]> CyberLeo.Net >> Repos - FreeBSD/releng/10.2.git/blob - sys/dev/drm2/ttm/ttm_page_alloc_dma.c
- Copy stable/10@285827 to releng/10.2 in preparation for 10.2-RC1
[FreeBSD/releng/10.2.git] / sys / dev / drm2 / ttm / ttm_page_alloc_dma.c
1 /*
2  * Copyright 2011 (c) Oracle Corp.
3
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sub license,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the
12  * next paragraph) shall be included in all copies or substantial portions
13  * of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Author: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
24  */
25
26 /*
27  * A simple DMA pool losely based on dmapool.c. It has certain advantages
28  * over the DMA pools:
29  * - Pool collects resently freed pages for reuse (and hooks up to
30  *   the shrinker).
31  * - Tracks currently in use pages
32  * - Tracks whether the page is UC, WB or cached (and reverts to WB
33  *   when freed).
34  */
35
36 #include <sys/cdefs.h>
37 __FBSDID("$FreeBSD$");
38
39 #define pr_fmt(fmt) "[TTM] " fmt
40
41 #include <linux/dma-mapping.h>
42 #include <linux/list.h>
43 #include <linux/seq_file.h> /* for seq_printf */
44 #include <linux/slab.h>
45 #include <linux/spinlock.h>
46 #include <linux/highmem.h>
47 #include <linux/mm_types.h>
48 #include <linux/module.h>
49 #include <linux/mm.h>
50 #include <linux/atomic.h>
51 #include <linux/device.h>
52 #include <linux/kthread.h>
53 #include <drm/ttm/ttm_bo_driver.h>
54 #include <drm/ttm/ttm_page_alloc.h>
55 #ifdef TTM_HAS_AGP
56 #include <asm/agp.h>
57 #endif
58
59 #define NUM_PAGES_TO_ALLOC              (PAGE_SIZE/sizeof(struct page *))
60 #define SMALL_ALLOCATION                4
61 #define FREE_ALL_PAGES                  (~0U)
62 /* times are in msecs */
63 #define IS_UNDEFINED                    (0)
64 #define IS_WC                           (1<<1)
65 #define IS_UC                           (1<<2)
66 #define IS_CACHED                       (1<<3)
67 #define IS_DMA32                        (1<<4)
68
69 enum pool_type {
70         POOL_IS_UNDEFINED,
71         POOL_IS_WC = IS_WC,
72         POOL_IS_UC = IS_UC,
73         POOL_IS_CACHED = IS_CACHED,
74         POOL_IS_WC_DMA32 = IS_WC | IS_DMA32,
75         POOL_IS_UC_DMA32 = IS_UC | IS_DMA32,
76         POOL_IS_CACHED_DMA32 = IS_CACHED | IS_DMA32,
77 };
78 /*
79  * The pool structure. There are usually six pools:
80  *  - generic (not restricted to DMA32):
81  *      - write combined, uncached, cached.
82  *  - dma32 (up to 2^32 - so up 4GB):
83  *      - write combined, uncached, cached.
84  * for each 'struct device'. The 'cached' is for pages that are actively used.
85  * The other ones can be shrunk by the shrinker API if neccessary.
86  * @pools: The 'struct device->dma_pools' link.
87  * @type: Type of the pool
88  * @lock: Protects the inuse_list and free_list from concurrnet access. Must be
89  * used with irqsave/irqrestore variants because pool allocator maybe called
90  * from delayed work.
91  * @inuse_list: Pool of pages that are in use. The order is very important and
92  *   it is in the order that the TTM pages that are put back are in.
93  * @free_list: Pool of pages that are free to be used. No order requirements.
94  * @dev: The device that is associated with these pools.
95  * @size: Size used during DMA allocation.
96  * @npages_free: Count of available pages for re-use.
97  * @npages_in_use: Count of pages that are in use.
98  * @nfrees: Stats when pool is shrinking.
99  * @nrefills: Stats when the pool is grown.
100  * @gfp_flags: Flags to pass for alloc_page.
101  * @name: Name of the pool.
102  * @dev_name: Name derieved from dev - similar to how dev_info works.
103  *   Used during shutdown as the dev_info during release is unavailable.
104  */
105 struct dma_pool {
106         struct list_head pools; /* The 'struct device->dma_pools link */
107         enum pool_type type;
108         spinlock_t lock;
109         struct list_head inuse_list;
110         struct list_head free_list;
111         struct device *dev;
112         unsigned size;
113         unsigned npages_free;
114         unsigned npages_in_use;
115         unsigned long nfrees; /* Stats when shrunk. */
116         unsigned long nrefills; /* Stats when grown. */
117         gfp_t gfp_flags;
118         char name[13]; /* "cached dma32" */
119         char dev_name[64]; /* Constructed from dev */
120 };
121
122 /*
123  * The accounting page keeping track of the allocated page along with
124  * the DMA address.
125  * @page_list: The link to the 'page_list' in 'struct dma_pool'.
126  * @vaddr: The virtual address of the page
127  * @dma: The bus address of the page. If the page is not allocated
128  *   via the DMA API, it will be -1.
