]> CyberLeo.Net >> Repos - FreeBSD/releng/10.2.git/blob - sys/dev/drm2/i915/intel_dp.c
- Copy stable/10@285827 to releng/10.2 in preparation for 10.2-RC1
[FreeBSD/releng/10.2.git] / sys / dev / drm2 / i915 / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30
31 #include <dev/drm2/drmP.h>
32 #include <dev/drm2/drm.h>
33 #include <dev/drm2/drm_crtc.h>
34 #include <dev/drm2/drm_crtc_helper.h>
35 #include <dev/drm2/i915/i915_drm.h>
36 #include <dev/drm2/i915/i915_drv.h>
37 #include <dev/drm2/i915/intel_drv.h>
38 #include <dev/drm2/drm_dp_helper.h>
39
40 #define DP_RECEIVER_CAP_SIZE    0xf
41 #define DP_LINK_STATUS_SIZE     6
42 #define DP_LINK_CHECK_TIMEOUT   (10 * 1000)
43
44 #define DP_LINK_CONFIGURATION_SIZE      9
45
46 struct intel_dp {
47         struct intel_encoder base;
48         uint32_t output_reg;
49         uint32_t DP;
50         uint8_t  link_configuration[DP_LINK_CONFIGURATION_SIZE];
51         bool has_audio;
52         enum hdmi_force_audio force_audio;
53         uint32_t color_range;
54         int dpms_mode;
55         uint8_t link_bw;
56         uint8_t lane_count;
57         uint8_t dpcd[DP_RECEIVER_CAP_SIZE];
58         device_t dp_iic_bus;
59         device_t adapter;
60         bool is_pch_edp;
61         uint8_t train_set[4];
62         int panel_power_up_delay;
63         int panel_power_down_delay;
64         int panel_power_cycle_delay;
65         int backlight_on_delay;
66         int backlight_off_delay;
67         struct drm_display_mode *panel_fixed_mode;  /* for eDP */
68         struct timeout_task panel_vdd_task;
69         bool want_panel_vdd;
70 };
71
72 /**
73  * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
74  * @intel_dp: DP struct
75  *
76  * If a CPU or PCH DP output is attached to an eDP panel, this function
77  * will return true, and false otherwise.
78  */
79 static bool is_edp(struct intel_dp *intel_dp)
80 {
81         return intel_dp->base.type == INTEL_OUTPUT_EDP;
82 }
83
84 /**
85  * is_pch_edp - is the port on the PCH and attached to an eDP panel?
86  * @intel_dp: DP struct
87  *
88  * Returns true if the given DP struct corresponds to a PCH DP port attached
89  * to an eDP panel, false otherwise.  Helpful for determining whether we
90  * may need FDI resources for a given DP output or not.
91  */
92 static bool is_pch_edp(struct intel_dp *intel_dp)
93 {
94         return intel_dp->is_pch_edp;
95 }
96
97 /**
98  * is_cpu_edp - is the port on the CPU and attached to an eDP panel?
99  * @intel_dp: DP struct
100  *
101  * Returns true if the given DP struct corresponds to a CPU eDP port.
102  */
103 static bool is_cpu_edp(struct intel_dp *intel_dp)
104 {
105         return is_edp(intel_dp) && !is_pch_edp(intel_dp);
106 }
107
108 static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
109 {
110         return container_of(encoder, struct intel_dp, base.base);
111 }
112
113 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
114 {
115         return container_of(intel_attached_encoder(connector),
116                             struct intel_dp, base);
117 }
118
119 /**
120  * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
121  * @encoder: DRM encoder
122  *
123  * Return true if @encoder corresponds to a PCH attached eDP panel.  Needed
124  * by intel_display.c.
125  */
126 bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
127 {
128         struct intel_dp *intel_dp;
129
130         if (!encoder)
131                 return false;
132
133         intel_dp = enc_to_intel_dp(encoder);
134
135         return is_pch_edp(intel_dp);
136 }
137
138 static void intel_dp_start_link_train(struct intel_dp *intel_dp);
139 static void intel_dp_complete_link_train(struct intel_dp *intel_dp);
140 static void intel_dp_link_down(struct intel_dp *intel_dp);
141
142 void
143 intel_edp_link_config(struct intel_encoder *intel_encoder,
144                        int *lane_num, int *link_bw)
145 {
146         struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
147
148         *lane_num = intel_dp->lane_count;
149         if (intel_dp->link_bw == DP_LINK_BW_1_62)
150                 *link_bw = 162000;
151         else if (intel_dp->link_bw == DP_LINK_BW_2_7)
152                 *link_bw = 270000;
153 }
154
155 static int
156 intel_dp_max_lane_count(struct intel_dp *intel_dp)
157 {
158         int max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
159         switch (max_lane_count) {
160         case 1: case 2: case 4:
161                 break;
162         default:
163                 max_lane_count = 4;
164         }
165         return max_lane_count;
166 }
167
168 static int
169 intel_dp_max_link_bw(struct intel_dp *intel_dp)
170 {
171         int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
172
173         switch (max_link_bw) {
174         case DP_LINK_BW_1_62:
175         case DP_LINK_BW_2_7:
176                 break;
177         default:
178                 max_link_bw = DP_LINK_BW_1_62;
179                 break;
180         }
181         return max_link_bw;
182 }
183
184 static int
185 intel_dp_link_clock(uint8_t link_bw)
186 {
187         if (link_bw == DP_LINK_BW_2_7)
188                 return 270000;
189         else
190                 return 162000;
191 }
192
193 /*
194  * The units on the numbers in the next two are... bizarre.  Examples will
195  * make it clearer; this one parallels an example in the eDP spec.
196  *
197  * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
198  *
199  *     270000 * 1 * 8 / 10 == 216000
200  *
201  * The actual data capacity of that configuration is 2.16Gbit/s, so the
202  * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
203  * or equivalently, kilopixels per second - so for 1680x1050R it'd be
204  * 119000.  At 18bpp that's 2142000 kilobits per second.
205  *
206  * Thus the strange-looking division by 10 in intel_dp_link_required, to
207  * get the result in decakilobits instead of kilobits.
208  */
209
210 static int
211 intel_dp_link_required(int pixel_clock, int bpp)
212 {
213         return (pixel_clock * bpp + 9) / 10;
214 }
215
216 static int
217 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
218 {
219         return (max_link_clock * max_lanes * 8) / 10;
220 }
221
222 static bool
223 intel_dp_adjust_dithering(struct intel_dp *intel_dp,
224                           const struct drm_display_mode *mode,
225                           struct drm_display_mode *adjusted_mode)
226 {
227         int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
228         int max_lanes = intel_dp_max_lane_count(intel_dp);
229         int max_rate, mode_rate;
230
231         mode_rate = intel_dp_link_required(mode->clock, 24);
232         max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
233
234         if (mode_rate > max_rate) {
235                 mode_rate = intel_dp_link_required(mode->clock, 18);
236                 if (mode_rate > max_rate)
237                         return false;
238
239                 if (adjusted_mode)
240                         adjusted_mode->private_flags
241                                 |= INTEL_MODE_DP_FORCE_6BPC;
242
243                 return true;
244         }
245
246         return true;
247 }
248
249 static int
250 intel_dp_mode_valid(struct drm_connector *connector,
251                     struct drm_display_mode *mode)
252 {
253         struct intel_dp *intel_dp = intel_attached_dp(connector);
254
255         if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
256                 if (mode->hdisplay > intel_dp->panel_fixed_mode->hdisplay)
257                         return MODE_PANEL;
258
259                 if (mode->vdisplay > intel_dp->panel_fixed_mode->vdisplay)
260                         return MODE_PANEL;
261         }
262
263         if (!intel_dp_adjust_dithering(intel_dp, mode, NULL))
264                 return MODE_CLOCK_HIGH;
265
266         if (mode->clock < 10000)
267                 return MODE_CLOCK_LOW;
268
269         return MODE_OK;
270 }
271
272 static uint32_t
273 pack_aux(uint8_t *src, int src_bytes)
274 {
275         int     i;
276         uint32_t v = 0;
277
278         if (src_bytes > 4)
279                 src_bytes = 4;
280         for (i = 0; i < src_bytes; i++)
281                 v |= ((uint32_t) src[i]) << ((3-i) * 8);
282         return v;
283 }
284
285 static void
286 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
287 {
288         int i;
289         if (dst_bytes > 4)
290                 dst_bytes = 4;
291         for (i = 0; i < dst_bytes; i++)
292                 dst[i] = src >> ((3-i) * 8);
293 }
294
295 /* hrawclock is 1/4 the FSB frequency */
296 static int
297 intel_hrawclk(struct drm_device *dev)
298 {
299         struct drm_i915_private *dev_priv = dev->dev_private;
300         uint32_t clkcfg;
301
302         clkcfg = I915_READ(CLKCFG);
303         switch (clkcfg & CLKCFG_FSB_MASK) {
304         case CLKCFG_FSB_400:
305                 return 100;
306         case CLKCFG_FSB_533:
307                 return 133;
308         case CLKCFG_FSB_667:
309                 return 166;
310         case CLKCFG_FSB_800:
311                 return 200;
312         case CLKCFG_FSB_1067:
313                 return 266;
314         case CLKCFG_FSB_1333:
315                 return 333;
316         /* these two are just a guess; one of them might be right */
317         case CLKCFG_FSB_1600:
318         case CLKCFG_FSB_1600_ALT:
319                 return 400;
320         default:
321                 return 133;
322         }
323 }
324
325 static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
326 {
327         struct drm_device *dev = intel_dp->base.base.dev;
328         struct drm_i915_private *dev_priv = dev->dev_private;
329
330         return (I915_READ(PCH_PP_STATUS) & PP_ON) != 0;
331 }
332
333 static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
334 {
335         struct drm_device *dev = intel_dp->base.base.dev;
336         struct drm_i915_private *dev_priv = dev->dev_private;
337
338         return (I915_READ(PCH_PP_CONTROL) & EDP_FORCE_VDD) != 0;
339 }
340
341 static void
342 intel_dp_check_edp(struct intel_dp *intel_dp)
343 {
344         struct drm_device *dev = intel_dp->base.base.dev;
345         struct drm_i915_private *dev_priv = dev->dev_private;
346
347         if (!is_edp(intel_dp))
348                 return;
349         if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
350                 printf("eDP powered off while attempting aux channel communication.\n");
351                 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
352                               I915_READ(PCH_PP_STATUS),
353                               I915_READ(PCH_PP_CONTROL));
354         }
355 }
356
357 static int
358 intel_dp_aux_ch(struct intel_dp *intel_dp,
359                 uint8_t *send, int send_bytes,
360                 uint8_t *recv, int recv_size)
361 {
362         uint32_t output_reg = intel_dp->output_reg;
363         struct drm_device *dev = intel_dp->base.base.dev;
364         struct drm_i915_private *dev_priv = dev->dev_private;
365         uint32_t ch_ctl = output_reg + 0x10;
366         uint32_t ch_data = ch_ctl + 4;
367         int i;
368         int recv_bytes;
369         uint32_t status;
370         uint32_t aux_clock_divider;
371         int try, precharge = 5;
372
373         intel_dp_check_edp(intel_dp);
374         /* The clock divider is based off the hrawclk,
375          * and would like to run at 2MHz. So, take the
376          * hrawclk value and divide by 2 and use that
377          *
378          * Note that PCH attached eDP panels should use a 125MHz input
379          * clock divider.
