]> CyberLeo.Net >> Repos - FreeBSD/releng/10.2.git/blob - sys/dev/nvme/nvme_ctrlr.c
MFS r285918:
[FreeBSD/releng/10.2.git] / sys / dev / nvme / nvme_ctrlr.c
1 /*-
2  * Copyright (C) 2012-2015 Intel Corporation
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/buf.h>
33 #include <sys/bus.h>
34 #include <sys/conf.h>
35 #include <sys/ioccom.h>
36 #include <sys/proc.h>
37 #include <sys/smp.h>
38 #include <sys/uio.h>
39
40 #include <dev/pci/pcireg.h>
41 #include <dev/pci/pcivar.h>
42
43 #include "nvme_private.h"
44
45 static void nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
46                                                 struct nvme_async_event_request *aer);
47
48 static int
49 nvme_ctrlr_allocate_bar(struct nvme_controller *ctrlr)
50 {
51
52         ctrlr->resource_id = PCIR_BAR(0);
53
54         ctrlr->resource = bus_alloc_resource(ctrlr->dev, SYS_RES_MEMORY,
55             &ctrlr->resource_id, 0, ~0, 1, RF_ACTIVE);
56
57         if(ctrlr->resource == NULL) {
58                 nvme_printf(ctrlr, "unable to allocate pci resource\n");
59                 return (ENOMEM);
60         }
61
62         ctrlr->bus_tag = rman_get_bustag(ctrlr->resource);
63         ctrlr->bus_handle = rman_get_bushandle(ctrlr->resource);
64         ctrlr->regs = (struct nvme_registers *)ctrlr->bus_handle;
65
66         /*
67          * The NVMe spec allows for the MSI-X table to be placed behind
68          *  BAR 4/5, separate from the control/doorbell registers.  Always
69          *  try to map this bar, because it must be mapped prior to calling
70          *  pci_alloc_msix().  If the table isn't behind BAR 4/5,
71          *  bus_alloc_resource() will just return NULL which is OK.
72          */
73         ctrlr->bar4_resource_id = PCIR_BAR(4);
74         ctrlr->bar4_resource = bus_alloc_resource(ctrlr->dev, SYS_RES_MEMORY,
75             &ctrlr->bar4_resource_id, 0, ~0, 1, RF_ACTIVE);
76
77         return (0);
78 }
79
80 static void
81 nvme_ctrlr_construct_admin_qpair(struct nvme_controller *ctrlr)
82 {
83         struct nvme_qpair       *qpair;
84         uint32_t                num_entries;
85
86         qpair = &ctrlr->adminq;
87
88         num_entries = NVME_ADMIN_ENTRIES;
89         TUNABLE_INT_FETCH("hw.nvme.admin_entries", &num_entries);
90         /*
91          * If admin_entries was overridden to an invalid value, revert it
92          *  back to our default value.
93          */
94         if (num_entries < NVME_MIN_ADMIN_ENTRIES ||
95             num_entries > NVME_MAX_ADMIN_ENTRIES) {
96                 nvme_printf(ctrlr, "invalid hw.nvme.admin_entries=%d "
97                     "specified\n", num_entries);
98                 num_entries = NVME_ADMIN_ENTRIES;
99         }
100
101         /*
102          * The admin queue's max xfer size is treated differently than the
103          *  max I/O xfer size.  16KB is sufficient here - maybe even less?
104          */
105         nvme_qpair_construct(qpair, 
106                              0, /* qpair ID */
107                              0, /* vector */
108                              num_entries,
109                              NVME_ADMIN_TRACKERS,
110                              ctrlr);
111 }
112
113 static int
114 nvme_ctrlr_construct_io_qpairs(struct nvme_controller *ctrlr)
115 {
116         struct nvme_qpair       *qpair;
117         union cap_lo_register   cap_lo;
118         int                     i, num_entries, num_trackers;
119
120         num_entries = NVME_IO_ENTRIES;
121         TUNABLE_INT_FETCH("hw.nvme.io_entries", &num_entries);
122
123         /*
124          * NVMe spec sets a hard limit of 64K max entries, but
125          *  devices may specify a smaller limit, so we need to check
126          *  the MQES field in the capabilities register.
127          */
128         cap_lo.raw = nvme_mmio_read_4(ctrlr, cap_lo);
129         num_entries = min(num_entries, cap_lo.bits.mqes+1);
130
131         num_trackers = NVME_IO_TRACKERS;
132         TUNABLE_INT_FETCH("hw.nvme.io_trackers", &num_trackers);
133
134         num_trackers = max(num_trackers, NVME_MIN_IO_TRACKERS);
135         num_trackers = min(num_trackers, NVME_MAX_IO_TRACKERS);
136         /*
137          * No need to have more trackers than entries in the submit queue.
138          *  Note also that for a queue size of N, we can only have (N-1)
139          *  commands outstanding, hence the "-1" here.
140          */
141         num_trackers = min(num_trackers, (num_entries-1));
142
143         ctrlr->ioq = malloc(ctrlr->num_io_queues * sizeof(struct nvme_qpair),
144             M_NVME, M_ZERO | M_WAITOK);
145
146         for (i = 0; i < ctrlr->num_io_queues; i++) {
147                 qpair = &ctrlr->ioq[i];
148
149                 /*
150                  * Admin queue has ID=0. IO queues start at ID=1 -
151                  *  hence the 'i+1' here.
152                  *
153                  * For I/O queues, use the controller-wide max_xfer_size
154                  *  calculated in nvme_attach().
