]> CyberLeo.Net >> Repos - FreeBSD/releng/10.2.git/blob - sys/dev/e1000/e1000_i210.c
- Copy stable/10@285827 to releng/10.2 in preparation for 10.2-RC1
[FreeBSD/releng/10.2.git] / sys / dev / e1000 / e1000_i210.c
1 /******************************************************************************
2
3   Copyright (c) 2001-2014, Intel Corporation 
4   All rights reserved.
5   
6   Redistribution and use in source and binary forms, with or without 
7   modification, are permitted provided that the following conditions are met:
8   
9    1. Redistributions of source code must retain the above copyright notice, 
10       this list of conditions and the following disclaimer.
11   
12    2. Redistributions in binary form must reproduce the above copyright 
13       notice, this list of conditions and the following disclaimer in the 
14       documentation and/or other materials provided with the distribution.
15   
16    3. Neither the name of the Intel Corporation nor the names of its 
17       contributors may be used to endorse or promote products derived from 
18       this software without specific prior written permission.
19   
20   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
22   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 
23   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 
24   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 
25   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 
26   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
27   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 
28   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
29   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30   POSSIBILITY OF SUCH DAMAGE.
31
32 ******************************************************************************/
33 /*$FreeBSD$*/
34
35 #include "e1000_api.h"
36
37
38 static s32 e1000_acquire_nvm_i210(struct e1000_hw *hw);
39 static void e1000_release_nvm_i210(struct e1000_hw *hw);
40 static s32 e1000_get_hw_semaphore_i210(struct e1000_hw *hw);
41 static s32 e1000_write_nvm_srwr(struct e1000_hw *hw, u16 offset, u16 words,
42                                 u16 *data);
43 static s32 e1000_pool_flash_update_done_i210(struct e1000_hw *hw);
44 static s32 e1000_valid_led_default_i210(struct e1000_hw *hw, u16 *data);
45
46 /**
47  *  e1000_acquire_nvm_i210 - Request for access to EEPROM
48  *  @hw: pointer to the HW structure
49  *
50  *  Acquire the necessary semaphores for exclusive access to the EEPROM.
51  *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
52  *  Return successful if access grant bit set, else clear the request for
53  *  EEPROM access and return -E1000_ERR_NVM (-1).
54  **/
55 static s32 e1000_acquire_nvm_i210(struct e1000_hw *hw)
56 {
57         s32 ret_val;
58
59         DEBUGFUNC("e1000_acquire_nvm_i210");
60
61         ret_val = e1000_acquire_swfw_sync_i210(hw, E1000_SWFW_EEP_SM);
62
63         return ret_val;
64 }
65
66 /**
67  *  e1000_release_nvm_i210 - Release exclusive access to EEPROM
68  *  @hw: pointer to the HW structure
69  *
70  *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
71  *  then release the semaphores acquired.
72  **/
73 static void e1000_release_nvm_i210(struct e1000_hw *hw)
74 {
75         DEBUGFUNC("e1000_release_nvm_i210");
76
77         e1000_release_swfw_sync_i210(hw, E1000_SWFW_EEP_SM);
78 }
79
80 /**
81  *  e1000_acquire_swfw_sync_i210 - Acquire SW/FW semaphore
82  *  @hw: pointer to the HW structure
83  *  @mask: specifies which semaphore to acquire
84  *
85  *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
86  *  will also specify which port we're acquiring the lock for.
87  **/
88 s32 e1000_acquire_swfw_sync_i210(struct e1000_hw *hw, u16 mask)
89 {
90         u32 swfw_sync;
91         u32 swmask = mask;
92         u32 fwmask = mask << 16;
93         s32 ret_val = E1000_SUCCESS;
94         s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
95
96         DEBUGFUNC("e1000_acquire_swfw_sync_i210");
97
98         while (i < timeout) {
99                 if (e1000_get_hw_semaphore_i210(hw)) {
100                         ret_val = -E1000_ERR_SWFW_SYNC;
101                         goto out;
102                 }
103
104                 swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
105                 if (!(swfw_sync & (fwmask | swmask)))
106                         break;
107
108                 /*
109                  * Firmware currently using resource (fwmask)
110                  * or other software thread using resource (swmask)
111                  */
112                 e1000_put_hw_semaphore_generic(hw);
113                 msec_delay_irq(5);
114                 i++;
115         }
116
117         if (i == timeout) {
118                 DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
119                 ret_val = -E1000_ERR_SWFW_SYNC;
120                 goto out;
121         }
122
123         swfw_sync |= swmask;
124         E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);
125
126         e1000_put_hw_semaphore_generic(hw);
127
128 out:
129         return ret_val;
130 }
131
132 /**
133  *  e1000_release_swfw_sync_i210 - Release SW/FW semaphore
134  *  @hw: pointer to the HW structure
135  *  @mask: specifies which semaphore to acquire
136  *
137  *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
138  *  will also specify which port we're releasing the lock for.