129  */
130 struct dma_page {
131         struct list_head page_list;
132         void *vaddr;
133         struct page *p;
134         dma_addr_t dma;
135 };
136
137 /*
138  * Limits for the pool. They are handled without locks because only place where
139  * they may change is in sysfs store. They won't have immediate effect anyway
140  * so forcing serialization to access them is pointless.
141  */
142
143 struct ttm_pool_opts {
144         unsigned        alloc_size;
145         unsigned        max_size;
146         unsigned        small;
147 };
148
149 /*
150  * Contains the list of all of the 'struct device' and their corresponding
151  * DMA pools. Guarded by _mutex->lock.
152  * @pools: The link to 'struct ttm_pool_manager->pools'
153  * @dev: The 'struct device' associated with the 'pool'
154  * @pool: The 'struct dma_pool' associated with the 'dev'
155  */
156 struct device_pools {
157         struct list_head pools;
158         struct device *dev;
159         struct dma_pool *pool;
160 };
161
162 /*
163  * struct ttm_pool_manager - Holds memory pools for fast allocation
164  *
165  * @lock: Lock used when adding/removing from pools
166  * @pools: List of 'struct device' and 'struct dma_pool' tuples.
167  * @options: Limits for the pool.
168  * @npools: Total amount of pools in existence.
169  * @shrinker: The structure used by [un|]register_shrinker
170  */
171 struct ttm_pool_manager {
172         struct mutex            lock;
173         struct list_head        pools;
174         struct ttm_pool_opts    options;
175         unsigned                npools;
176         struct shrinker         mm_shrink;
177         struct kobject          kobj;
178 };
179
180 static struct ttm_pool_manager *_manager;
181
182 static struct attribute ttm_page_pool_max = {
183         .name = "pool_max_size",
184         .mode = S_IRUGO | S_IWUSR
185 };
186 static struct attribute ttm_page_pool_small = {
187         .name = "pool_small_allocation",
188         .mode = S_IRUGO | S_IWUSR
189 };
190 static struct attribute ttm_page_pool_alloc_size = {
191         .name = "pool_allocation_size",
192         .mode = S_IRUGO | S_IWUSR
193 };
194
195 static struct attribute *ttm_pool_attrs[] = {
196         &ttm_page_pool_max,
197         &ttm_page_pool_small,
198         &ttm_page_pool_alloc_size,
199         NULL
200 };
201
202 static void ttm_pool_kobj_release(struct kobject *kobj)
203 {
204         struct ttm_pool_manager *m =
205                 container_of(kobj, struct ttm_pool_manager, kobj);
206         kfree(m);
207 }
208
209 static ssize_t ttm_pool_store(struct kobject *kobj, struct attribute *attr,
210                               const char *buffer, size_t size)
211 {
212         struct ttm_pool_manager *m =
213                 container_of(kobj, struct ttm_pool_manager, kobj);
214         int chars;
215         unsigned val;
216         chars = sscanf(buffer, "%u", &val);
217         if (chars == 0)
218                 return size;
219
220         /* Convert kb to number of pages */
221         val = val / (PAGE_SIZE >> 10);
222
223         if (attr == &ttm_page_pool_max)
224                 m->options.max_size = val;
225         else if (attr == &ttm_page_pool_small)
226                 m->options.small = val;
227         else if (attr == &ttm_page_pool_alloc_size) {
228                 if (val > NUM_PAGES_TO_ALLOC*8) {
229                         pr_err("Setting allocation size to %lu is not allowed. Recommended size is %lu\n",
230                                NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 7),
231                                NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
232                         return size;
233                 } else if (val > NUM_PAGES_TO_ALLOC) {
234                         pr_warn("Setting allocation size to larger than %lu is not recommended\n",
235                                 NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
236                 }
237                 m->options.alloc_size = val;
238         }
239
240         return size;
241 }
242
243 static ssize_t ttm_pool_show(struct kobject *kobj, struct attribute *attr,
244                              char *buffer)
245 {
246         struct ttm_pool_manager *m =
247                 container_of(kobj, struct ttm_pool_manager, kobj);
248         unsigned val = 0;
249
250         if (attr == &ttm_page_pool_max)
251                 val = m->options.max_size;
252         else if (attr == &ttm_page_pool_small)
253                 val = m->options.small;
254         else if (attr == &ttm_page_pool_alloc_size)
255                 val = m->options.alloc_size;
256
257         val = val * (PAGE_SIZE >> 10);
258
259         return snprintf(buffer, PAGE_SIZE, "%u\n", val);
260 }
261
262 static const struct sysfs_ops ttm_pool_sysfs_ops = {
263         .show = &ttm_pool_show,