155                  */
156                 nvme_qpair_construct(qpair,
157                                      i+1, /* qpair ID */
158                                      ctrlr->msix_enabled ? i+1 : 0, /* vector */
159                                      num_entries,
160                                      num_trackers,
161                                      ctrlr);
162
163                 if (ctrlr->per_cpu_io_queues)
164                         bus_bind_intr(ctrlr->dev, qpair->res, i);
165         }
166
167         return (0);
168 }
169
170 static void
171 nvme_ctrlr_fail(struct nvme_controller *ctrlr)
172 {
173         int i;
174
175         ctrlr->is_failed = TRUE;
176         nvme_qpair_fail(&ctrlr->adminq);
177         for (i = 0; i < ctrlr->num_io_queues; i++)
178                 nvme_qpair_fail(&ctrlr->ioq[i]);
179         nvme_notify_fail_consumers(ctrlr);
180 }
181
182 void
183 nvme_ctrlr_post_failed_request(struct nvme_controller *ctrlr,
184     struct nvme_request *req)
185 {
186
187         mtx_lock(&ctrlr->lock);
188         STAILQ_INSERT_TAIL(&ctrlr->fail_req, req, stailq);
189         mtx_unlock(&ctrlr->lock);
190         taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->fail_req_task);
191 }
192
193 static void
194 nvme_ctrlr_fail_req_task(void *arg, int pending)
195 {
196         struct nvme_controller  *ctrlr = arg;
197         struct nvme_request     *req;
198
199         mtx_lock(&ctrlr->lock);
200         while (!STAILQ_EMPTY(&ctrlr->fail_req)) {
201                 req = STAILQ_FIRST(&ctrlr->fail_req);
202                 STAILQ_REMOVE_HEAD(&ctrlr->fail_req, stailq);
203                 nvme_qpair_manual_complete_request(req->qpair, req,
204                     NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST, TRUE);
205         }
206         mtx_unlock(&ctrlr->lock);
207 }
208
209 static int
210 nvme_ctrlr_wait_for_ready(struct nvme_controller *ctrlr, int desired_val)
211 {
212         int ms_waited;
213         union cc_register cc;
214         union csts_register csts;
215
216         cc.raw = nvme_mmio_read_4(ctrlr, cc);
217         csts.raw = nvme_mmio_read_4(ctrlr, csts);
218
219         if (cc.bits.en != desired_val) {
220                 nvme_printf(ctrlr, "%s called with desired_val = %d "
221                     "but cc.en = %d\n", __func__, desired_val, cc.bits.en);
222                 return (ENXIO);
223         }
224
225         ms_waited = 0;
226
227         while (csts.bits.rdy != desired_val) {
228                 DELAY(1000);
229                 if (ms_waited++ > ctrlr->ready_timeout_in_ms) {
230                         nvme_printf(ctrlr, "controller ready did not become %d "
231                             "within %d ms\n", desired_val, ctrlr->ready_timeout_in_ms);
232                         return (ENXIO);
233                 }
234                 csts.raw = nvme_mmio_read_4(ctrlr, csts);
235         }
236
237         return (0);
238 }
239
240 static void
241 nvme_ctrlr_disable(struct nvme_controller *ctrlr)
242 {
243         union cc_register cc;
244         union csts_register csts;
245
246         cc.raw = nvme_mmio_read_4(ctrlr, cc);
247         csts.raw = nvme_mmio_read_4(ctrlr, csts);
248
249         if (cc.bits.en == 1 && csts.bits.rdy == 0)
250                 nvme_ctrlr_wait_for_ready(ctrlr, 1);
251
252         cc.bits.en = 0;
253         nvme_mmio_write_4(ctrlr, cc, cc.raw);
254         DELAY(5000);
255         nvme_ctrlr_wait_for_ready(ctrlr, 0);
256 }
257
258 static int
259 nvme_ctrlr_enable(struct nvme_controller *ctrlr)
260 {
261         union cc_register       cc;
262         union csts_register     csts;
263         union aqa_register      aqa;
264
265         cc.raw = nvme_mmio_read_4(ctrlr, cc);
266         csts.raw = nvme_mmio_read_4(ctrlr, csts);
267
268         if (cc.bits.en == 1) {
269                 if (csts.bits.rdy == 1)
270                         return (0);
271                 else
272                         return (nvme_ctrlr_wait_for_ready(ctrlr, 1));
273         }
274
275         nvme_mmio_write_8(ctrlr, asq, ctrlr->adminq.cmd_bus_addr);
276         DELAY(5000);
277         nvme_mmio_write_8(ctrlr, acq, ctrlr->adminq.cpl_bus_addr);
278         DELAY(5000);
279
280         aqa.raw = 0;
281         /* acqs and asqs are 0-based. */
282         aqa.bits.acqs = ctrlr->adminq.num_entries-1;
283         aqa.bits.asqs = ctrlr->adminq.num_entries-1;
284         nvme_mmio_write_4(ctrlr, aqa, aqa.raw);
285         DELAY(5000);
286
287         cc.bits.en = 1;
288         cc.bits.css = 0;
289         cc.bits.ams = 0;
290         cc.bits.shn = 0;
291         cc.bits.iosqes = 6; /* SQ entry size == 64 == 2^6 */
292         cc.bits.iocqes = 4; /* CQ entry size == 16 == 2^4 */
293
294         /* This evaluates to 0, which is according to spec. */
295         cc.bits.mps = (PAGE_SIZE >> 13);
296
297         nvme_mmio_write_4(ctrlr, cc, cc.raw);
298         DELAY(5000);
299
300         return (nvme_ctrlr_wait_for_ready(ctrlr, 1));
301 }
302
303 int
304 nvme_ctrlr_hw_reset(struct nvme_controller *ctrlr)
305 {
306         int i;
307
308         nvme_admin_qpair_disable(&ctrlr->adminq);
309         for (i = 0; i < ctrlr->num_io_queues; i++)
310                 nvme_io_qpair_disable(&ctrlr->ioq[i]);
311
312         DELAY(100*1000);
313
314         nvme_ctrlr_disable(ctrlr);
315         return (nvme_ctrlr_enable(ctrlr));
316 }
317
318 void
319 nvme_ctrlr_reset(struct nvme_controller *ctrlr)
320 {
321         int cmpset;
322
323         cmpset = atomic_cmpset_32(&ctrlr->is_resetting, 0, 1);
324
325         if (cmpset == 0 || ctrlr->is_failed)
326                 /*
327                  * Controller is already resetting or has failed.  Return
328                  *  immediately since there is no need to kick off another
329                  *  reset in these cases.