139  **/
140 void e1000_release_swfw_sync_i210(struct e1000_hw *hw, u16 mask)
141 {
142         u32 swfw_sync;
143
144         DEBUGFUNC("e1000_release_swfw_sync_i210");
145
146         while (e1000_get_hw_semaphore_i210(hw) != E1000_SUCCESS)
147                 ; /* Empty */
148
149         swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
150         swfw_sync &= ~mask;
151         E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);
152
153         e1000_put_hw_semaphore_generic(hw);
154 }
155
156 /**
157  *  e1000_get_hw_semaphore_i210 - Acquire hardware semaphore
158  *  @hw: pointer to the HW structure
159  *
160  *  Acquire the HW semaphore to access the PHY or NVM
161  **/
162 static s32 e1000_get_hw_semaphore_i210(struct e1000_hw *hw)
163 {
164         u32 swsm;
165         s32 timeout = hw->nvm.word_size + 1;
166         s32 i = 0;
167
168         DEBUGFUNC("e1000_get_hw_semaphore_i210");
169
170         /* Get the SW semaphore */
171         while (i < timeout) {
172                 swsm = E1000_READ_REG(hw, E1000_SWSM);
173                 if (!(swsm & E1000_SWSM_SMBI))
174                         break;
175
176                 usec_delay(50);
177                 i++;
178         }
179
180         if (i == timeout) {
181                 /* In rare circumstances, the SW semaphore may already be held
182                  * unintentionally. Clear the semaphore once before giving up.
183                  */
184                 if (hw->dev_spec._82575.clear_semaphore_once) {
185                         hw->dev_spec._82575.clear_semaphore_once = FALSE;
186                         e1000_put_hw_semaphore_generic(hw);
187                         for (i = 0; i < timeout; i++) {
188                                 swsm = E1000_READ_REG(hw, E1000_SWSM);
189                                 if (!(swsm & E1000_SWSM_SMBI))
190                                         break;
191
192                                 usec_delay(50);
193                         }
194                 }
195
196                 /* If we do not have the semaphore here, we have to give up. */
197                 if (i == timeout) {
198                         DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
199                         return -E1000_ERR_NVM;
200                 }
201         }
202
203         /* Get the FW semaphore. */
204         for (i = 0; i < timeout; i++) {
205                 swsm = E1000_READ_REG(hw, E1000_SWSM);
206                 E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
207
208                 /* Semaphore acquired if bit latched */
209                 if (E1000_READ_REG(hw, E1000_SWSM) & E1000_SWSM_SWESMBI)
210                         break;
211
212                 usec_delay(50);
213         }
214
215         if (i == timeout) {
216                 /* Release semaphores */
217                 e1000_put_hw_semaphore_generic(hw);
218                 DEBUGOUT("Driver can't access the NVM\n");
219                 return -E1000_ERR_NVM;
220         }
221
222         return E1000_SUCCESS;
223 }
224
225 /**
226  *  e1000_read_nvm_srrd_i210 - Reads Shadow Ram using EERD register
227  *  @hw: pointer to the HW structure
228  *  @offset: offset of word in the Shadow Ram to read
229  *  @words: number of words to read
230  *  @data: word read from the Shadow Ram
231  *
232  *  Reads a 16 bit word from the Shadow Ram using the EERD register.
233  *  Uses necessary synchronization semaphores.
234  **/
235 s32 e1000_read_nvm_srrd_i210(struct e1000_hw *hw, u16 offset, u16 words,
236                              u16 *data)
237 {
238         s32 status = E1000_SUCCESS;
239         u16 i, count;
240
241         DEBUGFUNC("e1000_read_nvm_srrd_i210");
242
243         /* We cannot hold synchronization semaphores for too long,
244          * because of forceful takeover procedure. However it is more efficient
245          * to read in bursts than synchronizing access for each word. */
246         for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) {
247                 count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ?