380          */
381         if (is_cpu_edp(intel_dp)) {
382                 if (IS_GEN6(dev) || IS_GEN7(dev))
383                         aux_clock_divider = 200; /* SNB & IVB eDP input clock at 400Mhz */
384                 else
385                         aux_clock_divider = 225; /* eDP input clock at 450Mhz */
386         } else if (HAS_PCH_SPLIT(dev))
387                 aux_clock_divider = 63; /* IRL input clock fixed at 125Mhz */
388         else
389                 aux_clock_divider = intel_hrawclk(dev) / 2;
390
391         /* Try to wait for any previous AUX channel activity */
392         for (try = 0; try < 3; try++) {
393                 status = I915_READ(ch_ctl);
394                 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
395                         break;
396                 drm_msleep(1, "915ach");
397         }
398
399         if (try == 3) {
400                 printf("dp_aux_ch not started status 0x%08x\n",
401                      I915_READ(ch_ctl));
402                 return -EBUSY;
403         }
404
405         /* Must try at least 3 times according to DP spec */
406         for (try = 0; try < 5; try++) {
407                 /* Load the send data into the aux channel data registers */
408                 for (i = 0; i < send_bytes; i += 4)
409                         I915_WRITE(ch_data + i,
410                                    pack_aux(send + i, send_bytes - i));
411
412                 /* Send the command and wait for it to complete */
413                 I915_WRITE(ch_ctl,
414                            DP_AUX_CH_CTL_SEND_BUSY |
415                            DP_AUX_CH_CTL_TIME_OUT_400us |
416                            (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
417                            (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
418                            (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
419                            DP_AUX_CH_CTL_DONE |
420                            DP_AUX_CH_CTL_TIME_OUT_ERROR |
421                            DP_AUX_CH_CTL_RECEIVE_ERROR);
422                 for (;;) {
423                         status = I915_READ(ch_ctl);
424                         if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
425                                 break;
426                         DELAY(100);
427                 }
428
429                 /* Clear done status and any errors */
430                 I915_WRITE(ch_ctl,
431                            status |
432                            DP_AUX_CH_CTL_DONE |
433                            DP_AUX_CH_CTL_TIME_OUT_ERROR |
434                            DP_AUX_CH_CTL_RECEIVE_ERROR);
435
436                 if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
437                               DP_AUX_CH_CTL_RECEIVE_ERROR))
438                         continue;
439                 if (status & DP_AUX_CH_CTL_DONE)
440                         break;
441         }
442
443         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
444                 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
445                 return -EBUSY;
446         }
447
448         /* Check for timeout or receive error.
449          * Timeouts occur when the sink is not connected
450          */
451         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
452                 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
453                 return -EIO;
454         }
455
456         /* Timeouts occur when the device isn't connected, so they're
457          * "normal" -- don't fill the kernel log with these */
458         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
459                 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
460                 return -ETIMEDOUT;
461         }
462
463         /* Unload any bytes sent back from the other side */
464         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
465                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
466         if (recv_bytes > recv_size)
467                 recv_bytes = recv_size;
468
469         for (i = 0; i < recv_bytes; i += 4)
470                 unpack_aux(I915_READ(ch_data + i),
471                            recv + i, recv_bytes - i);
472
473         return recv_bytes;
474 }
475
476 /* Write data to the aux channel in native mode */
477 static int
478 intel_dp_aux_native_write(struct intel_dp *intel_dp,
479                           uint16_t address, uint8_t *send, int send_bytes)
480 {
481         int ret;
482         uint8_t msg[20];
483         int msg_bytes;
484         uint8_t ack;
485
486         intel_dp_check_edp(intel_dp);
487         if (send_bytes > 16)
488                 return -1;
489         msg[0] = AUX_NATIVE_WRITE << 4;
490         msg[1] = address >> 8;
491         msg[2] = address & 0xff;
492         msg[3] = send_bytes - 1;
493         memcpy(&msg[4], send, send_bytes);
494         msg_bytes = send_bytes + 4;
495         for (;;) {
496                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
497                 if (ret < 0)
498                         return ret;
499                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
500                         break;
501                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
502                         DELAY(100);
503                 else
504                         return -EIO;
505         }
506         return send_bytes;
507 }
508
509 /* Write a single byte to the aux channel in native mode */
510 static int
511 intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
512                             uint16_t address, uint8_t byte)
513 {
514         return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
515 }
516
517 /* read bytes from a native aux channel */
518 static int
519 intel_dp_aux_native_read(struct intel_dp *intel_dp,
520                          uint16_t address, uint8_t *recv, int recv_bytes)
521 {
522         uint8_t msg[4];
523         int msg_bytes;
524         uint8_t reply[20];
525         int reply_bytes;
526         uint8_t ack;
527         int ret;
528
529         intel_dp_check_edp(intel_dp);
530         msg[0] = AUX_NATIVE_READ << 4;
531         msg[1] = address >> 8;
532         msg[2] = address & 0xff;
533         msg[3] = recv_bytes - 1;
534
535         msg_bytes = 4;
536         reply_bytes = recv_bytes + 1;
537
538         for (;;) {
539                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
540                                       reply, reply_bytes);
541                 if (ret == 0)
542                         return -EPROTO;
543                 if (ret < 0)
544                         return ret;
545                 ack = reply[0];
546                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
547                         memcpy(recv, reply + 1, ret - 1);
548                         return ret - 1;
549                 }
550                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
551                         DELAY(100);
552                 else
553                         return -EIO;
554         }
555 }
556
557 static int
558 intel_dp_i2c_aux_ch(device_t idev, int mode, uint8_t write_byte,
559     uint8_t *read_byte)
560 {
561         struct iic_dp_aux_data *data;
562         struct intel_dp *intel_dp;
563         uint16_t address;
564         uint8_t msg[5];
565         uint8_t reply[2];
566         unsigned retry;
567         int msg_bytes;
568         int reply_bytes;
569         int ret;
570
571         data = device_get_softc(idev);
572         intel_dp = data->priv;
573         address = data->address;
574
575         intel_dp_check_edp(intel_dp);
576         /* Set up the command byte */
577         if (mode & MODE_I2C_READ)
578                 msg[0] = AUX_I2C_READ << 4;
579         else
580                 msg[0] = AUX_I2C_WRITE << 4;
581
582         if (!(mode & MODE_I2C_STOP))
583                 msg[0] |= AUX_I2C_MOT << 4;
584
585         msg[1] = address >> 8;
586         msg[2] = address;
587
588         switch (mode) {
589         case MODE_I2C_WRITE:
590                 msg[3] = 0;
591                 msg[4] = write_byte;
592                 msg_bytes = 5;
593                 reply_bytes = 1;
594                 break;
595         case MODE_I2C_READ:
596                 msg[3] = 0;
597                 msg_bytes = 4;
598                 reply_bytes = 2;
599                 break;
600         default:
601                 msg_bytes = 3;
602                 reply_bytes = 1;
603                 break;
604         }
605
606         for (retry = 0; retry < 5; retry++) {
607                 ret = intel_dp_aux_ch(intel_dp,
608                                       msg, msg_bytes,
609                                       reply, reply_bytes);
610                 if (ret < 0) {
611                         DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
612                         return (ret);
613                 }
614
615                 switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
616                 case AUX_NATIVE_REPLY_ACK:
617                         /* I2C-over-AUX Reply field is only valid
618                          * when paired with AUX ACK.
