]> CyberLeo.Net >> Repos - FreeBSD/releng/10.2.git/blob - sys/dev/nvme/nvme_ctrlr.c
MFS r285917:
[FreeBSD/releng/10.2.git] / sys / dev / nvme / nvme_ctrlr.c
1 /*-
2  * Copyright (C) 2012-2014 Intel Corporation
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/buf.h>
33 #include <sys/bus.h>
34 #include <sys/conf.h>
35 #include <sys/ioccom.h>
36 #include <sys/proc.h>
37 #include <sys/smp.h>
38 #include <sys/uio.h>
39
40 #include <dev/pci/pcireg.h>
41 #include <dev/pci/pcivar.h>
42
43 #include "nvme_private.h"
44
45 static void nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
46                                                 struct nvme_async_event_request *aer);
47
48 static int
49 nvme_ctrlr_allocate_bar(struct nvme_controller *ctrlr)
50 {
51
52         ctrlr->resource_id = PCIR_BAR(0);
53
54         ctrlr->resource = bus_alloc_resource(ctrlr->dev, SYS_RES_MEMORY,
55             &ctrlr->resource_id, 0, ~0, 1, RF_ACTIVE);
56
57         if(ctrlr->resource == NULL) {
58                 nvme_printf(ctrlr, "unable to allocate pci resource\n");
59                 return (ENOMEM);
60         }
61
62         ctrlr->bus_tag = rman_get_bustag(ctrlr->resource);
63         ctrlr->bus_handle = rman_get_bushandle(ctrlr->resource);
64         ctrlr->regs = (struct nvme_registers *)ctrlr->bus_handle;
65
66         /*
67          * The NVMe spec allows for the MSI-X table to be placed behind
68          *  BAR 4/5, separate from the control/doorbell registers.  Always
69          *  try to map this bar, because it must be mapped prior to calling
70          *  pci_alloc_msix().  If the table isn't behind BAR 4/5,
71          *  bus_alloc_resource() will just return NULL which is OK.
72          */
73         ctrlr->bar4_resource_id = PCIR_BAR(4);
74         ctrlr->bar4_resource = bus_alloc_resource(ctrlr->dev, SYS_RES_MEMORY,
75             &ctrlr->bar4_resource_id, 0, ~0, 1, RF_ACTIVE);
76
77         return (0);
78 }
79
80 static void
81 nvme_ctrlr_construct_admin_qpair(struct nvme_controller *ctrlr)
82 {
83         struct nvme_qpair       *qpair;
84         uint32_t                num_entries;
85
86         qpair = &ctrlr->adminq;
87
88         num_entries = NVME_ADMIN_ENTRIES;
89         TUNABLE_INT_FETCH("hw.nvme.admin_entries", &num_entries);
90         /*
91          * If admin_entries was overridden to an invalid value, revert it
92          *  back to our default value.
93          */
94         if (num_entries < NVME_MIN_ADMIN_ENTRIES ||
95             num_entries > NVME_MAX_ADMIN_ENTRIES) {
96                 nvme_printf(ctrlr, "invalid hw.nvme.admin_entries=%d "
97                     "specified\n", num_entries);
98                 num_entries = NVME_ADMIN_ENTRIES;
99         }
100
101         /*
102          * The admin queue's max xfer size is treated differently than the
103          *  max I/O xfer size.  16KB is sufficient here - maybe even less?
104          */
105         nvme_qpair_construct(qpair, 
106                              0, /* qpair ID */
107                              0, /* vector */
108                              num_entries,
109                              NVME_ADMIN_TRACKERS,
110                              ctrlr);
111 }
112
113 static int
114 nvme_ctrlr_construct_io_qpairs(struct nvme_controller *ctrlr)
115 {
116         struct nvme_qpair       *qpair;
117         union cap_lo_register   cap_lo;
118         int                     i, num_entries, num_trackers;
119
120         num_entries = NVME_IO_ENTRIES;
121         TUNABLE_INT_FETCH("hw.nvme.io_entries", &num_entries);
122
123         /*
124          * NVMe spec sets a hard limit of 64K max entries, but
125          *  devices may specify a smaller limit, so we need to check
126          *  the MQES field in the capabilities register.
127          */
128         cap_lo.raw = nvme_mmio_read_4(ctrlr, cap_lo);
129         num_entries = min(num_entries, cap_lo.bits.mqes+1);
130
131         num_trackers = NVME_IO_TRACKERS;
132         TUNABLE_INT_FETCH("hw.nvme.io_trackers", &num_trackers);
133
134         num_trackers = max(num_trackers, NVME_MIN_IO_TRACKERS);
135         num_trackers = min(num_trackers, NVME_MAX_IO_TRACKERS);
136         /*
137          * No need to have more trackers than entries in the submit queue.
138          *  Note also that for a queue size of N, we can only have (N-1)
139          *  commands outstanding, hence the "-1" here.
140          */
141         num_trackers = min(num_trackers, (num_entries-1));
142
143         ctrlr->ioq = malloc(ctrlr->num_io_queues * sizeof(struct nvme_qpair),
144             M_NVME, M_ZERO | M_WAITOK);
145
146         for (i = 0; i < ctrlr->num_io_queues; i++) {
147                 qpair = &ctrlr->ioq[i];
148
149                 /*
150                  * Admin queue has ID=0. IO queues start at ID=1 -
151                  *  hence the 'i+1' here.
152                  *
153                  * For I/O queues, use the controller-wide max_xfer_size
154                  *  calculated in nvme_attach().