264         .store = &ttm_pool_store,
265 };
266
267 static struct kobj_type ttm_pool_kobj_type = {
268         .release = &ttm_pool_kobj_release,
269         .sysfs_ops = &ttm_pool_sysfs_ops,
270         .default_attrs = ttm_pool_attrs,
271 };
272
273 #ifndef CONFIG_X86
274 static int set_pages_array_wb(struct page **pages, int addrinarray)
275 {
276 #ifdef TTM_HAS_AGP
277         int i;
278
279         for (i = 0; i < addrinarray; i++)
280                 unmap_page_from_agp(pages[i]);
281 #endif
282         return 0;
283 }
284
285 static int set_pages_array_wc(struct page **pages, int addrinarray)
286 {
287 #ifdef TTM_HAS_AGP
288         int i;
289
290         for (i = 0; i < addrinarray; i++)
291                 map_page_into_agp(pages[i]);
292 #endif
293         return 0;
294 }
295
296 static int set_pages_array_uc(struct page **pages, int addrinarray)
297 {
298 #ifdef TTM_HAS_AGP
299         int i;
300
301         for (i = 0; i < addrinarray; i++)
302                 map_page_into_agp(pages[i]);
303 #endif
304         return 0;
305 }
306 #endif /* for !CONFIG_X86 */
307
308 static int ttm_set_pages_caching(struct dma_pool *pool,
309                                  struct page **pages, unsigned cpages)
310 {
311         int r = 0;
312         /* Set page caching */
313         if (pool->type & IS_UC) {
314                 r = set_pages_array_uc(pages, cpages);
315                 if (r)
316                         pr_err("%s: Failed to set %d pages to uc!\n",
317                                pool->dev_name, cpages);
318         }
319         if (pool->type & IS_WC) {
320                 r = set_pages_array_wc(pages, cpages);
321                 if (r)
322                         pr_err("%s: Failed to set %d pages to wc!\n",
323                                pool->dev_name, cpages);
324         }
325         return r;
326 }
327
328 static void __ttm_dma_free_page(struct dma_pool *pool, struct dma_page *d_page)
329 {
330         dma_addr_t dma = d_page->dma;
331         dma_free_coherent(pool->dev, pool->size, d_page->vaddr, dma);
332
333         kfree(d_page);
334         d_page = NULL;
335 }
336 static struct dma_page *__ttm_dma_alloc_page(struct dma_pool *pool)
337 {
338         struct dma_page *d_page;
339
340         d_page = kmalloc(sizeof(struct dma_page), GFP_KERNEL);
341         if (!d_page)
342                 return NULL;
343
344         d_page->vaddr = dma_alloc_coherent(pool->dev, pool->size,
345                                            &d_page->dma,
346                                            pool->gfp_flags);
347         if (d_page->vaddr)
348                 d_page->p = virt_to_page(d_page->vaddr);
349         else {
350                 kfree(d_page);
351                 d_page = NULL;
352         }
353         return d_page;
354 }
355 static enum pool_type ttm_to_type(int flags, enum ttm_caching_state cstate)
356 {
357         enum pool_type type = IS_UNDEFINED;
358
359         if (flags & TTM_PAGE_FLAG_DMA32)
360                 type |= IS_DMA32;
361         if (cstate == tt_cached)
362                 type |= IS_CACHED;
363         else if (cstate == tt_uncached)
364                 type |= IS_UC;
365         else
366                 type |= IS_WC;
367
368         return type;
369 }
370
371 static void ttm_pool_update_free_locked(struct dma_pool *pool,
372                                         unsigned freed_pages)
373 {
374         pool->npages_free -= freed_pages;
375         pool->nfrees += freed_pages;
376
377 }
378
379 /* set memory back to wb and free the pages. */
380 static void ttm_dma_pages_put(struct dma_pool *pool, struct list_head *d_pages,
381                               struct page *pages[], unsigned npages)
382 {
383         struct dma_page *d_page, *tmp;
384
385         /* Don't set WB on WB page pool. */
386         if (npages && !(pool->type & IS_CACHED) &&
387             set_pages_array_wb(pages, npages))
388                 pr_err("%s: Failed to set %d pages to wb!\n",
389                        pool->dev_name, npages);
390
391         list_for_each_entry_safe(d_page, tmp, d_pages, page_list) {
392                 list_del(&d_page->page_list);
393                 __ttm_dma_free_page(pool, d_page);
394         }
395 }
396
397 static void ttm_dma_page_put(struct dma_pool *pool, struct dma_page *d_page)
398 {
399         /* Don't set WB on WB page pool. */
400         if (!(pool->type & IS_CACHED) && set_pages_array_wb(&d_page->p, 1))
401                 pr_err("%s: Failed to set %d pages to wb!\n",
402                        pool->dev_name, 1);
403
404         list_del(&d_page->page_list);
405         __ttm_dma_free_page(pool, d_page);
406 }
407
408 /*
409  * Free pages from pool.
410  *
411  * To prevent hogging the ttm_swap process we only free NUM_PAGES_TO_ALLOC
412  * number of pages in one go.
