]> CyberLeo.Net >> Repos - FreeBSD/releng/10.2.git/blob - sys/dev/re/if_re.c
- Copy stable/10@285827 to releng/10.2 in preparation for 10.2-RC1
[FreeBSD/releng/10.2.git] / sys / dev / re / if_re.c
1 /*-
2  * Copyright (c) 1997, 1998-2003
3  *      Bill Paul <wpaul@windriver.com>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *      This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35
36 /*
37  * RealTek 8139C+/8169/8169S/8110S/8168/8111/8101E PCI NIC driver
38  *
39  * Written by Bill Paul <wpaul@windriver.com>
40  * Senior Networking Software Engineer
41  * Wind River Systems
42  */
43
44 /*
45  * This driver is designed to support RealTek's next generation of
46  * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
47  * seven devices in this family: the RTL8139C+, the RTL8169, the RTL8169S,
48  * RTL8110S, the RTL8168, the RTL8111 and the RTL8101E.
49  *
50  * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
51  * with the older 8139 family, however it also supports a special
52  * C+ mode of operation that provides several new performance enhancing
53  * features. These include:
54  *
55  *      o Descriptor based DMA mechanism. Each descriptor represents
56  *        a single packet fragment. Data buffers may be aligned on
57  *        any byte boundary.
58  *
59  *      o 64-bit DMA
60  *
61  *      o TCP/IP checksum offload for both RX and TX
62  *
63  *      o High and normal priority transmit DMA rings
64  *
65  *      o VLAN tag insertion and extraction
66  *
67  *      o TCP large send (segmentation offload)
68  *
69  * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
70  * programming API is fairly straightforward. The RX filtering, EEPROM
71  * access and PHY access is the same as it is on the older 8139 series
72  * chips.
73  *
74  * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
75  * same programming API and feature set as the 8139C+ with the following
76  * differences and additions:
77  *
78  *      o 1000Mbps mode
79  *
80  *      o Jumbo frames
81  *
82  *      o GMII and TBI ports/registers for interfacing with copper
83  *        or fiber PHYs
84  *
85  *      o RX and TX DMA rings can have up to 1024 descriptors
86  *        (the 8139C+ allows a maximum of 64)
87  *
88  *      o Slight differences in register layout from the 8139C+
89  *
90  * The TX start and timer interrupt registers are at different locations
91  * on the 8169 than they are on the 8139C+. Also, the status word in the
92  * RX descriptor has a slightly different bit layout. The 8169 does not
93  * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
94  * copper gigE PHY.
95  *
96  * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
97  * (the 'S' stands for 'single-chip'). These devices have the same
98  * programming API as the older 8169, but also have some vendor-specific
99  * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
100  * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
101  *
102  * This driver takes advantage of the RX and TX checksum offload and
103  * VLAN tag insertion/extraction features. It also implements TX
104  * interrupt moderation using the timer interrupt registers, which
105  * significantly reduces TX interrupt load. There is also support
106  * for jumbo frames, however the 8169/8169S/8110S can not transmit
107  * jumbo frames larger than 7440, so the max MTU possible with this
108  * driver is 7422 bytes.
109  */
110
111 #ifdef HAVE_KERNEL_OPTION_HEADERS
112 #include "opt_device_polling.h"
113 #endif
114
115 #include <sys/param.h>
116 #include <sys/endian.h>
117 #include <sys/systm.h>
118 #include <sys/sockio.h>
119 #include <sys/mbuf.h>
120 #include <sys/malloc.h>
121 #include <sys/module.h>
122 #include <sys/kernel.h>
123 #include <sys/socket.h>
124 #include <sys/lock.h>
125 #include <sys/mutex.h>
126 #include <sys/sysctl.h>
127 #include <sys/taskqueue.h>
128
129 #include <net/if.h>
130 #include <net/if_arp.h>
131 #include <net/ethernet.h>
132 #include <net/if_dl.h>
133 #include <net/if_media.h>
134 #include <net/if_types.h>
135 #include <net/if_vlan_var.h>
136
137 #include <net/bpf.h>
138
139 #include <machine/bus.h>
140 #include <machine/resource.h>
141 #include <sys/bus.h>
142 #include <sys/rman.h>
143
144 #include <dev/mii/mii.h>
145 #include <dev/mii/miivar.h>
146
147 #include <dev/pci/pcireg.h>
148 #include <dev/pci/pcivar.h>
149
150 #include <pci/if_rlreg.h>
151
152 MODULE_DEPEND(re, pci, 1, 1, 1);
153 MODULE_DEPEND(re, ether, 1, 1, 1);
154 MODULE_DEPEND(re, miibus, 1, 1, 1);
155
156 /* "device miibus" required.  See GENERIC if you get errors here. */
157 #include "miibus_if.h"
158
159 /* Tunables. */
160 static int intr_filter = 0;
161 TUNABLE_INT("hw.re.intr_filter", &intr_filter);
162 static int msi_disable = 0;
163 TUNABLE_INT("hw.re.msi_disable", &msi_disable);
164 static int msix_disable = 0;
165 TUNABLE_INT("hw.re.msix_disable", &msix_disable);
166 static int prefer_iomap = 0;
167 TUNABLE_INT("hw.re.prefer_iomap", &prefer_iomap);
168
169 #define RE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
170
171 /*
172  * Various supported device vendors/types and their names.
173  */
174 static const struct rl_type re_devs[] = {
175         { DLINK_VENDORID, DLINK_DEVICEID_528T, 0,
176             "D-Link DGE-528(T) Gigabit Ethernet Adapter" },
177         { DLINK_VENDORID, DLINK_DEVICEID_530T_REVC, 0,
178             "D-Link DGE-530(T) Gigabit Ethernet Adapter" },
179         { RT_VENDORID, RT_DEVICEID_8139, 0,
180             "RealTek 8139C+ 10/100BaseTX" },
181         { RT_VENDORID, RT_DEVICEID_8101E, 0,
182             "RealTek 810xE PCIe 10/100baseTX" },
183         { RT_VENDORID, RT_DEVICEID_8168, 0,
184             "RealTek 8168/8111 B/C/CP/D/DP/E/F/G PCIe Gigabit Ethernet" },
185         { RT_VENDORID, RT_DEVICEID_8169, 0,
186             "RealTek 8169/8169S/8169SB(L)/8110S/8110SB(L) Gigabit Ethernet" },
187         { RT_VENDORID, RT_DEVICEID_8169SC, 0,
188             "RealTek 8169SC/8110SC Single-chip Gigabit Ethernet" },
189         { COREGA_VENDORID, COREGA_DEVICEID_CGLAPCIGT, 0,
190             "Corega CG-LAPCIGT (RTL8169S) Gigabit Ethernet" },
191         { LINKSYS_VENDORID, LINKSYS_DEVICEID_EG1032, 0,
192             "Linksys EG1032 (RTL8169S) Gigabit Ethernet" },
193         { USR_VENDORID, USR_DEVICEID_997902, 0,
194             "US Robotics 997902 (RTL8169S) Gigabit Ethernet" }
195 };
196
197 static const struct rl_hwrev re_hwrevs[] = {
198         { RL_HWREV_8139, RL_8139, "", RL_MTU },
199         { RL_HWREV_8139A, RL_8139, "A", RL_MTU },
200         { RL_HWREV_8139AG, RL_8139, "A-G", RL_MTU },
201         { RL_HWREV_8139B, RL_8139, "B", RL_MTU },
202         { RL_HWREV_8130, RL_8139, "8130", RL_MTU },
203         { RL_HWREV_8139C, RL_8139, "C", RL_MTU },
204         { RL_HWREV_8139D, RL_8139, "8139D/8100B/8100C", RL_MTU },
205         { RL_HWREV_8139CPLUS, RL_8139CPLUS, "C+", RL_MTU },
206         { RL_HWREV_8168B_SPIN1, RL_8169, "8168", RL_JUMBO_MTU },
207         { RL_HWREV_8169, RL_8169, "8169", RL_JUMBO_MTU },
208         { RL_HWREV_8169S, RL_8169, "8169S", RL_JUMBO_MTU },
209         { RL_HWREV_8110S, RL_8169, "8110S", RL_JUMBO_MTU },
210         { RL_HWREV_8169_8110SB, RL_8169, "8169SB/8110SB", RL_JUMBO_MTU },
211         { RL_HWREV_8169_8110SC, RL_8169, "8169SC/8110SC", RL_JUMBO_MTU },
212         { RL_HWREV_8169_8110SBL, RL_8169, "8169SBL/8110SBL", RL_JUMBO_MTU },
213         { RL_HWREV_8169_8110SCE, RL_8169, "8169SC/8110SC", RL_JUMBO_MTU },
214         { RL_HWREV_8100, RL_8139, "8100", RL_MTU },
215         { RL_HWREV_8101, RL_8139, "8101", RL_MTU },
216         { RL_HWREV_8100E, RL_8169, "8100E", RL_MTU },
217         { RL_HWREV_8101E, RL_8169, "8101E", RL_MTU },
218         { RL_HWREV_8102E, RL_8169, "8102E", RL_MTU },
219         { RL_HWREV_8102EL, RL_8169, "8102EL", RL_MTU },
220         { RL_HWREV_8102EL_SPIN1, RL_8169, "8102EL", RL_MTU },
221         { RL_HWREV_8103E, RL_8169, "8103E", RL_MTU },
222         { RL_HWREV_8401E, RL_8169, "8401E", RL_MTU },
223         { RL_HWREV_8402, RL_8169, "8402", RL_MTU },
224         { RL_HWREV_8105E, RL_8169, "8105E", RL_MTU },
225         { RL_HWREV_8105E_SPIN1, RL_8169, "8105E", RL_MTU },
226         { RL_HWREV_8106E, RL_8169, "8106E", RL_MTU },
227         { RL_HWREV_8168B_SPIN2, RL_8169, "8168", RL_JUMBO_MTU },
228         { RL_HWREV_8168B_SPIN3, RL_8169, "8168", RL_JUMBO_MTU },
229         { RL_HWREV_8168C, RL_8169, "8168C/8111C", RL_JUMBO_MTU_6K },
230         { RL_HWREV_8168C_SPIN2, RL_8169, "8168C/8111C", RL_JUMBO_MTU_6K },
231         { RL_HWREV_8168CP, RL_8169, "8168CP/8111CP", RL_JUMBO_MTU_6K },
232         { RL_HWREV_8168D, RL_8169, "8168D/8111D", RL_JUMBO_MTU_9K },
233         { RL_HWREV_8168DP, RL_8169, "8168DP/8111DP", RL_JUMBO_MTU_9K },
234         { RL_HWREV_8168E, RL_8169, "8168E/8111E", RL_JUMBO_MTU_9K},
235         { RL_HWREV_8168E_VL, RL_8169, "8168E/8111E-VL", RL_JUMBO_MTU_6K},
236         { RL_HWREV_8168EP, RL_8169, "8168EP/8111EP", RL_JUMBO_MTU_9K},
237         { RL_HWREV_8168F, RL_8169, "8168F/8111F", RL_JUMBO_MTU_9K},
238         { RL_HWREV_8168G, RL_8169, "8168G/8111G", RL_JUMBO_MTU_9K},
239         { RL_HWREV_8168GU, RL_8169, "8168GU/8111GU", RL_JUMBO_MTU_9K},
240         { RL_HWREV_8411, RL_8169, "8411", RL_JUMBO_MTU_9K},
241         { RL_HWREV_8411B, RL_8169, "8411B", RL_JUMBO_MTU_9K},
242         { 0, 0, NULL, 0 }
243 };
244
245 static int re_probe             (device_t);
246 static int re_attach            (device_t);
247 static int re_detach            (device_t);
248
249 static int re_encap             (struct rl_softc *, struct mbuf **);
250
251 static void re_dma_map_addr     (void *, bus_dma_segment_t *, int, int);
252 static int re_allocmem          (device_t, struct rl_softc *);
253 static __inline void re_discard_rxbuf
254                                 (struct rl_softc *, int);
255 static int re_newbuf            (struct rl_softc *, int);
256 static int re_jumbo_newbuf      (struct rl_softc *, int);
257 static int re_rx_list_init      (struct rl_softc *);
258 static int re_jrx_list_init     (struct rl_softc *);
259 static int re_tx_list_init      (struct rl_softc *);
260 #ifdef RE_FIXUP_RX
261 static __inline void re_fixup_rx
262                                 (struct mbuf *);
263 #endif
264 static int re_rxeof             (struct rl_softc *, int *);
265 static void re_txeof            (struct rl_softc *);
266 #ifdef DEVICE_POLLING
267 static int re_poll              (struct ifnet *, enum poll_cmd, int);
268 static int re_poll_locked       (struct ifnet *, enum poll_cmd, int);
269 #endif
270 static int re_intr              (void *);
271 static void re_intr_msi         (void *);
272 static void re_tick             (void *);
273 static void re_int_task         (void *, int);
274 static void re_start            (struct ifnet *);
275 static void re_start_locked     (struct ifnet *);
276 static int re_ioctl             (struct ifnet *, u_long, caddr_t);
277 static void re_init             (void *);
278 static void re_init_locked      (struct rl_softc *);
279 static void re_stop             (struct rl_softc *);
280 static void re_watchdog         (struct rl_softc *);
281 static int re_suspend           (device_t);
282 static int re_resume            (device_t);
283 static int re_shutdown          (device_t);
284 static int re_ifmedia_upd       (struct ifnet *);
285 static void re_ifmedia_sts      (struct ifnet *, struct ifmediareq *);
286
287 static void re_eeprom_putbyte   (struct rl_softc *, int);
288 static void re_eeprom_getword   (struct rl_softc *, int, u_int16_t *);
289 static void re_read_eeprom      (struct rl_softc *, caddr_t, int, int);
290 static int re_gmii_readreg      (device_t, int, int);
291 static int re_gmii_writereg     (device_t, int, int, int);
292
293 static int re_miibus_readreg    (device_t, int, int);
294 static int re_miibus_writereg   (device_t, int, int, int);
295 static void re_miibus_statchg   (device_t);
296
297 static void re_set_jumbo        (struct rl_softc *, int);
298 static void re_set_rxmode               (struct rl_softc *);
299 static void re_reset            (struct rl_softc *);
300 static void re_setwol           (struct rl_softc *);
301 static void re_clrwol           (struct rl_softc *);
302 static void re_set_linkspeed    (struct rl_softc *);
303
304 #ifdef DEV_NETMAP       /* see ixgbe.c for details */
305 #include <dev/netmap/if_re_netmap.h>
306 #endif /* !DEV_NETMAP */
307
308 #ifdef RE_DIAG
309 static int re_diag              (struct rl_softc *);
310 #endif
311
312 static void re_add_sysctls      (struct rl_softc *);
313 static int re_sysctl_stats      (SYSCTL_HANDLER_ARGS);
314 static int sysctl_int_range     (SYSCTL_HANDLER_ARGS, int, int);
315 static int sysctl_hw_re_int_mod (SYSCTL_HANDLER_ARGS);
316
317 static device_method_t re_methods[] = {
318         /* Device interface */
319         DEVMETHOD(device_probe,         re_probe),
320         DEVMETHOD(device_attach,        re_attach),
321         DEVMETHOD(device_detach,        re_detach),
322         DEVMETHOD(device_suspend,       re_suspend),
323         DEVMETHOD(device_resume,        re_resume),
324         DEVMETHOD(device_shutdown,      re_shutdown),
325
326         /* MII interface */
327         DEVMETHOD(miibus_readreg,       re_miibus_readreg),
328         DEVMETHOD(miibus_writereg,      re_miibus_writereg),
329         DEVMETHOD(miibus_statchg,       re_miibus_statchg),
330
331         DEVMETHOD_END
332 };
333
334 static driver_t re_driver = {
335         "re",
336         re_methods,
337         sizeof(struct rl_softc)
338 };
339
340 static devclass_t re_devclass;
341
342 DRIVER_MODULE(re, pci, re_driver, re_devclass, 0, 0);
343 DRIVER_MODULE(miibus, re, miibus_driver, miibus_devclass, 0, 0);
344
345 #define EE_SET(x)                                       \
346         CSR_WRITE_1(sc, RL_EECMD,                       \
347                 CSR_READ_1(sc, RL_EECMD) | x)
348
349 #define EE_CLR(x)                                       \
350         CSR_WRITE_1(sc, RL_EECMD,                       \
351                 CSR_READ_1(sc, RL_EECMD) & ~x)
352
353 /*
354  * Send a read command and address to the EEPROM, check for ACK.
355  */
356 static void
357 re_eeprom_putbyte(struct rl_softc *sc, int addr)
358 {
359         int                     d, i;
360
361         d = addr | (RL_9346_READ << sc->rl_eewidth);
362
363         /*
364          * Feed in each bit and strobe the clock.
365          */
366
367         for (i = 1 << (sc->rl_eewidth + 3); i; i >>= 1) {
368                 if (d & i) {
369                         EE_SET(RL_EE_DATAIN);
370                 } else {
371                         EE_CLR(RL_EE_DATAIN);
372                 }
373                 DELAY(100);
374                 EE_SET(RL_EE_CLK);
375                 DELAY(150);
376                 EE_CLR(RL_EE_CLK);
377                 DELAY(100);
378         }
379 }
380
381 /*
382  * Read a word of data stored in the EEPROM at address 'addr.'
383  */
384 static void
385 re_eeprom_getword(struct rl_softc *sc, int addr, u_int16_t *dest)
386 {
387         int                     i;
388         u_int16_t               word = 0;
389
390         /*
391          * Send address of word we want to read.
392          */
393         re_eeprom_putbyte(sc, addr);
394
395         /*
396          * Start reading bits from EEPROM.
397          */
398         for (i = 0x8000; i; i >>= 1) {
399                 EE_SET(RL_EE_CLK);
400                 DELAY(100);
401                 if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT)
402                         word |= i;
403                 EE_CLR(RL_EE_CLK);
404                 DELAY(100);
405         }
406
407         *dest = word;
408 }
409
410 /*
411  * Read a sequence of words from the EEPROM.