155                  */
156                 nvme_qpair_construct(qpair,
157                                      i+1, /* qpair ID */
158                                      ctrlr->msix_enabled ? i+1 : 0, /* vector */
159                                      num_entries,
160                                      num_trackers,
161                                      ctrlr);
162
163                 if (ctrlr->per_cpu_io_queues)
164                         bus_bind_intr(ctrlr->dev, qpair->res, i);
165         }
166
167         return (0);
168 }
169
170 static void
171 nvme_ctrlr_fail(struct nvme_controller *ctrlr)
172 {
173         int i;
174
175         ctrlr->is_failed = TRUE;
176         nvme_qpair_fail(&ctrlr->adminq);
177         for (i = 0; i < ctrlr->num_io_queues; i++)
178                 nvme_qpair_fail(&ctrlr->ioq[i]);
179         nvme_notify_fail_consumers(ctrlr);
180 }
181
182 void
183 nvme_ctrlr_post_failed_request(struct nvme_controller *ctrlr,
184     struct nvme_request *req)
185 {
186
187         mtx_lock(&ctrlr->lock);
188         STAILQ_INSERT_TAIL(&ctrlr->fail_req, req, stailq);
189         mtx_unlock(&ctrlr->lock);
190         taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->fail_req_task);
191 }
192
193 static void
194 nvme_ctrlr_fail_req_task(void *arg, int pending)
195 {
196         struct nvme_controller  *ctrlr = arg;
197         struct nvme_request     *req;
198
199         mtx_lock(&ctrlr->lock);
200         while (!STAILQ_EMPTY(&ctrlr->fail_req)) {
201                 req = STAILQ_FIRST(&ctrlr->fail_req);
202                 STAILQ_REMOVE_HEAD(&ctrlr->fail_req, stailq);
203                 nvme_qpair_manual_complete_request(req->qpair, req,
204                     NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST, TRUE);
205         }
206         mtx_unlock(&ctrlr->lock);
207 }
208
209 static int
210 nvme_ctrlr_wait_for_ready(struct nvme_controller *ctrlr)
211 {
212         int ms_waited;
213         union cc_register cc;
214         union csts_register csts;
215
216         cc.raw = nvme_mmio_read_4(ctrlr, cc);
217         csts.raw = nvme_mmio_read_4(ctrlr, csts);
218
219         if (!cc.bits.en) {
220                 nvme_printf(ctrlr, "%s called with cc.en = 0\n", __func__);
221                 return (ENXIO);
222         }
223
224         ms_waited = 0;
225
226         while (!csts.bits.rdy) {
227                 DELAY(1000);
228                 if (ms_waited++ > ctrlr->ready_timeout_in_ms) {
229                         nvme_printf(ctrlr, "controller did not become ready "
230                             "within %d ms\n", ctrlr->ready_timeout_in_ms);
231                         return (ENXIO);
232                 }
233                 csts.raw = nvme_mmio_read_4(ctrlr, csts);
234         }
235
236         return (0);
237 }
238
239 static void
240 nvme_ctrlr_disable(struct nvme_controller *ctrlr)
241 {
242         union cc_register cc;
243         union csts_register csts;
244
245         cc.raw = nvme_mmio_read_4(ctrlr, cc);
246         csts.raw = nvme_mmio_read_4(ctrlr, csts);
247
248         if (cc.bits.en == 1 && csts.bits.rdy == 0)
249                 nvme_ctrlr_wait_for_ready(ctrlr);
250
251         cc.bits.en = 0;
252         nvme_mmio_write_4(ctrlr, cc, cc.raw);
253         DELAY(5000);
254 }
255
256 static int
257 nvme_ctrlr_enable(struct nvme_controller *ctrlr)
258 {
259         union cc_register       cc;
260         union csts_register     csts;
261         union aqa_register      aqa;
262
263         cc.raw = nvme_mmio_read_4(ctrlr, cc);
264         csts.raw = nvme_mmio_read_4(ctrlr, csts);
265
266         if (cc.bits.en == 1) {
267                 if (csts.bits.rdy == 1)
268                         return (0);
269                 else
270                         return (nvme_ctrlr_wait_for_ready(ctrlr));
271         }
272
273         nvme_mmio_write_8(ctrlr, asq, ctrlr->adminq.cmd_bus_addr);
274         DELAY(5000);
275         nvme_mmio_write_8(ctrlr, acq, ctrlr->adminq.cpl_bus_addr);
276         DELAY(5000);
277
278         aqa.raw = 0;
279         /* acqs and asqs are 0-based. */
280         aqa.bits.acqs = ctrlr->adminq.num_entries-1;
281         aqa.bits.asqs = ctrlr->adminq.num_entries-1;
282         nvme_mmio_write_4(ctrlr, aqa, aqa.raw);
283         DELAY(5000);
284
285         cc.bits.en = 1;
286         cc.bits.css = 0;
287         cc.bits.ams = 0;
288         cc.bits.shn = 0;
289         cc.bits.iosqes = 6; /* SQ entry size == 64 == 2^6 */
290         cc.bits.iocqes = 4; /* CQ entry size == 16 == 2^4 */
291
292         /* This evaluates to 0, which is according to spec. */
293         cc.bits.mps = (PAGE_SIZE >> 13);
294
295         nvme_mmio_write_4(ctrlr, cc, cc.raw);
296         DELAY(5000);
297
298         return (nvme_ctrlr_wait_for_ready(ctrlr));
299 }
300
301 int
302 nvme_ctrlr_hw_reset(struct nvme_controller *ctrlr)
303 {
304         int i;
305
306         nvme_admin_qpair_disable(&ctrlr->adminq);
307         for (i = 0; i < ctrlr->num_io_queues; i++)
308                 nvme_io_qpair_disable(&ctrlr->ioq[i]);
309
310         DELAY(100*1000);
311
312         nvme_ctrlr_disable(ctrlr);
313         return (nvme_ctrlr_enable(ctrlr));
314 }
315
316 void
317 nvme_ctrlr_reset(struct nvme_controller *ctrlr)
318 {
319         int cmpset;
320
321         cmpset = atomic_cmpset_32(&ctrlr->is_resetting, 0, 1);
322
323         if (cmpset == 0 || ctrlr->is_failed)
324                 /*
325                  * Controller is already resetting or has failed.  Return
326                  *  immediately since there is no need to kick off another
327                  *  reset in these cases.
