllers, hardware based TSO
5142                  * uses the 14 lower bits of the bge_mss field to store the
5143                  * MSS and the upper 2 bits to store the lowest 2 bits of
5144                  * the IP/TCP header length.  The upper 6 bits of the header
5145                  * length are stored in the bge_flags[14:10,4] field.  Jumbo
5146                  * frames are supported.
5147                  */
5148                 *mss |= ((hlen & 0x3) << 14);
5149                 *flags |= ((hlen & 0xF8) << 7) | ((hlen & 0x4) << 2);
5150         } else {
5151                 /*
5152                  * For BCM5755 and newer controllers, hardware based TSO uses
5153                  * the lower 11 bits to store the MSS and the upper 5 bits to
5154                  * store the IP/TCP header length. Jumbo frames are not
5155                  * supported.
5156                  */
5157                 *mss |= (hlen << 11);
5158         }
5159         return (m);
5160 }
5161
5162 /*
5163  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
5164  * pointers to descriptors.
5165  */
5166 static int
5167 bge_encap(struct bge_softc *sc, struct mbuf **m_head, uint32_t *txidx)
5168 {
5169         bus_dma_segment_t       segs[BGE_NSEG_NEW];
5170         bus_dmamap_t            map;
5171         struct bge_tx_bd        *d;
5172         struct mbuf             *m = *m_head;
5173         uint32_t                idx = *txidx;
5174         uint16_t                csum_flags, mss, vlan_tag;
5175         int                     nsegs, i, error;
5176
5177         csum_flags = 0;
5178         mss = 0;
5179         vlan_tag = 0;
5180         if ((sc->bge_flags & BGE_FLAG_SHORT_DMA_BUG) != 0 &&
5181             m->m_next != NULL) {
5182                 *m_head = bge_check_short_dma(m);
5183                 if (*m_head == NULL)
5184                         return (ENOBUFS);
5185                 m = *m_head;
5186         }
5187         if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
5188                 *m_head = m = bge_setup_tso(sc, m, &mss, &csum_flags);
5189                 if (*m_head == NULL)
5190                         return (ENOBUFS);
5191                 csum_flags |= BGE_TXBDFLAG_CPU_PRE_DMA |
5192                     BGE_TXBDFLAG_CPU_POST_DMA;
5193         } else if ((m->m_pkthdr.csum_flags & sc->bge_csum_features) != 0) {
5194                 if (m->m_pkthdr.csum_flags & CSUM_IP)
5195                         csum_flags |= BGE_TXBDFLAG_IP_CSUM;
5196                 if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)) {
5197                         csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
5198                         if (m->m_pkthdr.len < ETHER_MIN_NOPAD &&
5199                             (error = bge_cksum_pad(m)) != 0) {
5200                                 m_freem(m);
5201                                 *m_head = NULL;
5202                                 return (error);
5203                         }
5204                 }
5205         }
5206
5207         if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0) {
5208                 if (sc->bge_flags & BGE_FLAG_JUMBO_FRAME &&
5209                     m->m_pkthdr.len > ETHER_MAX_LEN)
5210                         csum_flags |= BGE_TXBDFLAG_JUMBO_FRAME;
5211                 if (sc->bge_forced_collapse > 0 &&
5212                     (sc->bge_flags & BGE_FLAG_PCIE) != 0 && m->m_next != NULL) {
5213                         /*
5214                          * Forcedly collapse mbuf chains to overcome hardware
5215                          * limitation which only support a single outstanding
5216                          * DMA read operation.
5217                          */
5218                         if (sc->bge_forced_collapse == 1)
5219                                 m = m_defrag(m, M_NOWAIT);
5220                         else
5221                                 m = m_collapse(m, M_NOWAIT,
5222                                     sc->bge_forced_collapse);
5223                         if (m == NULL)
5224                                 m = *m_head;
5225                         *m_head = m;
5226                 }
5227         }
5228
5229         map = sc->bge_cdata.bge_tx_dmamap[idx];
5230         error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map, m, segs,
5231             &nsegs, BUS_DMA_NOWAIT);
5232         if (error == EFBIG) {
5233                 m = m_collapse(m, M_NOWAIT, BGE_NSEG_NEW);
5234                 if (m == NULL) {
5235                         m_freem(*m_head);
5236                         *m_head = NULL;
5237                         return (ENOBUFS);
5238                 }
5239                 *m_head = m;
5240                 error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map,
5241                     m, segs, &nsegs, BUS_DMA_NOWAIT);
5242                 if (error) {
5243                         m_freem(m);
5244                         *m_head = NULL;
5245                         return (error);
5246                 }
5247         } else if (error != 0)
5248                 return (error);
5249
5250         /* Check if we have enough free send BDs. */
5251         if (sc->bge_txcnt + nsegs >= BGE_TX_RING_CNT) {
5252                 bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, map);
5253                 return (ENOBUFS);
5254         }
5255
5256         bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map, BUS_DMASYNC_PREWRITE);
5257
5258         if (m->m_flags & M_VLANTAG) {
5259                 csum_flags |= BGE_TXBDFLAG_VLAN_TAG;
5260                 vlan_tag = m->m_pkthdr.ether_vtag;
5261         }
5262
5263         if (sc->bge_asicrev == BGE_ASICREV_BCM5762 &&
5264             (m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
5265                 /*
5266                  * 5725 family of devices corrupts TSO packets when TSO DMA
5267                  * buffers cross into regions which are within MSS bytes of
5268                  * a 4GB boundary.  If we encounter the condition, drop the
5269                  * packet.
5270                  */
5271                 for (i = 0; ; i++) {
5272                         d = &sc->bge_ldata.bge_tx_ring[idx];
5273                         d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
5274                         d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
5275                         d->bge_len = segs[i].ds_len;
5276                         if (d->bge_addr.bge_addr_lo + segs[i].ds_len + mss <
5277                             d->bge_addr.bge_addr_lo)
5278                                 break;
5279                         d->bge_flags = csum_flags;
5280                         d->bge_vlan_tag = vlan_tag;
5281                         d->bge_mss = mss;
5282                         if (i == nsegs - 1)
5283                                 break;
5284                         BGE_INC(idx, BGE_TX_RING_CNT);
5285                 }
5286                 if (i != nsegs - 1) {
5287                         bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map,
5288                             BUS_DMASYNC_POSTWRITE);
5289                         bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, map);
5290                         m_freem(*m_head);
5291                         *m_head = NULL;
5292                         return (EIO);
5293                 }
5294         } else {
5295                 for (i = 0; ; i++) {
5296                         d = &sc->bge_ldata.bge_tx_ring[idx];
5297                         d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
5298                         d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
5299                         d->bge_len = segs[i].ds_len;
5300                         d->bge_flags = csum_flags;
5301                         d->bge_vlan_tag = vlan_tag;
5302                         d->bge_mss = mss;
5303                         if (i == nsegs - 1)
5304                                 break;
5305                         BGE_INC(idx, BGE_TX_RING_CNT);
5306                 }
5307         }
5308
5309         /* Mark the last segment as end of packet... */
5310         d->bge_flags |= BGE_TXBDFLAG_END;
5311
5312         /*
5313          * Insure that the map for this transmission
5314          * is placed at the array index of the last descriptor
5315          * in this chain.
5316          */
5317         sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx];
5318         sc->bge_cdata.bge_tx_dmamap[idx] = map;
5319         sc->bge_cdata.bge_tx_chain[idx] = m;
5320         sc->bge_txcnt += nsegs;
5321
5322         BGE_INC(idx, BGE_TX_RING_CNT);
5323         *txidx = idx;
5324
5325         return (0);
5326 }
5327
5328 /*
5329  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
5330  * to the mbuf data regions directly in the transmit descriptors.