413  *
414  * @pool: to free the pages from
415  * @nr_free: If set to true will free all pages in pool
416  **/
417 static unsigned ttm_dma_page_pool_free(struct dma_pool *pool, unsigned nr_free)
418 {
419         unsigned long irq_flags;
420         struct dma_page *dma_p, *tmp;
421         struct page **pages_to_free;
422         struct list_head d_pages;
423         unsigned freed_pages = 0,
424                  npages_to_free = nr_free;
425
426         if (NUM_PAGES_TO_ALLOC < nr_free)
427                 npages_to_free = NUM_PAGES_TO_ALLOC;
428 #if 0
429         if (nr_free > 1) {
430                 pr_debug("%s: (%s:%d) Attempting to free %d (%d) pages\n",
431                          pool->dev_name, pool->name, current->pid,
432                          npages_to_free, nr_free);
433         }
434 #endif
435         pages_to_free = kmalloc(npages_to_free * sizeof(struct page *),
436                         GFP_KERNEL);
437
438         if (!pages_to_free) {
439                 pr_err("%s: Failed to allocate memory for pool free operation\n",
440                        pool->dev_name);
441                 return 0;
442         }
443         INIT_LIST_HEAD(&d_pages);
444 restart:
445         spin_lock_irqsave(&pool->lock, irq_flags);
446
447         /* We picking the oldest ones off the list */
448         list_for_each_entry_safe_reverse(dma_p, tmp, &pool->free_list,
449                                          page_list) {
450                 if (freed_pages >= npages_to_free)
451                         break;
452
453                 /* Move the dma_page from one list to another. */
454                 list_move(&dma_p->page_list, &d_pages);
455
456                 pages_to_free[freed_pages++] = dma_p->p;
457                 /* We can only remove NUM_PAGES_TO_ALLOC at a time. */
458                 if (freed_pages >= NUM_PAGES_TO_ALLOC) {
459
460                         ttm_pool_update_free_locked(pool, freed_pages);
461                         /**
462                          * Because changing page caching is costly
463                          * we unlock the pool to prevent stalling.
464                          */
465                         spin_unlock_irqrestore(&pool->lock, irq_flags);
466
467                         ttm_dma_pages_put(pool, &d_pages, pages_to_free,
468                                           freed_pages);
469
470                         INIT_LIST_HEAD(&d_pages);
471
472                         if (likely(nr_free != FREE_ALL_PAGES))
473                                 nr_free -= freed_pages;
474
475                         if (NUM_PAGES_TO_ALLOC >= nr_free)
476                                 npages_to_free = nr_free;
477                         else
478                                 npages_to_free = NUM_PAGES_TO_ALLOC;
479
480                         freed_pages = 0;
481
482                         /* free all so restart the processing */
483                         if (nr_free)
484                                 goto restart;
485
486                         /* Not allowed to fall through or break because
487                          * following context is inside spinlock while we are
488                          * outside here.
489                          */
490                         goto out;
491
492                 }
493         }
494
495         /* remove range of pages from the pool */
496         if (freed_pages) {
497                 ttm_pool_update_free_locked(pool, freed_pages);
498                 nr_free -= freed_pages;
499         }
500
501         spin_unlock_irqrestore(&pool->lock, irq_flags);
502
503         if (freed_pages)
504                 ttm_dma_pages_put(pool, &d_pages, pages_to_free, freed_pages);
505 out:
506         kfree(pages_to_free);
507         return nr_free;
508 }
509
510 static void ttm_dma_free_pool(struct device *dev, enum pool_type type)
511 {
512         struct device_pools *p;
513         struct dma_pool *pool;
514
515         if (!dev)
516                 return;
517
518         mutex_lock(&_manager->lock);
519         list_for_each_entry_reverse(p, &_manager->pools, pools) {
520                 if (p->dev != dev)
521                         continue;
522                 pool = p->pool;
523                 if (pool->type != type)
524                         continue;
525
526                 list_del(&p->pools);
527                 kfree(p);
528                 _manager->npools--;
529                 break;
530         }
531         list_for_each_entry_reverse(pool, &dev->dma_pools, pools) {
532                 if (pool->type != type)
533                         continue;
534                 /* Takes a spinlock.. */
535                 ttm_dma_page_pool_free(pool, FREE_ALL_PAGES);
536                 WARN_ON(((pool->npages_in_use + pool->npages_free) != 0));
537                 /* This code path is called after _all_ references to the
538                  * struct device has been dropped - so nobody should be
539                  * touching it. In case somebody is trying to _add_ we are
540                  * guarded by the mutex. */
541                 list_del(&pool->pools);
542                 kfree(pool);
543                 break;
544         }
545         mutex_unlock(&_manager->lock);
546 }
547
548 /*
549  * On free-ing of the 'struct device' this deconstructor is run.
550  * Albeit the pool might have already been freed earlier.
