]> CyberLeo.Net >> Repos - FreeBSD/releng/10.2.git/blob - sys/dev/drm2/i915/i915_gem_tiling.c
- Copy stable/10@285827 to releng/10.2 in preparation for 10.2-RC1
[FreeBSD/releng/10.2.git] / sys / dev / drm2 / i915 / i915_gem_tiling.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30
31 #include <dev/drm2/drmP.h>
32 #include <dev/drm2/drm.h>
33 #include <dev/drm2/i915/i915_drm.h>
34 #include <dev/drm2/i915/i915_drv.h>
35
36 #include <sys/sf_buf.h>
37
38 /** @file i915_gem_tiling.c
39  *
40  * Support for managing tiling state of buffer objects.
41  *
42  * The idea behind tiling is to increase cache hit rates by rearranging
43  * pixel data so that a group of pixel accesses are in the same cacheline.
44  * Performance improvement from doing this on the back/depth buffer are on
45  * the order of 30%.
46  *
47  * Intel architectures make this somewhat more complicated, though, by
48  * adjustments made to addressing of data when the memory is in interleaved
49  * mode (matched pairs of DIMMS) to improve memory bandwidth.
50  * For interleaved memory, the CPU sends every sequential 64 bytes
51  * to an alternate memory channel so it can get the bandwidth from both.
52  *
53  * The GPU also rearranges its accesses for increased bandwidth to interleaved
54  * memory, and it matches what the CPU does for non-tiled.  However, when tiled
55  * it does it a little differently, since one walks addresses not just in the
56  * X direction but also Y.  So, along with alternating channels when bit
57  * 6 of the address flips, it also alternates when other bits flip --  Bits 9
58  * (every 512 bytes, an X tile scanline) and 10 (every two X tile scanlines)
59  * are common to both the 915 and 965-class hardware.
60  *
61  * The CPU also sometimes XORs in higher bits as well, to improve
62  * bandwidth doing strided access like we do so frequently in graphics.  This
63  * is called "Channel XOR Randomization" in the MCH documentation.  The result
64  * is that the CPU is XORing in either bit 11 or bit 17 to bit 6 of its address
65  * decode.
66  *
67  * All of this bit 6 XORing has an effect on our memory management,
68  * as we need to make sure that the 3d driver can correctly address object
69  * contents.
70  *
71  * If we don't have interleaved memory, all tiling is safe and no swizzling is
72  * required.
73  *
74  * When bit 17 is XORed in, we simply refuse to tile at all.  Bit
75  * 17 is not just a page offset, so as we page an objet out and back in,
76  * individual pages in it will have different bit 17 addresses, resulting in
77  * each 64 bytes being swapped with its neighbor!
78  *
79  * Otherwise, if interleaved, we have to tell the 3d driver what the address
80  * swizzling it needs to do is, since it's writing with the CPU to the pages
81  * (bit 6 and potentially bit 11 XORed in), and the GPU is reading from the
82  * pages (bit 6, 9, and 10 XORed in), resulting in a cumulative bit swizzling
83  * required by the CPU of XORing in bit 6, 9, 10, and potentially 11, in order
84  * to match what the GPU expects.
85  */
86
87 /**
88  * Detects bit 6 swizzling of address lookup between IGD access and CPU
89  * access through main memory.
90  */
91 void
92 i915_gem_detect_bit_6_swizzle(struct drm_device *dev)
93 {
94         drm_i915_private_t *dev_priv = dev->dev_private;
95         uint32_t swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
96         uint32_t swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
97
98         if (INTEL_INFO(dev)->gen >= 6) {
99                 uint32_t dimm_c0, dimm_c1;
100                 dimm_c0 = I915_READ(MAD_DIMM_C0);
101                 dimm_c1 = I915_READ(MAD_DIMM_C1);
102                 dimm_c0 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
103                 dimm_c1 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
104                 /* Enable swizzling when the channels are populated with
105                  * identically sized dimms. We don't need to check the 3rd
106                  * channel because no cpu with gpu attached ships in that
107                  * configuration. Also, swizzling only makes sense for 2
108                  * channels anyway. */
109                 if (dimm_c0 == dimm_c1) {
110                         swizzle_x = I915_BIT_6_SWIZZLE_9_10;
111                         swizzle_y = I915_BIT_6_SWIZZLE_9;
112                 } else {
113                         swizzle_x = I915_BIT_6_SWIZZLE_NONE;
114                         swizzle_y = I915_BIT_6_SWIZZLE_NONE;
115                 }
116         } else if (IS_GEN5(dev)) {
117                 /* On Ironlake whatever DRAM config, GPU always do
118                  * same swizzling setup.