5331  */
5332 static void
5333 bge_start_locked(struct ifnet *ifp)
5334 {
5335         struct bge_softc *sc;
5336         struct mbuf *m_head;
5337         uint32_t prodidx;
5338         int count;
5339
5340         sc = ifp->if_softc;
5341         BGE_LOCK_ASSERT(sc);
5342
5343         if (!sc->bge_link ||
5344             (ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
5345             IFF_DRV_RUNNING)
5346                 return;
5347
5348         prodidx = sc->bge_tx_prodidx;
5349
5350         for (count = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd);) {
5351                 if (sc->bge_txcnt > BGE_TX_RING_CNT - 16) {
5352                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
5353                         break;
5354                 }
5355                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
5356                 if (m_head == NULL)
5357                         break;
5358
5359                 /*
5360                  * Pack the data into the transmit ring. If we
5361                  * don't have room, set the OACTIVE flag and wait
5362                  * for the NIC to drain the ring.
5363                  */
5364                 if (bge_encap(sc, &m_head, &prodidx)) {
5365                         if (m_head == NULL)
5366                                 break;
5367                         IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
5368                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
5369                         break;
5370                 }
5371                 ++count;
5372
5373                 /*
5374                  * If there's a BPF listener, bounce a copy of this frame
5375                  * to him.
5376                  */
5377 #ifdef ETHER_BPF_MTAP
5378                 ETHER_BPF_MTAP(ifp, m_head);
5379 #else
5380                 BPF_MTAP(ifp, m_head);
5381 #endif
5382         }
5383
5384         if (count > 0) {
5385                 bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
5386                     sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE);
5387                 /* Transmit. */
5388                 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5389                 /* 5700 b2 errata */
5390                 if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
5391                         bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5392
5393                 sc->bge_tx_prodidx = prodidx;
5394
5395                 /*
5396                  * Set a timeout in case the chip goes out to lunch.
5397                  */
5398                 sc->bge_timer = BGE_TX_TIMEOUT;
5399         }
5400 }
5401
5402 /*
5403  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
5404  * to the mbuf data regions directly in the transmit descriptors.
5405  */
5406 static void
5407 bge_start(struct ifnet *ifp)
5408 {
5409         struct bge_softc *sc;
5410
5411         sc = ifp->if_softc;
5412         BGE_LOCK(sc);
5413         bge_start_locked(ifp);
5414         BGE_UNLOCK(sc);
5415 }
5416
5417 static void
5418 bge_init_locked(struct bge_softc *sc)
5419 {
5420         struct ifnet *ifp;
5421         uint16_t *m;
5422         uint32_t mode;
5423
5424         BGE_LOCK_ASSERT(sc);
5425
5426         ifp = sc->bge_ifp;
5427
5428         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
5429                 return;
5430
5431         /* Cancel pending I/O and flush buffers. */
5432         bge_stop(sc);
5433
5434         bge_stop_fw(sc);
5435         bge_sig_pre_reset(sc, BGE_RESET_START);
5436         bge_reset(sc);
5437         bge_sig_legacy(sc, BGE_RESET_START);
5438         bge_sig_post_reset(sc, BGE_RESET_START);
5439
5440         bge_chipinit(sc);
5441
5442         /*
5443          * Init the various state machines, ring
5444          * control blocks and firmware.
5445          */
5446         if (bge_blockinit(sc)) {
5447                 device_printf(sc->bge_dev, "initialization failure\n");
5448                 return;
5449         }
5450
5451         ifp = sc->bge_ifp;
5452
5453         /* Specify MTU. */
5454         CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
5455             ETHER_HDR_LEN + ETHER_CRC_LEN +
5456             (ifp->if_capenable & IFCAP_VLAN_MTU ? ETHER_VLAN_ENCAP_LEN : 0));
5457
5458         /* Load our MAC address. */
5459         m = (uint16_t *)IF_LLADDR(sc->bge_ifp);
5460         CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
5461         CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
5462
5463         /* Program promiscuous mode. */
5464         bge_setpromisc(sc);
5465
5466         /* Program multicast filter. */
5467         bge_setmulti(sc);
5468
5469         /* Program VLAN tag stripping. */
5470         bge_setvlan(sc);
5471
5472         /* Override UDP checksum offloading. */
5473         if (sc->bge_forced_udpcsum == 0)
5474                 sc->bge_csum_features &= ~CSUM_UDP;
5475         else
5476                 sc->bge_csum_features |= CSUM_UDP;
5477         if (ifp->if_capabilities & IFCAP_TXCSUM &&
5478             ifp->if_capenable & IFCAP_TXCSUM) {
5479                 ifp->if_hwassist &= ~(BGE_CSUM_FEATURES | CSUM_UDP);
5480                 ifp->if_hwassist |= sc->bge_csum_features;
5481         }
5482
5483         /* Init RX ring. */
5484         if (bge_init_rx_ring_std(sc) != 0) {
5485                 device_printf(sc->bge_dev, "no memory for std Rx buffers.\n");
5486                 bge_stop(sc);
5487                 return;
5488         }
5489
5490         /*
5491          * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
5492          * memory to insure that the chip has in fact read the first
5493          * entry of the ring.
5494          */
5495         if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
5496                 uint32_t                v, i;
5497                 for (i = 0; i < 10; i++) {
5498                         DELAY(20);
5499                         v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
5500                         if (v == (MCLBYTES - ETHER_ALIGN))
5501                                 break;
5502                 }
5503                 if (i == 10)
5504                         device_printf (sc->bge_dev,
5505                             "5705 A0 chip failed to load RX ring\n");
5506         }
5507
5508         /* Init jumbo RX ring. */
5509         if (BGE_IS_JUMBO_CAPABLE(sc) &&
5510             ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN >
5511             (MCLBYTES - ETHER_ALIGN)) {
5512                 if (bge_init_rx_ring_jumbo(sc) != 0) {
5513                         device_printf(sc->bge_dev,
5514                             "no memory for jumbo Rx buffers.\n");
5515                         bge_stop(sc);
5516                         return;
5517                 }
5518         }
5519
5520         /* Init our RX return ring index. */
5521         sc->bge_rx_saved_considx = 0;
5522
5523         /* Init our RX/TX stat counters. */
5524         sc->bge_rx_discards = sc->bge_tx_discards = sc->bge_tx_collisions = 0;
5525
5526         /* Init TX ring. */
5527         bge_init_tx_ring(sc);
5528
5529         /* Enable TX MAC state machine lockup fix. */
5530         mode = CSR_READ_4(sc, BGE_TX_MODE);
5531         if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
5532                 mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
5533         if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
5534             sc->bge_asicrev == BGE_ASICREV_BCM5762) {
5535                 mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5536                 mode |= CSR_READ_4(sc, BGE_TX_MODE) &
5537                     (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5538         }
5539         /* Turn on transmitter. */
5540         CSR_WRITE_4(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
5541         DELAY(100);
5542
5543         /* Turn on receiver. */
5544         mode = CSR_READ_4(sc, BGE_RX_MODE);
5545         if (BGE_IS_5755_PLUS(sc))
5546                 mode |= BGE_RXMODE_IPV6_ENABLE;
5547         if (sc->bge_asicrev == BGE_ASICREV_BCM5762)
5548                 mode |= BGE_RXMODE_IPV4_FRAG_FIX;
5549         CSR_WRITE_4(sc,BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
5550         DELAY(10);
5551
5552         /*
5553          * Set the number of good frames to receive after RX MBUF
5554          * Low Watermark has been reached. After the RX MAC receives
5555          * this number of frames, it will drop subsequent incoming
5556          * frames until the MBUF High Watermark is reached.
5557          */
5558         if (BGE_IS_57765_PLUS(sc))
5559                 CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 1);
5560         else
5561                 CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
5562
5563         /* Clear MAC statistics. */
5564         if (BGE_IS_5705_PLUS(sc))
5565                 bge_stats_clear_regs(sc);
5566
5567         /* Tell firmware we're alive. */
5568         BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5569
5570 #ifdef DEVICE_POLLING
5571         /* Disable interrupts if we are polling. */
5572         if (ifp->if_capenable & IFCAP_POLLING) {
5573                 BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
5574                     BGE_PCIMISCCTL_MASK_PCI_INTR);
5575                 bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
5576         } else
5577 #endif
5578
5579         /* Enable host interrupts. */
5580         {
5581         BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
5582         BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5583         bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
5584         }
5585
5586         ifp->if_drv_flags |= IFF_DRV_RUNNING;
5587         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5588
5589         bge_ifmedia_upd_locked(ifp);
5590
5591         callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
5592 }
5593
5594 static void
5595 bge_init(void *xsc)
5596 {
5597         struct bge_softc *sc = xsc;
5598
5599         BGE_LOCK(sc);
5600         bge_init_locked(sc);
5601         BGE_UNLOCK(sc);
5602 }
5603
5604 /*
5605  * Set media options.