330                  */
331                 return;
332
333         taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->reset_task);
334 }
335
336 static int
337 nvme_ctrlr_identify(struct nvme_controller *ctrlr)
338 {
339         struct nvme_completion_poll_status      status;
340
341         status.done = FALSE;
342         nvme_ctrlr_cmd_identify_controller(ctrlr, &ctrlr->cdata,
343             nvme_completion_poll_cb, &status);
344         while (status.done == FALSE)
345                 pause("nvme", 1);
346         if (nvme_completion_is_error(&status.cpl)) {
347                 nvme_printf(ctrlr, "nvme_identify_controller failed!\n");
348                 return (ENXIO);
349         }
350
351         /*
352          * Use MDTS to ensure our default max_xfer_size doesn't exceed what the
353          *  controller supports.
354          */
355         if (ctrlr->cdata.mdts > 0)
356                 ctrlr->max_xfer_size = min(ctrlr->max_xfer_size,
357                     ctrlr->min_page_size * (1 << (ctrlr->cdata.mdts)));
358
359         return (0);
360 }
361
362 static int
363 nvme_ctrlr_set_num_qpairs(struct nvme_controller *ctrlr)
364 {
365         struct nvme_completion_poll_status      status;
366         int                                     cq_allocated, i, sq_allocated;
367
368         status.done = FALSE;
369         nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->num_io_queues,
370             nvme_completion_poll_cb, &status);
371         while (status.done == FALSE)
372                 pause("nvme", 1);
373         if (nvme_completion_is_error(&status.cpl)) {
374                 nvme_printf(ctrlr, "nvme_set_num_queues failed!\n");
375                 return (ENXIO);
376         }
377
378         /*
379          * Data in cdw0 is 0-based.
380          * Lower 16-bits indicate number of submission queues allocated.
381          * Upper 16-bits indicate number of completion queues allocated.
382          */
383         sq_allocated = (status.cpl.cdw0 & 0xFFFF) + 1;
384         cq_allocated = (status.cpl.cdw0 >> 16) + 1;
385
386         /*
387          * Check that the controller was able to allocate the number of
388          *  queues we requested.  If not, revert to one IO queue pair.
389          */
390         if (sq_allocated < ctrlr->num_io_queues ||
391             cq_allocated < ctrlr->num_io_queues) {
392
393                 /*
394                  * Destroy extra IO queue pairs that were created at
395                  *  controller construction time but are no longer
396                  *  needed.  This will only happen when a controller
397                  *  supports fewer queues than MSI-X vectors.  This
398                  *  is not the normal case, but does occur with the
399                  *  Chatham prototype board.
400                  */
401                 for (i = 1; i < ctrlr->num_io_queues; i++)
402                         nvme_io_qpair_destroy(&ctrlr->ioq[i]);
403
404                 ctrlr->num_io_queues = 1;
405                 ctrlr->per_cpu_io_queues = 0;
406         }
407
408         return (0);
409 }
410
411 static int
412 nvme_ctrlr_create_qpairs(struct nvme_controller *ctrlr)
413 {
414         struct nvme_completion_poll_status      status;
415         struct nvme_qpair                       *qpair;
416         int                                     i;
417
418         for (i = 0; i < ctrlr->num_io_queues; i++) {
419                 qpair = &ctrlr->ioq[i];
420
421                 status.done = FALSE;
422                 nvme_ctrlr_cmd_create_io_cq(ctrlr, qpair, qpair->vector,
423                     nvme_completion_poll_cb, &status);
424                 while (status.done == FALSE)
425                         pause("nvme", 1);
426                 if (nvme_completion_is_error(&status.cpl)) {
427                         nvme_printf(ctrlr, "nvme_create_io_cq failed!\n");
428                         return (ENXIO);
429                 }
430
431                 status.done = FALSE;
432                 nvme_ctrlr_cmd_create_io_sq(qpair->ctrlr, qpair,
433                     nvme_completion_poll_cb, &status);
434                 while (status.done == FALSE)
435                         pause("nvme", 1);
436                 if (nvme_completion_is_error(&status.cpl)) {
437                         nvme_printf(ctrlr, "nvme_create_io_sq failed!\n");
438                         return (ENXIO);
439                 }
440         }
441
442         return (0);
443 }
444
445 static int
446 nvme_ctrlr_construct_namespaces(struct nvme_controller *ctrlr)
447 {
448         struct nvme_namespace   *ns;
449         int                     i, status;
450
451         for (i = 0; i < ctrlr->cdata.nn; i++) {
452                 ns = &ctrlr->ns[i];
453                 status = nvme_ns_construct(ns, i+1, ctrlr);
454                 if (status != 0)
455                         return (status);
456         }
457
458         return (0);
459 }
460
461 static boolean_t
462 is_log_page_id_valid(uint8_t page_id)
463 {
464
465         switch (page_id) {
466         case NVME_LOG_ERROR:
467         case NVME_LOG_HEALTH_INFORMATION:
468         case NVME_LOG_FIRMWARE_SLOT:
469                 return (TRUE);
470         }
471
472         return (FALSE);
473 }
474
475 static uint32_t
476 nvme_ctrlr_get_log_page_size(struct nvme_controller *ctrlr, uint8_t page_id)
477 {
478         uint32_t        log_page_size;
479
480         switch (page_id) {
481         case NVME_LOG_ERROR:
482                 log_page_size = min(
483                     sizeof(struct nvme_error_information_entry) *
484                     ctrlr->cdata.elpe,
485                     NVME_MAX_AER_LOG_SIZE);
486                 break;
487         case NVME_LOG_HEALTH_INFORMATION:
488                 log_page_size = sizeof(struct nvme_health_information_page);
489                 break;