619                          */
620                         break;
621                 case AUX_NATIVE_REPLY_NACK:
622                         DRM_DEBUG_KMS("aux_ch native nack\n");
623                         return (-EREMOTEIO);
624                 case AUX_NATIVE_REPLY_DEFER:
625                         DELAY(100);
626                         continue;
627                 default:
628                         DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
629                                   reply[0]);
630                         return (-EREMOTEIO);
631                 }
632
633                 switch (reply[0] & AUX_I2C_REPLY_MASK) {
634                 case AUX_I2C_REPLY_ACK:
635                         if (mode == MODE_I2C_READ) {
636                                 *read_byte = reply[1];
637                         }
638                         return (0/*reply_bytes - 1*/);
639                 case AUX_I2C_REPLY_NACK:
640                         DRM_DEBUG_KMS("aux_i2c nack\n");
641                         return (-EREMOTEIO);
642                 case AUX_I2C_REPLY_DEFER:
643                         DRM_DEBUG_KMS("aux_i2c defer\n");
644                         DELAY(100);
645                         break;
646                 default:
647                         DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
648                         return (-EREMOTEIO);
649                 }
650         }
651
652         DRM_ERROR("too many retries, giving up\n");
653         return (-EREMOTEIO);
654 }
655
656 static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp);
657 static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
658
659 static int
660 intel_dp_i2c_init(struct intel_dp *intel_dp,
661                   struct intel_connector *intel_connector, const char *name)
662 {
663         int ret;
664
665         DRM_DEBUG_KMS("i2c_init %s\n", name);
666
667         ironlake_edp_panel_vdd_on(intel_dp);
668         ret = iic_dp_aux_add_bus(intel_connector->base.dev->dev, name,
669             intel_dp_i2c_aux_ch, intel_dp, &intel_dp->dp_iic_bus,
670             &intel_dp->adapter);
671         ironlake_edp_panel_vdd_off(intel_dp, false);
672         return (ret);
673 }
674
675 static bool
676 intel_dp_mode_fixup(struct drm_encoder *encoder, const struct drm_display_mode *mode,
677                     struct drm_display_mode *adjusted_mode)
678 {
679         struct drm_device *dev = encoder->dev;
680         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
681         int lane_count, clock;
682         int max_lane_count = intel_dp_max_lane_count(intel_dp);
683         int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
684         int bpp, mode_rate;
685         static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
686
687         if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
688                 intel_fixed_panel_mode(intel_dp->panel_fixed_mode, adjusted_mode);
689                 intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
690                                         mode, adjusted_mode);
691         }
692
693         DRM_DEBUG_KMS("DP link computation with max lane count %i "
694                       "max bw %02x pixel clock %iKHz\n",
695                       max_lane_count, bws[max_clock], mode->clock);
696
697         if (!intel_dp_adjust_dithering(intel_dp, adjusted_mode, adjusted_mode))
698                 return false;
699
700         bpp = adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC ? 18 : 24;
701         mode_rate = intel_dp_link_required(adjusted_mode->clock, bpp);
702
703         for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
704                 for (clock = 0; clock <= max_clock; clock++) {
705                         int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
706
707                         if (mode_rate <= link_avail) {
708                                 intel_dp->link_bw = bws[clock];
709                                 intel_dp->lane_count = lane_count;
710                                 adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
711                                 DRM_DEBUG_KMS("DP link bw %02x lane "
712                                                 "count %d clock %d bpp %d\n",
713                                        intel_dp->link_bw, intel_dp->lane_count,
714                                        adjusted_mode->clock, bpp);
715                                 DRM_DEBUG_KMS("DP link bw required %i available %i\n",
716                                               mode_rate, link_avail);
717                                 return true;
718                         }
719                 }
720         }
721
722         return false;
723 }
724
725 struct intel_dp_m_n {
726         uint32_t        tu;
727         uint32_t        gmch_m;
728         uint32_t        gmch_n;
729         uint32_t        link_m;
730         uint32_t        link_n;
731 };
732
733 static void
734 intel_reduce_ratio(uint32_t *num, uint32_t *den)
735 {
736         while (*num > 0xffffff || *den > 0xffffff) {
737                 *num >>= 1;
738                 *den >>= 1;
739         }
740 }
741
742 static void
743 intel_dp_compute_m_n(int bpp,
744                      int nlanes,
745                      int pixel_clock,
746                      int link_clock,
747                      struct intel_dp_m_n *m_n)
748 {
749         m_n->tu = 64;
750         m_n->gmch_m = (pixel_clock * bpp) >> 3;
751         m_n->gmch_n = link_clock * nlanes;
752         intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
753         m_n->link_m = pixel_clock;
754         m_n->link_n = link_clock;
755         intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
756 }
757
758 void
759 intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
760                  struct drm_display_mode *adjusted_mode)
761 {
762         struct drm_device *dev = crtc->dev;
763         struct drm_mode_config *mode_config = &dev->mode_config;
764         struct drm_encoder *encoder;
765         struct drm_i915_private *dev_priv = dev->dev_private;
766         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
767         int lane_count = 4;
768         struct intel_dp_m_n m_n;
769         int pipe = intel_crtc->pipe;
770
771         /*
772          * Find the lane count in the intel_encoder private
773          */
774         list_for_each_entry(encoder, &mode_config->encoder_list, head) {
775                 struct intel_dp *intel_dp;
776
777                 if (encoder->crtc != crtc)
778                         continue;
779
780                 intel_dp = enc_to_intel_dp(encoder);
781                 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
782                     intel_dp->base.type == INTEL_OUTPUT_EDP)
783                 {
784                         lane_count = intel_dp->lane_count;
785                         break;
786                 }
787         }
788
789         /*
790          * Compute the GMCH and Link ratios. The '3' here is
791          * the number of bytes_per_pixel post-LUT, which we always
792          * set up for 8-bits of R/G/B, or 3 bytes total.
793          */
794         intel_dp_compute_m_n(intel_crtc->bpp, lane_count,
795                              mode->clock, adjusted_mode->clock, &m_n);
796
797         if (HAS_PCH_SPLIT(dev)) {
798                 I915_WRITE(TRANSDATA_M1(pipe),
799                            ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
800                            m_n.gmch_m);
801                 I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
802                 I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
803                 I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
804         } else {
805                 I915_WRITE(PIPE_GMCH_DATA_M(pipe),
806                            ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
807                            m_n.gmch_m);
808                 I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
809                 I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
810                 I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
811         }
812 }
813
814 static void ironlake_edp_pll_on(struct drm_encoder *encoder);
815 static void ironlake_edp_pll_off(struct drm_encoder *encoder);
816
817 static void
818 intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
819                   struct drm_display_mode *adjusted_mode)
820 {
821         struct drm_device *dev = encoder->dev;
822         struct drm_i915_private *dev_priv = dev->dev_private;
823         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
824         struct drm_crtc *crtc = intel_dp->base.base.crtc;
825         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
826
827         /* Turn on the eDP PLL if needed */
828         if (is_edp(intel_dp)) {
829                 if (!is_pch_edp(intel_dp))
830                         ironlake_edp_pll_on(encoder);
831                 else
832                         ironlake_edp_pll_off(encoder);
833         }
834
835         /*
836          * There are four kinds of DP registers:
837          *
838          *      IBX PCH
839          *      SNB CPU
840          *      IVB CPU
841          *      CPT PCH
842          *
843          * IBX PCH and CPU are the same for almost everything,
844          * except that the CPU DP PLL is configured in this
845          * register
846          *
847          * CPT PCH is quite different, having many bits moved
848          * to the TRANS_DP_CTL register instead. That
849          * configuration happens (oddly) in ironlake_pch_enable
850          */
851
852         /* Preserve the BIOS-computed detected bit. This is
853          * supposed to be read-only.
854          */
855         intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
856         intel_dp->DP |=  DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
857
858         /* Handle DP bits in common between all three register formats */
859
860         intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
861
862         switch (intel_dp->lane_count) {
863         case 1:
864                 intel_dp->DP |= DP_PORT_WIDTH_1;
865                 break;
866         case 2:
867                 intel_dp->DP |= DP_PORT_WIDTH_2;
868                 break;
869         case 4:
870                 intel_dp->DP |= DP_PORT_WIDTH_4;
871                 break;
872         }
873         if (intel_dp->has_audio) {
874                 DRM_DEBUG_KMS("Enabling DP audio on pipe %c\n",
875                                  pipe_name(intel_crtc->pipe));
876                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
877                 intel_write_eld(encoder, adjusted_mode);
878         }
879         memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
880         intel_dp->link_configuration[0] = intel_dp->link_bw;
881         intel_dp->link_configuration[1] = intel_dp->lane_count;
882         /*
883          * Check for DPCD version > 1.1 and enhanced framing support
884          */
885         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
886             (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
887                 intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
888         }
889
890         /* Split out the IBX/CPU vs CPT settings */
891
892         if (is_cpu_edp(intel_dp) && IS_GEN7(dev)) {
893                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
894                         intel_dp->DP |= DP_SYNC_HS_HIGH;
895                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
896                         intel_dp->DP |= DP_SYNC_VS_HIGH;
897                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
898
899                 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
900                         intel_dp->DP |= DP_ENHANCED_FRAMING;
901
902                 intel_dp->DP |= intel_crtc->pipe << 29;
903
904                 /* don't miss out required setting for eDP */
905                 intel_dp->DP |= DP_PLL_ENABLE;
906                 if (adjusted_mode->clock < 200000)
907                         intel_dp->DP |= DP_PLL_FREQ_160MHZ;
908                 else
909                         intel_dp->DP |= DP_PLL_FREQ_270MHZ;
910         } else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
911                 intel_dp->DP |= intel_dp->color_range;
912
913                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
914                         intel_dp->DP |= DP_SYNC_HS_HIGH;
915                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
916                         intel_dp->DP |= DP_SYNC_VS_HIGH;
917                 intel_dp->DP |= DP_LINK_TRAIN_OFF;
918
919                 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
920                         intel_dp->DP |= DP_ENHANCED_FRAMING;
921
922                 if (intel_crtc->pipe == 1)
923                         intel_dp->DP |= DP_PIPEB_SELECT;
924
925                 if (is_cpu_edp(intel_dp)) {
926                         /* don't miss out required setting for eDP */
927                         intel_dp->DP |= DP_PLL_ENABLE;
928                         if (adjusted_mode->clock < 200000)
929                                 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
930                         else
931                                 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
932                 }
933         } else {
934                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
935         }
936 }
937
938 #define IDLE_ON_MASK            (PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
939 #define IDLE_ON_VALUE           (PP_ON | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
940
941 #define IDLE_OFF_MASK           (PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
942 #define IDLE_OFF_VALUE          (0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
943
944 #define IDLE_CYCLE_MASK         (PP_ON | 0        | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
945 #define IDLE_CYCLE_VALUE        (0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
946
947 static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
948                                        u32 mask,
949                                        u32 value)
950 {
951         struct drm_device *dev = intel_dp->base.base.dev;