248                         E1000_EERD_EEWR_MAX_COUNT : (words - i);
249                 if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) {
250                         status = e1000_read_nvm_eerd(hw, offset, count,
251                                                      data + i);
252                         hw->nvm.ops.release(hw);
253                 } else {
254                         status = E1000_ERR_SWFW_SYNC;
255                 }
256
257                 if (status != E1000_SUCCESS)
258                         break;
259         }
260
261         return status;
262 }
263
264 /**
265  *  e1000_write_nvm_srwr_i210 - Write to Shadow RAM using EEWR
266  *  @hw: pointer to the HW structure
267  *  @offset: offset within the Shadow RAM to be written to
268  *  @words: number of words to write
269  *  @data: 16 bit word(s) to be written to the Shadow RAM
270  *
271  *  Writes data to Shadow RAM at offset using EEWR register.
272  *
273  *  If e1000_update_nvm_checksum is not called after this function , the
274  *  data will not be committed to FLASH and also Shadow RAM will most likely
275  *  contain an invalid checksum.
276  *
277  *  If error code is returned, data and Shadow RAM may be inconsistent - buffer
278  *  partially written.
279  **/
280 s32 e1000_write_nvm_srwr_i210(struct e1000_hw *hw, u16 offset, u16 words,
281                               u16 *data)
282 {
283         s32 status = E1000_SUCCESS;
284         u16 i, count;
285
286         DEBUGFUNC("e1000_write_nvm_srwr_i210");
287
288         /* We cannot hold synchronization semaphores for too long,
289          * because of forceful takeover procedure. However it is more efficient
290          * to write in bursts than synchronizing access for each word. */
291         for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) {
292                 count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ?
293                         E1000_EERD_EEWR_MAX_COUNT : (words - i);
294                 if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) {
295                         status = e1000_write_nvm_srwr(hw, offset, count,
296                                                       data + i);
297                         hw->nvm.ops.release(hw);
298                 } else {
299                         status = E1000_ERR_SWFW_SYNC;
300                 }
301
302                 if (status != E1000_SUCCESS)
303                         break;
304         }
305
306         return status;
307 }
308
309 /**
310  *  e1000_write_nvm_srwr - Write to Shadow Ram using EEWR
311  *  @hw: pointer to the HW structure
312  *  @offset: offset within the Shadow Ram to be written to
313  *  @words: number of words to write
314  *  @data: 16 bit word(s) to be written to the Shadow Ram
315  *
316  *  Writes data to Shadow Ram at offset using EEWR register.
317  *
318  *  If e1000_update_nvm_checksum is not called after this function , the
319  *  Shadow Ram will most likely contain an invalid checksum.
320  **/
321 static s32 e1000_write_nvm_srwr(struct e1000_hw *hw, u16 offset, u16 words,
322                                 u16 *data)
323 {
324         struct e1000_nvm_info *nvm = &hw->nvm;
325         u32 i, k, eewr = 0;
326         u32 attempts = 100000;
327         s32 ret_val = E1000_SUCCESS;
328
329         DEBUGFUNC("e1000_write_nvm_srwr");
330
331         /*
332          * A check for invalid values:  offset too large, too many words,
333          * too many words for the offset, and not enough words.
334          */
335         if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
336             (words == 0)) {
337                 DEBUGOUT("nvm parameter(s) out of bounds\n");
338                 ret_val = -E1000_ERR_NVM;
339                 goto out;
340         }
341
342         for (i = 0; i < words; i++) {
343                 eewr = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
344                         (data[i] << E1000_NVM_RW_REG_DATA) |
345                         E1000_NVM_RW_REG_START;
346
347                 E1000_WRITE_REG(hw, E1000_SRWR, eewr);
348
349                 for (k = 0; k < attempts; k++) {
350                         if (E1000_NVM_RW_REG_DONE &
351                             E1000_READ_REG(hw, E1000_SRWR)) {
352                                 ret_val = E1000_SUCCESS;
353                                 break;
354                         }
355                         usec_delay(5);
356                 }
357
358                 if (ret_val != E1000_SUCCESS) {
359                         DEBUGOUT("Shadow RAM write EEWR timed out\n");
360                         break;
361                 }
362         }
363
364 out:
365         return ret_val;
366 }
367
368 /** e1000_read_invm_word_i210 - Reads OTP
369  *  @hw: pointer to the HW structure
370  *  @address: the word address (aka eeprom offset) to read
371  *  @data: pointer to the data read
372  *
373  *  Reads 16-bit words from the OTP. Return error when the word is not
374  *  stored in OTP.