119                  */
120                 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
121                 swizzle_y = I915_BIT_6_SWIZZLE_9;
122         } else if (IS_GEN2(dev)) {
123                 /* As far as we know, the 865 doesn't have these bit 6
124                  * swizzling issues.
125                  */
126                 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
127                 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
128         } else if (IS_MOBILE(dev) || (IS_GEN3(dev) && !IS_G33(dev))) {
129                 uint32_t dcc;
130
131                 /* On 9xx chipsets, channel interleave by the CPU is
132                  * determined by DCC.  For single-channel, neither the CPU
133                  * nor the GPU do swizzling.  For dual channel interleaved,
134                  * the GPU's interleave is bit 9 and 10 for X tiled, and bit
135                  * 9 for Y tiled.  The CPU's interleave is independent, and
136                  * can be based on either bit 11 (haven't seen this yet) or
137                  * bit 17 (common).
138                  */
139                 dcc = I915_READ(DCC);
140                 switch (dcc & DCC_ADDRESSING_MODE_MASK) {
141                 case DCC_ADDRESSING_MODE_SINGLE_CHANNEL:
142                 case DCC_ADDRESSING_MODE_DUAL_CHANNEL_ASYMMETRIC:
143                         swizzle_x = I915_BIT_6_SWIZZLE_NONE;
144                         swizzle_y = I915_BIT_6_SWIZZLE_NONE;
145                         break;
146                 case DCC_ADDRESSING_MODE_DUAL_CHANNEL_INTERLEAVED:
147                         if (dcc & DCC_CHANNEL_XOR_DISABLE) {
148                                 /* This is the base swizzling by the GPU for
149                                  * tiled buffers.
150                                  */
151                                 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
152                                 swizzle_y = I915_BIT_6_SWIZZLE_9;
153                         } else if ((dcc & DCC_CHANNEL_XOR_BIT_17) == 0) {
154                                 /* Bit 11 swizzling by the CPU in addition. */
155                                 swizzle_x = I915_BIT_6_SWIZZLE_9_10_11;
156                                 swizzle_y = I915_BIT_6_SWIZZLE_9_11;
157                         } else {
158                                 /* Bit 17 swizzling by the CPU in addition. */
159                                 swizzle_x = I915_BIT_6_SWIZZLE_9_10_17;
160                                 swizzle_y = I915_BIT_6_SWIZZLE_9_17;
161                         }
162                         break;
163                 }
164                 if (dcc == 0xffffffff) {
165                         DRM_ERROR("Couldn't read from MCHBAR.  "
166                                   "Disabling tiling.\n");
167                         swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
168                         swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
169                 }
170         } else {
171                 /* The 965, G33, and newer, have a very flexible memory
172                  * configuration.  It will enable dual-channel mode
173                  * (interleaving) on as much memory as it can, and the GPU
174                  * will additionally sometimes enable different bit 6
175                  * swizzling for tiled objects from the CPU.
176                  *
177                  * Here's what I found on the G965:
178                  *    slot fill         memory size  swizzling
179                  * 0A   0B   1A   1B    1-ch   2-ch
180                  * 512  0    0    0     512    0     O
181                  * 512  0    512  0     16     1008  X
182                  * 512  0    0    512   16     1008  X
183                  * 0    512  0    512   16     1008  X
184                  * 1024 1024 1024 0     2048   1024  O
185                  *
186                  * We could probably detect this based on either the DRB
187                  * matching, which was the case for the swizzling required in
188                  * the table above, or from the 1-ch value being less than
189                  * the minimum size of a rank.