952         struct drm_i915_private *dev_priv = dev->dev_private;
953
954         DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
955                       mask, value,
956                       I915_READ(PCH_PP_STATUS),
957                       I915_READ(PCH_PP_CONTROL));
958
959         if (_intel_wait_for(dev,
960             (I915_READ(PCH_PP_STATUS) & mask) == value, 5000, 10, "915iwp")) {
961                 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
962                           I915_READ(PCH_PP_STATUS),
963                           I915_READ(PCH_PP_CONTROL));
964         }
965 }
966
967 static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
968 {
969         DRM_DEBUG_KMS("Wait for panel power on\n");
970         ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
971 }
972
973 static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
974 {
975         DRM_DEBUG_KMS("Wait for panel power off time\n");
976         ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
977 }
978
979 static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
980 {
981         DRM_DEBUG_KMS("Wait for panel power cycle\n");
982         ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
983 }
984
985
986 /* Read the current pp_control value, unlocking the register if it
987  * is locked
988  */
989
990 static  u32 ironlake_get_pp_control(struct drm_i915_private *dev_priv)
991 {
992         u32     control = I915_READ(PCH_PP_CONTROL);
993
994         control &= ~PANEL_UNLOCK_MASK;
995         control |= PANEL_UNLOCK_REGS;
996         return control;
997 }
998
999 static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
1000 {
1001         struct drm_device *dev = intel_dp->base.base.dev;
1002         struct drm_i915_private *dev_priv = dev->dev_private;
1003         u32 pp;
1004
1005         if (!is_edp(intel_dp))
1006                 return;
1007         DRM_DEBUG_KMS("Turn eDP VDD on\n");
1008
1009         if (intel_dp->want_panel_vdd)
1010                 printf("eDP VDD already requested on\n");
1011
1012         intel_dp->want_panel_vdd = true;
1013
1014         if (ironlake_edp_have_panel_vdd(intel_dp)) {
1015                 DRM_DEBUG_KMS("eDP VDD already on\n");
1016                 return;
1017         }
1018
1019         if (!ironlake_edp_have_panel_power(intel_dp))
1020                 ironlake_wait_panel_power_cycle(intel_dp);
1021
1022         pp = ironlake_get_pp_control(dev_priv);
1023         pp |= EDP_FORCE_VDD;
1024         I915_WRITE(PCH_PP_CONTROL, pp);
1025         POSTING_READ(PCH_PP_CONTROL);
1026         DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1027                       I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1028
1029         /*
1030          * If the panel wasn't on, delay before accessing aux channel
1031          */
1032         if (!ironlake_edp_have_panel_power(intel_dp)) {
1033                 DRM_DEBUG_KMS("eDP was not running\n");
1034                 drm_msleep(intel_dp->panel_power_up_delay, "915edpon");
1035         }
1036 }
1037
1038 static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
1039 {
1040         struct drm_device *dev = intel_dp->base.base.dev;
1041         struct drm_i915_private *dev_priv = dev->dev_private;
1042         u32 pp;
1043
1044         if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
1045                 pp = ironlake_get_pp_control(dev_priv);
1046                 pp &= ~EDP_FORCE_VDD;
1047                 I915_WRITE(PCH_PP_CONTROL, pp);
1048                 POSTING_READ(PCH_PP_CONTROL);
1049
1050                 /* Make sure sequencer is idle before allowing subsequent activity */
1051                 DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1052                               I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1053
1054                 drm_msleep(intel_dp->panel_power_down_delay, "915vddo");
1055         }
1056 }
1057
1058 static void ironlake_panel_vdd_work(void *arg, int pending __unused)
1059 {
1060         struct intel_dp *intel_dp = arg;
1061         struct drm_device *dev = intel_dp->base.base.dev;
1062
1063         sx_xlock(&dev->mode_config.mutex);
1064         ironlake_panel_vdd_off_sync(intel_dp);
1065         sx_xunlock(&dev->mode_config.mutex);
1066 }
1067
1068 static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1069 {
1070         if (!is_edp(intel_dp))
1071                 return;
1072
1073         DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
1074         if (!intel_dp->want_panel_vdd)
1075                 printf("eDP VDD not forced on\n");
1076
1077         intel_dp->want_panel_vdd = false;
1078
1079         if (sync) {
1080                 ironlake_panel_vdd_off_sync(intel_dp);
1081         } else {
1082                 /*
1083                  * Queue the timer to fire a long
1084                  * time from now (relative to the power down delay)
1085                  * to keep the panel power up across a sequence of operations
1086                  */
1087                 struct drm_i915_private *dev_priv = intel_dp->base.base.dev->dev_private;
1088                 taskqueue_enqueue_timeout(dev_priv->tq,
1089                     &intel_dp->panel_vdd_task,
1090                     msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1091         }
1092 }
1093
1094 static void ironlake_edp_panel_on(struct intel_dp *intel_dp)
1095 {
1096         struct drm_device *dev = intel_dp->base.base.dev;
1097         struct drm_i915_private *dev_priv = dev->dev_private;
1098         u32 pp;
1099
1100         if (!is_edp(intel_dp))
1101                 return;
1102
1103         DRM_DEBUG_KMS("Turn eDP power on\n");
1104
1105         if (ironlake_edp_have_panel_power(intel_dp)) {
1106                 DRM_DEBUG_KMS("eDP power already on\n");
1107                 return;
1108         }
1109
1110         ironlake_wait_panel_power_cycle(intel_dp);
1111
1112         pp = ironlake_get_pp_control(dev_priv);
1113         if (IS_GEN5(dev)) {
1114                 /* ILK workaround: disable reset around power sequence */
1115                 pp &= ~PANEL_POWER_RESET;
1116                 I915_WRITE(PCH_PP_CONTROL, pp);
1117                 POSTING_READ(PCH_PP_CONTROL);
1118         }
1119
1120         pp |= POWER_TARGET_ON;
1121         if (!IS_GEN5(dev))
1122                 pp |= PANEL_POWER_RESET;
1123
1124         I915_WRITE(PCH_PP_CONTROL, pp);
1125         POSTING_READ(PCH_PP_CONTROL);
1126
1127         ironlake_wait_panel_on(intel_dp);
1128
1129         if (IS_GEN5(dev)) {
1130                 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1131                 I915_WRITE(PCH_PP_CONTROL, pp);
1132                 POSTING_READ(PCH_PP_CONTROL);
1133         }
1134 }
1135
1136 static void ironlake_edp_panel_off(struct intel_dp *intel_dp)
1137 {
1138         struct drm_device *dev = intel_dp->base.base.dev;
1139         struct drm_i915_private *dev_priv = dev->dev_private;
1140         u32 pp;
1141
1142         if (!is_edp(intel_dp))
1143                 return;
1144
1145         DRM_DEBUG_KMS("Turn eDP power off\n");
1146
1147         if (intel_dp->want_panel_vdd)
1148                 printf("Cannot turn power off while VDD is on\n");
1149         ironlake_panel_vdd_off_sync(intel_dp); /* finish any pending work */
1150
1151         pp = ironlake_get_pp_control(dev_priv);
1152         pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
1153         I915_WRITE(PCH_PP_CONTROL, pp);
1154         POSTING_READ(PCH_PP_CONTROL);
1155
1156         ironlake_wait_panel_off(intel_dp);
1157 }
1158
1159 static void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
1160 {
1161         struct drm_device *dev = intel_dp->base.base.dev;
1162         struct drm_i915_private *dev_priv = dev->dev_private;
1163         u32 pp;
1164
1165         if (!is_edp(intel_dp))
1166                 return;
1167
1168         DRM_DEBUG_KMS("\n");
1169         /*
1170          * If we enable the backlight right away following a panel power
1171          * on, we may see slight flicker as the panel syncs with the eDP
1172          * link.  So delay a bit to make sure the image is solid before
1173          * allowing it to appear.
1174          */
1175         drm_msleep(intel_dp->backlight_on_delay, "915ebo");
1176         pp = ironlake_get_pp_control(dev_priv);
1177         pp |= EDP_BLC_ENABLE;
1178         I915_WRITE(PCH_PP_CONTROL, pp);
1179         POSTING_READ(PCH_PP_CONTROL);
1180 }
1181
1182 static void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
1183 {
1184         struct drm_device *dev = intel_dp->base.base.dev;
1185         struct drm_i915_private *dev_priv = dev->dev_private;
1186         u32 pp;
1187
1188         if (!is_edp(intel_dp))
1189                 return;
1190
1191         DRM_DEBUG_KMS("\n");
1192         pp = ironlake_get_pp_control(dev_priv);
1193         pp &= ~EDP_BLC_ENABLE;
1194         I915_WRITE(PCH_PP_CONTROL, pp);
1195         POSTING_READ(PCH_PP_CONTROL);
1196         drm_msleep(intel_dp->backlight_off_delay, "915bo1");
1197 }
1198
1199 static void ironlake_edp_pll_on(struct drm_encoder *encoder)
1200 {
1201         struct drm_device *dev = encoder->dev;
1202         struct drm_i915_private *dev_priv = dev->dev_private;
1203         u32 dpa_ctl;
1204
1205         DRM_DEBUG_KMS("\n");
1206         dpa_ctl = I915_READ(DP_A);
1207         dpa_ctl |= DP_PLL_ENABLE;
1208         I915_WRITE(DP_A, dpa_ctl);
1209         POSTING_READ(DP_A);
1210         DELAY(200);
1211 }
1212
1213 static void ironlake_edp_pll_off(struct drm_encoder *encoder)
1214 {
1215         struct drm_device *dev = encoder->dev;
1216         struct drm_i915_private *dev_priv = dev->dev_private;
1217         u32 dpa_ctl;
1218
1219         dpa_ctl = I915_READ(DP_A);
1220         dpa_ctl &= ~DP_PLL_ENABLE;
1221         I915_WRITE(DP_A, dpa_ctl);
1222         POSTING_READ(DP_A);
1223         DELAY(200);
1224 }
1225
1226 /* If the sink supports it, try to set the power state appropriately */
1227 static void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1228 {
1229         int ret, i;
1230
1231         /* Should have a valid DPCD by this point */
1232         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1233                 return;
1234
1235         if (mode != DRM_MODE_DPMS_ON) {
1236                 ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
1237                                                   DP_SET_POWER_D3);
1238                 if (ret != 1)
1239                         DRM_DEBUG("failed to write sink power state\n");
1240         } else {
1241                 /*
1242                  * When turning on, we need to retry for 1ms to give the sink
1243                  * time to wake up.
1244                  */
1245                 for (i = 0; i < 3; i++) {
1246                         ret = intel_dp_aux_native_write_1(intel_dp,
1247                                                           DP_SET_POWER,
1248                                                           DP_SET_POWER_D0);
1249                         if (ret == 1)
1250                                 break;
1251                         drm_msleep(1, "915dps");
1252                 }
1253         }
1254 }
1255
1256 static void intel_dp_prepare(struct drm_encoder *encoder)
1257 {
1258         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1259
1260         ironlake_edp_backlight_off(intel_dp);
1261         ironlake_edp_panel_off(intel_dp);
1262
1263         /* Wake up the sink first */
1264         ironlake_edp_panel_vdd_on(intel_dp);
1265         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1266         intel_dp_link_down(intel_dp);
1267         ironlake_edp_panel_vdd_off(intel_dp, false);
1268
1269         /* Make sure the panel is off before trying to
1270          * change the mode
1271          */
1272 }
1273
1274 static void intel_dp_commit(struct drm_encoder *encoder)
1275 {
1276         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1277         struct drm_device *dev = encoder->dev;
1278         struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
1279
1280         ironlake_edp_panel_vdd_on(intel_dp);
1281         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1282         intel_dp_start_link_train(intel_dp);
1283         ironlake_edp_panel_on(intel_dp);
1284         ironlake_edp_panel_vdd_off(intel_dp, true);
1285         intel_dp_complete_link_train(intel_dp);
1286         ironlake_edp_backlight_on(intel_dp);
1287
1288         intel_dp->dpms_mode = DRM_MODE_DPMS_ON;
1289
1290         if (HAS_PCH_CPT(dev))
1291                 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
1292 }
1293
1294 static void
1295 intel_dp_dpms(struct drm_encoder *encoder, int mode)
1296 {
1297         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1298         struct drm_device *dev = encoder->dev;
1299         struct drm_i915_private *dev_priv = dev->dev_private;
1300         uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1301
1302         if (mode != DRM_MODE_DPMS_ON) {
1303                 ironlake_edp_backlight_off(intel_dp);
1304                 ironlake_edp_panel_off(intel_dp);
1305
1306                 ironlake_edp_panel_vdd_on(intel_dp);
1307                 intel_dp_sink_dpms(intel_dp, mode);
1308                 intel_dp_link_down(intel_dp);
1309                 ironlake_edp_panel_vdd_off(intel_dp, false);
1310
1311                 if (is_cpu_edp(intel_dp))
1312                         ironlake_edp_pll_off(encoder);
1313         } else {
1314                 if (is_cpu_edp(intel_dp))
1315                         ironlake_edp_pll_on(encoder);
1316
1317                 ironlake_edp_panel_vdd_on(intel_dp);
1318                 intel_dp_sink_dpms(intel_dp, mode);
1319                 if (!(dp_reg & DP_PORT_EN)) {
1320                         intel_dp_start_link_train(intel_dp);
1321                         ironlake_edp_panel_on(intel_dp);
1322                         ironlake_edp_panel_vdd_off(intel_dp, true);
1323                         intel_dp_complete_link_train(intel_dp);
1324                 } else
1325                         ironlake_edp_panel_vdd_off(intel_dp, false);
1326                 ironlake_edp_backlight_on(intel_dp);
1327         }
1328         intel_dp->dpms_mode = mode;
1329 }
1330 /*
1331  * Native read with retry for link status and receiver capability reads for
1332  * cases where the sink may still be asleep.