328                  */
329                 return;
330
331         taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->reset_task);
332 }
333
334 static int
335 nvme_ctrlr_identify(struct nvme_controller *ctrlr)
336 {
337         struct nvme_completion_poll_status      status;
338
339         status.done = FALSE;
340         nvme_ctrlr_cmd_identify_controller(ctrlr, &ctrlr->cdata,
341             nvme_completion_poll_cb, &status);
342         while (status.done == FALSE)
343                 pause("nvme", 1);
344         if (nvme_completion_is_error(&status.cpl)) {
345                 nvme_printf(ctrlr, "nvme_identify_controller failed!\n");
346                 return (ENXIO);
347         }
348
349         /*
350          * Use MDTS to ensure our default max_xfer_size doesn't exceed what the
351          *  controller supports.
352          */
353         if (ctrlr->cdata.mdts > 0)
354                 ctrlr->max_xfer_size = min(ctrlr->max_xfer_size,
355                     ctrlr->min_page_size * (1 << (ctrlr->cdata.mdts)));
356
357         return (0);
358 }
359
360 static int
361 nvme_ctrlr_set_num_qpairs(struct nvme_controller *ctrlr)
362 {
363         struct nvme_completion_poll_status      status;
364         int                                     cq_allocated, i, sq_allocated;
365
366         status.done = FALSE;
367         nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->num_io_queues,
368             nvme_completion_poll_cb, &status);
369         while (status.done == FALSE)
370                 pause("nvme", 1);
371         if (nvme_completion_is_error(&status.cpl)) {
372                 nvme_printf(ctrlr, "nvme_set_num_queues failed!\n");
373                 return (ENXIO);
374         }
375
376         /*
377          * Data in cdw0 is 0-based.
378          * Lower 16-bits indicate number of submission queues allocated.
379          * Upper 16-bits indicate number of completion queues allocated.
380          */
381         sq_allocated = (status.cpl.cdw0 & 0xFFFF) + 1;
382         cq_allocated = (status.cpl.cdw0 >> 16) + 1;
383
384         /*
385          * Check that the controller was able to allocate the number of
386          *  queues we requested.  If not, revert to one IO queue pair.
387          */
388         if (sq_allocated < ctrlr->num_io_queues ||
389             cq_allocated < ctrlr->num_io_queues) {
390
391                 /*
392                  * Destroy extra IO queue pairs that were created at
393                  *  controller construction time but are no longer
394                  *  needed.  This will only happen when a controller
395                  *  supports fewer queues than MSI-X vectors.  This
396                  *  is not the normal case, but does occur with the
397                  *  Chatham prototype board.
398                  */
399                 for (i = 1; i < ctrlr->num_io_queues; i++)
400                         nvme_io_qpair_destroy(&ctrlr->ioq[i]);
401
402                 ctrlr->num_io_queues = 1;
403                 ctrlr->per_cpu_io_queues = 0;
404         }
405
406         return (0);
407 }
408
409 static int
410 nvme_ctrlr_create_qpairs(struct nvme_controller *ctrlr)
411 {
412         struct nvme_completion_poll_status      status;
413         struct nvme_qpair                       *qpair;
414         int                                     i;
415
416         for (i = 0; i < ctrlr->num_io_queues; i++) {
417                 qpair = &ctrlr->ioq[i];
418
419                 status.done = FALSE;
420                 nvme_ctrlr_cmd_create_io_cq(ctrlr, qpair, qpair->vector,
421                     nvme_completion_poll_cb, &status);
422                 while (status.done == FALSE)
423                         pause("nvme", 1);
424                 if (nvme_completion_is_error(&status.cpl)) {
425                         nvme_printf(ctrlr, "nvme_create_io_cq failed!\n");
426                         return (ENXIO);
427                 }
428
429                 status.done = FALSE;
430                 nvme_ctrlr_cmd_create_io_sq(qpair->ctrlr, qpair,
431                     nvme_completion_poll_cb, &status);
432                 while (status.done == FALSE)
433                         pause("nvme", 1);
434                 if (nvme_completion_is_error(&status.cpl)) {
435                         nvme_printf(ctrlr, "nvme_create_io_sq failed!\n");
436                         return (ENXIO);
437                 }
438         }
439
440         return (0);
441 }
442
443 static int
444 nvme_ctrlr_construct_namespaces(struct nvme_controller *ctrlr)
445 {
446         struct nvme_namespace   *ns;
447         int                     i, status;
448
449         for (i = 0; i < ctrlr->cdata.nn; i++) {
450                 ns = &ctrlr->ns[i];
451                 status = nvme_ns_construct(ns, i+1, ctrlr);
452                 if (status != 0)
453                         return (status);
454         }
455
456         return (0);
457 }
458
459 static boolean_t
460 is_log_page_id_valid(uint8_t page_id)
461 {
462
463         switch (page_id) {
464         case NVME_LOG_ERROR:
465         case NVME_LOG_HEALTH_INFORMATION:
466         case NVME_LOG_FIRMWARE_SLOT:
467                 return (TRUE);
468         }
469
470         return (FALSE);
471 }
472
473 static uint32_t
474 nvme_ctrlr_get_log_page_size(struct nvme_controller *ctrlr, uint8_t page_id)
475 {
476         uint32_t        log_page_size;
477
478         switch (page_id) {
479         case NVME_LOG_ERROR:
480                 log_page_size = min(
481                     sizeof(struct nvme_error_information_entry) *
482                     ctrlr->cdata.elpe,
483                     NVME_MAX_AER_LOG_SIZE);
484                 break;
485         case NVME_LOG_HEALTH_INFORMATION:
486                 log_page_size = sizeof(struct nvme_health_information_page);
487                 break;