551  */
552 static void ttm_dma_pool_release(struct device *dev, void *res)
553 {
554         struct dma_pool *pool = *(struct dma_pool **)res;
555
556         if (pool)
557                 ttm_dma_free_pool(dev, pool->type);
558 }
559
560 static int ttm_dma_pool_match(struct device *dev, void *res, void *match_data)
561 {
562         return *(struct dma_pool **)res == match_data;
563 }
564
565 static struct dma_pool *ttm_dma_pool_init(struct device *dev, gfp_t flags,
566                                           enum pool_type type)
567 {
568         char *n[] = {"wc", "uc", "cached", " dma32", "unknown",};
569         enum pool_type t[] = {IS_WC, IS_UC, IS_CACHED, IS_DMA32, IS_UNDEFINED};
570         struct device_pools *sec_pool = NULL;
571         struct dma_pool *pool = NULL, **ptr;
572         unsigned i;
573         int ret = -ENODEV;
574         char *p;
575
576         if (!dev)
577                 return NULL;
578
579         ptr = devres_alloc(ttm_dma_pool_release, sizeof(*ptr), GFP_KERNEL);
580         if (!ptr)
581                 return NULL;
582
583         ret = -ENOMEM;
584
585         pool = kmalloc_node(sizeof(struct dma_pool), GFP_KERNEL,
586                             dev_to_node(dev));
587         if (!pool)
588                 goto err_mem;
589
590         sec_pool = kmalloc_node(sizeof(struct device_pools), GFP_KERNEL,
591                                 dev_to_node(dev));
592         if (!sec_pool)
593                 goto err_mem;
594
595         INIT_LIST_HEAD(&sec_pool->pools);
596         sec_pool->dev = dev;
597         sec_pool->pool =  pool;
598
599         INIT_LIST_HEAD(&pool->free_list);
600         INIT_LIST_HEAD(&pool->inuse_list);
601         INIT_LIST_HEAD(&pool->pools);
602         spin_lock_init(&pool->lock);
603         pool->dev = dev;
604         pool->npages_free = pool->npages_in_use = 0;
605         pool->nfrees = 0;
606         pool->gfp_flags = flags;
607         pool->size = PAGE_SIZE;
608         pool->type = type;
609         pool->nrefills = 0;
610         p = pool->name;
611         for (i = 0; i < 5; i++) {
612                 if (type & t[i]) {
613                         p += snprintf(p, sizeof(pool->name) - (p - pool->name),
614                                       "%s", n[i]);
615                 }
616         }
617         *p = 0;
618         /* We copy the name for pr_ calls b/c when dma_pool_destroy is called
619          * - the kobj->name has already been deallocated.*/
620         snprintf(pool->dev_name, sizeof(pool->dev_name), "%s %s",
621                  dev_driver_string(dev), dev_name(dev));
622         mutex_lock(&_manager->lock);
623         /* You can get the dma_pool from either the global: */
624         list_add(&sec_pool->pools, &_manager->pools);
625         _manager->npools++;
626         /* or from 'struct device': */
627         list_add(&pool->pools, &dev->dma_pools);
628         mutex_unlock(&_manager->lock);
629
630         *ptr = pool;
631         devres_add(dev, ptr);
632
633         return pool;
634 err_mem:
635         devres_free(ptr);
636         kfree(sec_pool);
637         kfree(pool);
638         return ERR_PTR(ret);
639 }
640
641 static struct dma_pool *ttm_dma_find_pool(struct device *dev,
642                                           enum pool_type type)
643 {
644         struct dma_pool *pool, *tmp, *found = NULL;
645
646         if (type == IS_UNDEFINED)
647                 return found;
648
649         /* NB: We iterate on the 'struct dev' which has no spinlock, but
650          * it does have a kref which we have taken. The kref is taken during
651          * graphic driver loading - in the drm_pci_init it calls either
652          * pci_dev_get or pci_register_driver which both end up taking a kref
653          * on 'struct device'.
654          *
655          * On teardown, the graphic drivers end up quiescing the TTM (put_pages)
656          * and calls the dev_res deconstructors: ttm_dma_pool_release. The nice
657          * thing is at that point of time there are no pages associated with the
658          * driver so this function will not be called.
659          */
660         list_for_each_entry_safe(pool, tmp, &dev->dma_pools, pools) {
661                 if (pool->type != type)
662                         continue;
663                 found = pool;
664                 break;
665         }
666         return found;
667 }
668
669 /*
670  * Free pages the pages that failed to change the caching state. If there
671  * are pages that have changed their caching state already put them to the
672  * pool.
673  */
674 static void ttm_dma_handle_caching_state_failure(struct dma_pool *pool,
675                                                  struct list_head *d_pages,
676                                                  struct page **failed_pages,
677                                                  unsigned cpages)
678 {
679         struct dma_page *d_page, *tmp;
680         struct page *p;
681         unsigned i = 0;
682
683         p = failed_pages[0];
684         if (!p)
685                 return;
686         /* Find the failed page. */
687         list_for_each_entry_safe(d_page, tmp, d_pages, page_list) {
688                 if (d_page->p != p)
689                         continue;
690                 /* .. and then progress over the full list. */
691                 list_del(&d_page->page_list);
692                 __ttm_dma_free_page(pool, d_page);
693                 if (++i < cpages)
694                         p = failed_pages[i];
695                 else
696                         break;
697         }
698
699 }
700
701 /*
702  * Allocate 'count' pages, and put 'need' number of them on the
703  * 'pages' and as well on the 'dma_address' starting at 'dma_offset' offset.
704  * The full list of pages should also be on 'd_pages'.
705  * We return zero for success, and negative numbers as errors.