190                  */
191                 if (I915_READ16(C0DRB3) != I915_READ16(C1DRB3)) {
192                         swizzle_x = I915_BIT_6_SWIZZLE_NONE;
193                         swizzle_y = I915_BIT_6_SWIZZLE_NONE;
194                 } else {
195                         swizzle_x = I915_BIT_6_SWIZZLE_9_10;
196                         swizzle_y = I915_BIT_6_SWIZZLE_9;
197                 }
198         }
199
200         dev_priv->mm.bit_6_swizzle_x = swizzle_x;
201         dev_priv->mm.bit_6_swizzle_y = swizzle_y;
202 }
203
204 /* Check pitch constriants for all chips & tiling formats */
205 static bool
206 i915_tiling_ok(struct drm_device *dev, int stride, int size, int tiling_mode)
207 {
208         int tile_width;
209
210         /* Linear is always fine */
211         if (tiling_mode == I915_TILING_NONE)
212                 return (true);
213
214         if (IS_GEN2(dev) ||
215             (tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)))
216                 tile_width = 128;
217         else
218                 tile_width = 512;
219
220         /* check maximum stride & object size */
221         if (INTEL_INFO(dev)->gen >= 4) {
222                 /* i965 stores the end address of the gtt mapping in the fence
223                  * reg, so dont bother to check the size */
224                 if (stride / 128 > I965_FENCE_MAX_PITCH_VAL)
225                         return (false);
226         } else {
227                 if (stride > 8192)
228                         return (false);
229
230                 if (IS_GEN3(dev)) {
231                         if (size > I830_FENCE_MAX_SIZE_VAL << 20)
232                                 return (false);
233                 } else {
234                         if (size > I830_FENCE_MAX_SIZE_VAL << 19)
235                                 return (false);
236                 }
237         }
238
239         /* 965+ just needs multiples of tile width */
240         if (INTEL_INFO(dev)->gen >= 4) {
241                 if (stride & (tile_width - 1))
242                         return (false);
243                 return (true);
244         }
245
246         /* Pre-965 needs power of two tile widths */
247         if (stride < tile_width)
248                 return (false);
249
250         if (stride & (stride - 1))
251                 return (false);
252
253         return (true);
254 }
255
256 /* Is the current GTT allocation valid for the change in tiling? */
257 static bool
258 i915_gem_object_fence_ok(struct drm_i915_gem_object *obj, int tiling_mode)
259 {
260         u32 size;
261
262         if (tiling_mode == I915_TILING_NONE)
263                 return (true);
264
265         if (INTEL_INFO(obj->base.dev)->gen >= 4)
266                 return (true);
267
268         if (INTEL_INFO(obj->base.dev)->gen == 3) {
269                 if (obj->gtt_offset & ~I915_FENCE_START_MASK)
270                         return (false);
271         } else {
272                 if (obj->gtt_offset & ~I830_FENCE_START_MASK)
273                         return (false);
274         }
275
276         /*
277          * Previous chips need to be aligned to the size of the smallest
278          * fence register that can contain the object.
279          */
280         if (INTEL_INFO(obj->base.dev)->gen == 3)
281                 size = 1024*1024;
282         else
283                 size = 512*1024;
284
285         while (size < obj->base.size)
286                 size <<= 1;
287
288         if (obj->gtt_space->size != size)
289                 return (false);
290
291         if (obj->gtt_offset & (size - 1))
292                 return (false);
293
294         return (true);
295 }
296
297 /**
298  * Sets the tiling mode of an object, returning the required swizzling of
299  * bit 6 of addresses in the object.