488         case NVME_LOG_FIRMWARE_SLOT:
489                 log_page_size = sizeof(struct nvme_firmware_page);
490                 break;
491         default:
492                 log_page_size = 0;
493                 break;
494         }
495
496         return (log_page_size);
497 }
498
499 static void
500 nvme_ctrlr_log_critical_warnings(struct nvme_controller *ctrlr,
501     union nvme_critical_warning_state state)
502 {
503
504         if (state.bits.available_spare == 1)
505                 nvme_printf(ctrlr, "available spare space below threshold\n");
506
507         if (state.bits.temperature == 1)
508                 nvme_printf(ctrlr, "temperature above threshold\n");
509
510         if (state.bits.device_reliability == 1)
511                 nvme_printf(ctrlr, "device reliability degraded\n");
512
513         if (state.bits.read_only == 1)
514                 nvme_printf(ctrlr, "media placed in read only mode\n");
515
516         if (state.bits.volatile_memory_backup == 1)
517                 nvme_printf(ctrlr, "volatile memory backup device failed\n");
518
519         if (state.bits.reserved != 0)
520                 nvme_printf(ctrlr,
521                     "unknown critical warning(s): state = 0x%02x\n", state.raw);
522 }
523
524 static void
525 nvme_ctrlr_async_event_log_page_cb(void *arg, const struct nvme_completion *cpl)
526 {
527         struct nvme_async_event_request         *aer = arg;
528         struct nvme_health_information_page     *health_info;
529
530         /*
531          * If the log page fetch for some reason completed with an error,
532          *  don't pass log page data to the consumers.  In practice, this case
533          *  should never happen.
534          */
535         if (nvme_completion_is_error(cpl))
536                 nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
537                     aer->log_page_id, NULL, 0);
538         else {
539                 if (aer->log_page_id == NVME_LOG_HEALTH_INFORMATION) {
540                         health_info = (struct nvme_health_information_page *)
541                             aer->log_page_buffer;
542                         nvme_ctrlr_log_critical_warnings(aer->ctrlr,
543                             health_info->critical_warning);
544                         /*
545                          * Critical warnings reported through the
546                          *  SMART/health log page are persistent, so
547                          *  clear the associated bits in the async event
548                          *  config so that we do not receive repeated
549                          *  notifications for the same event.
550                          */
551                         aer->ctrlr->async_event_config.raw &=
552                             ~health_info->critical_warning.raw;
553                         nvme_ctrlr_cmd_set_async_event_config(aer->ctrlr,
554                             aer->ctrlr->async_event_config, NULL, NULL);
555                 }
556
557
558                 /*
559                  * Pass the cpl data from the original async event completion,
560                  *  not the log page fetch.
561                  */
562                 nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
563                     aer->log_page_id, aer->log_page_buffer, aer->log_page_size);
564         }
565
566         /*
567          * Repost another asynchronous event request to replace the one
568          *  that just completed.
569          */
570         nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
571 }
572
573 static void
574 nvme_ctrlr_async_event_cb(void *arg, const struct nvme_completion *cpl)
575 {
576         struct nvme_async_event_request *aer = arg;
577
578         if (nvme_completion_is_error(cpl)) {
579                 /*
580                  *  Do not retry failed async event requests.  This avoids
581                  *  infinite loops where a new async event request is submitted
582                  *  to replace the one just failed, only to fail again and
583                  *  perpetuate the loop.
584                  */
585                 return;
586         }
587
588         /* Associated log page is in bits 23:16 of completion entry dw0. */
589         aer->log_page_id = (cpl->cdw0 & 0xFF0000) >> 16;
590
591         nvme_printf(aer->ctrlr, "async event occurred (log page id=0x%x)\n",
592             aer->log_page_id);
593
594         if (is_log_page_id_valid(aer->log_page_id)) {
595                 aer->log_page_size = nvme_ctrlr_get_log_page_size(aer->ctrlr,
596                     aer->log_page_id);
597                 memcpy(&aer->cpl, cpl, sizeof(*cpl));
598                 nvme_ctrlr_cmd_get_log_page(aer->ctrlr, aer->log_page_id,
599                     NVME_GLOBAL_NAMESPACE_TAG, aer->log_page_buffer,
600                     aer->log_page_size, nvme_ctrlr_async_event_log_page_cb,
601                     aer);
602                 /* Wait to notify consumers until after log page is fetched. */
603         } else {
604                 nvme_notify_async_consumers(aer->ctrlr, cpl, aer->log_page_id,
605                     NULL, 0);
606
607                 /*
608                  * Repost another asynchronous event request to replace the one
609                  *  that just completed.
610                  */
611                 nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
612         }
613 }
614
615 static void
616 nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
617     struct nvme_async_event_request *aer)
618 {
619         struct nvme_request *req;
620
621         aer->ctrlr = ctrlr;
622         req = nvme_allocate_request_null(nvme_ctrlr_async_event_cb, aer);
623         aer->req = req;
624
625         /*
626          * Disable timeout here, since asynchronous event requests should by
627          *  nature never be timed out.