706  */
707 static int ttm_dma_pool_alloc_new_pages(struct dma_pool *pool,
708                                         struct list_head *d_pages,
709                                         unsigned count)
710 {
711         struct page **caching_array;
712         struct dma_page *dma_p;
713         struct page *p;
714         int r = 0;
715         unsigned i, cpages;
716         unsigned max_cpages = min(count,
717                         (unsigned)(PAGE_SIZE/sizeof(struct page *)));
718
719         /* allocate array for page caching change */
720         caching_array = kmalloc(max_cpages*sizeof(struct page *), GFP_KERNEL);
721
722         if (!caching_array) {
723                 pr_err("%s: Unable to allocate table for new pages\n",
724                        pool->dev_name);
725                 return -ENOMEM;
726         }
727
728         if (count > 1) {
729                 pr_debug("%s: (%s:%d) Getting %d pages\n",
730                          pool->dev_name, pool->name, current->pid, count);
731         }
732
733         for (i = 0, cpages = 0; i < count; ++i) {
734                 dma_p = __ttm_dma_alloc_page(pool);
735                 if (!dma_p) {
736                         pr_err("%s: Unable to get page %u\n",
737                                pool->dev_name, i);
738
739                         /* store already allocated pages in the pool after
740                          * setting the caching state */
741                         if (cpages) {
742                                 r = ttm_set_pages_caching(pool, caching_array,
743                                                           cpages);
744                                 if (r)
745                                         ttm_dma_handle_caching_state_failure(
746                                                 pool, d_pages, caching_array,
747                                                 cpages);
748                         }
749                         r = -ENOMEM;
750                         goto out;
751                 }
752                 p = dma_p->p;
753 #ifdef CONFIG_HIGHMEM
754                 /* gfp flags of highmem page should never be dma32 so we
755                  * we should be fine in such case
756                  */
757                 if (!PageHighMem(p))
758 #endif
759                 {
760                         caching_array[cpages++] = p;
761                         if (cpages == max_cpages) {
762                                 /* Note: Cannot hold the spinlock */
763                                 r = ttm_set_pages_caching(pool, caching_array,
764                                                  cpages);
765                                 if (r) {
766                                         ttm_dma_handle_caching_state_failure(
767                                                 pool, d_pages, caching_array,
768                                                 cpages);
769                                         goto out;
770                                 }
771                                 cpages = 0;
772                         }
773                 }
774                 list_add(&dma_p->page_list, d_pages);
775         }
776
777         if (cpages) {
778                 r = ttm_set_pages_caching(pool, caching_array, cpages);
779                 if (r)
780                         ttm_dma_handle_caching_state_failure(pool, d_pages,
781                                         caching_array, cpages);
782         }
783 out:
784         kfree(caching_array);
785         return r;
786 }
787
788 /*
789  * @return count of pages still required to fulfill the request.
790  */
791 static int ttm_dma_page_pool_fill_locked(struct dma_pool *pool,
792                                          unsigned long *irq_flags)
793 {
794         unsigned count = _manager->options.small;
795         int r = pool->npages_free;
796
797         if (count > pool->npages_free) {
798                 struct list_head d_pages;
799
800                 INIT_LIST_HEAD(&d_pages);
801
802                 spin_unlock_irqrestore(&pool->lock, *irq_flags);
803
804                 /* Returns how many more are neccessary to fulfill the
805                  * request. */
806                 r = ttm_dma_pool_alloc_new_pages(pool, &d_pages, count);
807
808                 spin_lock_irqsave(&pool->lock, *irq_flags);
809                 if (!r) {
810                         /* Add the fresh to the end.. */
811                         list_splice(&d_pages, &pool->free_list);
812                         ++pool->nrefills;
813                         pool->npages_free += count;
814                         r = count;
815                 } else {
816                         struct dma_page *d_page;
817                         unsigned cpages = 0;
818
819                         pr_err("%s: Failed to fill %s pool (r:%d)!\n",
820                                pool->dev_name, pool->name, r);
821
822                         list_for_each_entry(d_page, &d_pages, page_list) {
823                                 cpages++;
824                         }
825                         list_splice_tail(&d_pages, &pool->free_list);
826                         pool->npages_free += cpages;
827                         r = cpages;
828                 }
829         }
830         return r;
831 }
832
833 /*
834  * @return count of pages still required to fulfill the request.
835  * The populate list is actually a stack (not that is matters as TTM
836  * allocates one page at a time.
837  */
838 static int ttm_dma_pool_get_pages(struct dma_pool *pool,
839                                   struct ttm_dma_tt *ttm_dma,
840                                   unsigned index)
841 {
842         struct dma_page *d_page;
843         struct ttm_tt *ttm = &ttm_dma->ttm;
844         unsigned long irq_flags;
845         int count, r = -ENOMEM;
846
847         spin_lock_irqsave(&pool->lock, irq_flags);
848         count = ttm_dma_page_pool_fill_locked(pool, &irq_flags);
849         if (count) {
850                 d_page = list_first_entry(&pool->free_list, struct dma_page, page_list);
851                 ttm->pages[index] = d_page->p;
852                 ttm_dma->dma_address[index] = d_page->dma;
853                 list_move_tail(&d_page->page_list, &ttm_dma->pages_list);
854                 r = 0;
855                 pool->npages_in_use += 1;
856                 pool->npages_free -= 1;
857         }
858         spin_unlock_irqrestore(&pool->lock, irq_flags);
859         return r;
860 }
861
862 /*
863  * On success pages list will hold count number of correctly
864  * cached pages. On failure will hold the negative return value (-ENOMEM, etc).