5606  */
5607 static int
5608 bge_ifmedia_upd(struct ifnet *ifp)
5609 {
5610         struct bge_softc *sc = ifp->if_softc;
5611         int res;
5612
5613         BGE_LOCK(sc);
5614         res = bge_ifmedia_upd_locked(ifp);
5615         BGE_UNLOCK(sc);
5616
5617         return (res);
5618 }
5619
5620 static int
5621 bge_ifmedia_upd_locked(struct ifnet *ifp)
5622 {
5623         struct bge_softc *sc = ifp->if_softc;
5624         struct mii_data *mii;
5625         struct mii_softc *miisc;
5626         struct ifmedia *ifm;
5627
5628         BGE_LOCK_ASSERT(sc);
5629
5630         ifm = &sc->bge_ifmedia;
5631
5632         /* If this is a 1000baseX NIC, enable the TBI port. */
5633         if (sc->bge_flags & BGE_FLAG_TBI) {
5634                 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
5635                         return (EINVAL);
5636                 switch(IFM_SUBTYPE(ifm->ifm_media)) {
5637                 case IFM_AUTO:
5638                         /*
5639                          * The BCM5704 ASIC appears to have a special
5640                          * mechanism for programming the autoneg
5641                          * advertisement registers in TBI mode.
5642                          */
5643                         if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
5644                                 uint32_t sgdig;
5645                                 sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
5646                                 if (sgdig & BGE_SGDIGSTS_DONE) {
5647                                         CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
5648                                         sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
5649                                         sgdig |= BGE_SGDIGCFG_AUTO |
5650                                             BGE_SGDIGCFG_PAUSE_CAP |
5651                                             BGE_SGDIGCFG_ASYM_PAUSE;
5652                                         CSR_WRITE_4(sc, BGE_SGDIG_CFG,
5653                                             sgdig | BGE_SGDIGCFG_SEND);
5654                                         DELAY(5);
5655                                         CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
5656                                 }
5657                         }
5658                         break;
5659                 case IFM_1000_SX:
5660                         if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
5661                                 BGE_CLRBIT(sc, BGE_MAC_MODE,
5662                                     BGE_MACMODE_HALF_DUPLEX);
5663                         } else {
5664                                 BGE_SETBIT(sc, BGE_MAC_MODE,
5665                                     BGE_MACMODE_HALF_DUPLEX);
5666                         }
5667                         DELAY(40);
5668                         break;
5669                 default:
5670                         return (EINVAL);
5671                 }
5672                 return (0);
5673         }
5674
5675         sc->bge_link_evt++;
5676         mii = device_get_softc(sc->bge_miibus);
5677         LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
5678                 PHY_RESET(miisc);
5679         mii_mediachg(mii);
5680
5681         /*
5682          * Force an interrupt so that we will call bge_link_upd
5683          * if needed and clear any pending link state attention.
5684          * Without this we are not getting any further interrupts
5685          * for link state changes and thus will not UP the link and
5686          * not be able to send in bge_start_locked. The only
5687          * way to get things working was to receive a packet and
5688          * get an RX intr.
5689          * bge_tick should help for fiber cards and we might not
5690          * need to do this here if BGE_FLAG_TBI is set but as
5691          * we poll for fiber anyway it should not harm.
5692          */
5693         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
5694             sc->bge_flags & BGE_FLAG_5788)
5695                 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
5696         else
5697                 BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
5698
5699         return (0);
5700 }
5701
5702 /*
5703  * Report current media status.
5704  */
5705 static void
5706 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
5707 {
5708         struct bge_softc *sc = ifp->if_softc;
5709         struct mii_data *mii;
5710
5711         BGE_LOCK(sc);
5712
5713         if ((ifp->if_flags & IFF_UP) == 0) {
5714                 BGE_UNLOCK(sc);
5715                 return;
5716         }
5717         if (sc->bge_flags & BGE_FLAG_TBI) {
5718                 ifmr->ifm_status = IFM_AVALID;
5719                 ifmr->ifm_active = IFM_ETHER;
5720                 if (CSR_READ_4(sc, BGE_MAC_STS) &
5721                     BGE_MACSTAT_TBI_PCS_SYNCHED)
5722                         ifmr->ifm_status |= IFM_ACTIVE;
5723                 else {
5724                         ifmr->ifm_active |= IFM_NONE;
5725                         BGE_UNLOCK(sc);
5726                         return;
5727                 }
5728                 ifmr->ifm_active |= IFM_1000_SX;
5729                 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
5730                         ifmr->ifm_active |= IFM_HDX;
5731                 else
5732                         ifmr->ifm_active |= IFM_FDX;
5733                 BGE_UNLOCK(sc);
5734                 return;
5735         }
5736
5737         mii = device_get_softc(sc->bge_miibus);
5738         mii_pollstat(mii);
5739         ifmr->ifm_active = mii->mii_media_active;
5740         ifmr->ifm_status = mii->mii_media_status;
5741
5742         BGE_UNLOCK(sc);
5743 }
5744
5745 static int
5746 bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
5747 {
5748         struct bge_softc *sc = ifp->if_softc;
5749         struct ifreq *ifr = (struct ifreq *) data;
5750         struct mii_data *mii;
5751         int flags, mask, error = 0;
5752
5753         switch (command) {
5754         case SIOCSIFMTU:
5755                 if (BGE_IS_JUMBO_CAPABLE(sc) ||
5756                     (sc->bge_flags & BGE_FLAG_JUMBO_STD)) {
5757                         if (ifr->ifr_mtu < ETHERMIN ||
5758                             ifr->ifr_mtu > BGE_JUMBO_MTU) {
5759                                 error = EINVAL;
5760                                 break;
5761                         }
5762                 } else if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU) {
5763                         error = EINVAL;
5764                         break;
5765                 }
5766                 BGE_LOCK(sc);
5767                 if (ifp->if_mtu != ifr->ifr_mtu) {
5768                         ifp->if_mtu = ifr->ifr_mtu;
5769                         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
5770                                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
5771                                 bge_init_locked(sc);
5772                         }
5773                 }
5774                 BGE_UNLOCK(sc);
5775                 break;
5776         case SIOCSIFFLAGS:
5777                 BGE_LOCK(sc);
5778                 if (ifp->if_flags & IFF_UP) {
5779                         /*
5780                          * If only the state of the PROMISC flag changed,
5781                          * then just use the 'set promisc mode' command
5782                          * instead of reinitializing the entire NIC. Doing
5783                          * a full re-init means reloading the firmware and
5784                          * waiting for it to start up, which may take a
5785                          * second or two.  Similarly for ALLMULTI.