628          */
629         req->timeout = FALSE;
630         req->cmd.opc = NVME_OPC_ASYNC_EVENT_REQUEST;
631         nvme_ctrlr_submit_admin_request(ctrlr, req);
632 }
633
634 static void
635 nvme_ctrlr_configure_aer(struct nvme_controller *ctrlr)
636 {
637         struct nvme_completion_poll_status      status;
638         struct nvme_async_event_request         *aer;
639         uint32_t                                i;
640
641         ctrlr->async_event_config.raw = 0xFF;
642         ctrlr->async_event_config.bits.reserved = 0;
643
644         status.done = FALSE;
645         nvme_ctrlr_cmd_get_feature(ctrlr, NVME_FEAT_TEMPERATURE_THRESHOLD,
646             0, NULL, 0, nvme_completion_poll_cb, &status);
647         while (status.done == FALSE)
648                 pause("nvme", 1);
649         if (nvme_completion_is_error(&status.cpl) ||
650             (status.cpl.cdw0 & 0xFFFF) == 0xFFFF ||
651             (status.cpl.cdw0 & 0xFFFF) == 0x0000) {
652                 nvme_printf(ctrlr, "temperature threshold not supported\n");
653                 ctrlr->async_event_config.bits.temperature = 0;
654         }
655
656         nvme_ctrlr_cmd_set_async_event_config(ctrlr,
657             ctrlr->async_event_config, NULL, NULL);
658
659         /* aerl is a zero-based value, so we need to add 1 here. */
660         ctrlr->num_aers = min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl+1));
661
662         for (i = 0; i < ctrlr->num_aers; i++) {
663                 aer = &ctrlr->aer[i];
664                 nvme_ctrlr_construct_and_submit_aer(ctrlr, aer);
665         }
666 }
667
668 static void
669 nvme_ctrlr_configure_int_coalescing(struct nvme_controller *ctrlr)
670 {
671
672         ctrlr->int_coal_time = 0;
673         TUNABLE_INT_FETCH("hw.nvme.int_coal_time",
674             &ctrlr->int_coal_time);
675
676         ctrlr->int_coal_threshold = 0;
677         TUNABLE_INT_FETCH("hw.nvme.int_coal_threshold",
678             &ctrlr->int_coal_threshold);
679
680         nvme_ctrlr_cmd_set_interrupt_coalescing(ctrlr, ctrlr->int_coal_time,
681             ctrlr->int_coal_threshold, NULL, NULL);
682 }
683
684 static void
685 nvme_ctrlr_start(void *ctrlr_arg)
686 {
687         struct nvme_controller *ctrlr = ctrlr_arg;
688         int i;
689
690         nvme_qpair_reset(&ctrlr->adminq);
691         for (i = 0; i < ctrlr->num_io_queues; i++)
692                 nvme_qpair_reset(&ctrlr->ioq[i]);
693
694         nvme_admin_qpair_enable(&ctrlr->adminq);
695
696         if (nvme_ctrlr_identify(ctrlr) != 0) {
697                 nvme_ctrlr_fail(ctrlr);
698                 return;
699         }
700
701         if (nvme_ctrlr_set_num_qpairs(ctrlr) != 0) {
702                 nvme_ctrlr_fail(ctrlr);
703                 return;
704         }
705
706         if (nvme_ctrlr_create_qpairs(ctrlr) != 0) {
707                 nvme_ctrlr_fail(ctrlr);
708                 return;
709         }
710
711         if (nvme_ctrlr_construct_namespaces(ctrlr) != 0) {
712                 nvme_ctrlr_fail(ctrlr);
713                 return;
714         }
715
716         nvme_ctrlr_configure_aer(ctrlr);
717         nvme_ctrlr_configure_int_coalescing(ctrlr);
718
719         for (i = 0; i < ctrlr->num_io_queues; i++)
720                 nvme_io_qpair_enable(&ctrlr->ioq[i]);
721 }
722
723 void
724 nvme_ctrlr_start_config_hook(void *arg)
725 {
726         struct nvme_controller *ctrlr = arg;
727
728         nvme_ctrlr_start(ctrlr);
729         config_intrhook_disestablish(&ctrlr->config_hook);
730
731         ctrlr->is_initialized = 1;
732         nvme_notify_new_controller(ctrlr);
733 }
734
735 static void
736 nvme_ctrlr_reset_task(void *arg, int pending)
737 {
738         struct nvme_controller  *ctrlr = arg;
739         int                     status;
740
741         nvme_printf(ctrlr, "resetting controller\n");
742         status = nvme_ctrlr_hw_reset(ctrlr);
743         /*
744          * Use pause instead of DELAY, so that we yield to any nvme interrupt
745          *  handlers on this CPU that were blocked on a qpair lock. We want
746          *  all nvme interrupts completed before proceeding with restarting the
747          *  controller.
748          *
749          * XXX - any way to guarantee the interrupt handlers have quiesced?