865  */
866 int ttm_dma_populate(struct ttm_dma_tt *ttm_dma, struct device *dev)
867 {
868         struct ttm_tt *ttm = &ttm_dma->ttm;
869         struct ttm_mem_global *mem_glob = ttm->glob->mem_glob;
870         struct dma_pool *pool;
871         enum pool_type type;
872         unsigned i;
873         gfp_t gfp_flags;
874         int ret;
875
876         if (ttm->state != tt_unpopulated)
877                 return 0;
878
879         type = ttm_to_type(ttm->page_flags, ttm->caching_state);
880         if (ttm->page_flags & TTM_PAGE_FLAG_DMA32)
881                 gfp_flags = GFP_USER | GFP_DMA32;
882         else
883                 gfp_flags = GFP_HIGHUSER;
884         if (ttm->page_flags & TTM_PAGE_FLAG_ZERO_ALLOC)
885                 gfp_flags |= __GFP_ZERO;
886
887         pool = ttm_dma_find_pool(dev, type);
888         if (!pool) {
889                 pool = ttm_dma_pool_init(dev, gfp_flags, type);
890                 if (IS_ERR_OR_NULL(pool)) {
891                         return -ENOMEM;
892                 }
893         }
894
895         INIT_LIST_HEAD(&ttm_dma->pages_list);
896         for (i = 0; i < ttm->num_pages; ++i) {
897                 ret = ttm_dma_pool_get_pages(pool, ttm_dma, i);
898                 if (ret != 0) {
899                         ttm_dma_unpopulate(ttm_dma, dev);
900                         return -ENOMEM;
901                 }
902
903                 ret = ttm_mem_global_alloc_page(mem_glob, ttm->pages[i],
904                                                 false, false);
905                 if (unlikely(ret != 0)) {
906                         ttm_dma_unpopulate(ttm_dma, dev);
907                         return -ENOMEM;
908                 }
909         }
910
911         if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) {
912                 ret = ttm_tt_swapin(ttm);
913                 if (unlikely(ret != 0)) {
914                         ttm_dma_unpopulate(ttm_dma, dev);
915                         return ret;
916                 }
917         }
918
919         ttm->state = tt_unbound;
920         return 0;
921 }
922 EXPORT_SYMBOL_GPL(ttm_dma_populate);
923
924 /* Get good estimation how many pages are free in pools */
925 static int ttm_dma_pool_get_num_unused_pages(void)
926 {
927         struct device_pools *p;
928         unsigned total = 0;
929
930         mutex_lock(&_manager->lock);
931         list_for_each_entry(p, &_manager->pools, pools)
932                 total += p->pool->npages_free;
933         mutex_unlock(&_manager->lock);
934         return total;
935 }
936
937 /* Put all pages in pages list to correct pool to wait for reuse */
938 void ttm_dma_unpopulate(struct ttm_dma_tt *ttm_dma, struct device *dev)
939 {
940         struct ttm_tt *ttm = &ttm_dma->ttm;
941         struct dma_pool *pool;
942         struct dma_page *d_page, *next;
943         enum pool_type type;
944         bool is_cached = false;
945         unsigned count = 0, i, npages = 0;
946         unsigned long irq_flags;
947
948         type = ttm_to_type(ttm->page_flags, ttm->caching_state);
949         pool = ttm_dma_find_pool(dev, type);
950         if (!pool)
951                 return;
952
953         is_cached = (ttm_dma_find_pool(pool->dev,
954                      ttm_to_type(ttm->page_flags, tt_cached)) == pool);
955
956         /* make sure pages array match list and count number of pages */
957         list_for_each_entry(d_page, &ttm_dma->pages_list, page_list) {
958                 ttm->pages[count] = d_page->p;
959                 count++;
960         }
961
962         spin_lock_irqsave(&pool->lock, irq_flags);
963         pool->npages_in_use -= count;
964         if (is_cached) {
965                 pool->nfrees += count;
966         } else {
967                 pool->npages_free += count;
968                 list_splice(&ttm_dma->pages_list, &pool->free_list);
969                 npages = count;
970                 if (pool->npages_free > _manager->options.max_size) {
971                         npages = pool->npages_free - _manager->options.max_size;
972                         /* free at least NUM_PAGES_TO_ALLOC number of pages
973                          * to reduce calls to set_memory_wb */
974                         if (npages < NUM_PAGES_TO_ALLOC)
975                                 npages = NUM_PAGES_TO_ALLOC;
976                 }
977         }
978         spin_unlock_irqrestore(&pool->lock, irq_flags);
979
980         if (is_cached) {
981                 list_for_each_entry_safe(d_page, next, &ttm_dma->pages_list, page_list) {
982                         ttm_mem_global_free_page(ttm->glob->mem_glob,
983                                                  d_page->p);
984                         ttm_dma_page_put(pool, d_page);
985                 }
986         } else {
987                 for (i = 0; i < count; i++) {
988                         ttm_mem_global_free_page(ttm->glob->mem_glob,
989                                                  ttm->pages[i]);
990                 }
991         }
992
993         INIT_LIST_HEAD(&ttm_dma->pages_list);
994         for (i = 0; i < ttm->num_pages; i++) {
995                 ttm->pages[i] = NULL;
996                 ttm_dma->dma_address[i] = 0;
997         }
998
999         /* shrink pool if necessary (only on !is_cached pools)*/
1000         if (npages)
1001                 ttm_dma_page_pool_free(pool, npages);
1002         ttm->state = tt_unpopulated;
1003 }
1004 EXPORT_SYMBOL_GPL(ttm_dma_unpopulate);
1005
1006 /**
1007  * Callback for mm to request pool to reduce number of page held.