412  */
413 static void
414 re_read_eeprom(struct rl_softc *sc, caddr_t dest, int off, int cnt)
415 {
416         int                     i;
417         u_int16_t               word = 0, *ptr;
418
419         CSR_SETBIT_1(sc, RL_EECMD, RL_EEMODE_PROGRAM);
420
421         DELAY(100);
422
423         for (i = 0; i < cnt; i++) {
424                 CSR_SETBIT_1(sc, RL_EECMD, RL_EE_SEL);
425                 re_eeprom_getword(sc, off + i, &word);
426                 CSR_CLRBIT_1(sc, RL_EECMD, RL_EE_SEL);
427                 ptr = (u_int16_t *)(dest + (i * 2));
428                 *ptr = word;
429         }
430
431         CSR_CLRBIT_1(sc, RL_EECMD, RL_EEMODE_PROGRAM);
432 }
433
434 static int
435 re_gmii_readreg(device_t dev, int phy, int reg)
436 {
437         struct rl_softc         *sc;
438         u_int32_t               rval;
439         int                     i;
440
441         sc = device_get_softc(dev);
442
443         /* Let the rgephy driver read the GMEDIASTAT register */
444
445         if (reg == RL_GMEDIASTAT) {
446                 rval = CSR_READ_1(sc, RL_GMEDIASTAT);
447                 return (rval);
448         }
449
450         CSR_WRITE_4(sc, RL_PHYAR, reg << 16);
451
452         for (i = 0; i < RL_PHY_TIMEOUT; i++) {
453                 rval = CSR_READ_4(sc, RL_PHYAR);
454                 if (rval & RL_PHYAR_BUSY)
455                         break;
456                 DELAY(25);
457         }
458
459         if (i == RL_PHY_TIMEOUT) {
460                 device_printf(sc->rl_dev, "PHY read failed\n");
461                 return (0);
462         }
463
464         /*
465          * Controller requires a 20us delay to process next MDIO request.
466          */
467         DELAY(20);
468
469         return (rval & RL_PHYAR_PHYDATA);
470 }
471
472 static int
473 re_gmii_writereg(device_t dev, int phy, int reg, int data)
474 {
475         struct rl_softc         *sc;
476         u_int32_t               rval;
477         int                     i;
478
479         sc = device_get_softc(dev);
480
481         CSR_WRITE_4(sc, RL_PHYAR, (reg << 16) |
482             (data & RL_PHYAR_PHYDATA) | RL_PHYAR_BUSY);
483
484         for (i = 0; i < RL_PHY_TIMEOUT; i++) {
485                 rval = CSR_READ_4(sc, RL_PHYAR);
486                 if (!(rval & RL_PHYAR_BUSY))
487                         break;
488                 DELAY(25);
489         }
490
491         if (i == RL_PHY_TIMEOUT) {
492                 device_printf(sc->rl_dev, "PHY write failed\n");
493                 return (0);
494         }
495
496         /*
497          * Controller requires a 20us delay to process next MDIO request.
498          */
499         DELAY(20);
500
501         return (0);
502 }
503
504 static int
505 re_miibus_readreg(device_t dev, int phy, int reg)
506 {
507         struct rl_softc         *sc;
508         u_int16_t               rval = 0;
509         u_int16_t               re8139_reg = 0;
510
511         sc = device_get_softc(dev);
512
513         if (sc->rl_type == RL_8169) {
514                 rval = re_gmii_readreg(dev, phy, reg);
515                 return (rval);
516         }
517
518         switch (reg) {
519         case MII_BMCR:
520                 re8139_reg = RL_BMCR;
521                 break;
522         case MII_BMSR:
523                 re8139_reg = RL_BMSR;
524                 break;
525         case MII_ANAR:
526                 re8139_reg = RL_ANAR;
527                 break;
528         case MII_ANER:
529                 re8139_reg = RL_ANER;
530                 break;
531         case MII_ANLPAR:
532                 re8139_reg = RL_LPAR;
533                 break;
534         case MII_PHYIDR1:
535         case MII_PHYIDR2:
536                 return (0);
537         /*
538          * Allow the rlphy driver to read the media status
539          * register. If we have a link partner which does not
540          * support NWAY, this is the register which will tell
541          * us the results of parallel detection.
542          */
543         case RL_MEDIASTAT:
544                 rval = CSR_READ_1(sc, RL_MEDIASTAT);
545                 return (rval);
546         default:
547                 device_printf(sc->rl_dev, "bad phy register\n");
548                 return (0);
549         }
550         rval = CSR_READ_2(sc, re8139_reg);
551         if (sc->rl_type == RL_8139CPLUS && re8139_reg == RL_BMCR) {
552                 /* 8139C+ has different bit layout. */
553                 rval &= ~(BMCR_LOOP | BMCR_ISO);
554         }
555         return (rval);
556 }
557
558 static int
559 re_miibus_writereg(device_t dev, int phy, int reg, int data)
560 {
561         struct rl_softc         *sc;
562         u_int16_t               re8139_reg = 0;
563         int                     rval = 0;
564
565         sc = device_get_softc(dev);
566
567         if (sc->rl_type == RL_8169) {
568                 rval = re_gmii_writereg(dev, phy, reg, data);
569                 return (rval);
570         }
571
572         switch (reg) {
573         case MII_BMCR:
574                 re8139_reg = RL_BMCR;
575                 if (sc->rl_type == RL_8139CPLUS) {
576                         /* 8139C+ has different bit layout. */
577                         data &= ~(BMCR_LOOP | BMCR_ISO);
578                 }
579                 break;
580         case MII_BMSR:
581                 re8139_reg = RL_BMSR;
582                 break;
583         case MII_ANAR:
584                 re8139_reg = RL_ANAR;
585                 break;
586         case MII_ANER:
587                 re8139_reg = RL_ANER;
588                 break;
589         case MII_ANLPAR:
590                 re8139_reg = RL_LPAR;
591                 break;
592         case MII_PHYIDR1:
593         case MII_PHYIDR2:
594                 return (0);
595                 break;
596         default:
597                 device_printf(sc->rl_dev, "bad phy register\n");
598                 return (0);
599         }
600         CSR_WRITE_2(sc, re8139_reg, data);
601         return (0);
602 }
603
604 static void
605 re_miibus_statchg(device_t dev)
606 {
607         struct rl_softc         *sc;
608         struct ifnet            *ifp;
609         struct mii_data         *mii;
610
611         sc = device_get_softc(dev);
612         mii = device_get_softc(sc->rl_miibus);
613         ifp = sc->rl_ifp;
614         if (mii == NULL || ifp == NULL ||
615             (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
616                 return;
617
618         sc->rl_flags &= ~RL_FLAG_LINK;
619         if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
620             (IFM_ACTIVE | IFM_AVALID)) {
621                 switch (IFM_SUBTYPE(mii->mii_media_active)) {
622                 case IFM_10_T:
623                 case IFM_100_TX:
624                         sc->rl_flags |= RL_FLAG_LINK;
625                         break;
626                 case IFM_1000_T:
627                         if ((sc->rl_flags & RL_FLAG_FASTETHER) != 0)
628                                 break;
629                         sc->rl_flags |= RL_FLAG_LINK;
630                         break;
631                 default:
632                         break;
633                 }
634         }
635         /*
636          * RealTek controllers does not provide any interface to
637          * Tx/Rx MACs for resolved speed, duplex and flow-control
638          * parameters.
639          */
640 }
641
642 /*
643  * Set the RX configuration and 64-bit multicast hash filter.
644  */
645 static void
646 re_set_rxmode(struct rl_softc *sc)
647 {
648         struct ifnet            *ifp;
649         struct ifmultiaddr      *ifma;
650         uint32_t                hashes[2] = { 0, 0 };
651         uint32_t                h, rxfilt;
652
653         RL_LOCK_ASSERT(sc);
654
655         ifp = sc->rl_ifp;
656
657         rxfilt = RL_RXCFG_CONFIG | RL_RXCFG_RX_INDIV | RL_RXCFG_RX_BROAD;
658         if ((sc->rl_flags & RL_FLAG_EARLYOFF) != 0)
659                 rxfilt |= RL_RXCFG_EARLYOFF;
660         else if ((sc->rl_flags & RL_FLAG_EARLYOFFV2) != 0)
661                 rxfilt |= RL_RXCFG_EARLYOFFV2;
662
663         if (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) {
664                 if (ifp->if_flags & IFF_PROMISC)
665                         rxfilt |= RL_RXCFG_RX_ALLPHYS;
666                 /*
667                  * Unlike other hardwares, we have to explicitly set
668                  * RL_RXCFG_RX_MULTI to receive multicast frames in
669                  * promiscuous mode.
670                  */
671                 rxfilt |= RL_RXCFG_RX_MULTI;
672                 hashes[0] = hashes[1] = 0xffffffff;
673                 goto done;
674         }
675
676         if_maddr_rlock(ifp);
677         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
678                 if (ifma->ifma_addr->sa_family != AF_LINK)
679                         continue;
680                 h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
681                     ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
682                 if (h < 32)
683                         hashes[0] |= (1 << h);
684                 else
685                         hashes[1] |= (1 << (h - 32));
686         }
687         if_maddr_runlock(ifp);
688
689         if (hashes[0] != 0 || hashes[1] != 0) {
690                 /*
691                  * For some unfathomable reason, RealTek decided to
692                  * reverse the order of the multicast hash registers
693                  * in the PCI Express parts.  This means we have to
694                  * write the hash pattern in reverse order for those
695                  * devices.
696                  */
697                 if ((sc->rl_flags & RL_FLAG_PCIE) != 0) {
698                         h = bswap32(hashes[0]);
699                         hashes[0] = bswap32(hashes[1]);
700                         hashes[1] = h;
701                 }
702                 rxfilt |= RL_RXCFG_RX_MULTI;
703         }
704
705         if  (sc->rl_hwrev->rl_rev == RL_HWREV_8168F) {
706                 /* Disable multicast filtering due to silicon bug. */
707                 hashes[0] = 0xffffffff;
708                 hashes[1] = 0xffffffff;
709         }
710
711 done:
712         CSR_WRITE_4(sc, RL_MAR0, hashes[0]);
713         CSR_WRITE_4(sc, RL_MAR4, hashes[1]);
714         CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
715 }
716
717 static void
718 re_reset(struct rl_softc *sc)
719 {
720         int                     i;
721
722         RL_LOCK_ASSERT(sc);
723
724         CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET);
725
726         for (i = 0; i < RL_TIMEOUT; i++) {
727                 DELAY(10);
728                 if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET))
729                         break;
730         }
731         if (i == RL_TIMEOUT)
732                 device_printf(sc->rl_dev, "reset never completed!\n");
733
734         if ((sc->rl_flags & RL_FLAG_MACRESET) != 0)
735                 CSR_WRITE_1(sc, 0x82, 1);
736         if (sc->rl_hwrev->rl_rev == RL_HWREV_8169S)
737                 re_gmii_writereg(sc->rl_dev, 1, 0x0b, 0);
738 }
739
740 #ifdef RE_DIAG
741
742 /*
743  * The following routine is designed to test for a defect on some
744  * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
745  * lines connected to the bus, however for a 32-bit only card, they
746  * should be pulled high. The result of this defect is that the
747  * NIC will not work right if you plug it into a 64-bit slot: DMA
748  * operations will be done with 64-bit transfers, which will fail
749  * because the 64-bit data lines aren't connected.
750  *
751  * There's no way to work around this (short of talking a soldering
752  * iron to the board), however we can detect it. The method we use
753  * here is to put the NIC into digital loopback mode, set the receiver
754  * to promiscuous mode, and then try to send a frame. We then compare
755  * the frame data we sent to what was received. If the data matches,
756  * then the NIC is working correctly, otherwise we know the user has
757  * a defective NIC which has been mistakenly plugged into a 64-bit PCI
758  * slot. In the latter case, there's no way the NIC can work correctly,
759  * so we print out a message on the console and abort the device attach.
760  */
761
762 static int
763 re_diag(struct rl_softc *sc)
764 {
765         struct ifnet            *ifp = sc->rl_ifp;
766         struct mbuf             *m0;
767         struct ether_header     *eh;
768         struct rl_desc          *cur_rx;
769         u_int16_t               status;
770         u_int32_t               rxstat;
771         int                     total_len, i, error = 0, phyaddr;
772         u_int8_t                dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
773         u_int8_t                src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
774
775         /* Allocate a single mbuf */
776         MGETHDR(m0, M_NOWAIT, MT_DATA);
777         if (m0 == NULL)
778                 return (ENOBUFS);
779
780         RL_LOCK(sc);
781
782         /*
783          * Initialize the NIC in test mode. This sets the chip up
784          * so that it can send and receive frames, but performs the
785          * following special functions:
786          * - Puts receiver in promiscuous mode
787          * - Enables digital loopback mode
788          * - Leaves interrupts turned off
789          */
790
791         ifp->if_flags |= IFF_PROMISC;
792         sc->rl_testmode = 1;
793         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
794         re_init_locked(sc);
795         sc->rl_flags |= RL_FLAG_LINK;
796         if (sc->rl_type == RL_8169)
797                 phyaddr = 1;
798         else
799                 phyaddr = 0;
800
801         re_miibus_writereg(sc->rl_dev, phyaddr, MII_BMCR, BMCR_RESET);
802         for (i = 0; i < RL_TIMEOUT; i++) {
803                 status = re_miibus_readreg(sc->rl_dev, phyaddr, MII_BMCR);
804                 if (!(status & BMCR_RESET))
805                         break;
806         }
807
808         re_miibus_writereg(sc->rl_dev, phyaddr, MII_BMCR, BMCR_LOOP);
809         CSR_WRITE_2(sc, RL_ISR, RL_INTRS);
810
811         DELAY(100000);
812
813         /* Put some data in the mbuf */
814
815         eh = mtod(m0, struct ether_header *);
816         bcopy ((char *)&dst, eh->ether_dhost, ETHER_ADDR_LEN);
817         bcopy ((char *)&src, eh->ether_shost, ETHER_ADDR_LEN);
818         eh->ether_type = htons(ETHERTYPE_IP);
819         m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
820
821         /*
822          * Queue the packet, start transmission.
823          * Note: IF_HANDOFF() ultimately calls re_start() for us.
824          */
825
826         CSR_WRITE_2(sc, RL_ISR, 0xFFFF);
827         RL_UNLOCK(sc);
828         /* XXX: re_diag must not be called when in ALTQ mode */
829         IF_HANDOFF(&ifp->if_snd, m0, ifp);
830         RL_LOCK(sc);
831         m0 = NULL;
832
833         /* Wait for it to propagate through the chip */
834
835         DELAY(100000);
836         for (i = 0; i < RL_TIMEOUT; i++) {
837                 status = CSR_READ_2(sc, RL_ISR);
838                 CSR_WRITE_2(sc, RL_ISR, status);
839                 if ((status & (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK)) ==
840                     (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK))
841                         break;
842                 DELAY(10);
843         }
844
845         if (i == RL_TIMEOUT) {
846                 device_printf(sc->rl_dev,
847                     "diagnostic failed, failed to receive packet in"
848                     " loopback mode\n");
849                 error = EIO;
850                 goto done;
851         }
852
853         /*
854          * The packet should have been dumped into the first
855          * entry in the RX DMA ring. Grab it from there.
856          */
857
858         bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
859             sc->rl_ldata.rl_rx_list_map,
860             BUS_DMASYNC_POSTREAD);
861         bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag,
862             sc->rl_ldata.rl_rx_desc[0].rx_dmamap,
863             BUS_DMASYNC_POSTREAD);
864         bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag,
865             sc->rl_ldata.rl_rx_desc[0].rx_dmamap);
866
867         m0 = sc->rl_ldata.rl_rx_desc[0].rx_m;
868         sc->rl_ldata.rl_rx_desc[0].rx_m = NULL;
869         eh = mtod(m0, struct ether_header *);
870
871         cur_rx = &sc->rl_ldata.rl_rx_list[0];
872         total_len = RL_RXBYTES(cur_rx);
873         rxstat = le32toh(cur_rx->rl_cmdstat);
874
875         if (total_len != ETHER_MIN_LEN) {
876                 device_printf(sc->rl_dev,
877                     "diagnostic failed, received short packet\n");
878                 error = EIO;
879                 goto done;
880         }
881
882         /* Test that the received packet data matches what we sent. */
883
884         if (bcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
885             bcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
886             ntohs(eh->ether_type) != ETHERTYPE_IP) {
887                 device_printf(sc->rl_dev, "WARNING, DMA FAILURE!\n");
888                 device_printf(sc->rl_dev, "expected TX data: %6D/%6D/0x%x\n",
889                     dst, ":", src, ":", ETHERTYPE_IP);
890                 device_printf(sc->rl_dev, "received RX data: %6D/%6D/0x%x\n",
891                     eh->ether_dhost, ":", eh->ether_shost, ":",
892                     ntohs(eh->ether_type));
893                 device_printf(sc->rl_dev, "You may have a defective 32-bit "
894                     "NIC plugged into a 64-bit PCI slot.\n");
895                 device_printf(sc->rl_dev, "Please re-install the NIC in a "
896                     "32-bit slot for proper operation.\n");
897                 device_printf(sc->rl_dev, "Read the re(4) man page for more "
898                     "details.\n");
899                 error = EIO;
900         }
901
902 done:
903         /* Turn interface off, release resources */
904
905         sc->rl_testmode = 0;
906         sc->rl_flags &= ~RL_FLAG_LINK;
907         ifp->if_flags &= ~IFF_PROMISC;
908         re_stop(sc);
909         if (m0 != NULL)
910                 m_freem(m0);
911
912         RL_UNLOCK(sc);
913
914         return (error);
915 }
916
917 #endif
918
919 /*
920  * Probe for a RealTek 8139C+/8169/8110 chip. Check the PCI vendor and device
921  * IDs against our list and return a device name if we find a match.
922  */
923 static int
924 re_probe(device_t dev)
925 {
926         const struct rl_type    *t;
927         uint16_t                devid, vendor;
928         uint16_t                revid, sdevid;
929         int                     i;
930
931         vendor = pci_get_vendor(dev);
932         devid = pci_get_device(dev);
933         revid = pci_get_revid(dev);
934         sdevid = pci_get_subdevice(dev);
935
936         if (vendor == LINKSYS_VENDORID && devid == LINKSYS_DEVICEID_EG1032) {
937                 if (sdevid != LINKSYS_SUBDEVICE_EG1032_REV3) {
938                         /*
939                          * Only attach to rev. 3 of the Linksys EG1032 adapter.
940                          * Rev. 2 is supported by sk(4).