750          */
751         pause("nvmereset", hz / 10);
752         if (status == 0)
753                 nvme_ctrlr_start(ctrlr);
754         else
755                 nvme_ctrlr_fail(ctrlr);
756
757         atomic_cmpset_32(&ctrlr->is_resetting, 1, 0);
758 }
759
760 static void
761 nvme_ctrlr_intx_handler(void *arg)
762 {
763         struct nvme_controller *ctrlr = arg;
764
765         nvme_mmio_write_4(ctrlr, intms, 1);
766
767         nvme_qpair_process_completions(&ctrlr->adminq);
768
769         if (ctrlr->ioq[0].cpl)
770                 nvme_qpair_process_completions(&ctrlr->ioq[0]);
771
772         nvme_mmio_write_4(ctrlr, intmc, 1);
773 }
774
775 static int
776 nvme_ctrlr_configure_intx(struct nvme_controller *ctrlr)
777 {
778
779         ctrlr->num_io_queues = 1;
780         ctrlr->per_cpu_io_queues = 0;
781         ctrlr->rid = 0;
782         ctrlr->res = bus_alloc_resource_any(ctrlr->dev, SYS_RES_IRQ,
783             &ctrlr->rid, RF_SHAREABLE | RF_ACTIVE);
784
785         if (ctrlr->res == NULL) {
786                 nvme_printf(ctrlr, "unable to allocate shared IRQ\n");
787                 return (ENOMEM);
788         }
789
790         bus_setup_intr(ctrlr->dev, ctrlr->res,
791             INTR_TYPE_MISC | INTR_MPSAFE, NULL, nvme_ctrlr_intx_handler,
792             ctrlr, &ctrlr->tag);
793
794         if (ctrlr->tag == NULL) {
795                 nvme_printf(ctrlr, "unable to setup intx handler\n");
796                 return (ENOMEM);
797         }
798
799         return (0);
800 }
801
802 static void
803 nvme_pt_done(void *arg, const struct nvme_completion *cpl)
804 {
805         struct nvme_pt_command *pt = arg;
806
807         bzero(&pt->cpl, sizeof(pt->cpl));
808         pt->cpl.cdw0 = cpl->cdw0;
809         pt->cpl.status = cpl->status;
810         pt->cpl.status.p = 0;
811
812         mtx_lock(pt->driver_lock);
813         wakeup(pt);
814         mtx_unlock(pt->driver_lock);
815 }
816
817 int
818 nvme_ctrlr_passthrough_cmd(struct nvme_controller *ctrlr,
819     struct nvme_pt_command *pt, uint32_t nsid, int is_user_buffer,
820     int is_admin_cmd)
821 {
822         struct nvme_request     *req;
823         struct mtx              *mtx;
824         struct buf              *buf = NULL;
825         int                     ret = 0;
826
827         if (pt->len > 0) {
828                 if (pt->len > ctrlr->max_xfer_size) {
829                         nvme_printf(ctrlr, "pt->len (%d) "
830                             "exceeds max_xfer_size (%d)\n", pt->len,
831                             ctrlr->max_xfer_size);
832                         return EIO;
833                 }
834                 if (is_user_buffer) {
835                         /*
836                          * Ensure the user buffer is wired for the duration of
837                          *  this passthrough command.
838                          */
839                         PHOLD(curproc);
840                         buf = getpbuf(NULL);
841                         buf->b_saveaddr = buf->b_data;
842                         buf->b_data = pt->buf;
843                         buf->b_bufsize = pt->len;
844                         buf->b_iocmd = pt->is_read ? BIO_READ : BIO_WRITE;
845 #ifdef NVME_UNMAPPED_BIO_SUPPORT
846                         if (vmapbuf(buf, 1) < 0) {
847 #else
848                         if (vmapbuf(buf) < 0) {
849 #endif
850                                 ret = EFAULT;
851                                 goto err;
852                         }
853                         req = nvme_allocate_request_vaddr(buf->b_data, pt->len, 
854                             nvme_pt_done, pt);
855                 } else
856                         req = nvme_allocate_request_vaddr(pt->buf, pt->len,
857                             nvme_pt_done, pt);
858         } else
859                 req = nvme_allocate_request_null(nvme_pt_done, pt);
860
861         req->cmd.opc    = pt->cmd.opc;
862         req->cmd.cdw10  = pt->cmd.cdw10;
863         req->cmd.cdw11  = pt->cmd.cdw11;
864         req->cmd.cdw12  = pt->cmd.cdw12;
865         req->cmd.cdw13  = pt->cmd.cdw13;
866         req->cmd.cdw14  = pt->cmd.cdw14;
867         req->cmd.cdw15  = pt->cmd.cdw15;
868
869         req->cmd.nsid = nsid;
870
871         if (is_admin_cmd)
872                 mtx = &ctrlr->lock;
873         else
874                 mtx = &ctrlr->ns[nsid-1].lock;
875
876         mtx_lock(mtx);
877         pt->driver_lock = mtx;
878
879         if (is_admin_cmd)
880                 nvme_ctrlr_submit_admin_request(ctrlr, req);
881         else
882                 nvme_ctrlr_submit_io_request(ctrlr, req);
883
884         mtx_sleep(pt, mtx, PRIBIO, "nvme_pt", 0);
885         mtx_unlock(mtx);
886
887         pt->driver_lock = NULL;
888
889 err:
890         if (buf != NULL) {
891                 relpbuf(buf, NULL);
892                 PRELE(curproc);
893         }
894
895         return (ret);
896 }
897
898 static int
899 nvme_ctrlr_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag,
900     struct thread *td)
901 {
902         struct nvme_controller                  *ctrlr;
903         struct nvme_pt_command                  *pt;
904
905         ctrlr = cdev->si_drv1;
906
907         switch (cmd) {
908         case NVME_RESET_CONTROLLER:
909                 nvme_ctrlr_reset(ctrlr);
910                 break;
911         case NVME_PASSTHROUGH_CMD:
912                 pt = (struct nvme_pt_command *)arg;
913                 return (nvme_ctrlr_passthrough_cmd(ctrlr, pt, pt->cmd.nsid,
914                     1 /* is_user_buffer */, 1 /* is_admin_cmd */));
915         default:
916                 return (ENOTTY);
917         }
918
919         return (0);
920 }
921
922 static struct cdevsw nvme_ctrlr_cdevsw = {
923         .d_version =    D_VERSION,
924         .d_flags =      0,
925         .d_ioctl =      nvme_ctrlr_ioctl
926 };
927
928 int
929 nvme_ctrlr_construct(struct nvme_controller *ctrlr, device_t dev)
930 {
931         union cap_lo_register   cap_lo;
932         union cap_hi_register   cap_hi;
933         int                     i, per_cpu_io_queues, rid;
934         int                     num_vectors_requested, num_vectors_allocated;
935         int                     status, timeout_period;
936
937         ctrlr->dev = dev;
938
939         mtx_init(&ctrlr->lock, "nvme ctrlr lock", NULL, MTX_DEF);
940
941         status = nvme_ctrlr_allocate_bar(ctrlr);
942
943         if (status != 0)
944                 return (status);
945
946         /*
947          * Software emulators may set the doorbell stride to something
948          *  other than zero, but this driver is not set up to handle that.