375  **/
376 static s32 e1000_read_invm_word_i210(struct e1000_hw *hw, u8 address, u16 *data)
377 {
378         s32 status = -E1000_ERR_INVM_VALUE_NOT_FOUND;
379         u32 invm_dword;
380         u16 i;
381         u8 record_type, word_address;
382
383         DEBUGFUNC("e1000_read_invm_word_i210");
384
385         for (i = 0; i < E1000_INVM_SIZE; i++) {
386                 invm_dword = E1000_READ_REG(hw, E1000_INVM_DATA_REG(i));
387                 /* Get record type */
388                 record_type = INVM_DWORD_TO_RECORD_TYPE(invm_dword);
389                 if (record_type == E1000_INVM_UNINITIALIZED_STRUCTURE)
390                         break;
391                 if (record_type == E1000_INVM_CSR_AUTOLOAD_STRUCTURE)
392                         i += E1000_INVM_CSR_AUTOLOAD_DATA_SIZE_IN_DWORDS;
393                 if (record_type == E1000_INVM_RSA_KEY_SHA256_STRUCTURE)
394                         i += E1000_INVM_RSA_KEY_SHA256_DATA_SIZE_IN_DWORDS;
395                 if (record_type == E1000_INVM_WORD_AUTOLOAD_STRUCTURE) {
396                         word_address = INVM_DWORD_TO_WORD_ADDRESS(invm_dword);
397                         if (word_address == address) {
398                                 *data = INVM_DWORD_TO_WORD_DATA(invm_dword);
399                                 DEBUGOUT2("Read INVM Word 0x%02x = %x",
400                                           address, *data);
401                                 status = E1000_SUCCESS;
402                                 break;
403                         }
404                 }
405         }
406         if (status != E1000_SUCCESS)
407                 DEBUGOUT1("Requested word 0x%02x not found in OTP\n", address);
408         return status;
409 }
410
411 /** e1000_read_invm_i210 - Read invm wrapper function for I210/I211
412  *  @hw: pointer to the HW structure
413  *  @address: the word address (aka eeprom offset) to read
414  *  @data: pointer to the data read
415  *
416  *  Wrapper function to return data formerly found in the NVM.
417  **/
418 static s32 e1000_read_invm_i210(struct e1000_hw *hw, u16 offset,
419                                 u16 E1000_UNUSEDARG words, u16 *data)
420 {
421         s32 ret_val = E1000_SUCCESS;
422
423         DEBUGFUNC("e1000_read_invm_i210");
424
425         /* Only the MAC addr is required to be present in the iNVM */
426         switch (offset) {
427         case NVM_MAC_ADDR:
428                 ret_val = e1000_read_invm_word_i210(hw, (u8)offset, &data[0]);
429                 ret_val |= e1000_read_invm_word_i210(hw, (u8)offset+1,
430                                                      &data[1]);
431                 ret_val |= e1000_read_invm_word_i210(hw, (u8)offset+2,
432                                                      &data[2]);
433                 if (ret_val != E1000_SUCCESS)
434                         DEBUGOUT("MAC Addr not found in iNVM\n");
435                 break;
436         case NVM_INIT_CTRL_2:
437                 ret_val = e1000_read_invm_word_i210(hw, (u8)offset, data);
438                 if (ret_val != E1000_SUCCESS) {
439                         *data = NVM_INIT_CTRL_2_DEFAULT_I211;
440                         ret_val = E1000_SUCCESS;
441                 }
442                 break;
443         case NVM_INIT_CTRL_4:
444                 ret_val = e1000_read_invm_word_i210(hw, (u8)offset, data);
445                 if (ret_val != E1000_SUCCESS) {
446                         *data = NVM_INIT_CTRL_4_DEFAULT_I211;
447                         ret_val = E1000_SUCCESS;
448                 }
449                 break;
450         case NVM_LED_1_CFG:
451                 ret_val = e1000_read_invm_word_i210(hw, (u8)offset, data);
452                 if (ret_val != E1000_SUCCESS) {
453                         *data = NVM_LED_1_CFG_DEFAULT_I211;
454                         ret_val = E1000_SUCCESS;