941                          */
942                         return (ENXIO);
943                 }
944         }
945
946         if (vendor == RT_VENDORID && devid == RT_DEVICEID_8139) {
947                 if (revid != 0x20) {
948                         /* 8139, let rl(4) take care of this device. */
949                         return (ENXIO);
950                 }
951         }
952
953         t = re_devs;
954         for (i = 0; i < sizeof(re_devs) / sizeof(re_devs[0]); i++, t++) {
955                 if (vendor == t->rl_vid && devid == t->rl_did) {
956                         device_set_desc(dev, t->rl_name);
957                         return (BUS_PROBE_DEFAULT);
958                 }
959         }
960
961         return (ENXIO);
962 }
963
964 /*
965  * Map a single buffer address.
966  */
967
968 static void
969 re_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
970 {
971         bus_addr_t              *addr;
972
973         if (error)
974                 return;
975
976         KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
977         addr = arg;
978         *addr = segs->ds_addr;
979 }
980
981 static int
982 re_allocmem(device_t dev, struct rl_softc *sc)
983 {
984         bus_addr_t              lowaddr;
985         bus_size_t              rx_list_size, tx_list_size;
986         int                     error;
987         int                     i;
988
989         rx_list_size = sc->rl_ldata.rl_rx_desc_cnt * sizeof(struct rl_desc);
990         tx_list_size = sc->rl_ldata.rl_tx_desc_cnt * sizeof(struct rl_desc);
991
992         /*
993          * Allocate the parent bus DMA tag appropriate for PCI.
994          * In order to use DAC, RL_CPLUSCMD_PCI_DAC bit of RL_CPLUS_CMD
995          * register should be set. However some RealTek chips are known
996          * to be buggy on DAC handling, therefore disable DAC by limiting
997          * DMA address space to 32bit. PCIe variants of RealTek chips
998          * may not have the limitation.
999          */
1000         lowaddr = BUS_SPACE_MAXADDR;
1001         if ((sc->rl_flags & RL_FLAG_PCIE) == 0)
1002                 lowaddr = BUS_SPACE_MAXADDR_32BIT;
1003         error = bus_dma_tag_create(bus_get_dma_tag(dev), 1, 0,
1004             lowaddr, BUS_SPACE_MAXADDR, NULL, NULL,
1005             BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0,
1006             NULL, NULL, &sc->rl_parent_tag);
1007         if (error) {
1008                 device_printf(dev, "could not allocate parent DMA tag\n");
1009                 return (error);
1010         }
1011
1012         /*
1013          * Allocate map for TX mbufs.
1014          */
1015         error = bus_dma_tag_create(sc->rl_parent_tag, 1, 0,
1016             BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
1017             NULL, MCLBYTES * RL_NTXSEGS, RL_NTXSEGS, 4096, 0,
1018             NULL, NULL, &sc->rl_ldata.rl_tx_mtag);
1019         if (error) {
1020                 device_printf(dev, "could not allocate TX DMA tag\n");
1021                 return (error);
1022         }
1023
1024         /*
1025          * Allocate map for RX mbufs.
1026          */
1027
1028         if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0) {
1029                 error = bus_dma_tag_create(sc->rl_parent_tag, sizeof(uint64_t),
1030                     0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1031                     MJUM9BYTES, 1, MJUM9BYTES, 0, NULL, NULL,
1032                     &sc->rl_ldata.rl_jrx_mtag);
1033                 if (error) {
1034                         device_printf(dev,
1035                             "could not allocate jumbo RX DMA tag\n");
1036                         return (error);
1037                 }
1038         }
1039         error = bus_dma_tag_create(sc->rl_parent_tag, sizeof(uint64_t), 0,
1040             BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1041             MCLBYTES, 1, MCLBYTES, 0, NULL, NULL, &sc->rl_ldata.rl_rx_mtag);
1042         if (error) {
1043                 device_printf(dev, "could not allocate RX DMA tag\n");
1044                 return (error);
1045         }
1046
1047         /*
1048          * Allocate map for TX descriptor list.
1049          */
1050         error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
1051             0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1052             NULL, tx_list_size, 1, tx_list_size, 0,
1053             NULL, NULL, &sc->rl_ldata.rl_tx_list_tag);
1054         if (error) {
1055                 device_printf(dev, "could not allocate TX DMA ring tag\n");
1056                 return (error);
1057         }
1058
1059         /* Allocate DMA'able memory for the TX ring */
1060
1061         error = bus_dmamem_alloc(sc->rl_ldata.rl_tx_list_tag,
1062             (void **)&sc->rl_ldata.rl_tx_list,
1063             BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
1064             &sc->rl_ldata.rl_tx_list_map);
1065         if (error) {
1066                 device_printf(dev, "could not allocate TX DMA ring\n");
1067                 return (error);
1068         }
1069
1070         /* Load the map for the TX ring. */
1071
1072         sc->rl_ldata.rl_tx_list_addr = 0;
1073         error = bus_dmamap_load(sc->rl_ldata.rl_tx_list_tag,
1074              sc->rl_ldata.rl_tx_list_map, sc->rl_ldata.rl_tx_list,
1075              tx_list_size, re_dma_map_addr,
1076              &sc->rl_ldata.rl_tx_list_addr, BUS_DMA_NOWAIT);
1077         if (error != 0 || sc->rl_ldata.rl_tx_list_addr == 0) {
1078                 device_printf(dev, "could not load TX DMA ring\n");
1079                 return (ENOMEM);
1080         }
1081
1082         /* Create DMA maps for TX buffers */
1083
1084         for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) {
1085                 error = bus_dmamap_create(sc->rl_ldata.rl_tx_mtag, 0,
1086                     &sc->rl_ldata.rl_tx_desc[i].tx_dmamap);
1087                 if (error) {
1088                         device_printf(dev, "could not create DMA map for TX\n");
1089                         return (error);
1090                 }
1091         }
1092
1093         /*
1094          * Allocate map for RX descriptor list.
1095          */
1096         error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
1097             0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1098             NULL, rx_list_size, 1, rx_list_size, 0,
1099             NULL, NULL, &sc->rl_ldata.rl_rx_list_tag);
1100         if (error) {
1101                 device_printf(dev, "could not create RX DMA ring tag\n");
1102                 return (error);
1103         }
1104
1105         /* Allocate DMA'able memory for the RX ring */
1106
1107         error = bus_dmamem_alloc(sc->rl_ldata.rl_rx_list_tag,
1108             (void **)&sc->rl_ldata.rl_rx_list,
1109             BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
1110             &sc->rl_ldata.rl_rx_list_map);
1111         if (error) {
1112                 device_printf(dev, "could not allocate RX DMA ring\n");
1113                 return (error);
1114         }
1115
1116         /* Load the map for the RX ring. */
1117
1118         sc->rl_ldata.rl_rx_list_addr = 0;
1119         error = bus_dmamap_load(sc->rl_ldata.rl_rx_list_tag,
1120              sc->rl_ldata.rl_rx_list_map, sc->rl_ldata.rl_rx_list,
1121              rx_list_size, re_dma_map_addr,
1122              &sc->rl_ldata.rl_rx_list_addr, BUS_DMA_NOWAIT);
1123         if (error != 0 || sc->rl_ldata.rl_rx_list_addr == 0) {
1124                 device_printf(dev, "could not load RX DMA ring\n");
1125                 return (ENOMEM);
1126         }
1127
1128         /* Create DMA maps for RX buffers */
1129
1130         if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0) {
1131                 error = bus_dmamap_create(sc->rl_ldata.rl_jrx_mtag, 0,
1132                     &sc->rl_ldata.rl_jrx_sparemap);
1133                 if (error) {
1134                         device_printf(dev,
1135                             "could not create spare DMA map for jumbo RX\n");
1136                         return (error);
1137                 }
1138                 for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
1139                         error = bus_dmamap_create(sc->rl_ldata.rl_jrx_mtag, 0,
1140                             &sc->rl_ldata.rl_jrx_desc[i].rx_dmamap);
1141                         if (error) {
1142                                 device_printf(dev,
1143                                     "could not create DMA map for jumbo RX\n");
1144                                 return (error);
1145                         }
1146                 }
1147         }
1148         error = bus_dmamap_create(sc->rl_ldata.rl_rx_mtag, 0,
1149             &sc->rl_ldata.rl_rx_sparemap);
1150         if (error) {
1151                 device_printf(dev, "could not create spare DMA map for RX\n");
1152                 return (error);
1153         }
1154         for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
1155                 error = bus_dmamap_create(sc->rl_ldata.rl_rx_mtag, 0,
1156                     &sc->rl_ldata.rl_rx_desc[i].rx_dmamap);
1157                 if (error) {
1158                         device_printf(dev, "could not create DMA map for RX\n");
1159                         return (error);
1160                 }
1161         }
1162
1163         /* Create DMA map for statistics. */
1164         error = bus_dma_tag_create(sc->rl_parent_tag, RL_DUMP_ALIGN, 0,
1165             BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1166             sizeof(struct rl_stats), 1, sizeof(struct rl_stats), 0, NULL, NULL,
1167             &sc->rl_ldata.rl_stag);
1168         if (error) {
1169                 device_printf(dev, "could not create statistics DMA tag\n");
1170                 return (error);
1171         }
1172         /* Allocate DMA'able memory for statistics. */
1173         error = bus_dmamem_alloc(sc->rl_ldata.rl_stag,
1174             (void **)&sc->rl_ldata.rl_stats,
1175             BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
1176             &sc->rl_ldata.rl_smap);
1177         if (error) {
1178                 device_printf(dev,
1179                     "could not allocate statistics DMA memory\n");
1180                 return (error);
1181         }
1182         /* Load the map for statistics. */
1183         sc->rl_ldata.rl_stats_addr = 0;
1184         error = bus_dmamap_load(sc->rl_ldata.rl_stag, sc->rl_ldata.rl_smap,
1185             sc->rl_ldata.rl_stats, sizeof(struct rl_stats), re_dma_map_addr,
1186              &sc->rl_ldata.rl_stats_addr, BUS_DMA_NOWAIT);
1187         if (error != 0 || sc->rl_ldata.rl_stats_addr == 0) {
1188                 device_printf(dev, "could not load statistics DMA memory\n");
1189                 return (ENOMEM);
1190         }
1191
1192         return (0);
1193 }
1194
1195 /*
1196  * Attach the interface. Allocate softc structures, do ifmedia
1197  * setup and ethernet/BPF attach.
1198  */
1199 static int
1200 re_attach(device_t dev)
1201 {
1202         u_char                  eaddr[ETHER_ADDR_LEN];
1203         u_int16_t               as[ETHER_ADDR_LEN / 2];
1204         struct rl_softc         *sc;
1205         struct ifnet            *ifp;
1206         const struct rl_hwrev   *hw_rev;
1207         u_int32_t               cap, ctl;
1208         int                     hwrev;
1209         u_int16_t               devid, re_did = 0;
1210         int                     error = 0, i, phy, rid;
1211         int                     msic, msixc, reg;
1212         uint8_t                 cfg;
1213
1214         sc = device_get_softc(dev);
1215         sc->rl_dev = dev;
1216
1217         mtx_init(&sc->rl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1218             MTX_DEF);
1219         callout_init_mtx(&sc->rl_stat_callout, &sc->rl_mtx, 0);
1220
1221         /*
1222          * Map control/status registers.
1223          */
1224         pci_enable_busmaster(dev);
1225
1226         devid = pci_get_device(dev);
1227         /*
1228          * Prefer memory space register mapping over IO space.
1229          * Because RTL8169SC does not seem to work when memory mapping
1230          * is used always activate io mapping.
1231          */
1232         if (devid == RT_DEVICEID_8169SC)
1233                 prefer_iomap = 1;
1234         if (prefer_iomap == 0) {
1235                 sc->rl_res_id = PCIR_BAR(1);
1236                 sc->rl_res_type = SYS_RES_MEMORY;
1237                 /* RTL8168/8101E seems to use different BARs. */
1238                 if (devid == RT_DEVICEID_8168 || devid == RT_DEVICEID_8101E)
1239                         sc->rl_res_id = PCIR_BAR(2);
1240         } else {
1241                 sc->rl_res_id = PCIR_BAR(0);
1242                 sc->rl_res_type = SYS_RES_IOPORT;
1243         }
1244         sc->rl_res = bus_alloc_resource_any(dev, sc->rl_res_type,
1245             &sc->rl_res_id, RF_ACTIVE);
1246         if (sc->rl_res == NULL && prefer_iomap == 0) {
1247                 sc->rl_res_id = PCIR_BAR(0);
1248                 sc->rl_res_type = SYS_RES_IOPORT;
1249                 sc->rl_res = bus_alloc_resource_any(dev, sc->rl_res_type,
1250                     &sc->rl_res_id, RF_ACTIVE);
1251         }
1252         if (sc->rl_res == NULL) {
1253                 device_printf(dev, "couldn't map ports/memory\n");
1254                 error = ENXIO;
1255                 goto fail;
1256         }
1257
1258         sc->rl_btag = rman_get_bustag(sc->rl_res);
1259         sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
1260
1261         msic = pci_msi_count(dev);
1262         msixc = pci_msix_count(dev);
1263         if (pci_find_cap(dev, PCIY_EXPRESS, &reg) == 0) {
1264                 sc->rl_flags |= RL_FLAG_PCIE;
1265                 sc->rl_expcap = reg;
1266         }
1267         if (bootverbose) {
1268                 device_printf(dev, "MSI count : %d\n", msic);
1269                 device_printf(dev, "MSI-X count : %d\n", msixc);
1270         }
1271         if (msix_disable > 0)
1272                 msixc = 0;
1273         if (msi_disable > 0)
1274                 msic = 0;
1275         /* Prefer MSI-X to MSI. */
1276         if (msixc > 0) {
1277                 msixc = RL_MSI_MESSAGES;
1278                 rid = PCIR_BAR(4);
1279                 sc->rl_res_pba = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1280                     &rid, RF_ACTIVE);
1281                 if (sc->rl_res_pba == NULL) {
1282                         device_printf(sc->rl_dev,
1283                             "could not allocate MSI-X PBA resource\n");
1284                 }
1285                 if (sc->rl_res_pba != NULL &&
1286                     pci_alloc_msix(dev, &msixc) == 0) {
1287                         if (msixc == RL_MSI_MESSAGES) {
1288                                 device_printf(dev, "Using %d MSI-X message\n",
1289                                     msixc);
1290                                 sc->rl_flags |= RL_FLAG_MSIX;
1291                         } else
1292                                 pci_release_msi(dev);
1293                 }
1294                 if ((sc->rl_flags & RL_FLAG_MSIX) == 0) {
1295                         if (sc->rl_res_pba != NULL)
1296                                 bus_release_resource(dev, SYS_RES_MEMORY, rid,
1297                                     sc->rl_res_pba);
1298                         sc->rl_res_pba = NULL;
1299                         msixc = 0;
1300                 }
1301         }
1302         /* Prefer MSI to INTx. */
1303         if (msixc == 0 && msic > 0) {
1304                 msic = RL_MSI_MESSAGES;
1305                 if (pci_alloc_msi(dev, &msic) == 0) {
1306                         if (msic == RL_MSI_MESSAGES) {
1307                                 device_printf(dev, "Using %d MSI message\n",
1308                                     msic);
1309                                 sc->rl_flags |= RL_FLAG_MSI;
1310                                 /* Explicitly set MSI enable bit. */
1311                                 CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
1312                                 cfg = CSR_READ_1(sc, RL_CFG2);
1313                                 cfg |= RL_CFG2_MSI;
1314                                 CSR_WRITE_1(sc, RL_CFG2, cfg);
1315                                 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
1316                         } else
1317                                 pci_release_msi(dev);
1318                 }
1319                 if ((sc->rl_flags & RL_FLAG_MSI) == 0)
1320                         msic = 0;
1321         }
1322
1323         /* Allocate interrupt */
1324         if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) == 0) {
1325                 rid = 0;
1326                 sc->rl_irq[0] = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1327                     RF_SHAREABLE | RF_ACTIVE);
1328                 if (sc->rl_irq[0] == NULL) {
1329                         device_printf(dev, "couldn't allocate IRQ resources\n");
1330                         error = ENXIO;
1331                         goto fail;
1332                 }
1333         } else {
1334                 for (i = 0, rid = 1; i < RL_MSI_MESSAGES; i++, rid++) {
1335                         sc->rl_irq[i] = bus_alloc_resource_any(dev,
1336                             SYS_RES_IRQ, &rid, RF_ACTIVE);
1337                         if (sc->rl_irq[i] == NULL) {
1338                                 device_printf(dev,
1339                                     "couldn't allocate IRQ resources for "
1340                                     "message %d\n", rid);
1341                                 error = ENXIO;
1342                                 goto fail;
1343                         }
1344                 }
1345         }
1346
1347         if ((sc->rl_flags & RL_FLAG_MSI) == 0) {
1348                 CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
1349                 cfg = CSR_READ_1(sc, RL_CFG2);
1350                 if ((cfg & RL_CFG2_MSI) != 0) {
1351                         device_printf(dev, "turning off MSI enable bit.\n");
1352                         cfg &= ~RL_CFG2_MSI;
1353                         CSR_WRITE_1(sc, RL_CFG2, cfg);
1354                 }
1355                 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
1356         }
1357
1358         /* Disable ASPM L0S/L1. */
1359         if (sc->rl_expcap != 0) {
1360                 cap = pci_read_config(dev, sc->rl_expcap +
1361                     PCIER_LINK_CAP, 2);
1362                 if ((cap & PCIEM_LINK_CAP_ASPM) != 0) {
1363                         ctl = pci_read_config(dev, sc->rl_expcap +
1364                             PCIER_LINK_CTL, 2);