949          */
950         cap_hi.raw = nvme_mmio_read_4(ctrlr, cap_hi);
951         if (cap_hi.bits.dstrd != 0)
952                 return (ENXIO);
953
954         ctrlr->min_page_size = 1 << (12 + cap_hi.bits.mpsmin);
955
956         /* Get ready timeout value from controller, in units of 500ms. */
957         cap_lo.raw = nvme_mmio_read_4(ctrlr, cap_lo);
958         ctrlr->ready_timeout_in_ms = cap_lo.bits.to * 500;
959
960         timeout_period = NVME_DEFAULT_TIMEOUT_PERIOD;
961         TUNABLE_INT_FETCH("hw.nvme.timeout_period", &timeout_period);
962         timeout_period = min(timeout_period, NVME_MAX_TIMEOUT_PERIOD);
963         timeout_period = max(timeout_period, NVME_MIN_TIMEOUT_PERIOD);
964         ctrlr->timeout_period = timeout_period;
965
966         nvme_retry_count = NVME_DEFAULT_RETRY_COUNT;
967         TUNABLE_INT_FETCH("hw.nvme.retry_count", &nvme_retry_count);
968
969         per_cpu_io_queues = 1;
970         TUNABLE_INT_FETCH("hw.nvme.per_cpu_io_queues", &per_cpu_io_queues);
971         ctrlr->per_cpu_io_queues = per_cpu_io_queues ? TRUE : FALSE;
972
973         if (ctrlr->per_cpu_io_queues)
974                 ctrlr->num_io_queues = mp_ncpus;
975         else
976                 ctrlr->num_io_queues = 1;
977
978         ctrlr->force_intx = 0;
979         TUNABLE_INT_FETCH("hw.nvme.force_intx", &ctrlr->force_intx);
980
981         ctrlr->enable_aborts = 0;
982         TUNABLE_INT_FETCH("hw.nvme.enable_aborts", &ctrlr->enable_aborts);
983
984         ctrlr->msix_enabled = 1;
985
986         if (ctrlr->force_intx) {
987                 ctrlr->msix_enabled = 0;
988                 goto intx;
989         }
990
991         /* One vector per IO queue, plus one vector for admin queue. */
992         num_vectors_requested = ctrlr->num_io_queues + 1;
993
994         /*
995          * If we cannot even allocate 2 vectors (one for admin, one for
996          *  I/O), then revert to INTx.
997          */
998         if (pci_msix_count(dev) < 2) {
999                 ctrlr->msix_enabled = 0;
1000                 goto intx;
1001         } else if (pci_msix_count(dev) < num_vectors_requested) {
1002                 ctrlr->per_cpu_io_queues = FALSE;
1003                 ctrlr->num_io_queues = 1;
1004                 num_vectors_requested = 2; /* one for admin, one for I/O */
1005         }
1006
1007         num_vectors_allocated = num_vectors_requested;
1008         if (pci_alloc_msix(dev, &num_vectors_allocated) != 0) {
1009                 ctrlr->msix_enabled = 0;
1010                 goto intx;
1011         } else if (num_vectors_allocated < num_vectors_requested) {
1012                 if (num_vectors_allocated < 2) {
1013                         pci_release_msi(dev);
1014                         ctrlr->msix_enabled = 0;
1015                         goto intx;
1016                 } else {
1017                         ctrlr->per_cpu_io_queues = FALSE;
1018                         ctrlr->num_io_queues = 1;
1019                         /*
1020                          * Release whatever vectors were allocated, and just
1021                          *  reallocate the two needed for the admin and single
1022                          *  I/O qpair.
1023                          */
1024                         num_vectors_allocated = 2;
1025                         pci_release_msi(dev);
1026                         if (pci_alloc_msix(dev, &num_vectors_allocated) != 0)
1027                                 panic("could not reallocate any vectors\n");
1028                         if (num_vectors_allocated != 2)
1029                                 panic("could not reallocate 2 vectors\n");
1030                 }
1031         }
1032
1033         /*
1034          * On earlier FreeBSD releases, there are reports that
1035          *  pci_alloc_msix() can return successfully with all vectors
1036          *  requested, but a subsequent bus_alloc_resource_any()
1037          *  for one of those vectors fails.  This issue occurs more
1038          *  readily with multiple devices using per-CPU vectors.
1039          * To workaround this issue, try to allocate the resources now,
1040          *  and fall back to INTx if we cannot allocate all of them.
1041          *  This issue cannot be reproduced on more recent versions of
1042          *  FreeBSD which have increased the maximum number of MSI-X
1043          *  vectors, but adding the workaround makes it easier for
1044          *  vendors wishing to import this driver into kernels based on
1045          *  older versions of FreeBSD.