5786                          */
5787                         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
5788                                 flags = ifp->if_flags ^ sc->bge_if_flags;
5789                                 if (flags & IFF_PROMISC)
5790                                         bge_setpromisc(sc);
5791                                 if (flags & IFF_ALLMULTI)
5792                                         bge_setmulti(sc);
5793                         } else
5794                                 bge_init_locked(sc);
5795                 } else {
5796                         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
5797                                 bge_stop(sc);
5798                         }
5799                 }
5800                 sc->bge_if_flags = ifp->if_flags;
5801                 BGE_UNLOCK(sc);
5802                 error = 0;
5803                 break;
5804         case SIOCADDMULTI:
5805         case SIOCDELMULTI:
5806                 if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
5807                         BGE_LOCK(sc);
5808                         bge_setmulti(sc);
5809                         BGE_UNLOCK(sc);
5810                         error = 0;
5811                 }
5812                 break;
5813         case SIOCSIFMEDIA:
5814         case SIOCGIFMEDIA:
5815                 if (sc->bge_flags & BGE_FLAG_TBI) {
5816                         error = ifmedia_ioctl(ifp, ifr,
5817                             &sc->bge_ifmedia, command);
5818                 } else {
5819                         mii = device_get_softc(sc->bge_miibus);
5820                         error = ifmedia_ioctl(ifp, ifr,
5821                             &mii->mii_media, command);
5822                 }
5823                 break;
5824         case SIOCSIFCAP:
5825                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
5826 #ifdef DEVICE_POLLING
5827                 if (mask & IFCAP_POLLING) {
5828                         if (ifr->ifr_reqcap & IFCAP_POLLING) {
5829                                 error = ether_poll_register(bge_poll, ifp);
5830                                 if (error)
5831                                         return (error);
5832                                 BGE_LOCK(sc);
5833                                 BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
5834                                     BGE_PCIMISCCTL_MASK_PCI_INTR);
5835                                 bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
5836                                 ifp->if_capenable |= IFCAP_POLLING;
5837                                 BGE_UNLOCK(sc);
5838                         } else {
5839                                 error = ether_poll_deregister(ifp);
5840                                 /* Enable interrupt even in error case */
5841                                 BGE_LOCK(sc);
5842                                 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL,
5843                                     BGE_PCIMISCCTL_MASK_PCI_INTR);
5844                                 bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
5845                                 ifp->if_capenable &= ~IFCAP_POLLING;
5846                                 BGE_UNLOCK(sc);
5847                         }
5848                 }
5849 #endif
5850                 if ((mask & IFCAP_TXCSUM) != 0 &&
5851                     (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
5852                         ifp->if_capenable ^= IFCAP_TXCSUM;
5853                         if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
5854                                 ifp->if_hwassist |= sc->bge_csum_features;
5855                         else
5856                                 ifp->if_hwassist &= ~sc->bge_csum_features;
5857                 }
5858
5859                 if ((mask & IFCAP_RXCSUM) != 0 &&
5860                     (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
5861                         ifp->if_capenable ^= IFCAP_RXCSUM;
5862
5863                 if ((mask & IFCAP_TSO4) != 0 &&
5864                     (ifp->if_capabilities & IFCAP_TSO4) != 0) {
5865                         ifp->if_capenable ^= IFCAP_TSO4;
5866                         if ((ifp->if_capenable & IFCAP_TSO4) != 0)
5867                                 ifp->if_hwassist |= CSUM_TSO;
5868                         else
5869                                 ifp->if_hwassist &= ~CSUM_TSO;
5870                 }
5871
5872                 if (mask & IFCAP_VLAN_MTU) {
5873                         ifp->if_capenable ^= IFCAP_VLAN_MTU;
5874                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
5875                         bge_init(sc);
5876                 }
5877
5878                 if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
5879                     (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
5880                         ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
5881                 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
5882                     (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
5883                         ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
5884                         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
5885                                 ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
5886                         BGE_LOCK(sc);
5887                         bge_setvlan(sc);
5888                         BGE_UNLOCK(sc);
5889                 }
5890 #ifdef VLAN_CAPABILITIES
5891                 VLAN_CAPABILITIES(ifp);
5892 #endif
5893                 break;
5894         default:
5895                 error = ether_ioctl(ifp, command, data);
5896                 break;
5897         }
5898
5899         return (error);
5900 }
5901
5902 static void
5903 bge_watchdog(struct bge_softc *sc)
5904 {
5905         struct ifnet *ifp;
5906         uint32_t status;
5907
5908         BGE_LOCK_ASSERT(sc);
5909
5910         if (sc->bge_timer == 0 || --sc->bge_timer)
5911                 return;
5912
5913         /* If pause frames are active then don't reset the hardware. */
5914         if ((CSR_READ_4(sc, BGE_RX_MODE) & BGE_RXMODE_FLOWCTL_ENABLE) != 0) {
5915                 status = CSR_READ_4(sc, BGE_RX_STS);
5916                 if ((status & BGE_RXSTAT_REMOTE_XOFFED) != 0) {
5917                         /*
5918                          * If link partner has us in XOFF state then wait for
5919                          * the condition to clear.
5920                          */
5921                         CSR_WRITE_4(sc, BGE_RX_STS, status);
5922                         sc->bge_timer = BGE_TX_TIMEOUT;
5923                         return;
5924                 } else if ((status & BGE_RXSTAT_RCVD_XOFF) != 0 &&
5925                     (status & BGE_RXSTAT_RCVD_XON) != 0) {
5926                         /*
5927                          * If link partner has us in XOFF state then wait for
5928                          * the condition to clear.
5929                          */
5930                         CSR_WRITE_4(sc, BGE_RX_STS, status);
5931                         sc->bge_timer = BGE_TX_TIMEOUT;
5932                         return;
5933                 }
5934                 /*
5935                  * Any other condition is unexpected and the controller
5936                  * should be reset.
5937                  */
5938         }
5939
5940         ifp = sc->bge_ifp;
5941
5942         if_printf(ifp, "watchdog timeout -- resetting\n");
5943
5944         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
5945         bge_init_locked(sc);
5946
5947         ifp->if_oerrors++;
5948 }
5949
5950 static void
5951 bge_stop_block(struct bge_softc *sc, bus_size_t reg, uint32_t bit)
5952 {
5953         int i;
5954
5955         BGE_CLRBIT(sc, reg, bit);
5956
5957         for (i = 0; i < BGE_TIMEOUT; i++) {
5958                 if ((CSR_READ_4(sc, reg) & bit) == 0)
5959                         return;
5960                 DELAY(100);
5961         }
5962 }
5963
5964 /*
5965  * Stop the adapter and free any mbufs allocated to the
5966  * RX and TX lists.
5967  */
5968 static void
5969 bge_stop(struct bge_softc *sc)
5970 {
5971         struct ifnet *ifp;
5972
5973         BGE_LOCK_ASSERT(sc);
5974
5975         ifp = sc->bge_ifp;
5976
5977         callout_stop(&sc->bge_stat_ch);
5978
5979         /* Disable host interrupts. */
5980         BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5981         bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
5982
5983         /*
5984          * Tell firmware we're shutting down.
5985          */
5986         bge_stop_fw(sc);
5987         bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
5988
5989         /*
5990          * Disable all of the receiver blocks.
5991          */
5992         bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
5993         bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
5994         bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
5995         if (BGE_IS_5700_FAMILY(sc))
5996                 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
5997         bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
5998         bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
5999         bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
6000
6001         /*
6002          * Disable all of the transmit blocks.
6003          */
6004         bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
6005         bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
6006         bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
6007         bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
6008         bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
6009         if (BGE_IS_5700_FAMILY(sc))
6010                 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
6011         bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
6012
6013         /*
6014          * Shut down all of the memory managers and related
6015          * state machines.
6016          */
6017         bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
6018         bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
6019         if (BGE_IS_5700_FAMILY(sc))
6020                 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
6021
6022         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
6023         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
6024         if (!(BGE_IS_5705_PLUS(sc))) {
6025                 BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
6026                 BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
6027         }
6028         /* Update MAC statistics. */
6029         if (BGE_IS_5705_PLUS(sc))
6030                 bge_stats_update_regs(sc);
6031
6032         bge_reset(sc);
6033         bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
6034         bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
6035
6036         /*
6037          * Keep the ASF firmware running if up.
6038          */
6039         if (sc->bge_asf_mode & ASF_STACKUP)
6040                 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
6041         else
6042                 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
6043
6044         /* Free the RX lists. */
6045         bge_free_rx_ring_std(sc);
6046
6047         /* Free jumbo RX list. */
6048         if (BGE_IS_JUMBO_CAPABLE(sc))
6049                 bge_free_rx_ring_jumbo(sc);
6050
6051         /* Free TX buffers. */
6052         bge_free_tx_ring(sc);
6053
6054         sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
6055
6056         /* Clear MAC's link state (PHY may still have link UP). */
6057         if (bootverbose && sc->bge_link)
6058                 if_printf(sc->bge_ifp, "link DOWN\n");
6059         sc->bge_link = 0;
6060
6061         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
6062 }
6063
6064 /*
6065  * Stop all chip I/O so that the kernel's probe routines don't
6066  * get confused by errant DMAs when rebooting.