1365                         if ((ctl & PCIEM_LINK_CTL_ASPMC) != 0) {
1366                                 ctl &= ~PCIEM_LINK_CTL_ASPMC;
1367                                 pci_write_config(dev, sc->rl_expcap +
1368                                     PCIER_LINK_CTL, ctl, 2);
1369                                 device_printf(dev, "ASPM disabled\n");
1370                         }
1371                 } else
1372                         device_printf(dev, "no ASPM capability\n");
1373         }
1374
1375         hw_rev = re_hwrevs;
1376         hwrev = CSR_READ_4(sc, RL_TXCFG);
1377         switch (hwrev & 0x70000000) {
1378         case 0x00000000:
1379         case 0x10000000:
1380                 device_printf(dev, "Chip rev. 0x%08x\n", hwrev & 0xfc800000);
1381                 hwrev &= (RL_TXCFG_HWREV | 0x80000000);
1382                 break;
1383         default:
1384                 device_printf(dev, "Chip rev. 0x%08x\n", hwrev & 0x7c800000);
1385                 sc->rl_macrev = hwrev & 0x00700000;
1386                 hwrev &= RL_TXCFG_HWREV;
1387                 break;
1388         }
1389         device_printf(dev, "MAC rev. 0x%08x\n", sc->rl_macrev);
1390         while (hw_rev->rl_desc != NULL) {
1391                 if (hw_rev->rl_rev == hwrev) {
1392                         sc->rl_type = hw_rev->rl_type;
1393                         sc->rl_hwrev = hw_rev;
1394                         break;
1395                 }
1396                 hw_rev++;
1397         }
1398         if (hw_rev->rl_desc == NULL) {
1399                 device_printf(dev, "Unknown H/W revision: 0x%08x\n", hwrev);
1400                 error = ENXIO;
1401                 goto fail;
1402         }
1403
1404         switch (hw_rev->rl_rev) {
1405         case RL_HWREV_8139CPLUS:
1406                 sc->rl_flags |= RL_FLAG_FASTETHER | RL_FLAG_AUTOPAD;
1407                 break;
1408         case RL_HWREV_8100E:
1409         case RL_HWREV_8101E:
1410                 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_FASTETHER;
1411                 break;
1412         case RL_HWREV_8102E:
1413         case RL_HWREV_8102EL:
1414         case RL_HWREV_8102EL_SPIN1:
1415                 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR | RL_FLAG_DESCV2 |
1416                     RL_FLAG_MACSTAT | RL_FLAG_FASTETHER | RL_FLAG_CMDSTOP |
1417                     RL_FLAG_AUTOPAD;
1418                 break;
1419         case RL_HWREV_8103E:
1420                 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR | RL_FLAG_DESCV2 |
1421                     RL_FLAG_MACSTAT | RL_FLAG_FASTETHER | RL_FLAG_CMDSTOP |
1422                     RL_FLAG_AUTOPAD | RL_FLAG_MACSLEEP;
1423                 break;
1424         case RL_HWREV_8401E:
1425         case RL_HWREV_8105E:
1426         case RL_HWREV_8105E_SPIN1:
1427         case RL_HWREV_8106E:
1428                 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PHYWAKE_PM |
1429                     RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT |
1430                     RL_FLAG_FASTETHER | RL_FLAG_CMDSTOP | RL_FLAG_AUTOPAD;
1431                 break;
1432         case RL_HWREV_8402:
1433                 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PHYWAKE_PM |
1434                     RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT |
1435                     RL_FLAG_FASTETHER | RL_FLAG_CMDSTOP | RL_FLAG_AUTOPAD |
1436                     RL_FLAG_CMDSTOP_WAIT_TXQ;
1437                 break;
1438         case RL_HWREV_8168B_SPIN1:
1439         case RL_HWREV_8168B_SPIN2:
1440                 sc->rl_flags |= RL_FLAG_WOLRXENB;
1441                 /* FALLTHROUGH */
1442         case RL_HWREV_8168B_SPIN3:
1443                 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_MACSTAT;
1444                 break;
1445         case RL_HWREV_8168C_SPIN2:
1446                 sc->rl_flags |= RL_FLAG_MACSLEEP;
1447                 /* FALLTHROUGH */
1448         case RL_HWREV_8168C:
1449                 if (sc->rl_macrev == 0x00200000)
1450                         sc->rl_flags |= RL_FLAG_MACSLEEP;
1451                 /* FALLTHROUGH */
1452         case RL_HWREV_8168CP:
1453                 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR |
1454                     RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | RL_FLAG_CMDSTOP |
1455                     RL_FLAG_AUTOPAD | RL_FLAG_JUMBOV2 | RL_FLAG_WOL_MANLINK;
1456                 break;
1457         case RL_HWREV_8168D:
1458                 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PHYWAKE_PM |
1459                     RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT |
1460                     RL_FLAG_CMDSTOP | RL_FLAG_AUTOPAD | RL_FLAG_JUMBOV2 |
1461                     RL_FLAG_WOL_MANLINK;
1462                 break;
1463         case RL_HWREV_8168DP:
1464                 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR |
1465                     RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | RL_FLAG_AUTOPAD |
1466                     RL_FLAG_JUMBOV2 | RL_FLAG_WAIT_TXPOLL | RL_FLAG_WOL_MANLINK;
1467                 break;
1468         case RL_HWREV_8168E:
1469                 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PHYWAKE_PM |
1470                     RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT |
1471                     RL_FLAG_CMDSTOP | RL_FLAG_AUTOPAD | RL_FLAG_JUMBOV2 |
1472                     RL_FLAG_WOL_MANLINK;
1473                 break;
1474         case RL_HWREV_8168E_VL:
1475         case RL_HWREV_8168F:
1476                 sc->rl_flags |= RL_FLAG_EARLYOFF;
1477                 /* FALLTHROUGH */
1478         case RL_HWREV_8411:
1479                 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR |
1480                     RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | RL_FLAG_CMDSTOP |
1481                     RL_FLAG_AUTOPAD | RL_FLAG_JUMBOV2 |
1482                     RL_FLAG_CMDSTOP_WAIT_TXQ | RL_FLAG_WOL_MANLINK;
1483                 break;
1484         case RL_HWREV_8168EP:
1485         case RL_HWREV_8168G:
1486         case RL_HWREV_8411B:
1487                 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR |
1488                     RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | RL_FLAG_CMDSTOP |
1489                     RL_FLAG_AUTOPAD | RL_FLAG_JUMBOV2 |
1490                     RL_FLAG_CMDSTOP_WAIT_TXQ | RL_FLAG_WOL_MANLINK |
1491                     RL_FLAG_EARLYOFFV2 | RL_FLAG_RXDV_GATED;
1492                 break;
1493         case RL_HWREV_8168GU:
1494                 if (pci_get_device(dev) == RT_DEVICEID_8101E) {
1495                         /* RTL8106EUS */
1496                         sc->rl_flags |= RL_FLAG_FASTETHER;
1497                 } else
1498                         sc->rl_flags |= RL_FLAG_JUMBOV2 | RL_FLAG_WOL_MANLINK;
1499
1500                 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR |
1501                     RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | RL_FLAG_CMDSTOP |
1502                     RL_FLAG_AUTOPAD | RL_FLAG_CMDSTOP_WAIT_TXQ |
1503                     RL_FLAG_EARLYOFFV2 | RL_FLAG_RXDV_GATED;
1504                 break;
1505         case RL_HWREV_8169_8110SB:
1506         case RL_HWREV_8169_8110SBL:
1507         case RL_HWREV_8169_8110SC:
1508         case RL_HWREV_8169_8110SCE:
1509                 sc->rl_flags |= RL_FLAG_PHYWAKE;
1510                 /* FALLTHROUGH */
1511         case RL_HWREV_8169:
1512         case RL_HWREV_8169S:
1513         case RL_HWREV_8110S:
1514                 sc->rl_flags |= RL_FLAG_MACRESET;
1515                 break;
1516         default:
1517                 break;
1518         }
1519
1520         if (sc->rl_hwrev->rl_rev == RL_HWREV_8139CPLUS) {
1521                 sc->rl_cfg0 = RL_8139_CFG0;
1522                 sc->rl_cfg1 = RL_8139_CFG1;
1523                 sc->rl_cfg2 = 0;
1524                 sc->rl_cfg3 = RL_8139_CFG3;
1525                 sc->rl_cfg4 = RL_8139_CFG4;
1526                 sc->rl_cfg5 = RL_8139_CFG5;
1527         } else {
1528                 sc->rl_cfg0 = RL_CFG0;
1529                 sc->rl_cfg1 = RL_CFG1;
1530                 sc->rl_cfg2 = RL_CFG2;
1531                 sc->rl_cfg3 = RL_CFG3;
1532                 sc->rl_cfg4 = RL_CFG4;
1533                 sc->rl_cfg5 = RL_CFG5;
1534         }
1535
1536         /* Reset the adapter. */
1537         RL_LOCK(sc);
1538         re_reset(sc);
1539         RL_UNLOCK(sc);
1540
1541         /* Enable PME. */
1542         CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
1543         cfg = CSR_READ_1(sc, sc->rl_cfg1);
1544         cfg |= RL_CFG1_PME;
1545         CSR_WRITE_1(sc, sc->rl_cfg1, cfg);
1546         cfg = CSR_READ_1(sc, sc->rl_cfg5);
1547         cfg &= RL_CFG5_PME_STS;
1548         CSR_WRITE_1(sc, sc->rl_cfg5, cfg);
1549         CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
1550
1551         if ((sc->rl_flags & RL_FLAG_PAR) != 0) {
1552                 /*
1553                  * XXX Should have a better way to extract station
1554                  * address from EEPROM.
1555                  */
1556                 for (i = 0; i < ETHER_ADDR_LEN; i++)
1557                         eaddr[i] = CSR_READ_1(sc, RL_IDR0 + i);
1558         } else {
1559                 sc->rl_eewidth = RL_9356_ADDR_LEN;
1560                 re_read_eeprom(sc, (caddr_t)&re_did, 0, 1);
1561                 if (re_did != 0x8129)
1562                         sc->rl_eewidth = RL_9346_ADDR_LEN;
1563
1564                 /*
1565                  * Get station address from the EEPROM.
1566                  */
1567                 re_read_eeprom(sc, (caddr_t)as, RL_EE_EADDR, 3);
1568                 for (i = 0; i < ETHER_ADDR_LEN / 2; i++)
1569                         as[i] = le16toh(as[i]);
1570                 bcopy(as, eaddr, ETHER_ADDR_LEN);
1571         }
1572
1573         if (sc->rl_type == RL_8169) {
1574                 /* Set RX length mask and number of descriptors. */
1575                 sc->rl_rxlenmask = RL_RDESC_STAT_GFRAGLEN;
1576                 sc->rl_txstart = RL_GTXSTART;
1577                 sc->rl_ldata.rl_tx_desc_cnt = RL_8169_TX_DESC_CNT;
1578                 sc->rl_ldata.rl_rx_desc_cnt = RL_8169_RX_DESC_CNT;
1579         } else {
1580                 /* Set RX length mask and number of descriptors. */
1581                 sc->rl_rxlenmask = RL_RDESC_STAT_FRAGLEN;
1582                 sc->rl_txstart = RL_TXSTART;
1583                 sc->rl_ldata.rl_tx_desc_cnt = RL_8139_TX_DESC_CNT;
1584                 sc->rl_ldata.rl_rx_desc_cnt = RL_8139_RX_DESC_CNT;
1585         }
1586
1587         error = re_allocmem(dev, sc);
1588         if (error)
1589                 goto fail;
1590         re_add_sysctls(sc);
1591
1592         ifp = sc->rl_ifp = if_alloc(IFT_ETHER);
1593         if (ifp == NULL) {
1594                 device_printf(dev, "can not if_alloc()\n");
1595                 error = ENOSPC;
1596                 goto fail;
1597         }
1598
1599         /* Take controller out of deep sleep mode. */
1600         if ((sc->rl_flags & RL_FLAG_MACSLEEP) != 0) {
1601                 if ((CSR_READ_1(sc, RL_MACDBG) & 0x80) == 0x80)
1602                         CSR_WRITE_1(sc, RL_GPIO,
1603                             CSR_READ_1(sc, RL_GPIO) | 0x01);
1604                 else
1605                         CSR_WRITE_1(sc, RL_GPIO,
1606                             CSR_READ_1(sc, RL_GPIO) & ~0x01);
1607         }
1608
1609         /* Take PHY out of power down mode. */
1610         if ((sc->rl_flags & RL_FLAG_PHYWAKE_PM) != 0) {
1611                 CSR_WRITE_1(sc, RL_PMCH, CSR_READ_1(sc, RL_PMCH) | 0x80);
1612                 if (hw_rev->rl_rev == RL_HWREV_8401E)
1613                         CSR_WRITE_1(sc, 0xD1, CSR_READ_1(sc, 0xD1) & ~0x08);
1614         }
1615         if ((sc->rl_flags & RL_FLAG_PHYWAKE) != 0) {
1616                 re_gmii_writereg(dev, 1, 0x1f, 0);
1617                 re_gmii_writereg(dev, 1, 0x0e, 0);
1618         }
1619
1620         ifp->if_softc = sc;
1621         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1622         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1623         ifp->if_ioctl = re_ioctl;
1624         ifp->if_start = re_start;
1625         /*
1626          * RTL8168/8111C generates wrong IP checksummed frame if the
1627          * packet has IP options so disable TX checksum offloading.
1628          */
1629         if (sc->rl_hwrev->rl_rev == RL_HWREV_8168C ||
1630             sc->rl_hwrev->rl_rev == RL_HWREV_8168C_SPIN2 ||
1631             sc->rl_hwrev->rl_rev == RL_HWREV_8168CP) {
1632                 ifp->if_hwassist = 0;
1633                 ifp->if_capabilities = IFCAP_RXCSUM | IFCAP_TSO4;
1634         } else {
1635                 ifp->if_hwassist = CSUM_IP | CSUM_TCP | CSUM_UDP;
1636                 ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_TSO4;
1637         }
1638         ifp->if_hwassist |= CSUM_TSO;
1639         ifp->if_capenable = ifp->if_capabilities;
1640         ifp->if_init = re_init;
1641         IFQ_SET_MAXLEN(&ifp->if_snd, RL_IFQ_MAXLEN);
1642         ifp->if_snd.ifq_drv_maxlen = RL_IFQ_MAXLEN;
1643         IFQ_SET_READY(&ifp->if_snd);
1644
1645         TASK_INIT(&sc->rl_inttask, 0, re_int_task, sc);
1646
1647 #define RE_PHYAD_INTERNAL        0
1648
1649         /* Do MII setup. */
1650         phy = RE_PHYAD_INTERNAL;
1651         if (sc->rl_type == RL_8169)
1652                 phy = 1;
1653         error = mii_attach(dev, &sc->rl_miibus, ifp, re_ifmedia_upd,
1654             re_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, MIIF_DOPAUSE);
1655         if (error != 0) {
1656                 device_printf(dev, "attaching PHYs failed\n");
1657                 goto fail;
1658         }
1659
1660         /*
1661          * Call MI attach routine.
1662          */
1663         ether_ifattach(ifp, eaddr);
1664
1665         /* VLAN capability setup */
1666         ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
1667         if (ifp->if_capabilities & IFCAP_HWCSUM)
1668                 ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
1669         /* Enable WOL if PM is supported. */
1670         if (pci_find_cap(sc->rl_dev, PCIY_PMG, &reg) == 0)
1671                 ifp->if_capabilities |= IFCAP_WOL;
1672         ifp->if_capenable = ifp->if_capabilities;
1673         ifp->if_capenable &= ~(IFCAP_WOL_UCAST | IFCAP_WOL_MCAST);
1674         /*
1675          * Don't enable TSO by default.  It is known to generate
1676          * corrupted TCP segments(bad TCP options) under certain
1677          * circumstances.
1678          */
1679         ifp->if_hwassist &= ~CSUM_TSO;
1680         ifp->if_capenable &= ~(IFCAP_TSO4 | IFCAP_VLAN_HWTSO);
1681 #ifdef DEVICE_POLLING
1682         ifp->if_capabilities |= IFCAP_POLLING;
1683 #endif
1684         /*
1685          * Tell the upper layer(s) we support long frames.
1686          * Must appear after the call to ether_ifattach() because
1687          * ether_ifattach() sets ifi_hdrlen to the default value.
1688          */
1689         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1690
1691 #ifdef DEV_NETMAP
1692         re_netmap_attach(sc);
1693 #endif /* DEV_NETMAP */
1694 #ifdef RE_DIAG
1695         /*
1696          * Perform hardware diagnostic on the original RTL8169.
1697          * Some 32-bit cards were incorrectly wired and would
1698          * malfunction if plugged into a 64-bit slot.
1699          */
1700
1701         if (hwrev == RL_HWREV_8169) {
1702                 error = re_diag(sc);
1703                 if (error) {
1704                         device_printf(dev,
1705                         "attach aborted due to hardware diag failure\n");
1706                         ether_ifdetach(ifp);
1707                         goto fail;
1708                 }
1709         }
1710 #endif
1711
1712 #ifdef RE_TX_MODERATION
1713         intr_filter = 1;
1714 #endif
1715         /* Hook interrupt last to avoid having to lock softc */
1716         if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) != 0 &&
1717             intr_filter == 0) {
1718                 error = bus_setup_intr(dev, sc->rl_irq[0],
1719                     INTR_TYPE_NET | INTR_MPSAFE, NULL, re_intr_msi, sc,
1720                     &sc->rl_intrhand[0]);
1721         } else {
1722                 error = bus_setup_intr(dev, sc->rl_irq[0],
1723                     INTR_TYPE_NET | INTR_MPSAFE, re_intr, NULL, sc,
1724                     &sc->rl_intrhand[0]);
1725         }
1726         if (error) {
1727                 device_printf(dev, "couldn't set up irq\n");
1728                 ether_ifdetach(ifp);
1729         }
1730
1731 fail:
1732
1733         if (error)
1734                 re_detach(dev);
1735
1736         return (error);
1737 }
1738
1739 /*
1740  * Shutdown hardware and free up resources. This can be called any
1741  * time after the mutex has been initialized. It is called in both
1742  * the error case in attach and the normal detach case so it needs
1743  * to be careful about only freeing resources that have actually been
1744  * allocated.
1745  */
1746 static int
1747 re_detach(device_t dev)
1748 {
1749         struct rl_softc         *sc;
1750         struct ifnet            *ifp;
1751         int                     i, rid;
1752
1753         sc = device_get_softc(dev);
1754         ifp = sc->rl_ifp;
1755         KASSERT(mtx_initialized(&sc->rl_mtx), ("re mutex not initialized"));
1756
1757         /* These should only be active if attach succeeded */
1758         if (device_is_attached(dev)) {
1759 #ifdef DEVICE_POLLING
1760                 if (ifp->if_capenable & IFCAP_POLLING)
1761                         ether_poll_deregister(ifp);
1762 #endif
1763                 RL_LOCK(sc);
1764 #if 0
1765                 sc->suspended = 1;
1766 #endif
1767                 re_stop(sc);
1768                 RL_UNLOCK(sc);
1769                 callout_drain(&sc->rl_stat_callout);
1770                 taskqueue_drain(taskqueue_fast, &sc->rl_inttask);
1771                 /*
1772                  * Force off the IFF_UP flag here, in case someone
1773                  * still had a BPF descriptor attached to this
1774                  * interface. If they do, ether_ifdetach() will cause
1775                  * the BPF code to try and clear the promisc mode
1776                  * flag, which will bubble down to re_ioctl(),
1777                  * which will try to call re_init() again. This will
1778                  * turn the NIC back on and restart the MII ticker,
1779                  * which will panic the system when the kernel tries
1780                  * to invoke the re_tick() function that isn't there
1781                  * anymore.