1046          */
1047         for (i = 0; i < num_vectors_allocated; i++) {
1048                 rid = i + 1;
1049                 ctrlr->msi_res[i] = bus_alloc_resource_any(ctrlr->dev,
1050                     SYS_RES_IRQ, &rid, RF_ACTIVE);
1051
1052                 if (ctrlr->msi_res[i] == NULL) {
1053                         ctrlr->msix_enabled = 0;
1054                         while (i > 0) {
1055                                 i--;
1056                                 bus_release_resource(ctrlr->dev,
1057                                     SYS_RES_IRQ,
1058                                     rman_get_rid(ctrlr->msi_res[i]),
1059                                     ctrlr->msi_res[i]);
1060                         }
1061                         pci_release_msi(dev);
1062                         nvme_printf(ctrlr, "could not obtain all MSI-X "
1063                             "resources, reverting to intx\n");
1064                         break;
1065                 }
1066         }
1067
1068 intx:
1069
1070         if (!ctrlr->msix_enabled)
1071                 nvme_ctrlr_configure_intx(ctrlr);
1072
1073         ctrlr->max_xfer_size = NVME_MAX_XFER_SIZE;
1074         nvme_ctrlr_construct_admin_qpair(ctrlr);
1075         status = nvme_ctrlr_construct_io_qpairs(ctrlr);
1076
1077         if (status != 0)
1078                 return (status);
1079
1080         ctrlr->cdev = make_dev(&nvme_ctrlr_cdevsw, device_get_unit(dev),
1081             UID_ROOT, GID_WHEEL, 0600, "nvme%d", device_get_unit(dev));
1082
1083         if (ctrlr->cdev == NULL)
1084                 return (ENXIO);
1085
1086         ctrlr->cdev->si_drv1 = (void *)ctrlr;
1087
1088         ctrlr->taskqueue = taskqueue_create("nvme_taskq", M_WAITOK,
1089             taskqueue_thread_enqueue, &ctrlr->taskqueue);
1090         taskqueue_start_threads(&ctrlr->taskqueue, 1, PI_DISK, "nvme taskq");
1091
1092         ctrlr->is_resetting = 0;
1093         ctrlr->is_initialized = 0;
1094         ctrlr->notification_sent = 0;
1095         TASK_INIT(&ctrlr->reset_task, 0, nvme_ctrlr_reset_task, ctrlr);
1096
1097         TASK_INIT(&ctrlr->fail_req_task, 0, nvme_ctrlr_fail_req_task, ctrlr);
1098         STAILQ_INIT(&ctrlr->fail_req);
1099         ctrlr->is_failed = FALSE;
1100
1101         return (0);
1102 }
1103
1104 void
1105 nvme_ctrlr_destruct(struct nvme_controller *ctrlr, device_t dev)
1106 {
1107         int                             i;
1108
1109         /*
1110          *  Notify the controller of a shutdown, even though this is due to
1111          *   a driver unload, not a system shutdown (this path is not invoked
1112          *   during shutdown).  This ensures the controller receives a
1113          *   shutdown notification in case the system is shutdown before
1114          *   reloading the driver.
1115          */
1116         nvme_ctrlr_shutdown(ctrlr);
1117
1118         nvme_ctrlr_disable(ctrlr);
1119         taskqueue_free(ctrlr->taskqueue);
1120
1121         for (i = 0; i < NVME_MAX_NAMESPACES; i++)
1122                 nvme_ns_destruct(&ctrlr->ns[i]);
1123
1124         if (ctrlr->cdev)
1125                 destroy_dev(ctrlr->cdev);
1126
1127         for (i = 0; i < ctrlr->num_io_queues; i++) {
1128                 nvme_io_qpair_destroy(&ctrlr->ioq[i]);
1129         }
1130
1131         free(ctrlr->ioq, M_NVME);
1132
1133         nvme_admin_qpair_destroy(&ctrlr->adminq);
1134
1135         if (ctrlr->resource != NULL) {
1136                 bus_release_resource(dev, SYS_RES_MEMORY,
1137                     ctrlr->resource_id, ctrlr->resource);
1138         }
1139
1140         if (ctrlr->bar4_resource != NULL) {
1141                 bus_release_resource(dev, SYS_RES_MEMORY,
1142                     ctrlr->bar4_resource_id, ctrlr->bar4_resource);
1143         }
1144
1145         if (ctrlr->tag)
1146                 bus_teardown_intr(ctrlr->dev, ctrlr->res, ctrlr->tag);
1147
1148         if (ctrlr->res)
1149                 bus_release_resource(ctrlr->dev, SYS_RES_IRQ,
1150                     rman_get_rid(ctrlr->res), ctrlr->res);
1151
1152         if (ctrlr->msix_enabled)
1153                 pci_release_msi(dev);
1154 }
1155
1156 void
1157 nvme_ctrlr_shutdown(struct nvme_controller *ctrlr)
1158 {
1159         union cc_register       cc;
1160         union csts_register     csts;
1161         int                     ticks = 0;
1162
1163         cc.raw = nvme_mmio_read_4(ctrlr, cc);
1164         cc.bits.shn = NVME_SHN_NORMAL;
1165         nvme_mmio_write_4(ctrlr, cc, cc.raw);
1166         csts.raw = nvme_mmio_read_4(ctrlr, csts);
1167         while ((csts.bits.shst != NVME_SHST_COMPLETE) && (ticks++ < 5*hz)) {
1168                 pause("nvme shn", 1);
1169                 csts.raw = nvme_mmio_read_4(ctrlr, csts);
1170         }
1171         if (csts.bits.shst != NVME_SHST_COMPLETE)
1172                 nvme_printf(ctrlr, "did not complete shutdown within 5 seconds "
1173                     "of notification\n");
1174 }
1175
1176 void
1177 nvme_ctrlr_submit_admin_request(struct nvme_controller *ctrlr,
1178     struct nvme_request *req)
1179 {
1180
1181         nvme_qpair_submit_request(&ctrlr->adminq, req);
1182 }
1183
1184 void
1185 nvme_ctrlr_submit_io_request(struct nvme_controller *ctrlr,
1186     struct nvme_request *req)
1187 {
1188         struct nvme_qpair       *qpair;
1189
1190         if (ctrlr->per_cpu_io_queues)
1191                 qpair = &ctrlr->ioq[curcpu];
1192         else
1193                 qpair = &ctrlr->ioq[0];
1194
1195         nvme_qpair_submit_request(qpair, req);
1196 }
1197
1198 device_t
1199 nvme_ctrlr_get_device(struct nvme_controller *ctrlr)
1200 {
1201
1202         return (ctrlr->dev);
1203 }
1204
1205 const struct nvme_controller_data *
1206 nvme_ctrlr_get_data(struct nvme_controller *ctrlr)
1207 {
1208
1209         return (&ctrlr->cdata);
1210 }