1333  */
1334 static bool
1335 intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1336                                uint8_t *recv, int recv_bytes)
1337 {
1338         int ret, i;
1339
1340         /*
1341          * Sinks are *supposed* to come up within 1ms from an off state,
1342          * but we're also supposed to retry 3 times per the spec.
1343          */
1344         for (i = 0; i < 3; i++) {
1345                 ret = intel_dp_aux_native_read(intel_dp, address, recv,
1346                                                recv_bytes);
1347                 if (ret == recv_bytes)
1348                         return true;
1349                 drm_msleep(1, "915dpl");
1350         }
1351
1352         return false;
1353 }
1354
1355 /*
1356  * Fetch AUX CH registers 0x202 - 0x207 which contain
1357  * link status information
1358  */
1359 static bool
1360 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1361 {
1362         return intel_dp_aux_native_read_retry(intel_dp,
1363                                               DP_LANE0_1_STATUS,
1364                                               link_status,
1365                                               DP_LINK_STATUS_SIZE);
1366 }
1367
1368 static uint8_t
1369 intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1370                      int r)
1371 {
1372         return link_status[r - DP_LANE0_1_STATUS];
1373 }
1374
1375 static uint8_t
1376 intel_get_adjust_request_voltage(uint8_t adjust_request[2],
1377                                  int lane)
1378 {
1379         int         s = ((lane & 1) ?
1380                          DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
1381                          DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
1382         uint8_t l = adjust_request[lane>>1];
1383
1384         return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
1385 }
1386
1387 static uint8_t
1388 intel_get_adjust_request_pre_emphasis(uint8_t adjust_request[2],
1389                                       int lane)
1390 {
1391         int         s = ((lane & 1) ?
1392                          DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
1393                          DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
1394         uint8_t l = adjust_request[lane>>1];
1395
1396         return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
1397 }
1398
1399
1400 #if 0
1401 static char     *voltage_names[] = {
1402         "0.4V", "0.6V", "0.8V", "1.2V"
1403 };
1404 static char     *pre_emph_names[] = {
1405         "0dB", "3.5dB", "6dB", "9.5dB"
1406 };
1407 static char     *link_train_names[] = {
1408         "pattern 1", "pattern 2", "idle", "off"
1409 };
1410 #endif
1411
1412 /*
1413  * These are source-specific values; current Intel hardware supports
1414  * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1415  */
1416
1417 static uint8_t
1418 intel_dp_voltage_max(struct intel_dp *intel_dp)
1419 {
1420         struct drm_device *dev = intel_dp->base.base.dev;
1421
1422         if (IS_GEN7(dev) && is_cpu_edp(intel_dp))
1423                 return DP_TRAIN_VOLTAGE_SWING_800;
1424         else if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1425                 return DP_TRAIN_VOLTAGE_SWING_1200;
1426         else
1427                 return DP_TRAIN_VOLTAGE_SWING_800;
1428 }
1429
1430 static uint8_t
1431 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
1432 {
1433         struct drm_device *dev = intel_dp->base.base.dev;
1434
1435         if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1436                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1437                 case DP_TRAIN_VOLTAGE_SWING_400:
1438                         return DP_TRAIN_PRE_EMPHASIS_6;
1439                 case DP_TRAIN_VOLTAGE_SWING_600:
1440                 case DP_TRAIN_VOLTAGE_SWING_800:
1441                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1442                 default:
1443                         return DP_TRAIN_PRE_EMPHASIS_0;
1444                 }
1445         } else {
1446                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1447                 case DP_TRAIN_VOLTAGE_SWING_400:
1448                         return DP_TRAIN_PRE_EMPHASIS_6;
1449                 case DP_TRAIN_VOLTAGE_SWING_600:
1450                         return DP_TRAIN_PRE_EMPHASIS_6;
1451                 case DP_TRAIN_VOLTAGE_SWING_800:
1452                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1453                 case DP_TRAIN_VOLTAGE_SWING_1200:
1454                 default:
1455                         return DP_TRAIN_PRE_EMPHASIS_0;
1456                 }
1457         }
1458 }
1459
1460 static void
1461 intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1462 {
1463         uint8_t v = 0;
1464         uint8_t p = 0;
1465         int lane;
1466         uint8_t *adjust_request = link_status + (DP_ADJUST_REQUEST_LANE0_1 - DP_LANE0_1_STATUS);
1467         uint8_t voltage_max;
1468         uint8_t preemph_max;
1469
1470         for (lane = 0; lane < intel_dp->lane_count; lane++) {
1471                 uint8_t this_v = intel_get_adjust_request_voltage(adjust_request, lane);
1472                 uint8_t this_p = intel_get_adjust_request_pre_emphasis(adjust_request, lane);
1473
1474                 if (this_v > v)
1475                         v = this_v;
1476                 if (this_p > p)
1477                         p = this_p;
1478         }
1479
1480         voltage_max = intel_dp_voltage_max(intel_dp);
1481         if (v >= voltage_max)
1482                 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
1483
1484         preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
1485         if (p >= preemph_max)
1486                 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1487
1488         for (lane = 0; lane < 4; lane++)
1489                 intel_dp->train_set[lane] = v | p;
1490 }
1491
1492 static uint32_t
1493 intel_dp_signal_levels(uint8_t train_set)
1494 {
1495         uint32_t        signal_levels = 0;
1496
1497         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1498         case DP_TRAIN_VOLTAGE_SWING_400:
1499         default:
1500                 signal_levels |= DP_VOLTAGE_0_4;
1501                 break;
1502         case DP_TRAIN_VOLTAGE_SWING_600:
1503                 signal_levels |= DP_VOLTAGE_0_6;
1504                 break;
1505         case DP_TRAIN_VOLTAGE_SWING_800:
1506                 signal_levels |= DP_VOLTAGE_0_8;
1507                 break;
1508         case DP_TRAIN_VOLTAGE_SWING_1200:
1509                 signal_levels |= DP_VOLTAGE_1_2;
1510                 break;
1511         }
1512         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1513         case DP_TRAIN_PRE_EMPHASIS_0:
1514         default:
1515                 signal_levels |= DP_PRE_EMPHASIS_0;
1516                 break;
1517         case DP_TRAIN_PRE_EMPHASIS_3_5:
1518                 signal_levels |= DP_PRE_EMPHASIS_3_5;
1519                 break;
1520         case DP_TRAIN_PRE_EMPHASIS_6:
1521                 signal_levels |= DP_PRE_EMPHASIS_6;
1522                 break;
1523         case DP_TRAIN_PRE_EMPHASIS_9_5:
1524                 signal_levels |= DP_PRE_EMPHASIS_9_5;
1525                 break;
1526         }
1527         return signal_levels;
1528 }
1529
1530 /* Gen6's DP voltage swing and pre-emphasis control */
1531 static uint32_t
1532 intel_gen6_edp_signal_levels(uint8_t train_set)
1533 {
1534         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1535                                          DP_TRAIN_PRE_EMPHASIS_MASK);
1536         switch (signal_levels) {
1537         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1538         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1539                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1540         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1541                 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
1542         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1543         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1544                 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
1545         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1546         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1547                 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
1548         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1549         case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
1550                 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
1551         default:
1552                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1553                               "0x%x\n", signal_levels);
1554                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1555         }
1556 }
1557
1558 /* Gen7's DP voltage swing and pre-emphasis control */
1559 static uint32_t
1560 intel_gen7_edp_signal_levels(uint8_t train_set)
1561 {
1562         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1563                                          DP_TRAIN_PRE_EMPHASIS_MASK);
1564         switch (signal_levels) {
1565         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1566                 return EDP_LINK_TRAIN_400MV_0DB_IVB;
1567         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1568                 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
1569         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1570                 return EDP_LINK_TRAIN_400MV_6DB_IVB;
1571
1572         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1573                 return EDP_LINK_TRAIN_600MV_0DB_IVB;
1574         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1575                 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
1576
1577         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1578                 return EDP_LINK_TRAIN_800MV_0DB_IVB;
1579         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1580                 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
1581
1582         default:
1583                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1584                               "0x%x\n", signal_levels);
1585                 return EDP_LINK_TRAIN_500MV_0DB_IVB;
1586         }
1587 }
1588
1589 static uint8_t
1590 intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1591                       int lane)
1592 {
1593         int s = (lane & 1) * 4;
1594         uint8_t l = link_status[lane>>1];
1595
1596         return (l >> s) & 0xf;
1597 }
1598
1599 /* Check for clock recovery is done on all channels */
1600 static bool
1601 intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1602 {
1603         int lane;
1604         uint8_t lane_status;
1605
1606         for (lane = 0; lane < lane_count; lane++) {
1607                 lane_status = intel_get_lane_status(link_status, lane);
1608                 if ((lane_status & DP_LANE_CR_DONE) == 0)
1609                         return false;
1610         }
1611         return true;
1612 }
1613
1614 /* Check to see if channel eq is done on all channels */
1615 #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1616                          DP_LANE_CHANNEL_EQ_DONE|\
1617                          DP_LANE_SYMBOL_LOCKED)
1618 static bool
1619 intel_channel_eq_ok(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1620 {
1621         uint8_t lane_align;
1622         uint8_t lane_status;
1623         int lane;
1624
1625         lane_align = intel_dp_link_status(link_status,
1626                                           DP_LANE_ALIGN_STATUS_UPDATED);
1627         if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1628                 return false;
1629         for (lane = 0; lane < intel_dp->lane_count; lane++) {
1630                 lane_status = intel_get_lane_status(link_status, lane);
1631                 if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1632                         return false;
1633         }
1634         return true;
1635 }
1636
1637 static bool
1638 intel_dp_set_link_train(struct intel_dp *intel_dp,
1639                         uint32_t dp_reg_value,
1640                         uint8_t dp_train_pat)
1641 {
1642         struct drm_device *dev = intel_dp->base.base.dev;