455                 }
456                 break;
457         case NVM_LED_0_2_CFG:
458                 ret_val = e1000_read_invm_word_i210(hw, (u8)offset, data);
459                 if (ret_val != E1000_SUCCESS) {
460                         *data = NVM_LED_0_2_CFG_DEFAULT_I211;
461                         ret_val = E1000_SUCCESS;
462                 }
463                 break;
464         case NVM_ID_LED_SETTINGS:
465                 ret_val = e1000_read_invm_word_i210(hw, (u8)offset, data);
466                 if (ret_val != E1000_SUCCESS) {
467                         *data = ID_LED_RESERVED_FFFF;
468                         ret_val = E1000_SUCCESS;
469                 }
470                 break;
471         case NVM_SUB_DEV_ID:
472                 *data = hw->subsystem_device_id;
473                 break;
474         case NVM_SUB_VEN_ID:
475                 *data = hw->subsystem_vendor_id;
476                 break;
477         case NVM_DEV_ID:
478                 *data = hw->device_id;
479                 break;
480         case NVM_VEN_ID:
481                 *data = hw->vendor_id;
482                 break;
483         default:
484                 DEBUGOUT1("NVM word 0x%02x is not mapped.\n", offset);
485                 *data = NVM_RESERVED_WORD;
486                 break;
487         }
488         return ret_val;
489 }
490
491 /**
492  *  e1000_validate_nvm_checksum_i210 - Validate EEPROM checksum
493  *  @hw: pointer to the HW structure
494  *
495  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
496  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
497  **/
498 s32 e1000_validate_nvm_checksum_i210(struct e1000_hw *hw)
499 {
500         s32 status = E1000_SUCCESS;
501         s32 (*read_op_ptr)(struct e1000_hw *, u16, u16, u16 *);
502
503         DEBUGFUNC("e1000_validate_nvm_checksum_i210");
504
505         if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) {
506
507                 /*
508                  * Replace the read function with semaphore grabbing with
509                  * the one that skips this for a while.
510                  * We have semaphore taken already here.
511                  */
512                 read_op_ptr = hw->nvm.ops.read;
513                 hw->nvm.ops.read = e1000_read_nvm_eerd;
514
515                 status = e1000_validate_nvm_checksum_generic(hw);
516
517                 /* Revert original read operation. */
518                 hw->nvm.ops.read = read_op_ptr;
519
520                 hw->nvm.ops.release(hw);
521         } else {
522                 status = E1000_ERR_SWFW_SYNC;
523         }
524
525         return status;
526 }
527
528
529 /**
530  *  e1000_update_nvm_checksum_i210 - Update EEPROM checksum
531  *  @hw: pointer to the HW structure
532  *
533  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
534  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
535  *  value to the EEPROM. Next commit EEPROM data onto the Flash.
536  **/
537 s32 e1000_update_nvm_checksum_i210(struct e1000_hw *hw)
538 {
539         s32 ret_val;
540         u16 checksum = 0;
541         u16 i, nvm_data;
542
543         DEBUGFUNC("e1000_update_nvm_checksum_i210");
544
545         /*
546          * Read the first word from the EEPROM. If this times out or fails, do
547          * not continue or we could be in for a very long wait while every
548          * EEPROM read fails
549          */
550         ret_val = e1000_read_nvm_eerd(hw, 0, 1, &nvm_data);
551         if (ret_val != E1000_SUCCESS) {
552                 DEBUGOUT("EEPROM read failed\n");
553                 goto out;
554         }
555
556         if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) {
557                 /*
558                  * Do not use hw->nvm.ops.write, hw->nvm.ops.read
559                  * because we do not want to take the synchronization
560                  * semaphores twice here.