6067  */
6068 static int
6069 bge_shutdown(device_t dev)
6070 {
6071         struct bge_softc *sc;
6072
6073         sc = device_get_softc(dev);
6074         BGE_LOCK(sc);
6075         bge_stop(sc);
6076         BGE_UNLOCK(sc);
6077
6078         return (0);
6079 }
6080
6081 static int
6082 bge_suspend(device_t dev)
6083 {
6084         struct bge_softc *sc;
6085
6086         sc = device_get_softc(dev);
6087         BGE_LOCK(sc);
6088         bge_stop(sc);
6089         BGE_UNLOCK(sc);
6090
6091         return (0);
6092 }
6093
6094 static int
6095 bge_resume(device_t dev)
6096 {
6097         struct bge_softc *sc;
6098         struct ifnet *ifp;
6099
6100         sc = device_get_softc(dev);
6101         BGE_LOCK(sc);
6102         ifp = sc->bge_ifp;
6103         if (ifp->if_flags & IFF_UP) {
6104                 bge_init_locked(sc);
6105                 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
6106                         bge_start_locked(ifp);
6107         }
6108         BGE_UNLOCK(sc);
6109
6110         return (0);
6111 }
6112
6113 static void
6114 bge_link_upd(struct bge_softc *sc)
6115 {
6116         struct mii_data *mii;
6117         uint32_t link, status;
6118
6119         BGE_LOCK_ASSERT(sc);
6120
6121         /* Clear 'pending link event' flag. */
6122         sc->bge_link_evt = 0;
6123
6124         /*
6125          * Process link state changes.
6126          * Grrr. The link status word in the status block does
6127          * not work correctly on the BCM5700 rev AX and BX chips,
6128          * according to all available information. Hence, we have
6129          * to enable MII interrupts in order to properly obtain
6130          * async link changes. Unfortunately, this also means that
6131          * we have to read the MAC status register to detect link
6132          * changes, thereby adding an additional register access to
6133          * the interrupt handler.
6134          *
6135          * XXX: perhaps link state detection procedure used for
6136          * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions.
6137          */
6138
6139         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
6140             sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
6141                 status = CSR_READ_4(sc, BGE_MAC_STS);
6142                 if (status & BGE_MACSTAT_MI_INTERRUPT) {
6143                         mii = device_get_softc(sc->bge_miibus);
6144                         mii_pollstat(mii);
6145                         if (!sc->bge_link &&
6146                             mii->mii_media_status & IFM_ACTIVE &&
6147                             IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
6148                                 sc->bge_link++;
6149                                 if (bootverbose)
6150                                         if_printf(sc->bge_ifp, "link UP\n");
6151                         } else if (sc->bge_link &&
6152                             (!(mii->mii_media_status & IFM_ACTIVE) ||
6153                             IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
6154                                 sc->bge_link = 0;
6155                                 if (bootverbose)
6156                                         if_printf(sc->bge_ifp, "link DOWN\n");
6157                         }
6158
6159                         /* Clear the interrupt. */
6160                         CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
6161                             BGE_EVTENB_MI_INTERRUPT);
6162                         bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
6163                             BRGPHY_MII_ISR);
6164                         bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
6165                             BRGPHY_MII_IMR, BRGPHY_INTRS);
6166                 }
6167                 return;
6168         }
6169
6170         if (sc->bge_flags & BGE_FLAG_TBI) {
6171                 status = CSR_READ_4(sc, BGE_MAC_STS);
6172                 if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
6173                         if (!sc->bge_link) {
6174                                 sc->bge_link++;
6175                                 if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
6176                                         BGE_CLRBIT(sc, BGE_MAC_MODE,
6177                                             BGE_MACMODE_TBI_SEND_CFGS);
6178                                         DELAY(40);
6179                                 }
6180                                 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
6181                                 if (bootverbose)
6182                                         if_printf(sc->bge_ifp, "link UP\n");
6183                                 if_link_state_change(sc->bge_ifp,
6184                                     LINK_STATE_UP);
6185                         }
6186                 } else if (sc->bge_link) {
6187                         sc->bge_link = 0;
6188                         if (bootverbose)
6189                                 if_printf(sc->bge_ifp, "link DOWN\n");
6190                         if_link_state_change(sc->bge_ifp, LINK_STATE_DOWN);
6191                 }
6192         } else if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
6193                 /*
6194                  * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED bit
6195                  * in status word always set. Workaround this bug by reading
6196                  * PHY link status directly.
6197                  */
6198                 link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK) ? 1 : 0;
6199
6200                 if (link != sc->bge_link ||
6201                     sc->bge_asicrev == BGE_ASICREV_BCM5700) {
6202                         mii = device_get_softc(sc->bge_miibus);
6203                         mii_pollstat(mii);
6204                         if (!sc->bge_link &&
6205                             mii->mii_media_status & IFM_ACTIVE &&
6206                             IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
6207                                 sc->bge_link++;
6208                                 if (bootverbose)
6209                                         if_printf(sc->bge_ifp, "link UP\n");
6210                         } else if (sc->bge_link &&
6211                             (!(mii->mii_media_status & IFM_ACTIVE) ||
6212                             IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
6213                                 sc->bge_link = 0;
6214                                 if (bootverbose)
6215                                         if_printf(sc->bge_ifp, "link DOWN\n");
6216                         }
6217                 }
6218         } else {
6219                 /*
6220                  * For controllers that call mii_tick, we have to poll
6221                  * link status.
6222                  */
6223                 mii = device_get_softc(sc->bge_miibus);
6224                 mii_pollstat(mii);
6225                 bge_miibus_statchg(sc->bge_dev);
6226         }
6227
6228         /* Disable MAC attention when link is up. */
6229         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
6230             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
6231             BGE_MACSTAT_LINK_CHANGED);
6232 }
6233
6234 static void
6235 bge_add_sysctls(struct bge_softc *sc)
6236 {
6237         struct sysctl_ctx_list *ctx;
6238         struct sysctl_oid_list *children;
6239         char tn[32];
6240         int unit;
6241
6242         ctx = device_get_sysctl_ctx(sc->bge_dev);
6243         children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bge_dev));
6244
6245 #ifdef BGE_REGISTER_DEBUG
6246         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "debug_info",
6247             CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_debug_info, "I",
6248             "Debug Information");
6249
6250         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reg_read",
6251             CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_reg_read, "I",
6252             "MAC Register Read");
6253
6254         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ape_read",
6255             CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_ape_read, "I",
6256             "APE Register Read");
6257
6258         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mem_read",
6259             CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_mem_read, "I",
6260             "Memory Read");
6261
6262 #endif
6263
6264         unit = device_get_unit(sc->bge_dev);
6265         /*
6266          * A common design characteristic for many Broadcom client controllers
6267          * is that they only support a single outstanding DMA read operation
6268          * on the PCIe bus. This means that it will take twice as long to fetch
6269          * a TX frame that is split into header and payload buffers as it does
6270          * to fetch a single, contiguous TX frame (2 reads vs. 1 read). For
6271          * these controllers, coalescing buffers to reduce the number of memory
6272          * reads is effective way to get maximum performance(about 940Mbps).
6273          * Without collapsing TX buffers the maximum TCP bulk transfer
6274          * performance is about 850Mbps. However forcing coalescing mbufs
6275          * consumes a lot of CPU cycles, so leave it off by default.
6276          */
6277         sc->bge_forced_collapse = 0;
6278         snprintf(tn, sizeof(tn), "dev.bge.%d.forced_collapse", unit);
6279         TUNABLE_INT_FETCH(tn, &sc->bge_forced_collapse);
6280         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_collapse",
6281             CTLFLAG_RW, &sc->bge_forced_collapse, 0,
6282             "Number of fragmented TX buffers of a frame allowed before "
6283             "forced collapsing");
6284
6285         sc->bge_msi = 1;
6286         snprintf(tn, sizeof(tn), "dev.bge.%d.msi", unit);
6287         TUNABLE_INT_FETCH(tn, &sc->bge_msi);
6288         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "msi",
6289             CTLFLAG_RD, &sc->bge_msi, 0, "Enable MSI");
6290
6291         /*
6292          * It seems all Broadcom controllers have a bug that can generate UDP
6293          * datagrams with checksum value 0 when TX UDP checksum offloading is
6294          * enabled.  Generating UDP checksum value 0 is RFC 768 violation.