1008  */
1009 static int ttm_dma_pool_mm_shrink(struct shrinker *shrink,
1010                                   struct shrink_control *sc)
1011 {
1012         static atomic_t start_pool = ATOMIC_INIT(0);
1013         unsigned idx = 0;
1014         unsigned pool_offset = atomic_add_return(1, &start_pool);
1015         unsigned shrink_pages = sc->nr_to_scan;
1016         struct device_pools *p;
1017
1018         if (list_empty(&_manager->pools))
1019                 return 0;
1020
1021         mutex_lock(&_manager->lock);
1022         pool_offset = pool_offset % _manager->npools;
1023         list_for_each_entry(p, &_manager->pools, pools) {
1024                 unsigned nr_free;
1025
1026                 if (!p->dev)
1027                         continue;
1028                 if (shrink_pages == 0)
1029                         break;
1030                 /* Do it in round-robin fashion. */
1031                 if (++idx < pool_offset)
1032                         continue;
1033                 nr_free = shrink_pages;
1034                 shrink_pages = ttm_dma_page_pool_free(p->pool, nr_free);
1035                 pr_debug("%s: (%s:%d) Asked to shrink %d, have %d more to go\n",
1036                          p->pool->dev_name, p->pool->name, current->pid,
1037                          nr_free, shrink_pages);
1038         }
1039         mutex_unlock(&_manager->lock);
1040         /* return estimated number of unused pages in pool */
1041         return ttm_dma_pool_get_num_unused_pages();
1042 }
1043
1044 static void ttm_dma_pool_mm_shrink_init(struct ttm_pool_manager *manager)
1045 {
1046         manager->mm_shrink.shrink = &ttm_dma_pool_mm_shrink;
1047         manager->mm_shrink.seeks = 1;
1048         register_shrinker(&manager->mm_shrink);
1049 }
1050
1051 static void ttm_dma_pool_mm_shrink_fini(struct ttm_pool_manager *manager)
1052 {
1053         unregister_shrinker(&manager->mm_shrink);
1054 }
1055
1056 int ttm_dma_page_alloc_init(struct ttm_mem_global *glob, unsigned max_pages)
1057 {
1058         int ret = -ENOMEM;
1059
1060         WARN_ON(_manager);
1061
1062         pr_info("Initializing DMA pool allocator\n");
1063
1064         _manager = kzalloc(sizeof(*_manager), GFP_KERNEL);
1065         if (!_manager)
1066                 goto err;
1067
1068         mutex_init(&_manager->lock);
1069         INIT_LIST_HEAD(&_manager->pools);
1070
1071         _manager->options.max_size = max_pages;
1072         _manager->options.small = SMALL_ALLOCATION;
1073         _manager->options.alloc_size = NUM_PAGES_TO_ALLOC;
1074
1075         /* This takes care of auto-freeing the _manager */
1076         ret = kobject_init_and_add(&_manager->kobj, &ttm_pool_kobj_type,
1077                                    &glob->kobj, "dma_pool");
1078         if (unlikely(ret != 0)) {
1079                 kobject_put(&_manager->kobj);
1080                 goto err;
1081         }
1082         ttm_dma_pool_mm_shrink_init(_manager);
1083         return 0;
1084 err:
1085         return ret;
1086 }
1087
1088 void ttm_dma_page_alloc_fini(void)
1089 {
1090         struct device_pools *p, *t;
1091
1092         pr_info("Finalizing DMA pool allocator\n");
1093         ttm_dma_pool_mm_shrink_fini(_manager);
1094
1095         list_for_each_entry_safe_reverse(p, t, &_manager->pools, pools) {
1096                 dev_dbg(p->dev, "(%s:%d) Freeing.\n", p->pool->name,
1097                         current->pid);
1098                 WARN_ON(devres_destroy(p->dev, ttm_dma_pool_release,
1099                         ttm_dma_pool_match, p->pool));
1100                 ttm_dma_free_pool(p->dev, p->pool->type);
1101         }
1102         kobject_put(&_manager->kobj);
1103         _manager = NULL;
1104 }
1105
1106 int ttm_dma_page_alloc_debugfs(struct seq_file *m, void *data)
1107 {
1108         struct device_pools *p;
1109         struct dma_pool *pool = NULL;
1110         char *h[] = {"pool", "refills", "pages freed", "inuse", "available",
1111                      "name", "virt", "busaddr"};
1112
1113         if (!_manager) {
1114                 seq_printf(m, "No pool allocator running.\n");
1115                 return 0;
1116         }
1117         seq_printf(m, "%13s %12s %13s %8s %8s %8s\n",
1118                    h[0], h[1], h[2], h[3], h[4], h[5]);
1119         mutex_lock(&_manager->lock);
1120         list_for_each_entry(p, &_manager->pools, pools) {
1121                 struct device *dev = p->dev;
1122                 if (!dev)
1123                         continue;
1124                 pool = p->pool;
1125                 seq_printf(m, "%13s %12ld %13ld %8d %8d %8s\n",
1126                                 pool->name, pool->nrefills,
1127                                 pool->nfrees, pool->npages_in_use,
1128                                 pool->npages_free,
1129                                 pool->dev_name);
1130         }
1131         mutex_unlock(&_manager->lock);
1132         return 0;
1133 }
1134 EXPORT_SYMBOL_GPL(ttm_dma_page_alloc_debugfs);