1782                  */
1783                 ifp->if_flags &= ~IFF_UP;
1784                 ether_ifdetach(ifp);
1785         }
1786         if (sc->rl_miibus)
1787                 device_delete_child(dev, sc->rl_miibus);
1788         bus_generic_detach(dev);
1789
1790         /*
1791          * The rest is resource deallocation, so we should already be
1792          * stopped here.
1793          */
1794
1795         if (sc->rl_intrhand[0] != NULL) {
1796                 bus_teardown_intr(dev, sc->rl_irq[0], sc->rl_intrhand[0]);
1797                 sc->rl_intrhand[0] = NULL;
1798         }
1799         if (ifp != NULL) {
1800 #ifdef DEV_NETMAP
1801                 netmap_detach(ifp);
1802 #endif /* DEV_NETMAP */
1803                 if_free(ifp);
1804         }
1805         if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) == 0)
1806                 rid = 0;
1807         else
1808                 rid = 1;
1809         if (sc->rl_irq[0] != NULL) {
1810                 bus_release_resource(dev, SYS_RES_IRQ, rid, sc->rl_irq[0]);
1811                 sc->rl_irq[0] = NULL;
1812         }
1813         if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) != 0)
1814                 pci_release_msi(dev);
1815         if (sc->rl_res_pba) {
1816                 rid = PCIR_BAR(4);
1817                 bus_release_resource(dev, SYS_RES_MEMORY, rid, sc->rl_res_pba);
1818         }
1819         if (sc->rl_res)
1820                 bus_release_resource(dev, sc->rl_res_type, sc->rl_res_id,
1821                     sc->rl_res);
1822
1823         /* Unload and free the RX DMA ring memory and map */
1824
1825         if (sc->rl_ldata.rl_rx_list_tag) {
1826                 if (sc->rl_ldata.rl_rx_list_map)
1827                         bus_dmamap_unload(sc->rl_ldata.rl_rx_list_tag,
1828                             sc->rl_ldata.rl_rx_list_map);
1829                 if (sc->rl_ldata.rl_rx_list_map && sc->rl_ldata.rl_rx_list)
1830                         bus_dmamem_free(sc->rl_ldata.rl_rx_list_tag,
1831                             sc->rl_ldata.rl_rx_list,
1832                             sc->rl_ldata.rl_rx_list_map);
1833                 bus_dma_tag_destroy(sc->rl_ldata.rl_rx_list_tag);
1834         }
1835
1836         /* Unload and free the TX DMA ring memory and map */
1837
1838         if (sc->rl_ldata.rl_tx_list_tag) {
1839                 if (sc->rl_ldata.rl_tx_list_map)
1840                         bus_dmamap_unload(sc->rl_ldata.rl_tx_list_tag,
1841                             sc->rl_ldata.rl_tx_list_map);
1842                 if (sc->rl_ldata.rl_tx_list_map && sc->rl_ldata.rl_tx_list)
1843                         bus_dmamem_free(sc->rl_ldata.rl_tx_list_tag,
1844                             sc->rl_ldata.rl_tx_list,
1845                             sc->rl_ldata.rl_tx_list_map);
1846                 bus_dma_tag_destroy(sc->rl_ldata.rl_tx_list_tag);
1847         }
1848
1849         /* Destroy all the RX and TX buffer maps */
1850
1851         if (sc->rl_ldata.rl_tx_mtag) {
1852                 for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) {
1853                         if (sc->rl_ldata.rl_tx_desc[i].tx_dmamap)
1854                                 bus_dmamap_destroy(sc->rl_ldata.rl_tx_mtag,
1855                                     sc->rl_ldata.rl_tx_desc[i].tx_dmamap);
1856                 }
1857                 bus_dma_tag_destroy(sc->rl_ldata.rl_tx_mtag);
1858         }
1859         if (sc->rl_ldata.rl_rx_mtag) {
1860                 for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
1861                         if (sc->rl_ldata.rl_rx_desc[i].rx_dmamap)
1862                                 bus_dmamap_destroy(sc->rl_ldata.rl_rx_mtag,
1863                                     sc->rl_ldata.rl_rx_desc[i].rx_dmamap);
1864                 }
1865                 if (sc->rl_ldata.rl_rx_sparemap)
1866                         bus_dmamap_destroy(sc->rl_ldata.rl_rx_mtag,
1867                             sc->rl_ldata.rl_rx_sparemap);
1868                 bus_dma_tag_destroy(sc->rl_ldata.rl_rx_mtag);
1869         }
1870         if (sc->rl_ldata.rl_jrx_mtag) {
1871                 for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
1872                         if (sc->rl_ldata.rl_jrx_desc[i].rx_dmamap)
1873                                 bus_dmamap_destroy(sc->rl_ldata.rl_jrx_mtag,
1874                                     sc->rl_ldata.rl_jrx_desc[i].rx_dmamap);
1875                 }
1876                 if (sc->rl_ldata.rl_jrx_sparemap)
1877                         bus_dmamap_destroy(sc->rl_ldata.rl_jrx_mtag,
1878                             sc->rl_ldata.rl_jrx_sparemap);
1879                 bus_dma_tag_destroy(sc->rl_ldata.rl_jrx_mtag);
1880         }
1881         /* Unload and free the stats buffer and map */
1882
1883         if (sc->rl_ldata.rl_stag) {
1884                 if (sc->rl_ldata.rl_smap)
1885                         bus_dmamap_unload(sc->rl_ldata.rl_stag,
1886                             sc->rl_ldata.rl_smap);
1887                 if (sc->rl_ldata.rl_smap && sc->rl_ldata.rl_stats)
1888                         bus_dmamem_free(sc->rl_ldata.rl_stag,
1889                             sc->rl_ldata.rl_stats, sc->rl_ldata.rl_smap);
1890                 bus_dma_tag_destroy(sc->rl_ldata.rl_stag);
1891         }
1892
1893         if (sc->rl_parent_tag)
1894                 bus_dma_tag_destroy(sc->rl_parent_tag);
1895
1896         mtx_destroy(&sc->rl_mtx);
1897
1898         return (0);
1899 }
1900
1901 static __inline void
1902 re_discard_rxbuf(struct rl_softc *sc, int idx)
1903 {
1904         struct rl_desc          *desc;
1905         struct rl_rxdesc        *rxd;
1906         uint32_t                cmdstat;
1907
1908         if (sc->rl_ifp->if_mtu > RL_MTU &&
1909             (sc->rl_flags & RL_FLAG_JUMBOV2) != 0)
1910                 rxd = &sc->rl_ldata.rl_jrx_desc[idx];
1911         else
1912                 rxd = &sc->rl_ldata.rl_rx_desc[idx];
1913         desc = &sc->rl_ldata.rl_rx_list[idx];
1914         desc->rl_vlanctl = 0;
1915         cmdstat = rxd->rx_size;
1916         if (idx == sc->rl_ldata.rl_rx_desc_cnt - 1)
1917                 cmdstat |= RL_RDESC_CMD_EOR;
1918         desc->rl_cmdstat = htole32(cmdstat | RL_RDESC_CMD_OWN);
1919 }
1920
1921 static int
1922 re_newbuf(struct rl_softc *sc, int idx)
1923 {
1924         struct mbuf             *m;
1925         struct rl_rxdesc        *rxd;
1926         bus_dma_segment_t       segs[1];
1927         bus_dmamap_t            map;
1928         struct rl_desc          *desc;
1929         uint32_t                cmdstat;
1930         int                     error, nsegs;
1931
1932         m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1933         if (m == NULL)
1934                 return (ENOBUFS);
1935
1936         m->m_len = m->m_pkthdr.len = MCLBYTES;
1937 #ifdef RE_FIXUP_RX
1938         /*
1939          * This is part of an evil trick to deal with non-x86 platforms.
1940          * The RealTek chip requires RX buffers to be aligned on 64-bit
1941          * boundaries, but that will hose non-x86 machines. To get around
1942          * this, we leave some empty space at the start of each buffer
1943          * and for non-x86 hosts, we copy the buffer back six bytes
1944          * to achieve word alignment. This is slightly more efficient
1945          * than allocating a new buffer, copying the contents, and
1946          * discarding the old buffer.
1947          */
1948         m_adj(m, RE_ETHER_ALIGN);
1949 #endif
1950         error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_rx_mtag,
1951             sc->rl_ldata.rl_rx_sparemap, m, segs, &nsegs, BUS_DMA_NOWAIT);
1952         if (error != 0) {
1953                 m_freem(m);
1954                 return (ENOBUFS);
1955         }
1956         KASSERT(nsegs == 1, ("%s: %d segment returned!", __func__, nsegs));
1957
1958         rxd = &sc->rl_ldata.rl_rx_desc[idx];
1959         if (rxd->rx_m != NULL) {
1960                 bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap,
1961                     BUS_DMASYNC_POSTREAD);
1962                 bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap);
1963         }
1964
1965         rxd->rx_m = m;
1966         map = rxd->rx_dmamap;
1967         rxd->rx_dmamap = sc->rl_ldata.rl_rx_sparemap;
1968         rxd->rx_size = segs[0].ds_len;
1969         sc->rl_ldata.rl_rx_sparemap = map;
1970         bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap,
1971             BUS_DMASYNC_PREREAD);
1972
1973         desc = &sc->rl_ldata.rl_rx_list[idx];
1974         desc->rl_vlanctl = 0;
1975         desc->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[0].ds_addr));
1976         desc->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[0].ds_addr));
1977         cmdstat = segs[0].ds_len;
1978         if (idx == sc->rl_ldata.rl_rx_desc_cnt - 1)
1979                 cmdstat |= RL_RDESC_CMD_EOR;
1980         desc->rl_cmdstat = htole32(cmdstat | RL_RDESC_CMD_OWN);
1981
1982         return (0);
1983 }
1984
1985 static int
1986 re_jumbo_newbuf(struct rl_softc *sc, int idx)
1987 {
1988         struct mbuf             *m;
1989         struct rl_rxdesc        *rxd;
1990         bus_dma_segment_t       segs[1];
1991         bus_dmamap_t            map;
1992         struct rl_desc          *desc;
1993         uint32_t                cmdstat;
1994         int                     error, nsegs;
1995
1996         m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
1997         if (m == NULL)
1998                 return (ENOBUFS);
1999         m->m_len = m->m_pkthdr.len = MJUM9BYTES;
2000 #ifdef RE_FIXUP_RX
2001         m_adj(m, RE_ETHER_ALIGN);
2002 #endif
2003         error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_jrx_mtag,
2004             sc->rl_ldata.rl_jrx_sparemap, m, segs, &nsegs, BUS_DMA_NOWAIT);
2005         if (error != 0) {
2006                 m_freem(m);
2007                 return (ENOBUFS);
2008         }
2009         KASSERT(nsegs == 1, ("%s: %d segment returned!", __func__, nsegs));
2010
2011         rxd = &sc->rl_ldata.rl_jrx_desc[idx];
2012         if (rxd->rx_m != NULL) {
2013                 bus_dmamap_sync(sc->rl_ldata.rl_jrx_mtag, rxd->rx_dmamap,
2014                     BUS_DMASYNC_POSTREAD);
2015                 bus_dmamap_unload(sc->rl_ldata.rl_jrx_mtag, rxd->rx_dmamap);
2016         }
2017
2018         rxd->rx_m = m;
2019         map = rxd->rx_dmamap;
2020         rxd->rx_dmamap = sc->rl_ldata.rl_jrx_sparemap;
2021         rxd->rx_size = segs[0].ds_len;
2022         sc->rl_ldata.rl_jrx_sparemap = map;
2023         bus_dmamap_sync(sc->rl_ldata.rl_jrx_mtag, rxd->rx_dmamap,
2024             BUS_DMASYNC_PREREAD);
2025
2026         desc = &sc->rl_ldata.rl_rx_list[idx];
2027         desc->rl_vlanctl = 0;
2028         desc->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[0].ds_addr));
2029         desc->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[0].ds_addr));
2030         cmdstat = segs[0].ds_len;
2031         if (idx == sc->rl_ldata.rl_rx_desc_cnt - 1)
2032                 cmdstat |= RL_RDESC_CMD_EOR;
2033         desc->rl_cmdstat = htole32(cmdstat | RL_RDESC_CMD_OWN);
2034
2035         return (0);
2036 }
2037
2038 #ifdef RE_FIXUP_RX
2039 static __inline void
2040 re_fixup_rx(struct mbuf *m)
2041 {
2042         int                     i;
2043         uint16_t                *src, *dst;
2044
2045         src = mtod(m, uint16_t *);
2046         dst = src - (RE_ETHER_ALIGN - ETHER_ALIGN) / sizeof *src;
2047
2048         for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
2049                 *dst++ = *src++;
2050
2051         m->m_data -= RE_ETHER_ALIGN - ETHER_ALIGN;
2052 }
2053 #endif
2054
2055 static int
2056 re_tx_list_init(struct rl_softc *sc)
2057 {
2058         struct rl_desc          *desc;
2059         int                     i;
2060
2061         RL_LOCK_ASSERT(sc);
2062
2063         bzero(sc->rl_ldata.rl_tx_list,
2064             sc->rl_ldata.rl_tx_desc_cnt * sizeof(struct rl_desc));
2065         for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++)
2066                 sc->rl_ldata.rl_tx_desc[i].tx_m = NULL;
2067 #ifdef DEV_NETMAP
2068         re_netmap_tx_init(sc);
2069 #endif /* DEV_NETMAP */
2070         /* Set EOR. */
2071         desc = &sc->rl_ldata.rl_tx_list[sc->rl_ldata.rl_tx_desc_cnt - 1];
2072         desc->rl_cmdstat |= htole32(RL_TDESC_CMD_EOR);
2073
2074         bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
2075             sc->rl_ldata.rl_tx_list_map,
2076             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2077
2078         sc->rl_ldata.rl_tx_prodidx = 0;
2079         sc->rl_ldata.rl_tx_considx = 0;
2080         sc->rl_ldata.rl_tx_free = sc->rl_ldata.rl_tx_desc_cnt;
2081
2082         return (0);
2083 }
2084
2085 static int
2086 re_rx_list_init(struct rl_softc *sc)
2087 {
2088         int                     error, i;
2089
2090         bzero(sc->rl_ldata.rl_rx_list,
2091             sc->rl_ldata.rl_rx_desc_cnt * sizeof(struct rl_desc));
2092         for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
2093                 sc->rl_ldata.rl_rx_desc[i].rx_m = NULL;
2094                 if ((error = re_newbuf(sc, i)) != 0)
2095                         return (error);
2096         }
2097 #ifdef DEV_NETMAP
2098         re_netmap_rx_init(sc);
2099 #endif /* DEV_NETMAP */
2100
2101         /* Flush the RX descriptors */
2102
2103         bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
2104             sc->rl_ldata.rl_rx_list_map,
2105             BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
2106
2107         sc->rl_ldata.rl_rx_prodidx = 0;
2108         sc->rl_head = sc->rl_tail = NULL;
2109         sc->rl_int_rx_act = 0;
2110
2111         return (0);
2112 }
2113
2114 static int
2115 re_jrx_list_init(struct rl_softc *sc)
2116 {
2117         int                     error, i;
2118
2119         bzero(sc->rl_ldata.rl_rx_list,
2120             sc->rl_ldata.rl_rx_desc_cnt * sizeof(struct rl_desc));
2121         for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
2122                 sc->rl_ldata.rl_jrx_desc[i].rx_m = NULL;
2123                 if ((error = re_jumbo_newbuf(sc, i)) != 0)
2124                         return (error);
2125         }
2126
2127         bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
2128             sc->rl_ldata.rl_rx_list_map,
2129             BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2130
2131         sc->rl_ldata.rl_rx_prodidx = 0;
2132         sc->rl_head = sc->rl_tail = NULL;
2133         sc->rl_int_rx_act = 0;
2134
2135         return (0);
2136 }
2137
2138 /*
2139  * RX handler for C+ and 8169. For the gigE chips, we support
2140  * the reception of jumbo frames that have been fragmented
2141  * across multiple 2K mbuf cluster buffers.
2142  */
2143 static int
2144 re_rxeof(struct rl_softc *sc, int *rx_npktsp)
2145 {
2146         struct mbuf             *m;
2147         struct ifnet            *ifp;
2148         int                     i, rxerr, total_len;
2149         struct rl_desc          *cur_rx;
2150         u_int32_t               rxstat, rxvlan;
2151         int                     jumbo, maxpkt = 16, rx_npkts = 0;
2152
2153         RL_LOCK_ASSERT(sc);
2154
2155         ifp = sc->rl_ifp;
2156 #ifdef DEV_NETMAP
2157         if (netmap_rx_irq(ifp, 0, &rx_npkts))
2158                 return 0;
2159 #endif /* DEV_NETMAP */
2160         if (ifp->if_mtu > RL_MTU && (sc->rl_flags & RL_FLAG_JUMBOV2) != 0)
2161                 jumbo = 1;
2162         else
2163                 jumbo = 0;
2164
2165         /* Invalidate the descriptor memory */
2166
2167         bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
2168             sc->rl_ldata.rl_rx_list_map,
2169             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2170
2171         for (i = sc->rl_ldata.rl_rx_prodidx; maxpkt > 0;
2172             i = RL_RX_DESC_NXT(sc, i)) {
2173                 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
2174                         break;
2175                 cur_rx = &sc->rl_ldata.rl_rx_list[i];
2176                 rxstat = le32toh(cur_rx->rl_cmdstat);
2177                 if ((rxstat & RL_RDESC_STAT_OWN) != 0)
2178                         break;
2179                 total_len = rxstat & sc->rl_rxlenmask;
2180                 rxvlan = le32toh(cur_rx->rl_vlanctl);
2181                 if (jumbo != 0)
2182                         m = sc->rl_ldata.rl_jrx_desc[i].rx_m;
2183                 else
2184                         m = sc->rl_ldata.rl_rx_desc[i].rx_m;
2185
2186                 if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0 &&
2187                     (rxstat & (RL_RDESC_STAT_SOF | RL_RDESC_STAT_EOF)) !=
2188                     (RL_RDESC_STAT_SOF | RL_RDESC_STAT_EOF)) {
2189                         /*
2190                          * RTL8168C or later controllers do not
2191                          * support multi-fragment packet.