6295          * Even though the probability of generating such UDP datagrams is
6296          * low, I don't want to see FreeBSD boxes to inject such datagrams
6297          * into network so disable UDP checksum offloading by default.  Users
6298          * still override this behavior by setting a sysctl variable,
6299          * dev.bge.0.forced_udpcsum.
6300          */
6301         sc->bge_forced_udpcsum = 0;
6302         snprintf(tn, sizeof(tn), "dev.bge.%d.bge_forced_udpcsum", unit);
6303         TUNABLE_INT_FETCH(tn, &sc->bge_forced_udpcsum);
6304         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_udpcsum",
6305             CTLFLAG_RW, &sc->bge_forced_udpcsum, 0,
6306             "Enable UDP checksum offloading even if controller can "
6307             "generate UDP checksum value 0");
6308
6309         if (BGE_IS_5705_PLUS(sc))
6310                 bge_add_sysctl_stats_regs(sc, ctx, children);
6311         else
6312                 bge_add_sysctl_stats(sc, ctx, children);
6313 }
6314
6315 #define BGE_SYSCTL_STAT(sc, ctx, desc, parent, node, oid) \
6316         SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, oid, CTLTYPE_UINT|CTLFLAG_RD, \
6317             sc, offsetof(struct bge_stats, node), bge_sysctl_stats, "IU", \
6318             desc)
6319
6320 static void
6321 bge_add_sysctl_stats(struct bge_softc *sc, struct sysctl_ctx_list *ctx,
6322     struct sysctl_oid_list *parent)
6323 {
6324         struct sysctl_oid *tree;
6325         struct sysctl_oid_list *children, *schildren;
6326
6327         tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", CTLFLAG_RD,
6328             NULL, "BGE Statistics");
6329         schildren = children = SYSCTL_CHILDREN(tree);
6330         BGE_SYSCTL_STAT(sc, ctx, "Frames Dropped Due To Filters",
6331             children, COSFramesDroppedDueToFilters,
6332             "FramesDroppedDueToFilters");
6333         BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write Queue Full",
6334             children, nicDmaWriteQueueFull, "DmaWriteQueueFull");
6335         BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write High Priority Queue Full",
6336             children, nicDmaWriteHighPriQueueFull, "DmaWriteHighPriQueueFull");
6337         BGE_SYSCTL_STAT(sc, ctx, "NIC No More RX Buffer Descriptors",
6338             children, nicNoMoreRxBDs, "NoMoreRxBDs");
6339         BGE_SYSCTL_STAT(sc, ctx, "Discarded Input Frames",
6340             children, ifInDiscards, "InputDiscards");
6341         BGE_SYSCTL_STAT(sc, ctx, "Input Errors",
6342             children, ifInErrors, "InputErrors");
6343         BGE_SYSCTL_STAT(sc, ctx, "NIC Recv Threshold Hit",
6344             children, nicRecvThresholdHit, "RecvThresholdHit");
6345         BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read Queue Full",
6346             children, nicDmaReadQueueFull, "DmaReadQueueFull");
6347         BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read High Priority Queue Full",
6348             children, nicDmaReadHighPriQueueFull, "DmaReadHighPriQueueFull");
6349         BGE_SYSCTL_STAT(sc, ctx, "NIC Send Data Complete Queue Full",
6350             children, nicSendDataCompQueueFull, "SendDataCompQueueFull");
6351         BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Set Send Producer Index",
6352             children, nicRingSetSendProdIndex, "RingSetSendProdIndex");
6353         BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Status Update",
6354             children, nicRingStatusUpdate, "RingStatusUpdate");
6355         BGE_SYSCTL_STAT(sc, ctx, "NIC Interrupts",
6356             children, nicInterrupts, "Interrupts");
6357         BGE_SYSCTL_STAT(sc, ctx, "NIC Avoided Interrupts",
6358             children, nicAvoidedInterrupts, "AvoidedInterrupts");
6359         BGE_SYSCTL_STAT(sc, ctx, "NIC Send Threshold Hit",
6360             children, nicSendThresholdHit, "SendThresholdHit");
6361
6362         tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "rx", CTLFLAG_RD,
6363             NULL, "BGE RX Statistics");
6364         children = SYSCTL_CHILDREN(tree);
6365         BGE_SYSCTL_STAT(sc, ctx, "Inbound Octets",
6366             children, rxstats.ifHCInOctets, "ifHCInOctets");
6367         BGE_SYSCTL_STAT(sc, ctx, "Fragments",
6368             children, rxstats.etherStatsFragments, "Fragments");
6369         BGE_SYSCTL_STAT(sc, ctx, "Inbound Unicast Packets",
6370             children, rxstats.ifHCInUcastPkts, "UnicastPkts");
6371         BGE_SYSCTL_STAT(sc, ctx, "Inbound Multicast Packets",
6372             children, rxstats.ifHCInMulticastPkts, "MulticastPkts");
6373         BGE_SYSCTL_STAT(sc, ctx, "FCS Errors",
6374             children, rxstats.dot3StatsFCSErrors, "FCSErrors");
6375         BGE_SYSCTL_STAT(sc, ctx, "Alignment Errors",
6376             children, rxstats.dot3StatsAlignmentErrors, "AlignmentErrors");
6377         BGE_SYSCTL_STAT(sc, ctx, "XON Pause Frames Received",
6378             children, rxstats.xonPauseFramesReceived, "xonPauseFramesReceived");
6379         BGE_SYSCTL_STAT(sc, ctx, "XOFF Pause Frames Received",
6380             children, rxstats.xoffPauseFramesReceived,
6381             "xoffPauseFramesReceived");
6382         BGE_SYSCTL_STAT(sc, ctx, "MAC Control Frames Received",
6383             children, rxstats.macControlFramesReceived,
6384             "ControlFramesReceived");
6385         BGE_SYSCTL_STAT(sc, ctx, "XOFF State Entered",
6386             children, rxstats.xoffStateEntered, "xoffStateEntered");
6387         BGE_SYSCTL_STAT(sc, ctx, "Frames Too Long",
6388             children, rxstats.dot3StatsFramesTooLong, "FramesTooLong");
6389         BGE_SYSCTL_STAT(sc, ctx, "Jabbers",
6390             children, rxstats.etherStatsJabbers, "Jabbers");
6391         BGE_SYSCTL_STAT(sc, ctx, "Undersized Packets",
6392             children, rxstats.etherStatsUndersizePkts, "UndersizePkts");
6393         BGE_SYSCTL_STAT(sc, ctx, "Inbound Range Length Errors",
6394             children, rxstats.inRangeLengthError, "inRangeLengthError");
6395         BGE_SYSCTL_STAT(sc, ctx, "Outbound Range Length Errors",
6396             children, rxstats.outRangeLengthError, "outRangeLengthError");
6397
6398         tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "tx", CTLFLAG_RD,
6399             NULL, "BGE TX Statistics");
6400         children = SYSCTL_CHILDREN(tree);
6401         BGE_SYSCTL_STAT(sc, ctx, "Outbound Octets",
6402             children, txstats.ifHCOutOctets, "ifHCOutOctets");
6403         BGE_SYSCTL_STAT(sc, ctx, "TX Collisions",
6404             children, txstats.etherStatsCollisions, "Collisions");
6405         BGE_SYSCTL_STAT(sc, ctx, "XON Sent",
6406             children, txstats.outXonSent, "XonSent");
6407         BGE_SYSCTL_STAT(sc, ctx, "XOFF Sent",
6408             children, txstats.outXoffSent, "XoffSent");
6409         BGE_SYSCTL_STAT(sc, ctx, "Flow Control Done",
6410             children, txstats.flowControlDone, "flowControlDone");
6411         BGE_SYSCTL_STAT(sc, ctx, "Internal MAC TX errors",
6412             children, txstats.dot3StatsInternalMacTransmitErrors,
6413             "InternalMacTransmitErrors");
6414         BGE_SYSCTL_STAT(sc, ctx, "Single Collision Frames",
6415             children, txstats.dot3StatsSingleCollisionFrames,
6416             "SingleCollisionFrames");
6417         BGE_SYSCTL_STAT(sc, ctx, "Multiple Collision Frames",
6418             children, txstats.dot3StatsMultipleCollisionFrames,
6419             "MultipleCollisionFrames");
6420         BGE_SYSCTL_STAT(sc, ctx, "Deferred Transmissions",
6421             children, txstats.dot3StatsDeferredTransmissions,