1643         struct drm_i915_private *dev_priv = dev->dev_private;
1644         int ret;
1645
1646         I915_WRITE(intel_dp->output_reg, dp_reg_value);
1647         POSTING_READ(intel_dp->output_reg);
1648
1649         intel_dp_aux_native_write_1(intel_dp,
1650                                     DP_TRAINING_PATTERN_SET,
1651                                     dp_train_pat);
1652
1653         ret = intel_dp_aux_native_write(intel_dp,
1654                                         DP_TRAINING_LANE0_SET,
1655                                         intel_dp->train_set,
1656                                         intel_dp->lane_count);
1657         if (ret != intel_dp->lane_count)
1658                 return false;
1659
1660         return true;
1661 }
1662
1663 /* Enable corresponding port and start training pattern 1 */
1664 static void
1665 intel_dp_start_link_train(struct intel_dp *intel_dp)
1666 {
1667         struct drm_device *dev = intel_dp->base.base.dev;
1668         struct drm_i915_private *dev_priv = dev->dev_private;
1669         struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
1670         int i;
1671         uint8_t voltage;
1672         bool clock_recovery = false;
1673         int voltage_tries, loop_tries;
1674         u32 reg;
1675         uint32_t DP = intel_dp->DP;
1676
1677         /* Enable output, wait for it to become active */
1678         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
1679         POSTING_READ(intel_dp->output_reg);
1680         intel_wait_for_vblank(dev, intel_crtc->pipe);
1681
1682         /* Write the link configuration data */
1683         intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
1684                                   intel_dp->link_configuration,
1685                                   DP_LINK_CONFIGURATION_SIZE);
1686
1687         DP |= DP_PORT_EN;
1688
1689         if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1690                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1691         else
1692                 DP &= ~DP_LINK_TRAIN_MASK;
1693         memset(intel_dp->train_set, 0, 4);
1694         voltage = 0xff;
1695         voltage_tries = 0;
1696         loop_tries = 0;
1697         clock_recovery = false;
1698         for (;;) {
1699                 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1700                 uint8_t     link_status[DP_LINK_STATUS_SIZE];
1701                 uint32_t    signal_levels;
1702
1703
1704                 if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1705                         signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
1706                         DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
1707                 } else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1708                         signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1709                         DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1710                 } else {
1711                         signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1712                         DRM_DEBUG_KMS("training pattern 1 signal levels %08x\n", signal_levels);
1713                         DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1714                 }
1715
1716                 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1717                         reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
1718                 else
1719                         reg = DP | DP_LINK_TRAIN_PAT_1;
1720
1721                 if (!intel_dp_set_link_train(intel_dp, reg,
1722                                              DP_TRAINING_PATTERN_1))
1723                         break;
1724                 /* Set training pattern 1 */
1725
1726                 DELAY(100);
1727                 if (!intel_dp_get_link_status(intel_dp, link_status)) {
1728                         DRM_ERROR("failed to get link status\n");
1729                         break;
1730                 }
1731
1732                 if (intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1733                         DRM_DEBUG_KMS("clock recovery OK\n");
1734                         clock_recovery = true;
1735                         break;
1736                 }
1737
1738                 /* Check to see if we've tried the max voltage */
1739                 for (i = 0; i < intel_dp->lane_count; i++)
1740                         if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1741                                 break;
1742                 if (i == intel_dp->lane_count) {
1743                         ++loop_tries;
1744                         if (loop_tries == 5) {
1745                                 DRM_DEBUG_KMS("too many full retries, give up\n");
1746                                 break;
1747                         }
1748                         memset(intel_dp->train_set, 0, 4);
1749                         voltage_tries = 0;
1750                         continue;
1751                 }
1752
1753                 /* Check to see if we've tried the same voltage 5 times */
1754                 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1755                         ++voltage_tries;
1756                         if (voltage_tries == 5) {
1757                                 DRM_DEBUG_KMS("too many voltage retries, give up\n");
1758                                 break;
1759                         }
1760                 } else
1761                         voltage_tries = 0;
1762                 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1763
1764                 /* Compute new intel_dp->train_set as requested by target */
1765                 intel_get_adjust_train(intel_dp, link_status);
1766         }
1767
1768         intel_dp->DP = DP;
1769 }
1770
1771 static void
1772 intel_dp_complete_link_train(struct intel_dp *intel_dp)
1773 {
1774         struct drm_device *dev = intel_dp->base.base.dev;
1775         struct drm_i915_private *dev_priv = dev->dev_private;
1776         bool channel_eq = false;
1777         int tries, cr_tries;
1778         u32 reg;
1779         uint32_t DP = intel_dp->DP;
1780
1781         /* channel equalization */
1782         tries = 0;
1783         cr_tries = 0;
1784         channel_eq = false;
1785         for (;;) {
1786                 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1787                 uint32_t    signal_levels;
1788                 uint8_t     link_status[DP_LINK_STATUS_SIZE];
1789
1790                 if (cr_tries > 5) {
1791                         DRM_ERROR("failed to train DP, aborting\n");
1792                         intel_dp_link_down(intel_dp);
1793                         break;
1794                 }
1795
1796                 if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1797                         signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
1798                         DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
1799                 } else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1800                         signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1801                         DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1802                 } else {
1803                         signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1804                         DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1805                 }
1806
1807                 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1808                         reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
1809                 else
1810                         reg = DP | DP_LINK_TRAIN_PAT_2;
1811
1812                 /* channel eq pattern */
1813                 if (!intel_dp_set_link_train(intel_dp, reg,
1814                                              DP_TRAINING_PATTERN_2))
1815                         break;
1816
1817                 DELAY(400);
1818                 if (!intel_dp_get_link_status(intel_dp, link_status))
1819                         break;
1820
1821                 /* Make sure clock is still ok */
1822                 if (!intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1823                         intel_dp_start_link_train(intel_dp);
1824                         cr_tries++;
1825                         continue;
1826                 }
1827
1828                 if (intel_channel_eq_ok(intel_dp, link_status)) {
1829                         channel_eq = true;
1830                         break;
1831                 }
1832
1833                 /* Try 5 times, then try clock recovery if that fails */
1834                 if (tries > 5) {
1835                         intel_dp_link_down(intel_dp);
1836                         intel_dp_start_link_train(intel_dp);
1837                         tries = 0;
1838                         cr_tries++;
1839                         continue;
1840                 }
1841
1842                 /* Compute new intel_dp->train_set as requested by target */
1843                 intel_get_adjust_train(intel_dp, link_status);
1844                 ++tries;
1845         }
1846
1847         if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1848                 reg = DP | DP_LINK_TRAIN_OFF_CPT;
1849         else
1850                 reg = DP | DP_LINK_TRAIN_OFF;
1851
1852         I915_WRITE(intel_dp->output_reg, reg);
1853         POSTING_READ(intel_dp->output_reg);
1854         intel_dp_aux_native_write_1(intel_dp,
1855                                     DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
1856 }
1857
1858 static void
1859 intel_dp_link_down(struct intel_dp *intel_dp)
1860 {
1861         struct drm_device *dev = intel_dp->base.base.dev;
1862         struct drm_i915_private *dev_priv = dev->dev_private;
1863         uint32_t DP = intel_dp->DP;
1864
1865         if ((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
1866                 return;
1867
1868         DRM_DEBUG_KMS("\n");
1869
1870         if (is_edp(intel_dp)) {
1871                 DP &= ~DP_PLL_ENABLE;
1872                 I915_WRITE(intel_dp->output_reg, DP);
1873                 POSTING_READ(intel_dp->output_reg);
1874                 DELAY(100);
1875         }
1876
1877         if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
1878                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1879                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
1880         } else {
1881                 DP &= ~DP_LINK_TRAIN_MASK;
1882                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1883         }
1884         POSTING_READ(intel_dp->output_reg);
1885
1886         drm_msleep(17, "915dlo");
1887
1888         if (is_edp(intel_dp)) {
1889                 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1890                         DP |= DP_LINK_TRAIN_OFF_CPT;
1891                 else
1892                         DP |= DP_LINK_TRAIN_OFF;
1893         }
1894
1895
1896         if (!HAS_PCH_CPT(dev) &&
1897             I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
1898                 struct drm_crtc *crtc = intel_dp->base.base.crtc;
1899
1900                 /* Hardware workaround: leaving our transcoder select
1901                  * set to transcoder B while it's off will prevent the
1902                  * corresponding HDMI output on transcoder A.
1903                  *
1904                  * Combine this with another hardware workaround:
1905                  * transcoder select bit can only be cleared while the
1906                  * port is enabled.
1907                  */
1908                 DP &= ~DP_PIPEB_SELECT;
1909                 I915_WRITE(intel_dp->output_reg, DP);
1910
1911                 /* Changes to enable or select take place the vblank
1912                  * after being written.
1913                  */
1914                 if (crtc == NULL) {
1915                         /* We can arrive here never having been attached
1916                          * to a CRTC, for instance, due to inheriting
1917                          * random state from the BIOS.
1918                          *
1919                          * If the pipe is not running, play safe and
1920                          * wait for the clocks to stabilise before
1921                          * continuing.