2192                          */
2193                         re_discard_rxbuf(sc, i);
2194                         continue;
2195                 } else if ((rxstat & RL_RDESC_STAT_EOF) == 0) {
2196                         if (re_newbuf(sc, i) != 0) {
2197                                 /*
2198                                  * If this is part of a multi-fragment packet,
2199                                  * discard all the pieces.
2200                                  */
2201                                 if (sc->rl_head != NULL) {
2202                                         m_freem(sc->rl_head);
2203                                         sc->rl_head = sc->rl_tail = NULL;
2204                                 }
2205                                 re_discard_rxbuf(sc, i);
2206                                 continue;
2207                         }
2208                         m->m_len = RE_RX_DESC_BUFLEN;
2209                         if (sc->rl_head == NULL)
2210                                 sc->rl_head = sc->rl_tail = m;
2211                         else {
2212                                 m->m_flags &= ~M_PKTHDR;
2213                                 sc->rl_tail->m_next = m;
2214                                 sc->rl_tail = m;
2215                         }
2216                         continue;
2217                 }
2218
2219                 /*
2220                  * NOTE: for the 8139C+, the frame length field
2221                  * is always 12 bits in size, but for the gigE chips,
2222                  * it is 13 bits (since the max RX frame length is 16K).
2223                  * Unfortunately, all 32 bits in the status word
2224                  * were already used, so to make room for the extra
2225                  * length bit, RealTek took out the 'frame alignment
2226                  * error' bit and shifted the other status bits
2227                  * over one slot. The OWN, EOR, FS and LS bits are
2228                  * still in the same places. We have already extracted
2229                  * the frame length and checked the OWN bit, so rather
2230                  * than using an alternate bit mapping, we shift the
2231                  * status bits one space to the right so we can evaluate
2232                  * them using the 8169 status as though it was in the
2233                  * same format as that of the 8139C+.
2234                  */
2235                 if (sc->rl_type == RL_8169)
2236                         rxstat >>= 1;
2237
2238                 /*
2239                  * if total_len > 2^13-1, both _RXERRSUM and _GIANT will be
2240                  * set, but if CRC is clear, it will still be a valid frame.
2241                  */
2242                 if ((rxstat & RL_RDESC_STAT_RXERRSUM) != 0) {
2243                         rxerr = 1;
2244                         if ((sc->rl_flags & RL_FLAG_JUMBOV2) == 0 &&
2245                             total_len > 8191 &&
2246                             (rxstat & RL_RDESC_STAT_ERRS) == RL_RDESC_STAT_GIANT)
2247                                 rxerr = 0;
2248                         if (rxerr != 0) {
2249                                 ifp->if_ierrors++;
2250                                 /*
2251                                  * If this is part of a multi-fragment packet,
2252                                  * discard all the pieces.
2253                                  */
2254                                 if (sc->rl_head != NULL) {
2255                                         m_freem(sc->rl_head);
2256                                         sc->rl_head = sc->rl_tail = NULL;
2257                                 }
2258                                 re_discard_rxbuf(sc, i);
2259                                 continue;
2260                         }
2261                 }
2262
2263                 /*
2264                  * If allocating a replacement mbuf fails,
2265                  * reload the current one.
2266                  */
2267                 if (jumbo != 0)
2268                         rxerr = re_jumbo_newbuf(sc, i);
2269                 else
2270                         rxerr = re_newbuf(sc, i);
2271                 if (rxerr != 0) {
2272                         ifp->if_iqdrops++;
2273                         if (sc->rl_head != NULL) {
2274                                 m_freem(sc->rl_head);
2275                                 sc->rl_head = sc->rl_tail = NULL;
2276                         }
2277                         re_discard_rxbuf(sc, i);
2278                         continue;
2279                 }
2280
2281                 if (sc->rl_head != NULL) {
2282                         if (jumbo != 0)
2283                                 m->m_len = total_len;
2284                         else {
2285                                 m->m_len = total_len % RE_RX_DESC_BUFLEN;
2286                                 if (m->m_len == 0)
2287                                         m->m_len = RE_RX_DESC_BUFLEN;
2288                         }
2289                         /*
2290                          * Special case: if there's 4 bytes or less
2291                          * in this buffer, the mbuf can be discarded:
2292                          * the last 4 bytes is the CRC, which we don't
2293                          * care about anyway.
2294                          */
2295                         if (m->m_len <= ETHER_CRC_LEN) {
2296                                 sc->rl_tail->m_len -=
2297                                     (ETHER_CRC_LEN - m->m_len);
2298                                 m_freem(m);
2299                         } else {
2300                                 m->m_len -= ETHER_CRC_LEN;
2301                                 m->m_flags &= ~M_PKTHDR;
2302                                 sc->rl_tail->m_next = m;
2303                         }
2304                         m = sc->rl_head;
2305                         sc->rl_head = sc->rl_tail = NULL;
2306                         m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
2307                 } else
2308                         m->m_pkthdr.len = m->m_len =
2309                             (total_len - ETHER_CRC_LEN);
2310
2311 #ifdef RE_FIXUP_RX
2312                 re_fixup_rx(m);
2313 #endif
2314                 ifp->if_ipackets++;
2315                 m->m_pkthdr.rcvif = ifp;
2316
2317                 /* Do RX checksumming if enabled */
2318
2319                 if (ifp->if_capenable & IFCAP_RXCSUM) {
2320                         if ((sc->rl_flags & RL_FLAG_DESCV2) == 0) {
2321                                 /* Check IP header checksum */
2322                                 if (rxstat & RL_RDESC_STAT_PROTOID)
2323                                         m->m_pkthdr.csum_flags |=
2324                                             CSUM_IP_CHECKED;
2325                                 if (!(rxstat & RL_RDESC_STAT_IPSUMBAD))
2326                                         m->m_pkthdr.csum_flags |=
2327                                             CSUM_IP_VALID;
2328
2329                                 /* Check TCP/UDP checksum */
2330                                 if ((RL_TCPPKT(rxstat) &&
2331                                     !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) ||
2332                                     (RL_UDPPKT(rxstat) &&
2333                                      !(rxstat & RL_RDESC_STAT_UDPSUMBAD))) {
2334                                         m->m_pkthdr.csum_flags |=
2335                                                 CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
2336                                         m->m_pkthdr.csum_data = 0xffff;
2337                                 }
2338                         } else {
2339                                 /*
2340                                  * RTL8168C/RTL816CP/RTL8111C/RTL8111CP
2341                                  */
2342                                 if ((rxstat & RL_RDESC_STAT_PROTOID) &&
2343                                     (rxvlan & RL_RDESC_IPV4))
2344                                         m->m_pkthdr.csum_flags |=
2345                                             CSUM_IP_CHECKED;
2346                                 if (!(rxstat & RL_RDESC_STAT_IPSUMBAD) &&
2347                                     (rxvlan & RL_RDESC_IPV4))
2348                                         m->m_pkthdr.csum_flags |=
2349                                             CSUM_IP_VALID;
2350                                 if (((rxstat & RL_RDESC_STAT_TCP) &&
2351                                     !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) ||
2352                                     ((rxstat & RL_RDESC_STAT_UDP) &&
2353                                     !(rxstat & RL_RDESC_STAT_UDPSUMBAD))) {
2354                                         m->m_pkthdr.csum_flags |=
2355                                                 CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
2356                                         m->m_pkthdr.csum_data = 0xffff;
2357                                 }
2358                         }
2359                 }
2360                 maxpkt--;
2361                 if (rxvlan & RL_RDESC_VLANCTL_TAG) {
2362                         m->m_pkthdr.ether_vtag =
2363                             bswap16((rxvlan & RL_RDESC_VLANCTL_DATA));
2364                         m->m_flags |= M_VLANTAG;
2365                 }
2366                 RL_UNLOCK(sc);
2367                 (*ifp->if_input)(ifp, m);
2368                 RL_LOCK(sc);
2369                 rx_npkts++;
2370         }
2371
2372         /* Flush the RX DMA ring */
2373
2374         bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
2375             sc->rl_ldata.rl_rx_list_map,
2376             BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
2377
2378         sc->rl_ldata.rl_rx_prodidx = i;
2379
2380         if (rx_npktsp != NULL)
2381                 *rx_npktsp = rx_npkts;
2382         if (maxpkt)
2383                 return (EAGAIN);
2384
2385         return (0);
2386 }
2387
2388 static void
2389 re_txeof(struct rl_softc *sc)
2390 {
2391         struct ifnet            *ifp;
2392         struct rl_txdesc        *txd;
2393         u_int32_t               txstat;
2394         int                     cons;
2395
2396         cons = sc->rl_ldata.rl_tx_considx;
2397         if (cons == sc->rl_ldata.rl_tx_prodidx)
2398                 return;
2399
2400         ifp = sc->rl_ifp;
2401 #ifdef DEV_NETMAP
2402         if (netmap_tx_irq(ifp, 0))
2403                 return;
2404 #endif /* DEV_NETMAP */
2405         /* Invalidate the TX descriptor list */
2406         bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
2407             sc->rl_ldata.rl_tx_list_map,
2408             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2409
2410         for (; cons != sc->rl_ldata.rl_tx_prodidx;
2411             cons = RL_TX_DESC_NXT(sc, cons)) {
2412                 txstat = le32toh(sc->rl_ldata.rl_tx_list[cons].rl_cmdstat);
2413                 if (txstat & RL_TDESC_STAT_OWN)
2414                         break;
2415                 /*
2416                  * We only stash mbufs in the last descriptor
2417                  * in a fragment chain, which also happens to
2418                  * be the only place where the TX status bits
2419                  * are valid.
2420                  */
2421                 if (txstat & RL_TDESC_CMD_EOF) {
2422                         txd = &sc->rl_ldata.rl_tx_desc[cons];
2423                         bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag,
2424                             txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2425                         bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag,
2426                             txd->tx_dmamap);
2427                         KASSERT(txd->tx_m != NULL,
2428                             ("%s: freeing NULL mbufs!", __func__));
2429                         m_freem(txd->tx_m);
2430                         txd->tx_m = NULL;
2431                         if (txstat & (RL_TDESC_STAT_EXCESSCOL|
2432                             RL_TDESC_STAT_COLCNT))
2433                                 ifp->if_collisions++;
2434                         if (txstat & RL_TDESC_STAT_TXERRSUM)
2435                                 ifp->if_oerrors++;
2436                         else
2437                                 ifp->if_opackets++;
2438                 }
2439                 sc->rl_ldata.rl_tx_free++;
2440                 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2441         }
2442         sc->rl_ldata.rl_tx_considx = cons;
2443
2444         /* No changes made to the TX ring, so no flush needed */
2445
2446         if (sc->rl_ldata.rl_tx_free != sc->rl_ldata.rl_tx_desc_cnt) {
2447 #ifdef RE_TX_MODERATION
2448                 /*
2449                  * If not all descriptors have been reaped yet, reload
2450                  * the timer so that we will eventually get another
2451                  * interrupt that will cause us to re-enter this routine.
2452                  * This is done in case the transmitter has gone idle.
2453                  */
2454                 CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2455 #endif
2456         } else
2457                 sc->rl_watchdog_timer = 0;
2458 }
2459
2460 static void
2461 re_tick(void *xsc)
2462 {
2463         struct rl_softc         *sc;
2464         struct mii_data         *mii;
2465
2466         sc = xsc;
2467
2468         RL_LOCK_ASSERT(sc);
2469
2470         mii = device_get_softc(sc->rl_miibus);
2471         mii_tick(mii);
2472         if ((sc->rl_flags & RL_FLAG_LINK) == 0)
2473                 re_miibus_statchg(sc->rl_dev);
2474         /*
2475          * Reclaim transmitted frames here. Technically it is not
2476          * necessary to do here but it ensures periodic reclamation
2477          * regardless of Tx completion interrupt which seems to be
2478          * lost on PCIe based controllers under certain situations.
2479          */
2480         re_txeof(sc);
2481         re_watchdog(sc);
2482         callout_reset(&sc->rl_stat_callout, hz, re_tick, sc);
2483 }
2484
2485 #ifdef DEVICE_POLLING
2486 static int
2487 re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
2488 {
2489         struct rl_softc *sc = ifp->if_softc;
2490         int rx_npkts = 0;
2491
2492         RL_LOCK(sc);
2493         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2494                 rx_npkts = re_poll_locked(ifp, cmd, count);
2495         RL_UNLOCK(sc);
2496         return (rx_npkts);
2497 }
2498
2499 static int
2500 re_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
2501 {
2502         struct rl_softc *sc = ifp->if_softc;
2503         int rx_npkts;
2504
2505         RL_LOCK_ASSERT(sc);
2506
2507         sc->rxcycles = count;
2508         re_rxeof(sc, &rx_npkts);
2509         re_txeof(sc);
2510
2511         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2512                 re_start_locked(ifp);
2513
2514         if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
2515                 u_int16_t       status;
2516
2517                 status = CSR_READ_2(sc, RL_ISR);
2518                 if (status == 0xffff)
2519                         return (rx_npkts);
2520                 if (status)
2521                         CSR_WRITE_2(sc, RL_ISR, status);
2522                 if ((status & (RL_ISR_TX_OK | RL_ISR_TX_DESC_UNAVAIL)) &&
2523                     (sc->rl_flags & RL_FLAG_PCIE))
2524                         CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
2525
2526                 /*
2527                  * XXX check behaviour on receiver stalls.
2528                  */
2529
2530                 if (status & RL_ISR_SYSTEM_ERR) {
2531                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2532                         re_init_locked(sc);
2533                 }
2534         }
2535         return (rx_npkts);
2536 }
2537 #endif /* DEVICE_POLLING */
2538
2539 static int
2540 re_intr(void *arg)
2541 {
2542         struct rl_softc         *sc;
2543         uint16_t                status;
2544
2545         sc = arg;
2546
2547         status = CSR_READ_2(sc, RL_ISR);
2548         if (status == 0xFFFF || (status & RL_INTRS_CPLUS) == 0)
2549                 return (FILTER_STRAY);
2550         CSR_WRITE_2(sc, RL_IMR, 0);
2551
2552         taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_inttask);
2553
2554         return (FILTER_HANDLED);
2555 }
2556
2557 static void
2558 re_int_task(void *arg, int npending)
2559 {
2560         struct rl_softc         *sc;
2561         struct ifnet            *ifp;
2562         u_int16_t               status;
2563         int                     rval = 0;
2564
2565         sc = arg;
2566         ifp = sc->rl_ifp;
2567
2568         RL_LOCK(sc);
2569
2570         status = CSR_READ_2(sc, RL_ISR);
2571         CSR_WRITE_2(sc, RL_ISR, status);
2572
2573         if (sc->suspended ||
2574             (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2575                 RL_UNLOCK(sc);
2576                 return;
2577         }
2578
2579 #ifdef DEVICE_POLLING
2580         if  (ifp->if_capenable & IFCAP_POLLING) {
2581                 RL_UNLOCK(sc);
2582                 return;
2583         }
2584 #endif
2585
2586         if (status & (RL_ISR_RX_OK|RL_ISR_RX_ERR|RL_ISR_FIFO_OFLOW))
2587                 rval = re_rxeof(sc, NULL);
2588
2589         /*
2590          * Some chips will ignore a second TX request issued
2591          * while an existing transmission is in progress. If
2592          * the transmitter goes idle but there are still
2593          * packets waiting to be sent, we need to restart the
2594          * channel here to flush them out. This only seems to
2595          * be required with the PCIe devices.
2596          */
2597         if ((status & (RL_ISR_TX_OK | RL_ISR_TX_DESC_UNAVAIL)) &&
2598             (sc->rl_flags & RL_FLAG_PCIE))
2599                 CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
2600         if (status & (
2601 #ifdef RE_TX_MODERATION
2602             RL_ISR_TIMEOUT_EXPIRED|
2603 #else
2604             RL_ISR_TX_OK|
2605 #endif
2606             RL_ISR_TX_ERR|RL_ISR_TX_DESC_UNAVAIL))
2607                 re_txeof(sc);
2608
2609         if (status & RL_ISR_SYSTEM_ERR) {
2610                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2611                 re_init_locked(sc);
2612         }
2613
2614         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2615                 re_start_locked(ifp);
2616
2617         RL_UNLOCK(sc);
2618
2619         if ((CSR_READ_2(sc, RL_ISR) & RL_INTRS_CPLUS) || rval) {
2620                 taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_inttask);
2621                 return;
2622         }
2623
2624         CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
2625 }
2626
2627 static void
2628 re_intr_msi(void *xsc)
2629 {
2630         struct rl_softc         *sc;
2631         struct ifnet            *ifp;
2632         uint16_t                intrs, status;
2633
2634         sc = xsc;
2635         RL_LOCK(sc);
2636
2637         ifp = sc->rl_ifp;
2638 #ifdef DEVICE_POLLING
2639         if (ifp->if_capenable & IFCAP_POLLING) {
2640                 RL_UNLOCK(sc);
2641                 return;
2642         }
2643 #endif
2644         /* Disable interrupts. */
2645         CSR_WRITE_2(sc, RL_IMR, 0);
2646         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2647                 RL_UNLOCK(sc);
2648                 return;
2649         }
2650
2651         intrs = RL_INTRS_CPLUS;
2652         status = CSR_READ_2(sc, RL_ISR);
2653         CSR_WRITE_2(sc, RL_ISR, status);
2654         if (sc->rl_int_rx_act > 0) {
2655                 intrs &= ~(RL_ISR_RX_OK | RL_ISR_RX_ERR | RL_ISR_FIFO_OFLOW |
2656                     RL_ISR_RX_OVERRUN);
2657                 status &= ~(RL_ISR_RX_OK | RL_ISR_RX_ERR | RL_ISR_FIFO_OFLOW |
2658                     RL_ISR_RX_OVERRUN);
2659         }
2660
2661         if (status & (RL_ISR_TIMEOUT_EXPIRED | RL_ISR_RX_OK | RL_ISR_RX_ERR |
2662             RL_ISR_FIFO_OFLOW | RL_ISR_RX_OVERRUN)) {
2663                 re_rxeof(sc, NULL);
2664                 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2665                         if (sc->rl_int_rx_mod != 0 &&
2666                             (status & (RL_ISR_RX_OK | RL_ISR_RX_ERR |
2667                             RL_ISR_FIFO_OFLOW | RL_ISR_RX_OVERRUN)) != 0) {
2668                                 /* Rearm one-shot timer. */
2669                                 CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2670                                 intrs &= ~(RL_ISR_RX_OK | RL_ISR_RX_ERR |
2671                                     RL_ISR_FIFO_OFLOW | RL_ISR_RX_OVERRUN);
2672                                 sc->rl_int_rx_act = 1;
2673                         } else {
2674                                 intrs |= RL_ISR_RX_OK | RL_ISR_RX_ERR |
2675                                     RL_ISR_FIFO_OFLOW | RL_ISR_RX_OVERRUN;
2676                                 sc->rl_int_rx_act = 0;
2677                         }
2678                 }
2679         }
2680
2681         /*
2682          * Some chips will ignore a second TX request issued
2683          * while an existing transmission is in progress. If
2684          * the transmitter goes idle but there are still
2685          * packets waiting to be sent, we need to restart the
2686          * channel here to flush them out. This only seems to
2687          * be required with the PCIe devices.