561                  */
562
563                 for (i = 0; i < NVM_CHECKSUM_REG; i++) {
564                         ret_val = e1000_read_nvm_eerd(hw, i, 1, &nvm_data);
565                         if (ret_val) {
566                                 hw->nvm.ops.release(hw);
567                                 DEBUGOUT("NVM Read Error while updating checksum.\n");
568                                 goto out;
569                         }
570                         checksum += nvm_data;
571                 }
572                 checksum = (u16) NVM_SUM - checksum;
573                 ret_val = e1000_write_nvm_srwr(hw, NVM_CHECKSUM_REG, 1,
574                                                 &checksum);
575                 if (ret_val != E1000_SUCCESS) {
576                         hw->nvm.ops.release(hw);
577                         DEBUGOUT("NVM Write Error while updating checksum.\n");
578                         goto out;
579                 }
580
581                 hw->nvm.ops.release(hw);
582
583                 ret_val = e1000_update_flash_i210(hw);
584         } else {
585                 ret_val = E1000_ERR_SWFW_SYNC;
586         }
587 out:
588         return ret_val;
589 }
590
591 /**
592  *  e1000_get_flash_presence_i210 - Check if flash device is detected.
593  *  @hw: pointer to the HW structure
594  *
595  **/
596 bool e1000_get_flash_presence_i210(struct e1000_hw *hw)
597 {
598         u32 eec = 0;
599         bool ret_val = FALSE;
600
601         DEBUGFUNC("e1000_get_flash_presence_i210");
602
603         eec = E1000_READ_REG(hw, E1000_EECD);
604
605         if (eec & E1000_EECD_FLASH_DETECTED_I210)
606                 ret_val = TRUE;
607
608         return ret_val;
609 }
610
611 /**
612  *  e1000_update_flash_i210 - Commit EEPROM to the flash
613  *  @hw: pointer to the HW structure
614  *
615  **/
616 s32 e1000_update_flash_i210(struct e1000_hw *hw)
617 {
618         s32 ret_val;
619         u32 flup;
620
621         DEBUGFUNC("e1000_update_flash_i210");
622
623         ret_val = e1000_pool_flash_update_done_i210(hw);
624         if (ret_val == -E1000_ERR_NVM) {
625                 DEBUGOUT("Flash update time out\n");
626                 goto out;
627         }
628
629         flup = E1000_READ_REG(hw, E1000_EECD) | E1000_EECD_FLUPD_I210;
630         E1000_WRITE_REG(hw, E1000_EECD, flup);
631
632         ret_val = e1000_pool_flash_update_done_i210(hw);
633         if (ret_val == E1000_SUCCESS)
634                 DEBUGOUT("Flash update complete\n");
635         else
636                 DEBUGOUT("Flash update time out\n");
637
638 out:
639         return ret_val;
640 }
641
642 /**
643  *  e1000_pool_flash_update_done_i210 - Pool FLUDONE status.
644  *  @hw: pointer to the HW structure
645  *
646  **/
647 s32 e1000_pool_flash_update_done_i210(struct e1000_hw *hw)
648 {
649         s32 ret_val = -E1000_ERR_NVM;
650         u32 i, reg;
651
652         DEBUGFUNC("e1000_pool_flash_update_done_i210");
653
654         for (i = 0; i < E1000_FLUDONE_ATTEMPTS; i++) {
655                 reg = E1000_READ_REG(hw, E1000_EECD);
656                 if (reg & E1000_EECD_FLUDONE_I210) {
657                         ret_val = E1000_SUCCESS;
658                         break;
659                 }
660                 usec_delay(5);
661         }
662
663         return ret_val;
664 }
665
666 /**
667  *  e1000_init_nvm_params_i210 - Initialize i210 NVM function pointers
668  *  @hw: pointer to the HW structure
669  *
670  *  Initialize the i210/i211 NVM parameters and function pointers.
671  **/
672 static s32 e1000_init_nvm_params_i210(struct e1000_hw *hw)
673 {
674         s32 ret_val;
675         struct e1000_nvm_info *nvm = &hw->nvm;
676
677         DEBUGFUNC("e1000_init_nvm_params_i210");
678
679         ret_val = e1000_init_nvm_params_82575(hw);
680         nvm->ops.acquire = e1000_acquire_nvm_i210;
681         nvm->ops.release = e1000_release_nvm_i210;
682         nvm->ops.valid_led_default = e1000_valid_led_default_i210;
683         if (e1000_get_flash_presence_i210(hw)) {
684                 hw->nvm.type = e1000_nvm_flash_hw;
685                 nvm->ops.read    = e1000_read_nvm_srrd_i210;
686                 nvm->ops.write   = e1000_write_nvm_srwr_i210;
687                 nvm->ops.validate = e1000_validate_nvm_checksum_i210;
688                 nvm->ops.update   = e1000_update_nvm_checksum_i210;
689         } else {
690                 hw->nvm.type = e1000_nvm_invm;
691                 nvm->ops.read     = e1000_read_invm_i210;
692                 nvm->ops.write    = e1000_null_write_nvm;
693                 nvm->ops.validate = e1000_null_ops_generic;
694                 nvm->ops.update   = e1000_null_ops_generic;
695         }
696         return ret_val;
697 }
698
699 /**
700  *  e1000_init_function_pointers_i210 - Init func ptrs.