1922                          */
1923                         POSTING_READ(intel_dp->output_reg);
1924                         drm_msleep(50, "915dla");
1925                 } else
1926                         intel_wait_for_vblank(dev, to_intel_crtc(crtc)->pipe);
1927         }
1928
1929         DP &= ~DP_AUDIO_OUTPUT_ENABLE;
1930         I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
1931         POSTING_READ(intel_dp->output_reg);
1932         drm_msleep(intel_dp->panel_power_down_delay, "915ldo");
1933 }
1934
1935 static bool
1936 intel_dp_get_dpcd(struct intel_dp *intel_dp)
1937 {
1938         if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
1939                                            sizeof(intel_dp->dpcd)) &&
1940             (intel_dp->dpcd[DP_DPCD_REV] != 0)) {
1941                 return true;
1942         }
1943
1944         return false;
1945 }
1946
1947 static void
1948 intel_dp_probe_oui(struct intel_dp *intel_dp)
1949 {
1950         u8 buf[3];
1951
1952         if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
1953                 return;
1954
1955         if (intel_dp_aux_native_read_retry(intel_dp, DP_SINK_OUI, buf, 3))
1956                 DRM_DEBUG_KMS("Sink OUI: %02x%02x%02x\n",
1957                               buf[0], buf[1], buf[2]);
1958
1959         if (intel_dp_aux_native_read_retry(intel_dp, DP_BRANCH_OUI, buf, 3))
1960                 DRM_DEBUG_KMS("Branch OUI: %02x%02x%02x\n",
1961                               buf[0], buf[1], buf[2]);
1962 }
1963
1964 static bool
1965 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
1966 {
1967         int ret;
1968
1969         ret = intel_dp_aux_native_read_retry(intel_dp,
1970                                              DP_DEVICE_SERVICE_IRQ_VECTOR,
1971                                              sink_irq_vector, 1);
1972         if (!ret)
1973                 return false;
1974
1975         return true;
1976 }
1977
1978 static void
1979 intel_dp_handle_test_request(struct intel_dp *intel_dp)
1980 {
1981         /* NAK by default */
1982         intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_ACK);
1983 }
1984
1985 /*
1986  * According to DP spec
1987  * 5.1.2:
1988  *  1. Read DPCD
1989  *  2. Configure link according to Receiver Capabilities
1990  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
1991  *  4. Check link status on receipt of hot-plug interrupt
1992  */
1993
1994 static void
1995 intel_dp_check_link_status(struct intel_dp *intel_dp)
1996 {
1997         u8 sink_irq_vector;
1998         u8 link_status[DP_LINK_STATUS_SIZE];
1999
2000         if (intel_dp->dpms_mode != DRM_MODE_DPMS_ON)
2001                 return;
2002
2003         if (!intel_dp->base.base.crtc)
2004                 return;
2005
2006         /* Try to read receiver status if the link appears to be up */
2007         if (!intel_dp_get_link_status(intel_dp, link_status)) {
2008                 intel_dp_link_down(intel_dp);
2009                 return;
2010         }
2011
2012         /* Now read the DPCD to see if it's actually running */
2013         if (!intel_dp_get_dpcd(intel_dp)) {
2014                 intel_dp_link_down(intel_dp);
2015                 return;
2016         }
2017
2018         /* Try to read the source of the interrupt */
2019         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
2020             intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
2021                 /* Clear interrupt source */
2022                 intel_dp_aux_native_write_1(intel_dp,
2023                                             DP_DEVICE_SERVICE_IRQ_VECTOR,
2024                                             sink_irq_vector);
2025
2026                 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
2027                         intel_dp_handle_test_request(intel_dp);
2028                 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
2029                         DRM_DEBUG_KMS("CP or sink specific irq unhandled\n");
2030         }
2031
2032         if (!intel_channel_eq_ok(intel_dp, link_status)) {
2033                 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
2034                               drm_get_encoder_name(&intel_dp->base.base));
2035                 intel_dp_start_link_train(intel_dp);
2036                 intel_dp_complete_link_train(intel_dp);
2037         }
2038 }
2039
2040 static enum drm_connector_status
2041 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
2042 {
2043         if (intel_dp_get_dpcd(intel_dp))
2044                 return connector_status_connected;
2045         return connector_status_disconnected;
2046 }
2047
2048 static enum drm_connector_status
2049 ironlake_dp_detect(struct intel_dp *intel_dp)
2050 {
2051         enum drm_connector_status status;
2052
2053         /* Can't disconnect eDP, but you can close the lid... */
2054         if (is_edp(intel_dp)) {
2055                 status = intel_panel_detect(intel_dp->base.base.dev);
2056                 if (status == connector_status_unknown)
2057                         status = connector_status_connected;
2058                 return status;
2059         }
2060
2061         return intel_dp_detect_dpcd(intel_dp);
2062 }
2063
2064 static enum drm_connector_status
2065 g4x_dp_detect(struct intel_dp *intel_dp)
2066 {
2067         struct drm_device *dev = intel_dp->base.base.dev;
2068         struct drm_i915_private *dev_priv = dev->dev_private;
2069         uint32_t temp, bit;
2070
2071         switch (intel_dp->output_reg) {
2072         case DP_B:
2073                 bit = DPB_HOTPLUG_INT_STATUS;
2074                 break;
2075         case DP_C:
2076                 bit = DPC_HOTPLUG_INT_STATUS;
2077                 break;
2078         case DP_D:
2079                 bit = DPD_HOTPLUG_INT_STATUS;
2080                 break;
2081         default:
2082                 return connector_status_unknown;
2083         }
2084
2085         temp = I915_READ(PORT_HOTPLUG_STAT);
2086
2087         if ((temp & bit) == 0)
2088                 return connector_status_disconnected;
2089
2090         return intel_dp_detect_dpcd(intel_dp);
2091 }
2092
2093 static struct edid *
2094 intel_dp_get_edid(struct drm_connector *connector, device_t adapter)
2095 {
2096         struct intel_dp *intel_dp = intel_attached_dp(connector);
2097         struct edid     *edid;
2098
2099         ironlake_edp_panel_vdd_on(intel_dp);
2100         edid = drm_get_edid(connector, adapter);
2101         ironlake_edp_panel_vdd_off(intel_dp, false);
2102         return edid;
2103 }
2104
2105 static int
2106 intel_dp_get_edid_modes(struct drm_connector *connector, device_t adapter)
2107 {
2108         struct intel_dp *intel_dp = intel_attached_dp(connector);
2109         int     ret;
2110
2111         ironlake_edp_panel_vdd_on(intel_dp);
2112         ret = intel_ddc_get_modes(connector, adapter);
2113         ironlake_edp_panel_vdd_off(intel_dp, false);
2114         return ret;
2115 }
2116
2117
2118 /**
2119  * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
2120  *
2121  * \return true if DP port is connected.
2122  * \return false if DP port is disconnected.
2123  */
2124 static enum drm_connector_status
2125 intel_dp_detect(struct drm_connector *connector, bool force)
2126 {
2127         struct intel_dp *intel_dp = intel_attached_dp(connector);
2128         struct drm_device *dev = intel_dp->base.base.dev;
2129         enum drm_connector_status status;
2130         struct edid *edid = NULL;
2131
2132         intel_dp->has_audio = false;
2133
2134         if (HAS_PCH_SPLIT(dev))
2135                 status = ironlake_dp_detect(intel_dp);
2136         else
2137                 status = g4x_dp_detect(intel_dp);
2138         if (status != connector_status_connected)
2139                 return status;
2140
2141         intel_dp_probe_oui(intel_dp);
2142
2143         if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
2144                 intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
2145         } else {
2146                 edid = intel_dp_get_edid(connector, intel_dp->adapter);
2147                 if (edid) {
2148                         intel_dp->has_audio = drm_detect_monitor_audio(edid);
2149                         free(edid, DRM_MEM_KMS);
2150                 }
2151         }
2152
2153         return connector_status_connected;
2154 }
2155
2156 static int intel_dp_get_modes(struct drm_connector *connector)
2157 {
2158         struct intel_dp *intel_dp = intel_attached_dp(connector);
2159         struct drm_device *dev = intel_dp->base.base.dev;
2160         struct drm_i915_private *dev_priv = dev->dev_private;
2161         int ret;
2162
2163         /* We should parse the EDID data and find out if it has an audio sink
2164          */
2165
2166         ret = intel_dp_get_edid_modes(connector, intel_dp->adapter);
2167         if (ret) {
2168                 if (is_edp(intel_dp) && !intel_dp->panel_fixed_mode) {
2169                         struct drm_display_mode *newmode;
2170                         list_for_each_entry(newmode, &connector->probed_modes,
2171                                             head) {
2172                                 if ((newmode->type & DRM_MODE_TYPE_PREFERRED)) {
2173                                         intel_dp->panel_fixed_mode =
2174                                                 drm_mode_duplicate(dev, newmode);
2175                                         break;
2176                                 }
2177                         }
2178                 }
2179                 return ret;
2180         }
2181
2182         /* if eDP has no EDID, try to use fixed panel mode from VBT */
2183         if (is_edp(intel_dp)) {
2184                 /* initialize panel mode from VBT if available for eDP */
2185                 if (intel_dp->panel_fixed_mode == NULL && dev_priv->lfp_lvds_vbt_mode != NULL) {
2186                         intel_dp->panel_fixed_mode =
2187                                 drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
2188                         if (intel_dp->panel_fixed_mode) {
2189                                 intel_dp->panel_fixed_mode->type |=
2190                                         DRM_MODE_TYPE_PREFERRED;
2191                         }
2192                 }
2193                 if (intel_dp->panel_fixed_mode) {
2194                         struct drm_display_mode *mode;
2195                         mode = drm_mode_duplicate(dev, intel_dp->panel_fixed_mode);
2196                         drm_mode_probed_add(connector, mode);
2197                         return 1;
2198                 }
2199         }
2200         return 0;
2201 }
2202
2203 static bool
2204 intel_dp_detect_audio(struct drm_connector *connector)
2205 {
2206         struct intel_dp *intel_dp = intel_attached_dp(connector);
2207         struct edid *edid;
2208         bool has_audio = false;
2209
2210         edid = intel_dp_get_edid(connector, intel_dp->adapter);
2211         if (edid) {
2212                 has_audio = drm_detect_monitor_audio(edid);
2213
2214                 free(edid, DRM_MEM_KMS);
2215         }
2216
2217         return has_audio;
2218 }
2219
2220 static int
2221 intel_dp_set_property(struct drm_connector *connector,
2222                       struct drm_property *property,
2223                       uint64_t val)
2224 {
2225         struct drm_i915_private *dev_priv = connector->dev->dev_private;
2226         struct intel_dp *intel_dp = intel_attached_dp(connector);
2227         int ret;
2228
2229         ret = drm_object_property_set_value(&connector->base, property, val);
2230         if (ret)
2231                 return ret;
2232
2233         if (property == dev_priv->force_audio_property) {
2234                 int i = val;
2235                 bool has_audio;
2236
2237                 if (i == intel_dp->force_audio)
2238                         return 0;
2239
2240                 intel_dp->force_audio = i;
2241
2242                 if (i == HDMI_AUDIO_AUTO)
2243                         has_audio = intel_dp_detect_audio(connector);
2244                 else
2245                         has_audio = (i == HDMI_AUDIO_ON);
2246
2247                 if (has_audio == intel_dp->has_audio)
2248                         return 0;
2249
2250                 intel_dp->has_audio = has_audio;
2251                 goto done;
2252         }
2253
2254         if (property == dev_priv->broadcast_rgb_property) {
2255                 if (val == !!intel_dp->color_range)
2256                         return 0;
2257
2258                 intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
2259                 goto done;
2260         }
2261
2262         return -EINVAL;
2263
2264 done:
2265         if (intel_dp->base.base.crtc) {
2266                 struct drm_crtc *crtc = intel_dp->base.base.crtc;
2267                 drm_crtc_helper_set_mode(crtc, &crtc->mode,
2268                                          crtc->x, crtc->y,