2688          */
2689         if ((status & (RL_ISR_TX_OK | RL_ISR_TX_DESC_UNAVAIL)) &&
2690             (sc->rl_flags & RL_FLAG_PCIE))
2691                 CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
2692         if (status & (RL_ISR_TX_OK | RL_ISR_TX_ERR | RL_ISR_TX_DESC_UNAVAIL))
2693                 re_txeof(sc);
2694
2695         if (status & RL_ISR_SYSTEM_ERR) {
2696                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2697                 re_init_locked(sc);
2698         }
2699
2700         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2701                 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2702                         re_start_locked(ifp);
2703                 CSR_WRITE_2(sc, RL_IMR, intrs);
2704         }
2705         RL_UNLOCK(sc);
2706 }
2707
2708 static int
2709 re_encap(struct rl_softc *sc, struct mbuf **m_head)
2710 {
2711         struct rl_txdesc        *txd, *txd_last;
2712         bus_dma_segment_t       segs[RL_NTXSEGS];
2713         bus_dmamap_t            map;
2714         struct mbuf             *m_new;
2715         struct rl_desc          *desc;
2716         int                     nsegs, prod;
2717         int                     i, error, ei, si;
2718         int                     padlen;
2719         uint32_t                cmdstat, csum_flags, vlanctl;
2720
2721         RL_LOCK_ASSERT(sc);
2722         M_ASSERTPKTHDR((*m_head));
2723
2724         /*
2725          * With some of the RealTek chips, using the checksum offload
2726          * support in conjunction with the autopadding feature results
2727          * in the transmission of corrupt frames. For example, if we
2728          * need to send a really small IP fragment that's less than 60
2729          * bytes in size, and IP header checksumming is enabled, the
2730          * resulting ethernet frame that appears on the wire will
2731          * have garbled payload. To work around this, if TX IP checksum
2732          * offload is enabled, we always manually pad short frames out
2733          * to the minimum ethernet frame size.
2734          */
2735         if ((sc->rl_flags & RL_FLAG_AUTOPAD) == 0 &&
2736             (*m_head)->m_pkthdr.len < RL_IP4CSUMTX_PADLEN &&
2737             ((*m_head)->m_pkthdr.csum_flags & CSUM_IP) != 0) {
2738                 padlen = RL_MIN_FRAMELEN - (*m_head)->m_pkthdr.len;
2739                 if (M_WRITABLE(*m_head) == 0) {
2740                         /* Get a writable copy. */
2741                         m_new = m_dup(*m_head, M_NOWAIT);
2742                         m_freem(*m_head);
2743                         if (m_new == NULL) {
2744                                 *m_head = NULL;
2745                                 return (ENOBUFS);
2746                         }
2747                         *m_head = m_new;
2748                 }
2749                 if ((*m_head)->m_next != NULL ||
2750                     M_TRAILINGSPACE(*m_head) < padlen) {
2751                         m_new = m_defrag(*m_head, M_NOWAIT);
2752                         if (m_new == NULL) {
2753                                 m_freem(*m_head);
2754                                 *m_head = NULL;
2755                                 return (ENOBUFS);
2756                         }
2757                 } else
2758                         m_new = *m_head;
2759
2760                 /*
2761                  * Manually pad short frames, and zero the pad space
2762                  * to avoid leaking data.
2763                  */
2764                 bzero(mtod(m_new, char *) + m_new->m_pkthdr.len, padlen);
2765                 m_new->m_pkthdr.len += padlen;
2766                 m_new->m_len = m_new->m_pkthdr.len;
2767                 *m_head = m_new;
2768         }
2769
2770         prod = sc->rl_ldata.rl_tx_prodidx;
2771         txd = &sc->rl_ldata.rl_tx_desc[prod];
2772         error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap,
2773             *m_head, segs, &nsegs, BUS_DMA_NOWAIT);
2774         if (error == EFBIG) {
2775                 m_new = m_collapse(*m_head, M_NOWAIT, RL_NTXSEGS);
2776                 if (m_new == NULL) {
2777                         m_freem(*m_head);
2778                         *m_head = NULL;
2779                         return (ENOBUFS);
2780                 }
2781                 *m_head = m_new;
2782                 error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_tx_mtag,
2783                     txd->tx_dmamap, *m_head, segs, &nsegs, BUS_DMA_NOWAIT);
2784                 if (error != 0) {
2785                         m_freem(*m_head);
2786                         *m_head = NULL;
2787                         return (error);
2788                 }
2789         } else if (error != 0)
2790                 return (error);
2791         if (nsegs == 0) {
2792                 m_freem(*m_head);
2793                 *m_head = NULL;
2794                 return (EIO);
2795         }
2796
2797         /* Check for number of available descriptors. */
2798         if (sc->rl_ldata.rl_tx_free - nsegs <= 1) {
2799                 bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap);
2800                 return (ENOBUFS);
2801         }
2802
2803         bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap,
2804             BUS_DMASYNC_PREWRITE);
2805
2806         /*
2807          * Set up checksum offload. Note: checksum offload bits must
2808          * appear in all descriptors of a multi-descriptor transmit
2809          * attempt. This is according to testing done with an 8169
2810          * chip. This is a requirement.
2811          */
2812         vlanctl = 0;
2813         csum_flags = 0;
2814         if (((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
2815                 if ((sc->rl_flags & RL_FLAG_DESCV2) != 0) {
2816                         csum_flags |= RL_TDESC_CMD_LGSEND;
2817                         vlanctl |= ((uint32_t)(*m_head)->m_pkthdr.tso_segsz <<
2818                             RL_TDESC_CMD_MSSVALV2_SHIFT);
2819                 } else {
2820                         csum_flags |= RL_TDESC_CMD_LGSEND |
2821                             ((uint32_t)(*m_head)->m_pkthdr.tso_segsz <<
2822                             RL_TDESC_CMD_MSSVAL_SHIFT);
2823                 }
2824         } else {
2825                 /*
2826                  * Unconditionally enable IP checksum if TCP or UDP
2827                  * checksum is required. Otherwise, TCP/UDP checksum
2828                  * doesn't make effects.
2829                  */
2830                 if (((*m_head)->m_pkthdr.csum_flags & RE_CSUM_FEATURES) != 0) {
2831                         if ((sc->rl_flags & RL_FLAG_DESCV2) == 0) {
2832                                 csum_flags |= RL_TDESC_CMD_IPCSUM;
2833                                 if (((*m_head)->m_pkthdr.csum_flags &
2834                                     CSUM_TCP) != 0)
2835                                         csum_flags |= RL_TDESC_CMD_TCPCSUM;
2836                                 if (((*m_head)->m_pkthdr.csum_flags &
2837                                     CSUM_UDP) != 0)
2838                                         csum_flags |= RL_TDESC_CMD_UDPCSUM;
2839                         } else {
2840                                 vlanctl |= RL_TDESC_CMD_IPCSUMV2;
2841                                 if (((*m_head)->m_pkthdr.csum_flags &
2842                                     CSUM_TCP) != 0)
2843                                         vlanctl |= RL_TDESC_CMD_TCPCSUMV2;
2844                                 if (((*m_head)->m_pkthdr.csum_flags &
2845                                     CSUM_UDP) != 0)
2846                                         vlanctl |= RL_TDESC_CMD_UDPCSUMV2;
2847                         }
2848                 }
2849         }
2850
2851         /*
2852          * Set up hardware VLAN tagging. Note: vlan tag info must
2853          * appear in all descriptors of a multi-descriptor
2854          * transmission attempt.
2855          */
2856         if ((*m_head)->m_flags & M_VLANTAG)
2857                 vlanctl |= bswap16((*m_head)->m_pkthdr.ether_vtag) |
2858                     RL_TDESC_VLANCTL_TAG;
2859
2860         si = prod;
2861         for (i = 0; i < nsegs; i++, prod = RL_TX_DESC_NXT(sc, prod)) {
2862                 desc = &sc->rl_ldata.rl_tx_list[prod];
2863                 desc->rl_vlanctl = htole32(vlanctl);
2864                 desc->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[i].ds_addr));
2865                 desc->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[i].ds_addr));
2866                 cmdstat = segs[i].ds_len;
2867                 if (i != 0)
2868                         cmdstat |= RL_TDESC_CMD_OWN;
2869                 if (prod == sc->rl_ldata.rl_tx_desc_cnt - 1)
2870                         cmdstat |= RL_TDESC_CMD_EOR;
2871                 desc->rl_cmdstat = htole32(cmdstat | csum_flags);
2872                 sc->rl_ldata.rl_tx_free--;
2873         }
2874         /* Update producer index. */
2875         sc->rl_ldata.rl_tx_prodidx = prod;
2876
2877         /* Set EOF on the last descriptor. */
2878         ei = RL_TX_DESC_PRV(sc, prod);
2879         desc = &sc->rl_ldata.rl_tx_list[ei];
2880         desc->rl_cmdstat |= htole32(RL_TDESC_CMD_EOF);
2881
2882         desc = &sc->rl_ldata.rl_tx_list[si];
2883         /* Set SOF and transfer ownership of packet to the chip. */
2884         desc->rl_cmdstat |= htole32(RL_TDESC_CMD_OWN | RL_TDESC_CMD_SOF);
2885
2886         /*
2887          * Insure that the map for this transmission
2888          * is placed at the array index of the last descriptor
2889          * in this chain.  (Swap last and first dmamaps.)
2890          */
2891         txd_last = &sc->rl_ldata.rl_tx_desc[ei];
2892         map = txd->tx_dmamap;
2893         txd->tx_dmamap = txd_last->tx_dmamap;
2894         txd_last->tx_dmamap = map;
2895         txd_last->tx_m = *m_head;
2896
2897         return (0);
2898 }
2899
2900 static void
2901 re_start(struct ifnet *ifp)
2902 {
2903         struct rl_softc         *sc;
2904
2905         sc = ifp->if_softc;
2906         RL_LOCK(sc);
2907         re_start_locked(ifp);
2908         RL_UNLOCK(sc);
2909 }
2910
2911 /*
2912  * Main transmit routine for C+ and gigE NICs.
2913  */
2914 static void
2915 re_start_locked(struct ifnet *ifp)
2916 {
2917         struct rl_softc         *sc;
2918         struct mbuf             *m_head;
2919         int                     queued;
2920
2921         sc = ifp->if_softc;
2922
2923 #ifdef DEV_NETMAP
2924         /* XXX is this necessary ? */
2925         if (ifp->if_capenable & IFCAP_NETMAP) {
2926                 struct netmap_kring *kring = &NA(ifp)->tx_rings[0];
2927                 if (sc->rl_ldata.rl_tx_prodidx != kring->nr_hwcur) {
2928                         /* kick the tx unit */
2929                         CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
2930 #ifdef RE_TX_MODERATION
2931                         CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2932 #endif
2933                         sc->rl_watchdog_timer = 5;
2934                 }
2935                 return;
2936         }
2937 #endif /* DEV_NETMAP */
2938         if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
2939             IFF_DRV_RUNNING || (sc->rl_flags & RL_FLAG_LINK) == 0)
2940                 return;
2941
2942         for (queued = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
2943             sc->rl_ldata.rl_tx_free > 1;) {
2944                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2945                 if (m_head == NULL)
2946                         break;
2947
2948                 if (re_encap(sc, &m_head) != 0) {
2949                         if (m_head == NULL)
2950                                 break;
2951                         IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2952                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2953                         break;
2954                 }
2955
2956                 /*
2957                  * If there's a BPF listener, bounce a copy of this frame
2958                  * to him.
2959                  */
2960                 ETHER_BPF_MTAP(ifp, m_head);
2961
2962                 queued++;
2963         }
2964
2965         if (queued == 0) {
2966 #ifdef RE_TX_MODERATION
2967                 if (sc->rl_ldata.rl_tx_free != sc->rl_ldata.rl_tx_desc_cnt)
2968                         CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2969 #endif
2970                 return;
2971         }
2972
2973         /* Flush the TX descriptors */
2974
2975         bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
2976             sc->rl_ldata.rl_tx_list_map,
2977             BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
2978
2979         CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
2980
2981 #ifdef RE_TX_MODERATION
2982         /*
2983          * Use the countdown timer for interrupt moderation.
2984          * 'TX done' interrupts are disabled. Instead, we reset the
2985          * countdown timer, which will begin counting until it hits
2986          * the value in the TIMERINT register, and then trigger an
2987          * interrupt. Each time we write to the TIMERCNT register,
2988          * the timer count is reset to 0.
2989          */
2990         CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2991 #endif
2992
2993         /*
2994          * Set a timeout in case the chip goes out to lunch.
2995          */
2996         sc->rl_watchdog_timer = 5;
2997 }
2998
2999 static void
3000 re_set_jumbo(struct rl_softc *sc, int jumbo)
3001 {
3002
3003         if (sc->rl_hwrev->rl_rev == RL_HWREV_8168E_VL) {
3004                 pci_set_max_read_req(sc->rl_dev, 4096);
3005                 return;
3006         }
3007
3008         CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
3009         if (jumbo != 0) {
3010                 CSR_WRITE_1(sc, sc->rl_cfg3, CSR_READ_1(sc, sc->rl_cfg3) |
3011                     RL_CFG3_JUMBO_EN0);
3012                 switch (sc->rl_hwrev->rl_rev) {
3013                 case RL_HWREV_8168DP:
3014                         break;
3015                 case RL_HWREV_8168E:
3016                         CSR_WRITE_1(sc, sc->rl_cfg4,
3017                             CSR_READ_1(sc, sc->rl_cfg4) | 0x01);
3018                         break;
3019                 default:
3020                         CSR_WRITE_1(sc, sc->rl_cfg4,
3021                             CSR_READ_1(sc, sc->rl_cfg4) | RL_CFG4_JUMBO_EN1);
3022                 }
3023         } else {
3024                 CSR_WRITE_1(sc, sc->rl_cfg3, CSR_READ_1(sc, sc->rl_cfg3) &
3025                     ~RL_CFG3_JUMBO_EN0);
3026                 switch (sc->rl_hwrev->rl_rev) {
3027                 case RL_HWREV_8168DP:
3028                         break;
3029                 case RL_HWREV_8168E:
3030                         CSR_WRITE_1(sc, sc->rl_cfg4,
3031                             CSR_READ_1(sc, sc->rl_cfg4) & ~0x01);
3032                         break;
3033                 default:
3034                         CSR_WRITE_1(sc, sc->rl_cfg4,
3035                             CSR_READ_1(sc, sc->rl_cfg4) & ~RL_CFG4_JUMBO_EN1);
3036                 }
3037         }
3038         CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
3039
3040         switch (sc->rl_hwrev->rl_rev) {
3041         case RL_HWREV_8168DP:
3042                 pci_set_max_read_req(sc->rl_dev, 4096);
3043                 break;
3044         default:
3045                 if (jumbo != 0)
3046                         pci_set_max_read_req(sc->rl_dev, 512);
3047                 else
3048                         pci_set_max_read_req(sc->rl_dev, 4096);
3049         }
3050 }
3051
3052 static void
3053 re_init(void *xsc)
3054 {
3055         struct rl_softc         *sc = xsc;
3056
3057         RL_LOCK(sc);
3058         re_init_locked(sc);
3059         RL_UNLOCK(sc);
3060 }
3061
3062 static void
3063 re_init_locked(struct rl_softc *sc)
3064 {
3065         struct ifnet            *ifp = sc->rl_ifp;
3066         struct mii_data         *mii;
3067         uint32_t                reg;
3068         uint16_t                cfg;
3069         union {
3070                 uint32_t align_dummy;
3071                 u_char eaddr[ETHER_ADDR_LEN];
3072         } eaddr;
3073
3074         RL_LOCK_ASSERT(sc);
3075
3076         mii = device_get_softc(sc->rl_miibus);
3077
3078         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
3079                 return;
3080
3081         /*
3082          * Cancel pending I/O and free all RX/TX buffers.
3083          */
3084         re_stop(sc);
3085
3086         /* Put controller into known state. */
3087         re_reset(sc);
3088
3089         /*
3090          * For C+ mode, initialize the RX descriptors and mbufs.
3091          */
3092         if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0) {
3093                 if (ifp->if_mtu > RL_MTU) {
3094                         if (re_jrx_list_init(sc) != 0) {
3095                                 device_printf(sc->rl_dev,
3096                                     "no memory for jumbo RX buffers\n");
3097                                 re_stop(sc);
3098                                 return;
3099                         }
3100                         /* Disable checksum offloading for jumbo frames. */
3101                         ifp->if_capenable &= ~(IFCAP_HWCSUM | IFCAP_TSO4);
3102                         ifp->if_hwassist &= ~(RE_CSUM_FEATURES | CSUM_TSO);
3103                 } else {
3104                         if (re_rx_list_init(sc) != 0) {
3105                                 device_printf(sc->rl_dev,
3106                                     "no memory for RX buffers\n");
3107                                 re_stop(sc);
3108                                 return;
3109                         }
3110                 }
3111                 re_set_jumbo(sc, ifp->if_mtu > RL_MTU);
3112         } else {
3113                 if (re_rx_list_init(sc) != 0) {
3114                         device_printf(sc->rl_dev, "no memory for RX buffers\n");
3115                         re_stop(sc);
3116                         return;
3117                 }
3118                 if ((sc->rl_flags & RL_FLAG_PCIE) != 0 &&
3119                     pci_get_device(sc->rl_dev) != RT_DEVICEID_8101E) {
3120                         if (ifp->if_mtu > RL_MTU)
3121                                 pci_set_max_read_req(sc->rl_dev, 512);
3122                         else
3123                                 pci_set_max_read_req(sc->rl_dev, 4096);
3124                 }
3125         }
3126         re_tx_list_init(sc);
3127
3128         /*
3129          * Enable C+ RX and TX mode, as well as VLAN stripping and
3130          * RX checksum offload. We must configure the C+ register
3131          * before all others.