6422             "DeferredTransmissions");
6423         BGE_SYSCTL_STAT(sc, ctx, "Excessive Collisions",
6424             children, txstats.dot3StatsExcessiveCollisions,
6425             "ExcessiveCollisions");
6426         BGE_SYSCTL_STAT(sc, ctx, "Late Collisions",
6427             children, txstats.dot3StatsLateCollisions,
6428             "LateCollisions");
6429         BGE_SYSCTL_STAT(sc, ctx, "Outbound Unicast Packets",
6430             children, txstats.ifHCOutUcastPkts, "UnicastPkts");
6431         BGE_SYSCTL_STAT(sc, ctx, "Outbound Multicast Packets",
6432             children, txstats.ifHCOutMulticastPkts, "MulticastPkts");
6433         BGE_SYSCTL_STAT(sc, ctx, "Outbound Broadcast Packets",
6434             children, txstats.ifHCOutBroadcastPkts, "BroadcastPkts");
6435         BGE_SYSCTL_STAT(sc, ctx, "Carrier Sense Errors",
6436             children, txstats.dot3StatsCarrierSenseErrors,
6437             "CarrierSenseErrors");
6438         BGE_SYSCTL_STAT(sc, ctx, "Outbound Discards",
6439             children, txstats.ifOutDiscards, "Discards");
6440         BGE_SYSCTL_STAT(sc, ctx, "Outbound Errors",
6441             children, txstats.ifOutErrors, "Errors");
6442 }
6443
6444 #undef BGE_SYSCTL_STAT
6445
6446 #define BGE_SYSCTL_STAT_ADD64(c, h, n, p, d)    \
6447             SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
6448
6449 static void
6450 bge_add_sysctl_stats_regs(struct bge_softc *sc, struct sysctl_ctx_list *ctx,
6451     struct sysctl_oid_list *parent)
6452 {
6453         struct sysctl_oid *tree;
6454         struct sysctl_oid_list *child, *schild;
6455         struct bge_mac_stats *stats;
6456
6457         stats = &sc->bge_mac_stats;
6458         tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", CTLFLAG_RD,
6459             NULL, "BGE Statistics");
6460         schild = child = SYSCTL_CHILDREN(tree);
6461         BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesDroppedDueToFilters",
6462             &stats->FramesDroppedDueToFilters, "Frames Dropped Due to Filters");
6463         BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteQueueFull",
6464             &stats->DmaWriteQueueFull, "NIC DMA Write Queue Full");
6465         BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteHighPriQueueFull",
6466             &stats->DmaWriteHighPriQueueFull,
6467             "NIC DMA Write High Priority Queue Full");
6468         BGE_SYSCTL_STAT_ADD64(ctx, child, "NoMoreRxBDs",
6469             &stats->NoMoreRxBDs, "NIC No More RX Buffer Descriptors");
6470         BGE_SYSCTL_STAT_ADD64(ctx, child, "InputDiscards",
6471             &stats->InputDiscards, "Discarded Input Frames");
6472         BGE_SYSCTL_STAT_ADD64(ctx, child, "InputErrors",
6473             &stats->InputErrors, "Input Errors");
6474         BGE_SYSCTL_STAT_ADD64(ctx, child, "RecvThresholdHit",
6475             &stats->RecvThresholdHit, "NIC Recv Threshold Hit");
6476
6477         tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "rx", CTLFLAG_RD,
6478             NULL, "BGE RX Statistics");
6479         child = SYSCTL_CHILDREN(tree);
6480         BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCInOctets",
6481             &stats->ifHCInOctets, "Inbound Octets");
6482         BGE_SYSCTL_STAT_ADD64(ctx, child, "Fragments",
6483             &stats->etherStatsFragments, "Fragments");
6484         BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts",
6485             &stats->ifHCInUcastPkts, "Inbound Unicast Packets");
6486         BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts",
6487             &stats->ifHCInMulticastPkts, "Inbound Multicast Packets");
6488         BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts",
6489             &stats->ifHCInBroadcastPkts, "Inbound Broadcast Packets");
6490         BGE_SYSCTL_STAT_ADD64(ctx, child, "FCSErrors",
6491             &stats->dot3StatsFCSErrors, "FCS Errors");
6492         BGE_SYSCTL_STAT_ADD64(ctx, child, "AlignmentErrors",
6493             &stats->dot3StatsAlignmentErrors, "Alignment Errors");
6494         BGE_SYSCTL_STAT_ADD64(ctx, child, "xonPauseFramesReceived",
6495             &stats->xonPauseFramesReceived, "XON Pause Frames Received");
6496         BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffPauseFramesReceived",
6497             &stats->xoffPauseFramesReceived, "XOFF Pause Frames Received");
6498         BGE_SYSCTL_STAT_ADD64(ctx, child, "ControlFramesReceived",
6499             &stats->macControlFramesReceived, "MAC Control Frames Received");
6500         BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffStateEntered",
6501             &stats->xoffStateEntered, "XOFF State Entered");
6502         BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesTooLong",
6503             &stats->dot3StatsFramesTooLong, "Frames Too Long");
6504         BGE_SYSCTL_STAT_ADD64(ctx, child, "Jabbers",
6505             &stats->etherStatsJabbers, "Jabbers");
6506         BGE_SYSCTL_STAT_ADD64(ctx, child, "UndersizePkts",
6507             &stats->etherStatsUndersizePkts, "Undersized Packets");
6508
6509         tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "tx", CTLFLAG_RD,
6510             NULL, "BGE TX Statistics");
6511         child = SYSCTL_CHILDREN(tree);
6512         BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCOutOctets",
6513             &stats->ifHCOutOctets, "Outbound Octets");
6514         BGE_SYSCTL_STAT_ADD64(ctx, child, "Collisions",
6515             &stats->etherStatsCollisions, "TX Collisions");
6516         BGE_SYSCTL_STAT_ADD64(ctx, child, "XonSent",
6517             &stats->outXonSent, "XON Sent");
6518         BGE_SYSCTL_STAT_ADD64(ctx, child, "XoffSent",
6519             &stats->outXoffSent, "XOFF Sent");
6520         BGE_SYSCTL_STAT_ADD64(ctx, child, "InternalMacTransmitErrors",
6521             &stats->dot3StatsInternalMacTransmitErrors,
6522             "Internal MAC TX Errors");
6523         BGE_SYSCTL_STAT_ADD64(ctx, child, "SingleCollisionFrames",
6524             &stats->dot3StatsSingleCollisionFrames, "Single Collision Frames");
6525         BGE_SYSCTL_STAT_ADD64(ctx, child, "MultipleCollisionFrames",
6526             &stats->dot3StatsMultipleCollisionFrames,
6527             "Multiple Collision Frames");
6528         BGE_SYSCTL_STAT_ADD64(ctx, child, "DeferredTransmissions",
6529             &stats->dot3StatsDeferredTransmissions, "Deferred Transmissions");
6530         BGE_SYSCTL_STAT_ADD64(ctx, child, "ExcessiveCollisions",
6531             &stats->dot3StatsExcessiveCollisions, "Excessive Collisions");
6532         BGE_SYSCTL_STAT_ADD64(ctx, child, "LateCollisions",
6533             &stats->dot3StatsLateCollisions, "Late Collisions");
6534         BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts",
6535             &stats->ifHCOutUcastPkts, "Outbound Unicast Packets");
6536         BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts",
6537             &stats->ifHCOutMulticastPkts, "Outbound Multicast Packets");
6538         BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts",
6539             &stats->ifHCOutBroadcastPkts, "Outbound Broadcast Packets");
6540 }
6541
6542 #undef  BGE_SYSCTL_STAT_ADD64
6543
6544 static int
6545 bge_sysctl_stats(SYSCTL_HANDLER_ARGS)
6546 {
6547         struct bge_softc *sc;
6548         uint32_t result;
6549         int offset;
6550
6551         sc = (struct bge_softc *)arg1;
6552         offset = arg2;
6553         result = CSR_READ_4(sc, BGE_MEMWIN_START + BGE_STATS_BLOCK + offset +
6554             offsetof(bge_hostaddr, bge_addr_lo));
6555         return (sysctl_handle_int(oidp, &result, 0, req));
6556 }
6557
6558 #ifdef BGE_REGISTER_DEBUG