2269                                          crtc->fb);
2270         }
2271
2272         return 0;
2273 }
2274
2275 static void
2276 intel_dp_destroy(struct drm_connector *connector)
2277 {
2278         struct drm_device *dev = connector->dev;
2279
2280         if (intel_dpd_is_edp(dev))
2281                 intel_panel_destroy_backlight(dev);
2282
2283 #if 0
2284         drm_sysfs_connector_remove(connector);
2285 #endif
2286         drm_connector_cleanup(connector);
2287         free(connector, DRM_MEM_KMS);
2288 }
2289
2290 static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
2291 {
2292         struct drm_device *dev;
2293         struct intel_dp *intel_dp;
2294
2295         intel_dp = enc_to_intel_dp(encoder);
2296         dev = encoder->dev;
2297
2298         if (intel_dp->dp_iic_bus != NULL) {
2299                 if (intel_dp->adapter != NULL) {
2300                         device_delete_child(intel_dp->dp_iic_bus,
2301                             intel_dp->adapter);
2302                 }
2303                 device_delete_child(dev->dev, intel_dp->dp_iic_bus);
2304         }
2305         drm_encoder_cleanup(encoder);
2306         if (is_edp(intel_dp)) {
2307                 struct drm_i915_private *dev_priv = intel_dp->base.base.dev->dev_private;
2308
2309                 taskqueue_cancel_timeout(dev_priv->tq,
2310                     &intel_dp->panel_vdd_task, NULL);
2311                 taskqueue_drain_timeout(dev_priv->tq,
2312                     &intel_dp->panel_vdd_task);
2313                 ironlake_panel_vdd_off_sync(intel_dp);
2314         }
2315         free(intel_dp, DRM_MEM_KMS);
2316 }
2317
2318 static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
2319         .dpms = intel_dp_dpms,
2320         .mode_fixup = intel_dp_mode_fixup,
2321         .prepare = intel_dp_prepare,
2322         .mode_set = intel_dp_mode_set,
2323         .commit = intel_dp_commit,
2324 };
2325
2326 static const struct drm_connector_funcs intel_dp_connector_funcs = {
2327         .dpms = drm_helper_connector_dpms,
2328         .detect = intel_dp_detect,
2329         .fill_modes = drm_helper_probe_single_connector_modes,
2330         .set_property = intel_dp_set_property,
2331         .destroy = intel_dp_destroy,
2332 };
2333
2334 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
2335         .get_modes = intel_dp_get_modes,
2336         .mode_valid = intel_dp_mode_valid,
2337         .best_encoder = intel_best_encoder,
2338 };
2339
2340 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
2341         .destroy = intel_dp_encoder_destroy,
2342 };
2343
2344 static void
2345 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
2346 {
2347         struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
2348
2349         intel_dp_check_link_status(intel_dp);
2350 }
2351
2352 /* Return which DP Port should be selected for Transcoder DP control */
2353 int
2354 intel_trans_dp_port_sel(struct drm_crtc *crtc)
2355 {
2356         struct drm_device *dev = crtc->dev;
2357         struct drm_mode_config *mode_config = &dev->mode_config;
2358         struct drm_encoder *encoder;
2359
2360         list_for_each_entry(encoder, &mode_config->encoder_list, head) {
2361                 struct intel_dp *intel_dp;
2362
2363                 if (encoder->crtc != crtc)
2364                         continue;
2365
2366                 intel_dp = enc_to_intel_dp(encoder);
2367                 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
2368                     intel_dp->base.type == INTEL_OUTPUT_EDP)
2369                         return intel_dp->output_reg;
2370         }
2371
2372         return -1;
2373 }
2374
2375 /* check the VBT to see whether the eDP is on DP-D port */
2376 bool intel_dpd_is_edp(struct drm_device *dev)
2377 {
2378         struct drm_i915_private *dev_priv = dev->dev_private;
2379         struct child_device_config *p_child;
2380         int i;
2381
2382         if (!dev_priv->child_dev_num)
2383                 return false;
2384
2385         for (i = 0; i < dev_priv->child_dev_num; i++) {
2386                 p_child = dev_priv->child_dev + i;
2387
2388                 if (p_child->dvo_port == PORT_IDPD &&
2389                     p_child->device_type == DEVICE_TYPE_eDP)
2390                         return true;
2391         }
2392         return false;
2393 }
2394
2395 static void
2396 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
2397 {
2398         intel_attach_force_audio_property(connector);
2399         intel_attach_broadcast_rgb_property(connector);
2400 }
2401
2402 void
2403 intel_dp_init(struct drm_device *dev, int output_reg)
2404 {
2405         struct drm_i915_private *dev_priv = dev->dev_private;
2406         struct drm_connector *connector;
2407         struct intel_dp *intel_dp;
2408         struct intel_encoder *intel_encoder;
2409         struct intel_connector *intel_connector;
2410         const char *name = NULL;
2411         int type;
2412
2413         intel_dp = malloc(sizeof(struct intel_dp), DRM_MEM_KMS,
2414             M_WAITOK | M_ZERO);
2415
2416         intel_dp->output_reg = output_reg;
2417         intel_dp->dpms_mode = -1;
2418
2419         intel_connector = malloc(sizeof(struct intel_connector), DRM_MEM_KMS,
2420             M_WAITOK | M_ZERO);
2421         intel_encoder = &intel_dp->base;
2422
2423         if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
2424                 if (intel_dpd_is_edp(dev))
2425                         intel_dp->is_pch_edp = true;
2426
2427         if (output_reg == DP_A || is_pch_edp(intel_dp)) {
2428                 type = DRM_MODE_CONNECTOR_eDP;
2429                 intel_encoder->type = INTEL_OUTPUT_EDP;
2430         } else {
2431                 type = DRM_MODE_CONNECTOR_DisplayPort;
2432                 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2433         }
2434
2435         connector = &intel_connector->base;
2436         drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
2437         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
2438
2439         connector->polled = DRM_CONNECTOR_POLL_HPD;
2440
2441         if (output_reg == DP_B || output_reg == PCH_DP_B)
2442                 intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
2443         else if (output_reg == DP_C || output_reg == PCH_DP_C)
2444                 intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
2445         else if (output_reg == DP_D || output_reg == PCH_DP_D)
2446                 intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
2447
2448         if (is_edp(intel_dp)) {
2449                 intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
2450                 TIMEOUT_TASK_INIT(dev_priv->tq, &intel_dp->panel_vdd_task, 0,
2451                     ironlake_panel_vdd_work, intel_dp);
2452         }
2453
2454         intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
2455
2456         connector->interlace_allowed = true;
2457         connector->doublescan_allowed = 0;
2458
2459         drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
2460                          DRM_MODE_ENCODER_TMDS);
2461         drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
2462
2463         intel_connector_attach_encoder(intel_connector, intel_encoder);
2464 #if 0
2465         drm_sysfs_connector_add(connector);
2466 #endif
2467
2468         /* Set up the DDC bus. */
2469         switch (output_reg) {
2470                 case DP_A:
2471                         name = "DPDDC-A";
2472                         break;
2473                 case DP_B:
2474                 case PCH_DP_B:
2475                         dev_priv->hotplug_supported_mask |=
2476                                 HDMIB_HOTPLUG_INT_STATUS;
2477                         name = "DPDDC-B";
2478                         break;
2479                 case DP_C:
2480                 case PCH_DP_C:
2481                         dev_priv->hotplug_supported_mask |=
2482                                 HDMIC_HOTPLUG_INT_STATUS;
2483                         name = "DPDDC-C";
2484                         break;
2485                 case DP_D:
2486                 case PCH_DP_D:
2487                         dev_priv->hotplug_supported_mask |=
2488                                 HDMID_HOTPLUG_INT_STATUS;
2489                         name = "DPDDC-D";
2490                         break;
2491         }
2492
2493         /* Cache some DPCD data in the eDP case */
2494         if (is_edp(intel_dp)) {
2495                 bool ret;
2496                 struct edp_power_seq    cur, vbt;
2497                 u32 pp_on, pp_off, pp_div;
2498
2499                 pp_on = I915_READ(PCH_PP_ON_DELAYS);
2500                 pp_off = I915_READ(PCH_PP_OFF_DELAYS);
2501                 pp_div = I915_READ(PCH_PP_DIVISOR);
2502
2503                 if (!pp_on || !pp_off || !pp_div) {
2504                         DRM_INFO("bad panel power sequencing delays, disabling panel\n");
2505                         intel_dp_encoder_destroy(&intel_dp->base.base);
2506                         intel_dp_destroy(&intel_connector->base);
2507                         return;
2508                 }
2509
2510                 /* Pull timing values out of registers */
2511                 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
2512                         PANEL_POWER_UP_DELAY_SHIFT;
2513
2514                 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
2515                         PANEL_LIGHT_ON_DELAY_SHIFT;
2516
2517                 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
2518                         PANEL_LIGHT_OFF_DELAY_SHIFT;
2519
2520                 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
2521                         PANEL_POWER_DOWN_DELAY_SHIFT;
2522
2523                 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
2524                                PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
2525
2526                 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2527                               cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
2528
2529                 vbt = dev_priv->edp.pps;
2530
2531                 DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2532                               vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
2533
2534 #define get_delay(field)        ((max(cur.field, vbt.field) + 9) / 10)
2535
2536                 intel_dp->panel_power_up_delay = get_delay(t1_t3);
2537                 intel_dp->backlight_on_delay = get_delay(t8);
2538                 intel_dp->backlight_off_delay = get_delay(t9);
2539                 intel_dp->panel_power_down_delay = get_delay(t10);
2540                 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
2541
2542                 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
2543                               intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
2544                               intel_dp->panel_power_cycle_delay);
2545
2546                 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
2547                               intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
2548
2549                 ironlake_edp_panel_vdd_on(intel_dp);
2550                 ret = intel_dp_get_dpcd(intel_dp);
2551                 ironlake_edp_panel_vdd_off(intel_dp, false);
2552
2553                 if (ret) {
2554                         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
2555                                 dev_priv->no_aux_handshake =
2556                                         intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
2557                                         DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
2558                 } else {
2559                         /* if this fails, presume the device is a ghost */
2560                         DRM_INFO("failed to retrieve link info, disabling eDP\n");
2561                         intel_dp_encoder_destroy(&intel_dp->base.base);
2562                         intel_dp_destroy(&intel_connector->base);
2563                         return;
2564                 }
2565         }
2566
2567         intel_dp_i2c_init(intel_dp, intel_connector, name);
2568
2569         intel_encoder->hot_plug = intel_dp_hot_plug;
2570
2571         if (is_edp(intel_dp)) {
2572                 dev_priv->int_edp_connector = connector;
2573                 intel_panel_setup_backlight(dev);
2574         }
2575
2576         intel_dp_add_properties(intel_dp, connector);
2577
2578         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2579          * 0xd.  Failure to do so will result in spurious interrupts being
2580          * generated on the port when a cable is not attached.
2581          */
2582         if (IS_G4X(dev) && !IS_GM45(dev)) {
2583                 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
2584                 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
2585         }
2586 }