300  */
301 int
302 i915_gem_set_tiling(struct drm_device *dev, void *data,
303                    struct drm_file *file)
304 {
305         struct drm_i915_gem_set_tiling *args = data;
306         drm_i915_private_t *dev_priv = dev->dev_private;
307         struct drm_i915_gem_object *obj;
308         int ret;
309
310         ret = 0;
311         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
312         if (&obj->base == NULL)
313                 return -ENOENT;
314
315         if (!i915_tiling_ok(dev,
316                             args->stride, obj->base.size, args->tiling_mode)) {
317                 drm_gem_object_unreference(&obj->base);
318                 return -EINVAL;
319         }
320
321         if (obj->pin_count) {
322                 drm_gem_object_unreference(&obj->base);
323                 return -EBUSY;
324         }
325
326         if (args->tiling_mode == I915_TILING_NONE) {
327                 args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
328                 args->stride = 0;
329         } else {
330                 if (args->tiling_mode == I915_TILING_X)
331                         args->swizzle_mode = dev_priv->mm.bit_6_swizzle_x;
332                 else
333                         args->swizzle_mode = dev_priv->mm.bit_6_swizzle_y;
334
335                 /* Hide bit 17 swizzling from the user.  This prevents old Mesa
336                  * from aborting the application on sw fallbacks to bit 17,
337                  * and we use the pread/pwrite bit17 paths to swizzle for it.
338                  * If there was a user that was relying on the swizzle
339                  * information for drm_intel_bo_map()ed reads/writes this would
340                  * break it, but we don't have any of those.
341                  */
342                 if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_17)
343                         args->swizzle_mode = I915_BIT_6_SWIZZLE_9;
344                 if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_10_17)
345                         args->swizzle_mode = I915_BIT_6_SWIZZLE_9_10;
346
347                 /* If we can't handle the swizzling, make it untiled. */
348                 if (args->swizzle_mode == I915_BIT_6_SWIZZLE_UNKNOWN) {
349                         args->tiling_mode = I915_TILING_NONE;
350                         args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
351                         args->stride = 0;
352                 }
353         }
354
355         DRM_LOCK(dev);
356         if (args->tiling_mode != obj->tiling_mode ||
357             args->stride != obj->stride) {
358                 /* We need to rebind the object if its current allocation
359                  * no longer meets the alignment restrictions for its new
360                  * tiling mode. Otherwise we can just leave it alone, but
361                  * need to ensure that any fence register is updated before
362                  * the next fenced (either through the GTT or by the BLT unit
363                  * on older GPUs) access.
364                  *
365                  * After updating the tiling parameters, we then flag whether
366                  * we need to update an associated fence register. Note this
367                  * has to also include the unfenced register the GPU uses
368                  * whilst executing a fenced command for an untiled object.
369                  */
370
371                 obj->map_and_fenceable =
372                         obj->gtt_space == NULL ||
373                     (obj->gtt_offset + obj->base.size <=
374                     dev_priv->mm.gtt_mappable_end &&
375                     i915_gem_object_fence_ok(obj, args->tiling_mode));
376
377                 /* Rebind if we need a change of alignment */
378                 if (!obj->map_and_fenceable) {
379                         uint32_t unfenced_alignment =
380                             i915_gem_get_unfenced_gtt_alignment(dev,
381                                 obj->base.size, args->tiling_mode);
382                         if (obj->gtt_offset & (unfenced_alignment - 1))
383                                 ret = i915_gem_object_unbind(obj);
384                 }
385
386                 if (ret == 0) {
387                         obj->fence_dirty =
388                                 obj->fenced_gpu_access ||
389                                 obj->fence_reg != I915_FENCE_REG_NONE;
390
391
392                         obj->tiling_mode = args->tiling_mode;
393                         obj->stride = args->stride;
394
395                         /* Force the fence to be reacquired for GTT access */
396                         i915_gem_release_mmap(obj);
397                 }
398         }
399         /* we have to maintain this existing ABI... */
400         args->stride = obj->stride;
401         args->tiling_mode = obj->tiling_mode;
402         drm_gem_object_unreference(&obj->base);
403         DRM_UNLOCK(dev);
404
405         return (ret);
406 }
407
408 /**
409  * Returns the current tiling mode and required bit 6 swizzling for the object.