490         case NVME_LOG_FIRMWARE_SLOT:
491                 log_page_size = sizeof(struct nvme_firmware_page);
492                 break;
493         default:
494                 log_page_size = 0;
495                 break;
496         }
497
498         return (log_page_size);
499 }
500
501 static void
502 nvme_ctrlr_log_critical_warnings(struct nvme_controller *ctrlr,
503     union nvme_critical_warning_state state)
504 {
505
506         if (state.bits.available_spare == 1)
507                 nvme_printf(ctrlr, "available spare space below threshold\n");
508
509         if (state.bits.temperature == 1)
510                 nvme_printf(ctrlr, "temperature above threshold\n");
511
512         if (state.bits.device_reliability == 1)
513                 nvme_printf(ctrlr, "device reliability degraded\n");
514
515         if (state.bits.read_only == 1)
516                 nvme_printf(ctrlr, "media placed in read only mode\n");
517
518         if (state.bits.volatile_memory_backup == 1)
519                 nvme_printf(ctrlr, "volatile memory backup device failed\n");
520
521         if (state.bits.reserved != 0)
522                 nvme_printf(ctrlr,
523                     "unknown critical warning(s): state = 0x%02x\n", state.raw);
524 }
525
526 static void
527 nvme_ctrlr_async_event_log_page_cb(void *arg, const struct nvme_completion *cpl)
528 {
529         struct nvme_async_event_request         *aer = arg;
530         struct nvme_health_information_page     *health_info;
531
532         /*
533          * If the log page fetch for some reason completed with an error,
534          *  don't pass log page data to the consumers.  In practice, this case
535          *  should never happen.
536          */
537         if (nvme_completion_is_error(cpl))
538                 nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
539                     aer->log_page_id, NULL, 0);
540         else {
541                 if (aer->log_page_id == NVME_LOG_HEALTH_INFORMATION) {
542                         health_info = (struct nvme_health_information_page *)
543                             aer->log_page_buffer;
544                         nvme_ctrlr_log_critical_warnings(aer->ctrlr,
545                             health_info->critical_warning);
546                         /*
547                          * Critical warnings reported through the
548                          *  SMART/health log page are persistent, so
549                          *  clear the associated bits in the async event
550                          *  config so that we do not receive repeated
551                          *  notifications for the same event.
552                          */
553                         aer->ctrlr->async_event_config.raw &=
554                             ~health_info->critical_warning.raw;
555                         nvme_ctrlr_cmd_set_async_event_config(aer->ctrlr,
556                             aer->ctrlr->async_event_config, NULL, NULL);
557                 }
558
559
560                 /*
561                  * Pass the cpl data from the original async event completion,
562                  *  not the log page fetch.
563                  */
564                 nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
565                     aer->log_page_id, aer->log_page_buffer, aer->log_page_size);
566         }
567
568         /*
569          * Repost another asynchronous event request to replace the one
570          *  that just completed.
571          */
572         nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
573 }
574
575 static void
576 nvme_ctrlr_async_event_cb(void *arg, const struct nvme_completion *cpl)
577 {
578         struct nvme_async_event_request *aer = arg;
579
580         if (nvme_completion_is_error(cpl)) {
581                 /*
582                  *  Do not retry failed async event requests.  This avoids
583                  *  infinite loops where a new async event request is submitted
584                  *  to replace the one just failed, only to fail again and
585                  *  perpetuate the loop.
586                  */
587                 return;
588         }
589
590         /* Associated log page is in bits 23:16 of completion entry dw0. */
591         aer->log_page_id = (cpl->cdw0 & 0xFF0000) >> 16;
592
593         nvme_printf(aer->ctrlr, "async event occurred (log page id=0x%x)\n",
594             aer->log_page_id);
595
596         if (is_log_page_id_valid(aer->log_page_id)) {
597                 aer->log_page_size = nvme_ctrlr_get_log_page_size(aer->ctrlr,
598                     aer->log_page_id);
599                 memcpy(&aer->cpl, cpl, sizeof(*cpl));
600                 nvme_ctrlr_cmd_get_log_page(aer->ctrlr, aer->log_page_id,
601                     NVME_GLOBAL_NAMESPACE_TAG, aer->log_page_buffer,
602                     aer->log_page_size, nvme_ctrlr_async_event_log_page_cb,
603                     aer);
604                 /* Wait to notify consumers until after log page is fetched. */
605         } else {
606                 nvme_notify_async_consumers(aer->ctrlr, cpl, aer->log_page_id,
607                     NULL, 0);
608
609                 /*
610                  * Repost another asynchronous event request to replace the one
611                  *  that just completed.
612                  */
613                 nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
614         }
615 }
616
617 static void
618 nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
619     struct nvme_async_event_request *aer)
620 {
621         struct nvme_request *req;
622
623         aer->ctrlr = ctrlr;
624         req = nvme_allocate_request_null(nvme_ctrlr_async_event_cb, aer);
625         aer->req = req;
626
627         /*
628          * Disable timeout here, since asynchronous event requests should by
629          *  nature never be timed out.