701  *  @hw: pointer to the HW structure
702  *
703  *  Called to initialize all function pointers and parameters.
704  **/
705 void e1000_init_function_pointers_i210(struct e1000_hw *hw)
706 {
707         e1000_init_function_pointers_82575(hw);
708         hw->nvm.ops.init_params = e1000_init_nvm_params_i210;
709
710         return;
711 }
712
713 /**
714  *  e1000_valid_led_default_i210 - Verify a valid default LED config
715  *  @hw: pointer to the HW structure
716  *  @data: pointer to the NVM (EEPROM)
717  *
718  *  Read the EEPROM for the current default LED configuration.  If the
719  *  LED configuration is not valid, set to a valid LED configuration.
720  **/
721 static s32 e1000_valid_led_default_i210(struct e1000_hw *hw, u16 *data)
722 {
723         s32 ret_val;
724
725         DEBUGFUNC("e1000_valid_led_default_i210");
726
727         ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
728         if (ret_val) {
729                 DEBUGOUT("NVM Read Error\n");
730                 goto out;
731         }
732
733         if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
734                 switch (hw->phy.media_type) {
735                 case e1000_media_type_internal_serdes:
736                         *data = ID_LED_DEFAULT_I210_SERDES;
737                         break;
738                 case e1000_media_type_copper:
739                 default:
740                         *data = ID_LED_DEFAULT_I210;
741                         break;
742                 }
743         }
744 out:
745         return ret_val;
746 }
747
748 /**
749  *  __e1000_access_xmdio_reg - Read/write XMDIO register
750  *  @hw: pointer to the HW structure
751  *  @address: XMDIO address to program
752  *  @dev_addr: device address to program
753  *  @data: pointer to value to read/write from/to the XMDIO address
754  *  @read: boolean flag to indicate read or write
755  **/
756 static s32 __e1000_access_xmdio_reg(struct e1000_hw *hw, u16 address,
757                                     u8 dev_addr, u16 *data, bool read)
758 {
759         s32 ret_val;
760
761         DEBUGFUNC("__e1000_access_xmdio_reg");
762
763         ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, dev_addr);
764         if (ret_val)
765                 return ret_val;
766
767         ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAAD, address);
768         if (ret_val)
769                 return ret_val;
770
771         ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, E1000_MMDAC_FUNC_DATA |
772                                                          dev_addr);
773         if (ret_val)
774                 return ret_val;
775
776         if (read)
777                 ret_val = hw->phy.ops.read_reg(hw, E1000_MMDAAD, data);
778         else
779                 ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAAD, *data);
780         if (ret_val)
781                 return ret_val;
782
783         /* Recalibrate the device back to 0 */
784         ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, 0);
785         if (ret_val)
786                 return ret_val;
787
788         return ret_val;
789 }
790
791 /**
792  *  e1000_read_xmdio_reg - Read XMDIO register
793  *  @hw: pointer to the HW structure
794  *  @addr: XMDIO address to program
795  *  @dev_addr: device address to program
796  *  @data: value to be read from the EMI address
797  **/
798 s32 e1000_read_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr, u16 *data)
799 {
800         DEBUGFUNC("e1000_read_xmdio_reg");
801
802         return __e1000_access_xmdio_reg(hw, addr, dev_addr, data, TRUE);
803 }
804
805 /**
806  *  e1000_write_xmdio_reg - Write XMDIO register
807  *  @hw: pointer to the HW structure
808  *  @addr: XMDIO address to program
809  *  @dev_addr: device address to program
810  *  @data: value to be written to the XMDIO address
811  **/
812 s32 e1000_write_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr, u16 data)
813 {
814         DEBUGFUNC("e1000_read_xmdio_reg");
815
816         return __e1000_access_xmdio_reg(hw, addr, dev_addr, &data, FALSE);
817 }
818
819 /**
820  * e1000_pll_workaround_i210
821  * @hw: pointer to the HW structure
822  *
823  * Works around an errata in the PLL circuit where it occasionally
824  * provides the wrong clock frequency after power up.