410  */
411 int
412 i915_gem_get_tiling(struct drm_device *dev, void *data,
413                    struct drm_file *file)
414 {
415         struct drm_i915_gem_get_tiling *args = data;
416         drm_i915_private_t *dev_priv = dev->dev_private;
417         struct drm_i915_gem_object *obj;
418
419         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
420         if (&obj->base == NULL)
421                 return -ENOENT;
422
423         DRM_LOCK(dev);
424
425         args->tiling_mode = obj->tiling_mode;
426         switch (obj->tiling_mode) {
427         case I915_TILING_X:
428                 args->swizzle_mode = dev_priv->mm.bit_6_swizzle_x;
429                 break;
430         case I915_TILING_Y:
431                 args->swizzle_mode = dev_priv->mm.bit_6_swizzle_y;
432                 break;
433         case I915_TILING_NONE:
434                 args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
435                 break;
436         default:
437                 DRM_ERROR("unknown tiling mode\n");
438         }
439
440         /* Hide bit 17 from the user -- see comment in i915_gem_set_tiling */
441         if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_17)
442                 args->swizzle_mode = I915_BIT_6_SWIZZLE_9;
443         if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_10_17)
444                 args->swizzle_mode = I915_BIT_6_SWIZZLE_9_10;
445
446         drm_gem_object_unreference(&obj->base);
447         DRM_UNLOCK(dev);
448
449         return 0;
450 }
451
452 /**
453  * Swap every 64 bytes of this page around, to account for it having a new
454  * bit 17 of its physical address and therefore being interpreted differently
455  * by the GPU.
456  */
457 static void
458 i915_gem_swizzle_page(vm_page_t m)
459 {
460         char temp[64];
461         char *vaddr;
462         struct sf_buf *sf;
463         int i;
464
465         /* XXXKIB sleep */
466         sf = sf_buf_alloc(m, SFB_DEFAULT);
467         vaddr = (char *)sf_buf_kva(sf);
468
469         for (i = 0; i < PAGE_SIZE; i += 128) {
470                 memcpy(temp, &vaddr[i], 64);
471                 memcpy(&vaddr[i], &vaddr[i + 64], 64);
472                 memcpy(&vaddr[i + 64], temp, 64);
473         }
474
475         sf_buf_free(sf);
476 }
477
478 void
479 i915_gem_object_do_bit_17_swizzle_page(struct drm_i915_gem_object *obj,
480     vm_page_t m)
481 {
482         char new_bit_17;
483
484         if (obj->bit_17 == NULL)
485                 return;
486
487         new_bit_17 = VM_PAGE_TO_PHYS(m) >> 17;
488         if ((new_bit_17 & 0x1) != (test_bit(m->pindex, obj->bit_17) != 0)) {
489                 i915_gem_swizzle_page(m);
490                 vm_page_dirty(m);
491         }
492 }
493
494 void
495 i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj)
496 {
497         int page_count = obj->base.size >> PAGE_SHIFT;
498         int i;
499
500         if (obj->bit_17 == NULL)
501                 return;
502
503         for (i = 0; i < page_count; i++) {
504                 char new_bit_17 = VM_PAGE_TO_PHYS(obj->pages[i]) >> 17;
505                 if ((new_bit_17 & 0x1) !=
506                     (test_bit(i, obj->bit_17) != 0)) {
507                         i915_gem_swizzle_page(obj->pages[i]);
508                         vm_page_dirty(obj->pages[i]);
509                 }
510         }
511 }
512
513 void
514 i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj)
515 {
516         int page_count = obj->base.size >> PAGE_SHIFT;
517         int i;
518
519         if (obj->bit_17 == NULL) {
520                 obj->bit_17 = malloc(BITS_TO_LONGS(page_count) *
521                     sizeof(long), DRM_I915_GEM, M_WAITOK);
522         }
523
524         /* XXXKIB: review locking, atomics might be not needed there */
525         for (i = 0; i < page_count; i++) {
526                 if (VM_PAGE_TO_PHYS(obj->pages[i]) & (1 << 17))
527                         set_bit(i, obj->bit_17);
528                 else
529                         clear_bit(i, obj->bit_17);
530         }
531 }