630          */
631         req->timeout = FALSE;
632         req->cmd.opc = NVME_OPC_ASYNC_EVENT_REQUEST;
633         nvme_ctrlr_submit_admin_request(ctrlr, req);
634 }
635
636 static void
637 nvme_ctrlr_configure_aer(struct nvme_controller *ctrlr)
638 {
639         struct nvme_completion_poll_status      status;
640         struct nvme_async_event_request         *aer;
641         uint32_t                                i;
642
643         ctrlr->async_event_config.raw = 0xFF;
644         ctrlr->async_event_config.bits.reserved = 0;
645
646         status.done = FALSE;
647         nvme_ctrlr_cmd_get_feature(ctrlr, NVME_FEAT_TEMPERATURE_THRESHOLD,
648             0, NULL, 0, nvme_completion_poll_cb, &status);
649         while (status.done == FALSE)
650                 pause("nvme", 1);
651         if (nvme_completion_is_error(&status.cpl) ||
652             (status.cpl.cdw0 & 0xFFFF) == 0xFFFF ||
653             (status.cpl.cdw0 & 0xFFFF) == 0x0000) {
654                 nvme_printf(ctrlr, "temperature threshold not supported\n");
655                 ctrlr->async_event_config.bits.temperature = 0;
656         }
657
658         nvme_ctrlr_cmd_set_async_event_config(ctrlr,
659             ctrlr->async_event_config, NULL, NULL);
660
661         /* aerl is a zero-based value, so we need to add 1 here. */
662         ctrlr->num_aers = min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl+1));
663
664         for (i = 0; i < ctrlr->num_aers; i++) {
665                 aer = &ctrlr->aer[i];
666                 nvme_ctrlr_construct_and_submit_aer(ctrlr, aer);
667         }
668 }
669
670 static void
671 nvme_ctrlr_configure_int_coalescing(struct nvme_controller *ctrlr)
672 {
673
674         ctrlr->int_coal_time = 0;
675         TUNABLE_INT_FETCH("hw.nvme.int_coal_time",
676             &ctrlr->int_coal_time);
677
678         ctrlr->int_coal_threshold = 0;
679         TUNABLE_INT_FETCH("hw.nvme.int_coal_threshold",
680             &ctrlr->int_coal_threshold);
681
682         nvme_ctrlr_cmd_set_interrupt_coalescing(ctrlr, ctrlr->int_coal_time,
683             ctrlr->int_coal_threshold, NULL, NULL);
684 }
685
686 static void
687 nvme_ctrlr_start(void *ctrlr_arg)
688 {
689         struct nvme_controller *ctrlr = ctrlr_arg;
690         int i;
691
692         nvme_qpair_reset(&ctrlr->adminq);
693         for (i = 0; i < ctrlr->num_io_queues; i++)
694                 nvme_qpair_reset(&ctrlr->ioq[i]);
695
696         nvme_admin_qpair_enable(&ctrlr->adminq);
697
698         if (nvme_ctrlr_identify(ctrlr) != 0) {
699                 nvme_ctrlr_fail(ctrlr);
700                 return;
701         }
702
703         if (nvme_ctrlr_set_num_qpairs(ctrlr) != 0) {
704                 nvme_ctrlr_fail(ctrlr);
705                 return;
706         }
707
708         if (nvme_ctrlr_create_qpairs(ctrlr) != 0) {
709                 nvme_ctrlr_fail(ctrlr);
710                 return;
711         }
712
713         if (nvme_ctrlr_construct_namespaces(ctrlr) != 0) {
714                 nvme_ctrlr_fail(ctrlr);
715                 return;
716         }
717
718         nvme_ctrlr_configure_aer(ctrlr);
719         nvme_ctrlr_configure_int_coalescing(ctrlr);
720
721         for (i = 0; i < ctrlr->num_io_queues; i++)
722                 nvme_io_qpair_enable(&ctrlr->ioq[i]);
723 }
724
725 void
726 nvme_ctrlr_start_config_hook(void *arg)
727 {
728         struct nvme_controller *ctrlr = arg;
729
730         nvme_ctrlr_start(ctrlr);
731         config_intrhook_disestablish(&ctrlr->config_hook);
732
733         ctrlr->is_initialized = 1;
734         nvme_notify_new_controller(ctrlr);
735 }
736
737 static void
738 nvme_ctrlr_reset_task(void *arg, int pending)
739 {
740         struct nvme_controller  *ctrlr = arg;
741         int                     status;
742
743         nvme_printf(ctrlr, "resetting controller\n");
744         status = nvme_ctrlr_hw_reset(ctrlr);
745         /*
746          * Use pause instead of DELAY, so that we yield to any nvme interrupt
747          *  handlers on this CPU that were blocked on a qpair lock. We want
748          *  all nvme interrupts completed before proceeding with restarting the
749          *  controller.
750          *
751          * XXX - any way to guarantee the interrupt handlers have quiesced?