6559 static int
6560 bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
6561 {
6562         struct bge_softc *sc;
6563         uint16_t *sbdata;
6564         int error, result, sbsz;
6565         int i, j;
6566
6567         result = -1;
6568         error = sysctl_handle_int(oidp, &result, 0, req);
6569         if (error || (req->newptr == NULL))
6570                 return (error);
6571
6572         if (result == 1) {
6573                 sc = (struct bge_softc *)arg1;
6574
6575                 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
6576                     sc->bge_chipid != BGE_CHIPID_BCM5700_C0)
6577                         sbsz = BGE_STATUS_BLK_SZ;
6578                 else
6579                         sbsz = 32;
6580                 sbdata = (uint16_t *)sc->bge_ldata.bge_status_block;
6581                 printf("Status Block:\n");
6582                 BGE_LOCK(sc);
6583                 bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
6584                     sc->bge_cdata.bge_status_map,
6585                     BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
6586                 for (i = 0x0; i < sbsz / sizeof(uint16_t); ) {
6587                         printf("%06x:", i);
6588                         for (j = 0; j < 8; j++)
6589                                 printf(" %04x", sbdata[i++]);
6590                         printf("\n");
6591                 }
6592
6593                 printf("Registers:\n");
6594                 for (i = 0x800; i < 0xA00; ) {
6595                         printf("%06x:", i);
6596                         for (j = 0; j < 8; j++) {
6597                                 printf(" %08x", CSR_READ_4(sc, i));
6598                                 i += 4;
6599                         }
6600                         printf("\n");
6601                 }
6602                 BGE_UNLOCK(sc);
6603
6604                 printf("Hardware Flags:\n");
6605                 if (BGE_IS_5717_PLUS(sc))
6606                         printf(" - 5717 Plus\n");
6607                 if (BGE_IS_5755_PLUS(sc))
6608                         printf(" - 5755 Plus\n");
6609                 if (BGE_IS_575X_PLUS(sc))
6610                         printf(" - 575X Plus\n");
6611                 if (BGE_IS_5705_PLUS(sc))
6612                         printf(" - 5705 Plus\n");
6613                 if (BGE_IS_5714_FAMILY(sc))
6614                         printf(" - 5714 Family\n");
6615                 if (BGE_IS_5700_FAMILY(sc))
6616                         printf(" - 5700 Family\n");
6617                 if (sc->bge_flags & BGE_FLAG_JUMBO)
6618                         printf(" - Supports Jumbo Frames\n");
6619                 if (sc->bge_flags & BGE_FLAG_PCIX)
6620                         printf(" - PCI-X Bus\n");
6621                 if (sc->bge_flags & BGE_FLAG_PCIE)
6622                         printf(" - PCI Express Bus\n");
6623                 if (sc->bge_phy_flags & BGE_PHY_NO_3LED)
6624                         printf(" - No 3 LEDs\n");
6625                 if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG)
6626                         printf(" - RX Alignment Bug\n");
6627         }
6628
6629         return (error);
6630 }
6631
6632 static int
6633 bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS)
6634 {
6635         struct bge_softc *sc;
6636         int error;
6637         uint16_t result;
6638         uint32_t val;
6639
6640         result = -1;
6641         error = sysctl_handle_int(oidp, &result, 0, req);
6642         if (error || (req->newptr == NULL))
6643                 return (error);
6644
6645         if (result < 0x8000) {
6646                 sc = (struct bge_softc *)arg1;
6647                 val = CSR_READ_4(sc, result);
6648                 printf("reg 0x%06X = 0x%08X\n", result, val);
6649         }
6650
6651         return (error);
6652 }
6653
6654 static int
6655 bge_sysctl_ape_read(SYSCTL_HANDLER_ARGS)
6656 {
6657         struct bge_softc *sc;
6658         int error;
6659         uint16_t result;
6660         uint32_t val;
6661
6662         result = -1;
6663         error = sysctl_handle_int(oidp, &result, 0, req);
6664         if (error || (req->newptr == NULL))
6665                 return (error);
6666
6667         if (result < 0x8000) {
6668                 sc = (struct bge_softc *)arg1;
6669                 val = APE_READ_4(sc, result);
6670                 printf("reg 0x%06X = 0x%08X\n", result, val);
6671         }
6672
6673         return (error);
6674 }
6675
6676 static int
6677 bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS)
6678 {
6679         struct bge_softc *sc;
6680         int error;
6681         uint16_t result;
6682         uint32_t val;
6683
6684         result = -1;
6685         error = sysctl_handle_int(oidp, &result, 0, req);
6686         if (error || (req->newptr == NULL))
6687                 return (error);
6688
6689         if (result < 0x8000) {
6690                 sc = (struct bge_softc *)arg1;
6691                 val = bge_readmem_ind(sc, result);
6692                 printf("mem 0x%06X = 0x%08X\n", result, val);
6693         }
6694
6695         return (error);
6696 }
6697 #endif
6698
6699 static int
6700 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
6701 {
6702
6703         if (sc->bge_flags & BGE_FLAG_EADDR)
6704                 return (1);
6705
6706 #ifdef __sparc64__
6707         OF_getetheraddr(sc->bge_dev, ether_addr);
6708         return (0);
6709 #endif
6710         return (1);
6711 }
6712
6713 static int
6714 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
6715 {
6716         uint32_t mac_addr;
6717
6718         mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
6719         if ((mac_addr >> 16) == 0x484b) {
6720                 ether_addr[0] = (uint8_t)(mac_addr >> 8);
6721                 ether_addr[1] = (uint8_t)mac_addr;
6722                 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
6723                 ether_addr[2] = (uint8_t)(mac_addr >> 24);
6724                 ether_addr[3] = (uint8_t)(mac_addr >> 16);
6725                 ether_addr[4] = (uint8_t)(mac_addr >> 8);
6726                 ether_addr[5] = (uint8_t)mac_addr;
6727                 return (0);
6728         }
6729         return (1);
6730 }
6731
6732 static int
6733 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
6734 {
6735         int mac_offset = BGE_EE_MAC_OFFSET;
6736
6737         if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
6738                 mac_offset = BGE_EE_MAC_OFFSET_5906;
6739
6740         return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
6741             ETHER_ADDR_LEN));
6742 }
6743
6744 static int
6745 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
6746 {
6747
6748         if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
6749                 return (1);
6750
6751         return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
6752            ETHER_ADDR_LEN));
6753 }
6754
6755 static int
6756 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
6757 {
6758         static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
6759                 /* NOTE: Order is critical */
6760                 bge_get_eaddr_fw,
6761                 bge_get_eaddr_mem,
6762                 bge_get_eaddr_nvram,
6763                 bge_get_eaddr_eeprom,
6764                 NULL
6765         };
6766         const bge_eaddr_fcn_t *func;
6767
6768         for (func = bge_eaddr_funcs; *func != NULL; ++func) {
6769                 if ((*func)(sc, eaddr) == 0)
6770                         break;
6771         }
6772         return (*func == NULL ? ENXIO : 0);
6773 }