825  **/
826 static s32 e1000_pll_workaround_i210(struct e1000_hw *hw)
827 {
828         s32 ret_val;
829         u32 wuc, mdicnfg, ctrl, ctrl_ext, reg_val;
830         u16 nvm_word, phy_word, pci_word, tmp_nvm;
831         int i;
832
833         /* Get and set needed register values */
834         wuc = E1000_READ_REG(hw, E1000_WUC);
835         mdicnfg = E1000_READ_REG(hw, E1000_MDICNFG);
836         reg_val = mdicnfg & ~E1000_MDICNFG_EXT_MDIO;
837         E1000_WRITE_REG(hw, E1000_MDICNFG, reg_val);
838
839         /* Get data from NVM, or set default */
840         ret_val = e1000_read_invm_word_i210(hw, E1000_INVM_AUTOLOAD,
841                                             &nvm_word);
842         if (ret_val != E1000_SUCCESS)
843                 nvm_word = E1000_INVM_DEFAULT_AL;
844         tmp_nvm = nvm_word | E1000_INVM_PLL_WO_VAL;
845         for (i = 0; i < E1000_MAX_PLL_TRIES; i++) {
846                 /* check current state directly from internal PHY */
847                 e1000_read_phy_reg_gs40g(hw, (E1000_PHY_PLL_FREQ_PAGE |
848                                          E1000_PHY_PLL_FREQ_REG), &phy_word);
849                 if ((phy_word & E1000_PHY_PLL_UNCONF)
850                     != E1000_PHY_PLL_UNCONF) {
851                         ret_val = E1000_SUCCESS;
852                         break;
853                 } else {
854                         ret_val = -E1000_ERR_PHY;
855                 }
856                 /* directly reset the internal PHY */
857                 ctrl = E1000_READ_REG(hw, E1000_CTRL);
858                 E1000_WRITE_REG(hw, E1000_CTRL, ctrl|E1000_CTRL_PHY_RST);
859
860                 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
861                 ctrl_ext |= (E1000_CTRL_EXT_PHYPDEN | E1000_CTRL_EXT_SDLPE);
862                 E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
863
864                 E1000_WRITE_REG(hw, E1000_WUC, 0);
865                 reg_val = (E1000_INVM_AUTOLOAD << 4) | (tmp_nvm << 16);
866                 E1000_WRITE_REG(hw, E1000_EEARBC_I210, reg_val);
867
868                 e1000_read_pci_cfg(hw, E1000_PCI_PMCSR, &pci_word);
869                 pci_word |= E1000_PCI_PMCSR_D3;
870                 e1000_write_pci_cfg(hw, E1000_PCI_PMCSR, &pci_word);
871                 msec_delay(1);
872                 pci_word &= ~E1000_PCI_PMCSR_D3;
873                 e1000_write_pci_cfg(hw, E1000_PCI_PMCSR, &pci_word);
874                 reg_val = (E1000_INVM_AUTOLOAD << 4) | (nvm_word << 16);
875                 E1000_WRITE_REG(hw, E1000_EEARBC_I210, reg_val);
876
877                 /* restore WUC register */
878                 E1000_WRITE_REG(hw, E1000_WUC, wuc);
879         }
880         /* restore MDICNFG setting */
881         E1000_WRITE_REG(hw, E1000_MDICNFG, mdicnfg);
882         return ret_val;
883 }
884
885 /**
886  *  e1000_init_hw_i210 - Init hw for I210/I211
887  *  @hw: pointer to the HW structure
888  *
889  *  Called to initialize hw for i210 hw family.
890  **/
891 s32 e1000_init_hw_i210(struct e1000_hw *hw)
892 {
893         s32 ret_val;
894
895         DEBUGFUNC("e1000_init_hw_i210");
896         if ((hw->mac.type >= e1000_i210) &&
897             !(e1000_get_flash_presence_i210(hw))) {
898                 ret_val = e1000_pll_workaround_i210(hw);
899                 if (ret_val != E1000_SUCCESS)
900                         return ret_val;
901         }
902         ret_val = e1000_init_hw_82575(hw);
903         return ret_val;
904 }