752          */
753         pause("nvmereset", hz / 10);
754         if (status == 0)
755                 nvme_ctrlr_start(ctrlr);
756         else
757                 nvme_ctrlr_fail(ctrlr);
758
759         atomic_cmpset_32(&ctrlr->is_resetting, 1, 0);
760 }
761
762 static void
763 nvme_ctrlr_intx_handler(void *arg)
764 {
765         struct nvme_controller *ctrlr = arg;
766
767         nvme_mmio_write_4(ctrlr, intms, 1);
768
769         nvme_qpair_process_completions(&ctrlr->adminq);
770
771         if (ctrlr->ioq[0].cpl)
772                 nvme_qpair_process_completions(&ctrlr->ioq[0]);
773
774         nvme_mmio_write_4(ctrlr, intmc, 1);
775 }
776
777 static int
778 nvme_ctrlr_configure_intx(struct nvme_controller *ctrlr)
779 {
780
781         ctrlr->num_io_queues = 1;
782         ctrlr->per_cpu_io_queues = 0;
783         ctrlr->rid = 0;
784         ctrlr->res = bus_alloc_resource_any(ctrlr->dev, SYS_RES_IRQ,
785             &ctrlr->rid, RF_SHAREABLE | RF_ACTIVE);
786
787         if (ctrlr->res == NULL) {
788                 nvme_printf(ctrlr, "unable to allocate shared IRQ\n");
789                 return (ENOMEM);
790         }
791
792         bus_setup_intr(ctrlr->dev, ctrlr->res,
793             INTR_TYPE_MISC | INTR_MPSAFE, NULL, nvme_ctrlr_intx_handler,
794             ctrlr, &ctrlr->tag);
795
796         if (ctrlr->tag == NULL) {
797                 nvme_printf(ctrlr, "unable to setup intx handler\n");
798                 return (ENOMEM);
799         }
800
801         return (0);
802 }
803
804 static void
805 nvme_pt_done(void *arg, const struct nvme_completion *cpl)
806 {
807         struct nvme_pt_command *pt = arg;
808
809         bzero(&pt->cpl, sizeof(pt->cpl));
810         pt->cpl.cdw0 = cpl->cdw0;
811         pt->cpl.status = cpl->status;
812         pt->cpl.status.p = 0;
813
814         mtx_lock(pt->driver_lock);
815         wakeup(pt);
816         mtx_unlock(pt->driver_lock);
817 }
818
819 int
820 nvme_ctrlr_passthrough_cmd(struct nvme_controller *ctrlr,
821     struct nvme_pt_command *pt, uint32_t nsid, int is_user_buffer,
822     int is_admin_cmd)
823 {
824         struct nvme_request     *req;
825         struct mtx              *mtx;
826         struct buf              *buf = NULL;
827         int                     ret = 0;
828
829         if (pt->len > 0) {
830                 if (pt->len > ctrlr->max_xfer_size) {
831                         nvme_printf(ctrlr, "pt->len (%d) "
832                             "exceeds max_xfer_size (%d)\n", pt->len,
833                             ctrlr->max_xfer_size);
834                         return EIO;
835                 }
836                 if (is_user_buffer) {
837                         /*
838                          * Ensure the user buffer is wired for the duration of
839                          *  this passthrough command.
840                          */
841                         PHOLD(curproc);
842                         buf = getpbuf(NULL);
843                         buf->b_saveaddr = buf->b_data;
844                         buf->b_data = pt->buf;
845                         buf->b_bufsize = pt->len;
846                         buf->b_iocmd = pt->is_read ? BIO_READ : BIO_WRITE;
847 #ifdef NVME_UNMAPPED_BIO_SUPPORT
848                         if (vmapbuf(buf, 1) < 0) {
849 #else
850                         if (vmapbuf(buf) < 0) {
851 #endif
852                                 ret = EFAULT;
853                                 goto err;
854                         }
855                         req = nvme_allocate_request_vaddr(buf->b_data, pt->len, 
856                             nvme_pt_done, pt);
857                 } else
858                         req = nvme_allocate_request_vaddr(pt->buf, pt->len,
859                             nvme_pt_done, pt);
860         } else
861                 req = nvme_allocate_request_null(nvme_pt_done, pt);
862
863         req->cmd.opc    = pt->cmd.opc;
864         req->cmd.cdw10  = pt->cmd.cdw10;
865         req->cmd.cdw11  = pt->cmd.cdw11;
866         req->cmd.cdw12  = pt->cmd.cdw12;
867         req->cmd.cdw13  = pt->cmd.cdw13;
868         req->cmd.cdw14  = pt->cmd.cdw14;
869         req->cmd.cdw15  = pt->cmd.cdw15;
870
871         req->cmd.nsid = nsid;
872
873         if (is_admin_cmd)
874                 mtx = &ctrlr->lock;
875         else
876                 mtx = &ctrlr->ns[nsid-1].lock;
877
878         mtx_lock(mtx);
879         pt->driver_lock = mtx;
880
881         if (is_admin_cmd)
882                 nvme_ctrlr_submit_admin_request(ctrlr, req);
883         else
884                 nvme_ctrlr_submit_io_request(ctrlr, req);
885
886         mtx_sleep(pt, mtx, PRIBIO, "nvme_pt", 0);
887         mtx_unlock(mtx);
888
889         pt->driver_lock = NULL;
890
891 err:
892         if (buf != NULL) {
893                 relpbuf(buf, NULL);
894                 PRELE(curproc);
895         }
896
897         return (ret);
898 }
899
900 static int
901 nvme_ctrlr_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag,
902     struct thread *td)
903 {
904         struct nvme_controller                  *ctrlr;
905         struct nvme_pt_command                  *pt;
906
907         ctrlr = cdev->si_drv1;
908
909         switch (cmd) {
910         case NVME_RESET_CONTROLLER:
911                 nvme_ctrlr_reset(ctrlr);
912                 break;
913         case NVME_PASSTHROUGH_CMD:
914                 pt = (struct nvme_pt_command *)arg;
915                 return (nvme_ctrlr_passthrough_cmd(ctrlr, pt, pt->cmd.nsid,
916                     1 /* is_user_buffer */, 1 /* is_admin_cmd */));
917         default:
918                 return (ENOTTY);
919         }
920
921         return (0);
922 }
923
924 static struct cdevsw nvme_ctrlr_cdevsw = {
925         .d_version =    D_VERSION,
926         .d_flags =      0,
927         .d_ioctl =      nvme_ctrlr_ioctl
928 };
929
930 int
931 nvme_ctrlr_construct(struct nvme_controller *ctrlr, device_t dev)
932 {
933         union cap_lo_register   cap_lo;
934         union cap_hi_register   cap_hi;
935         int                     i, per_cpu_io_queues, rid;
936         int                     num_vectors_requested, num_vectors_allocated;
937         int                     status, timeout_period;
938
939         ctrlr->dev = dev;
940
941         mtx_init(&ctrlr->lock, "nvme ctrlr lock", NULL, MTX_DEF);
942
943         status = nvme_ctrlr_allocate_bar(ctrlr);
944
945         if (status != 0)
946                 return (status);
947
948         /*
949          * Software emulators may set the doorbell stride to something
950          *  other than zero, but this driver is not set up to handle that.
951          */
952         cap_hi.raw = nvme_mmio_read_4(ctrlr, cap_hi);
953         if (cap_hi.bits.dstrd != 0)
954                 return (ENXIO);
955
956         ctrlr->min_page_size = 1 << (12 + cap_hi.bits.mpsmin);
957
958         /* Get ready timeout value from controller, in units of 500ms. */
959         cap_lo.raw = nvme_mmio_read_4(ctrlr, cap_lo);
960         ctrlr->ready_timeout_in_ms = cap_lo.bits.to * 500;
961
962         timeout_period = NVME_DEFAULT_TIMEOUT_PERIOD;
963         TUNABLE_INT_FETCH("hw.nvme.timeout_period", &timeout_period);
964         timeout_period = min(timeout_period, NVME_MAX_TIMEOUT_PERIOD);
965         timeout_period = max(timeout_period, NVME_MIN_TIMEOUT_PERIOD);
966         ctrlr->timeout_period = timeout_period;
967
968         nvme_retry_count = NVME_DEFAULT_RETRY_COUNT;
969         TUNABLE_INT_FETCH("hw.nvme.retry_count", &nvme_retry_count);
970
971         per_cpu_io_queues = 1;
972         TUNABLE_INT_FETCH("hw.nvme.per_cpu_io_queues", &per_cpu_io_queues);
973         ctrlr->per_cpu_io_queues = per_cpu_io_queues ? TRUE : FALSE;
974
975         if (ctrlr->per_cpu_io_queues)
976                 ctrlr->num_io_queues = mp_ncpus;
977         else
978                 ctrlr->num_io_queues = 1;
979
980         ctrlr->force_intx = 0;
981         TUNABLE_INT_FETCH("hw.nvme.force_intx", &ctrlr->force_intx);
982
983         ctrlr->enable_aborts = 0;
984         TUNABLE_INT_FETCH("hw.nvme.enable_aborts", &ctrlr->enable_aborts);
985
986         ctrlr->msix_enabled = 1;
987
988         if (ctrlr->force_intx) {
989                 ctrlr->msix_enabled = 0;
990                 goto intx;
991         }
992
993         /* One vector per IO queue, plus one vector for admin queue. */
994         num_vectors_requested = ctrlr->num_io_queues + 1;
995
996         /*
997          * If we cannot even allocate 2 vectors (one for admin, one for
998          *  I/O), then revert to INTx.
999          */
1000         if (pci_msix_count(dev) < 2) {
1001                 ctrlr->msix_enabled = 0;
1002                 goto intx;
1003         } else if (pci_msix_count(dev) < num_vectors_requested) {
1004                 ctrlr->per_cpu_io_queues = FALSE;
1005                 ctrlr->num_io_queues = 1;
1006                 num_vectors_requested = 2; /* one for admin, one for I/O */
1007         }
1008
1009         num_vectors_allocated = num_vectors_requested;
1010         if (pci_alloc_msix(dev, &num_vectors_allocated) != 0) {
1011                 ctrlr->msix_enabled = 0;
1012                 goto intx;
1013         } else if (num_vectors_allocated < num_vectors_requested) {
1014                 if (num_vectors_allocated < 2) {
1015                         pci_release_msi(dev);
1016                         ctrlr->msix_enabled = 0;
1017                         goto intx;
1018                 } else {
1019                         ctrlr->per_cpu_io_queues = FALSE;
1020                         ctrlr->num_io_queues = 1;
1021                         /*
1022                          * Release whatever vectors were allocated, and just
1023                          *  reallocate the two needed for the admin and single
1024                          *  I/O qpair.
1025                          */
1026                         num_vectors_allocated = 2;
1027                         pci_release_msi(dev);
1028                         if (pci_alloc_msix(dev, &num_vectors_allocated) != 0)
1029                                 panic("could not reallocate any vectors\n");
1030                         if (num_vectors_allocated != 2)
1031                                 panic("could not reallocate 2 vectors\n");
1032                 }
1033         }
1034
1035         /*
1036          * On earlier FreeBSD releases, there are reports that
1037          *  pci_alloc_msix() can return successfully with all vectors
1038          *  requested, but a subsequent bus_alloc_resource_any()
1039          *  for one of those vectors fails.  This issue occurs more
1040          *  readily with multiple devices using per-CPU vectors.
1041          * To workaround this issue, try to allocate the resources now,
1042          *  and fall back to INTx if we cannot allocate all of them.
1043          *  This issue cannot be reproduced on more recent versions of
1044          *  FreeBSD which have increased the maximum number of MSI-X
1045          *  vectors, but adding the workaround makes it easier for
1046          *  vendors wishing to import this driver into kernels based on
1047          *  older versions of FreeBSD.
1048          */
1049         for (i = 0; i < num_vectors_allocated; i++) {
1050                 rid = i + 1;
1051                 ctrlr->msi_res[i] = bus_alloc_resource_any(ctrlr->dev,
1052                     SYS_RES_IRQ, &rid, RF_ACTIVE);
1053
1054                 if (ctrlr->msi_res[i] == NULL) {
1055                         ctrlr->msix_enabled = 0;
1056                         while (i > 0) {
1057                                 i--;
1058                                 bus_release_resource(ctrlr->dev,
1059                                     SYS_RES_IRQ,
1060                                     rman_get_rid(ctrlr->msi_res[i]),
1061                                     ctrlr->msi_res[i]);
1062                         }
1063                         pci_release_msi(dev);
1064                         nvme_printf(ctrlr, "could not obtain all MSI-X "
1065                             "resources, reverting to intx\n");
1066                         break;
1067                 }
1068         }
1069
1070 intx:
1071
1072         if (!ctrlr->msix_enabled)
1073                 nvme_ctrlr_configure_intx(ctrlr);
1074
1075         ctrlr->max_xfer_size = NVME_MAX_XFER_SIZE;
1076         nvme_ctrlr_construct_admin_qpair(ctrlr);
1077         status = nvme_ctrlr_construct_io_qpairs(ctrlr);
1078
1079         if (status != 0)
1080                 return (status);
1081
1082         ctrlr->cdev = make_dev(&nvme_ctrlr_cdevsw, device_get_unit(dev),
1083             UID_ROOT, GID_WHEEL, 0600, "nvme%d", device_get_unit(dev));
1084
1085         if (ctrlr->cdev == NULL)
1086                 return (ENXIO);
1087
1088         ctrlr->cdev->si_drv1 = (void *)ctrlr;
1089
1090         ctrlr->taskqueue = taskqueue_create("nvme_taskq", M_WAITOK,
1091             taskqueue_thread_enqueue, &ctrlr->taskqueue);
1092         taskqueue_start_threads(&ctrlr->taskqueue, 1, PI_DISK, "nvme taskq");
1093
1094         ctrlr->is_resetting = 0;
1095         ctrlr->is_initialized = 0;
1096         ctrlr->notification_sent = 0;
1097         TASK_INIT(&ctrlr->reset_task, 0, nvme_ctrlr_reset_task, ctrlr);
1098
1099         TASK_INIT(&ctrlr->fail_req_task, 0, nvme_ctrlr_fail_req_task, ctrlr);
1100         STAILQ_INIT(&ctrlr->fail_req);
1101         ctrlr->is_failed = FALSE;
1102
1103         return (0);
1104 }
1105
1106 void
1107 nvme_ctrlr_destruct(struct nvme_controller *ctrlr, device_t dev)
1108 {
1109         int                             i;
1110
1111         /*
1112          *  Notify the controller of a shutdown, even though this is due to
1113          *   a driver unload, not a system shutdown (this path is not invoked
1114          *   during shutdown).  This ensures the controller receives a
1115          *   shutdown notification in case the system is shutdown before
1116          *   reloading the driver.
1117          */
1118         nvme_ctrlr_shutdown(ctrlr);
1119
1120         nvme_ctrlr_disable(ctrlr);
1121         taskqueue_free(ctrlr->taskqueue);
1122
1123         for (i = 0; i < NVME_MAX_NAMESPACES; i++)
1124                 nvme_ns_destruct(&ctrlr->ns[i]);
1125
1126         if (ctrlr->cdev)
1127                 destroy_dev(ctrlr->cdev);
1128
1129         for (i = 0; i < ctrlr->num_io_queues; i++) {
1130                 nvme_io_qpair_destroy(&ctrlr->ioq[i]);
1131         }
1132
1133         free(ctrlr->ioq, M_NVME);
1134
1135         nvme_admin_qpair_destroy(&ctrlr->adminq);
1136
1137         if (ctrlr->resource != NULL) {
1138                 bus_release_resource(dev, SYS_RES_MEMORY,
1139                     ctrlr->resource_id, ctrlr->resource);
1140         }
1141
1142         if (ctrlr->bar4_resource != NULL) {
1143                 bus_release_resource(dev, SYS_RES_MEMORY,
1144                     ctrlr->bar4_resource_id, ctrlr->bar4_resource);
1145         }
1146
1147         if (ctrlr->tag)
1148                 bus_teardown_intr(ctrlr->dev, ctrlr->res, ctrlr->tag);
1149
1150         if (ctrlr->res)
1151                 bus_release_resource(ctrlr->dev, SYS_RES_IRQ,
1152                     rman_get_rid(ctrlr->res), ctrlr->res);
1153
1154         if (ctrlr->msix_enabled)
1155                 pci_release_msi(dev);
1156 }
1157
1158 void
1159 nvme_ctrlr_shutdown(struct nvme_controller *ctrlr)
1160 {
1161         union cc_register       cc;
1162         union csts_register     csts;
1163         int                     ticks = 0;
1164
1165         cc.raw = nvme_mmio_read_4(ctrlr, cc);
1166         cc.bits.shn = NVME_SHN_NORMAL;
1167         nvme_mmio_write_4(ctrlr, cc, cc.raw);
1168         csts.raw = nvme_mmio_read_4(ctrlr, csts);
1169         while ((csts.bits.shst != NVME_SHST_COMPLETE) && (ticks++ < 5*hz)) {
1170                 pause("nvme shn", 1);
1171                 csts.raw = nvme_mmio_read_4(ctrlr, csts);
1172         }
1173         if (csts.bits.shst != NVME_SHST_COMPLETE)
1174                 nvme_printf(ctrlr, "did not complete shutdown within 5 seconds "
1175                     "of notification\n");
1176 }
1177
1178 void
1179 nvme_ctrlr_submit_admin_request(struct nvme_controller *ctrlr,
1180     struct nvme_request *req)
1181 {
1182
1183         nvme_qpair_submit_request(&ctrlr->adminq, req);
1184 }
1185
1186 void
1187 nvme_ctrlr_submit_io_request(struct nvme_controller *ctrlr,
1188     struct nvme_request *req)
1189 {
1190         struct nvme_qpair       *qpair;
1191
1192         if (ctrlr->per_cpu_io_queues)
1193                 qpair = &ctrlr->ioq[curcpu];
1194         else
1195                 qpair = &ctrlr->ioq[0];
1196
1197         nvme_qpair_submit_request(qpair, req);
1198 }
1199
1200 device_t
1201 nvme_ctrlr_get_device(struct nvme_controller *ctrlr)
1202 {
1203
1204         return (ctrlr->dev);
1205 }
1206
1207 const struct nvme_controller_data *
1208 nvme_ctrlr_get_data(struct nvme_controller *ctrlr)
1209 {
1210
1211         return (&ctrlr->cdata);
1212 }