3132          */
3133         cfg = RL_CPLUSCMD_PCI_MRW;
3134         if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
3135                 cfg |= RL_CPLUSCMD_RXCSUM_ENB;
3136         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3137                 cfg |= RL_CPLUSCMD_VLANSTRIP;
3138         if ((sc->rl_flags & RL_FLAG_MACSTAT) != 0) {
3139                 cfg |= RL_CPLUSCMD_MACSTAT_DIS;
3140                 /* XXX magic. */
3141                 cfg |= 0x0001;
3142         } else
3143                 cfg |= RL_CPLUSCMD_RXENB | RL_CPLUSCMD_TXENB;
3144         CSR_WRITE_2(sc, RL_CPLUS_CMD, cfg);
3145         if (sc->rl_hwrev->rl_rev == RL_HWREV_8169_8110SC ||
3146             sc->rl_hwrev->rl_rev == RL_HWREV_8169_8110SCE) {
3147                 reg = 0x000fff00;
3148                 if ((CSR_READ_1(sc, sc->rl_cfg2) & RL_CFG2_PCI66MHZ) != 0)
3149                         reg |= 0x000000ff;
3150                 if (sc->rl_hwrev->rl_rev == RL_HWREV_8169_8110SCE)
3151                         reg |= 0x00f00000;
3152                 CSR_WRITE_4(sc, 0x7c, reg);
3153                 /* Disable interrupt mitigation. */
3154                 CSR_WRITE_2(sc, 0xe2, 0);
3155         }
3156         /*
3157          * Disable TSO if interface MTU size is greater than MSS
3158          * allowed in controller.
3159          */
3160         if (ifp->if_mtu > RL_TSO_MTU && (ifp->if_capenable & IFCAP_TSO4) != 0) {
3161                 ifp->if_capenable &= ~IFCAP_TSO4;
3162                 ifp->if_hwassist &= ~CSUM_TSO;
3163         }
3164
3165         /*
3166          * Init our MAC address.  Even though the chipset
3167          * documentation doesn't mention it, we need to enter "Config
3168          * register write enable" mode to modify the ID registers.
3169          */
3170         /* Copy MAC address on stack to align. */
3171         bcopy(IF_LLADDR(ifp), eaddr.eaddr, ETHER_ADDR_LEN);
3172         CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
3173         CSR_WRITE_4(sc, RL_IDR0,
3174             htole32(*(u_int32_t *)(&eaddr.eaddr[0])));
3175         CSR_WRITE_4(sc, RL_IDR4,
3176             htole32(*(u_int32_t *)(&eaddr.eaddr[4])));
3177         CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
3178
3179         /*
3180          * Load the addresses of the RX and TX lists into the chip.
3181          */
3182
3183         CSR_WRITE_4(sc, RL_RXLIST_ADDR_HI,
3184             RL_ADDR_HI(sc->rl_ldata.rl_rx_list_addr));
3185         CSR_WRITE_4(sc, RL_RXLIST_ADDR_LO,
3186             RL_ADDR_LO(sc->rl_ldata.rl_rx_list_addr));
3187
3188         CSR_WRITE_4(sc, RL_TXLIST_ADDR_HI,
3189             RL_ADDR_HI(sc->rl_ldata.rl_tx_list_addr));
3190         CSR_WRITE_4(sc, RL_TXLIST_ADDR_LO,
3191             RL_ADDR_LO(sc->rl_ldata.rl_tx_list_addr));
3192
3193         if ((sc->rl_flags & RL_FLAG_RXDV_GATED) != 0)
3194                 CSR_WRITE_4(sc, RL_MISC, CSR_READ_4(sc, RL_MISC) &
3195                     ~0x00080000);
3196
3197         /*
3198          * Set the initial TX configuration.
3199          */
3200         if (sc->rl_testmode) {
3201                 if (sc->rl_type == RL_8169)
3202                         CSR_WRITE_4(sc, RL_TXCFG,
3203                             RL_TXCFG_CONFIG|RL_LOOPTEST_ON);
3204                 else
3205                         CSR_WRITE_4(sc, RL_TXCFG,
3206                             RL_TXCFG_CONFIG|RL_LOOPTEST_ON_CPLUS);
3207         } else
3208                 CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
3209
3210         CSR_WRITE_1(sc, RL_EARLY_TX_THRESH, 16);
3211
3212         /*
3213          * Set the initial RX configuration.
3214          */
3215         re_set_rxmode(sc);
3216
3217         /* Configure interrupt moderation. */
3218         if (sc->rl_type == RL_8169) {
3219                 /* Magic from vendor. */
3220                 CSR_WRITE_2(sc, RL_INTRMOD, 0x5100);
3221         }
3222
3223         /*
3224          * Enable transmit and receive.
3225          */
3226         CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB | RL_CMD_RX_ENB);
3227
3228 #ifdef DEVICE_POLLING
3229         /*
3230          * Disable interrupts if we are polling.
3231          */
3232         if (ifp->if_capenable & IFCAP_POLLING)
3233                 CSR_WRITE_2(sc, RL_IMR, 0);
3234         else    /* otherwise ... */
3235 #endif
3236
3237         /*
3238          * Enable interrupts.
3239          */
3240         if (sc->rl_testmode)
3241                 CSR_WRITE_2(sc, RL_IMR, 0);
3242         else
3243                 CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
3244         CSR_WRITE_2(sc, RL_ISR, RL_INTRS_CPLUS);
3245
3246         /* Set initial TX threshold */
3247         sc->rl_txthresh = RL_TX_THRESH_INIT;
3248
3249         /* Start RX/TX process. */
3250         CSR_WRITE_4(sc, RL_MISSEDPKT, 0);
3251
3252         /*
3253          * Initialize the timer interrupt register so that
3254          * a timer interrupt will be generated once the timer
3255          * reaches a certain number of ticks. The timer is
3256          * reloaded on each transmit.
3257          */
3258 #ifdef RE_TX_MODERATION
3259         /*
3260          * Use timer interrupt register to moderate TX interrupt
3261          * moderation, which dramatically improves TX frame rate.
3262          */
3263         if (sc->rl_type == RL_8169)
3264                 CSR_WRITE_4(sc, RL_TIMERINT_8169, 0x800);
3265         else
3266                 CSR_WRITE_4(sc, RL_TIMERINT, 0x400);
3267 #else
3268         /*
3269          * Use timer interrupt register to moderate RX interrupt
3270          * moderation.
3271          */
3272         if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) != 0 &&
3273             intr_filter == 0) {
3274                 if (sc->rl_type == RL_8169)
3275                         CSR_WRITE_4(sc, RL_TIMERINT_8169,
3276                             RL_USECS(sc->rl_int_rx_mod));
3277         } else {
3278                 if (sc->rl_type == RL_8169)
3279                         CSR_WRITE_4(sc, RL_TIMERINT_8169, RL_USECS(0));
3280         }
3281 #endif
3282
3283         /*
3284          * For 8169 gigE NICs, set the max allowed RX packet
3285          * size so we can receive jumbo frames.
3286          */
3287         if (sc->rl_type == RL_8169) {
3288                 if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0) {
3289                         /*
3290                          * For controllers that use new jumbo frame scheme,
3291                          * set maximum size of jumbo frame depending on
3292                          * controller revisions.
3293                          */
3294                         if (ifp->if_mtu > RL_MTU)
3295                                 CSR_WRITE_2(sc, RL_MAXRXPKTLEN,
3296                                     sc->rl_hwrev->rl_max_mtu +
3297                                     ETHER_VLAN_ENCAP_LEN + ETHER_HDR_LEN +
3298                                     ETHER_CRC_LEN);
3299                         else
3300                                 CSR_WRITE_2(sc, RL_MAXRXPKTLEN,
3301                                     RE_RX_DESC_BUFLEN);
3302                 } else if ((sc->rl_flags & RL_FLAG_PCIE) != 0 &&
3303                     sc->rl_hwrev->rl_max_mtu == RL_MTU) {
3304                         /* RTL810x has no jumbo frame support. */
3305                         CSR_WRITE_2(sc, RL_MAXRXPKTLEN, RE_RX_DESC_BUFLEN);
3306                 } else
3307                         CSR_WRITE_2(sc, RL_MAXRXPKTLEN, 16383);
3308         }
3309
3310         if (sc->rl_testmode)
3311                 return;
3312
3313         CSR_WRITE_1(sc, sc->rl_cfg1, CSR_READ_1(sc, sc->rl_cfg1) |
3314             RL_CFG1_DRVLOAD);
3315
3316         ifp->if_drv_flags |= IFF_DRV_RUNNING;
3317         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3318
3319         sc->rl_flags &= ~RL_FLAG_LINK;
3320         mii_mediachg(mii);
3321
3322         sc->rl_watchdog_timer = 0;
3323         callout_reset(&sc->rl_stat_callout, hz, re_tick, sc);
3324 }
3325
3326 /*
3327  * Set media options.
3328  */
3329 static int
3330 re_ifmedia_upd(struct ifnet *ifp)
3331 {
3332         struct rl_softc         *sc;
3333         struct mii_data         *mii;
3334         int                     error;
3335
3336         sc = ifp->if_softc;
3337         mii = device_get_softc(sc->rl_miibus);
3338         RL_LOCK(sc);
3339         error = mii_mediachg(mii);
3340         RL_UNLOCK(sc);
3341
3342         return (error);
3343 }
3344
3345 /*
3346  * Report current media status.
3347  */
3348 static void
3349 re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3350 {
3351         struct rl_softc         *sc;
3352         struct mii_data         *mii;
3353
3354         sc = ifp->if_softc;
3355         mii = device_get_softc(sc->rl_miibus);
3356
3357         RL_LOCK(sc);
3358         mii_pollstat(mii);
3359         ifmr->ifm_active = mii->mii_media_active;
3360         ifmr->ifm_status = mii->mii_media_status;
3361         RL_UNLOCK(sc);
3362 }
3363
3364 static int
3365 re_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
3366 {
3367         struct rl_softc         *sc = ifp->if_softc;
3368         struct ifreq            *ifr = (struct ifreq *) data;
3369         struct mii_data         *mii;
3370         int                     error = 0;
3371
3372         switch (command) {
3373         case SIOCSIFMTU:
3374                 if (ifr->ifr_mtu < ETHERMIN ||
3375                     ifr->ifr_mtu > sc->rl_hwrev->rl_max_mtu ||
3376                     ((sc->rl_flags & RL_FLAG_FASTETHER) != 0 &&
3377                     ifr->ifr_mtu > RL_MTU)) {
3378                         error = EINVAL;
3379                         break;
3380                 }
3381                 RL_LOCK(sc);
3382                 if (ifp->if_mtu != ifr->ifr_mtu) {
3383                         ifp->if_mtu = ifr->ifr_mtu;
3384                         if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0 &&
3385                             (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
3386                                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3387                                 re_init_locked(sc);
3388                         }
3389                         if (ifp->if_mtu > RL_TSO_MTU &&
3390                             (ifp->if_capenable & IFCAP_TSO4) != 0) {
3391                                 ifp->if_capenable &= ~(IFCAP_TSO4 |
3392                                     IFCAP_VLAN_HWTSO);
3393                                 ifp->if_hwassist &= ~CSUM_TSO;
3394                         }
3395                         VLAN_CAPABILITIES(ifp);
3396                 }
3397                 RL_UNLOCK(sc);
3398                 break;
3399         case SIOCSIFFLAGS:
3400                 RL_LOCK(sc);
3401                 if ((ifp->if_flags & IFF_UP) != 0) {
3402                         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
3403                                 if (((ifp->if_flags ^ sc->rl_if_flags)
3404                                     & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
3405                                         re_set_rxmode(sc);
3406                         } else
3407                                 re_init_locked(sc);
3408                 } else {
3409                         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
3410                                 re_stop(sc);
3411                 }
3412                 sc->rl_if_flags = ifp->if_flags;
3413                 RL_UNLOCK(sc);
3414                 break;
3415         case SIOCADDMULTI:
3416         case SIOCDELMULTI:
3417                 RL_LOCK(sc);
3418                 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
3419                         re_set_rxmode(sc);
3420                 RL_UNLOCK(sc);
3421                 break;
3422         case SIOCGIFMEDIA:
3423         case SIOCSIFMEDIA:
3424                 mii = device_get_softc(sc->rl_miibus);
3425                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
3426                 break;
3427         case SIOCSIFCAP:
3428             {
3429                 int mask, reinit;
3430
3431                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
3432                 reinit = 0;
3433 #ifdef DEVICE_POLLING
3434                 if (mask & IFCAP_POLLING) {
3435                         if (ifr->ifr_reqcap & IFCAP_POLLING) {
3436                                 error = ether_poll_register(re_poll, ifp);
3437                                 if (error)
3438                                         return (error);
3439                                 RL_LOCK(sc);
3440                                 /* Disable interrupts */
3441                                 CSR_WRITE_2(sc, RL_IMR, 0x0000);
3442                                 ifp->if_capenable |= IFCAP_POLLING;
3443                                 RL_UNLOCK(sc);
3444                         } else {
3445                                 error = ether_poll_deregister(ifp);
3446                                 /* Enable interrupts. */
3447                                 RL_LOCK(sc);
3448                                 CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
3449                                 ifp->if_capenable &= ~IFCAP_POLLING;
3450                                 RL_UNLOCK(sc);
3451                         }
3452                 }
3453 #endif /* DEVICE_POLLING */
3454                 RL_LOCK(sc);
3455                 if ((mask & IFCAP_TXCSUM) != 0 &&
3456                     (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
3457                         ifp->if_capenable ^= IFCAP_TXCSUM;
3458                         if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
3459                                 ifp->if_hwassist |= RE_CSUM_FEATURES;
3460                         else
3461                                 ifp->if_hwassist &= ~RE_CSUM_FEATURES;
3462                         reinit = 1;
3463                 }
3464                 if ((mask & IFCAP_RXCSUM) != 0 &&
3465                     (ifp->if_capabilities & IFCAP_RXCSUM) != 0) {
3466                         ifp->if_capenable ^= IFCAP_RXCSUM;
3467                         reinit = 1;
3468                 }
3469                 if ((mask & IFCAP_TSO4) != 0 &&
3470                     (ifp->if_capabilities & IFCAP_TSO4) != 0) {
3471                         ifp->if_capenable ^= IFCAP_TSO4;
3472                         if ((IFCAP_TSO4 & ifp->if_capenable) != 0)
3473                                 ifp->if_hwassist |= CSUM_TSO;
3474                         else
3475                                 ifp->if_hwassist &= ~CSUM_TSO;
3476                         if (ifp->if_mtu > RL_TSO_MTU &&
3477                             (ifp->if_capenable & IFCAP_TSO4) != 0) {
3478                                 ifp->if_capenable &= ~IFCAP_TSO4;
3479                                 ifp->if_hwassist &= ~CSUM_TSO;
3480                         }
3481                 }
3482                 if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
3483                     (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
3484                         ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
3485                 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
3486                     (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
3487                         ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
3488                         /* TSO over VLAN requires VLAN hardware tagging. */
3489                         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
3490                                 ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
3491                         reinit = 1;
3492                 }
3493                 if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0 &&
3494                     (mask & (IFCAP_HWCSUM | IFCAP_TSO4 |
3495                     IFCAP_VLAN_HWTSO)) != 0)
3496                                 reinit = 1;
3497                 if ((mask & IFCAP_WOL) != 0 &&
3498                     (ifp->if_capabilities & IFCAP_WOL) != 0) {
3499                         if ((mask & IFCAP_WOL_UCAST) != 0)
3500                                 ifp->if_capenable ^= IFCAP_WOL_UCAST;
3501                         if ((mask & IFCAP_WOL_MCAST) != 0)
3502                                 ifp->if_capenable ^= IFCAP_WOL_MCAST;
3503                         if ((mask & IFCAP_WOL_MAGIC) != 0)
3504                                 ifp->if_capenable ^= IFCAP_WOL_MAGIC;
3505                 }
3506                 if (reinit && ifp->if_drv_flags & IFF_DRV_RUNNING) {
3507                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3508                         re_init_locked(sc);
3509                 }
3510                 RL_UNLOCK(sc);
3511                 VLAN_CAPABILITIES(ifp);
3512             }
3513                 break;
3514         default:
3515                 error = ether_ioctl(ifp, command, data);
3516                 break;
3517         }
3518
3519         return (error);
3520 }
3521
3522 static void
3523 re_watchdog(struct rl_softc *sc)
3524 {
3525         struct ifnet            *ifp;
3526
3527         RL_LOCK_ASSERT(sc);
3528
3529         if (sc->rl_watchdog_timer == 0 || --sc->rl_watchdog_timer != 0)
3530                 return;
3531
3532         ifp = sc->rl_ifp;
3533         re_txeof(sc);
3534         if (sc->rl_ldata.rl_tx_free == sc->rl_ldata.rl_tx_desc_cnt) {
3535                 if_printf(ifp, "watchdog timeout (missed Tx interrupts) "
3536                     "-- recovering\n");
3537                 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3538                         re_start_locked(ifp);
3539                 return;
3540         }
3541
3542         if_printf(ifp, "watchdog timeout\n");
3543         ifp->if_oerrors++;
3544
3545         re_rxeof(sc, NULL);
3546         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3547         re_init_locked(sc);
3548         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3549                 re_start_locked(ifp);
3550 }
3551
3552 /*
3553  * Stop the adapter and free any mbufs allocated to the
3554  * RX and TX lists.
3555  */
3556 static void
3557 re_stop(struct rl_softc *sc)
3558 {
3559         int                     i;
3560         struct ifnet            *ifp;
3561         struct rl_txdesc        *txd;
3562         struct rl_rxdesc        *rxd;
3563
3564         RL_LOCK_ASSERT(sc);
3565
3566         ifp = sc->rl_ifp;
3567
3568         sc->rl_watchdog_timer = 0;
3569         callout_stop(&sc->rl_stat_callout);
3570         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3571
3572         /*
3573          * Disable accepting frames to put RX MAC into idle state.
3574          * Otherwise it's possible to get frames while stop command
3575          * execution is in progress and controller can DMA the frame
3576          * to already freed RX buffer during that period.
3577          */
3578         CSR_WRITE_4(sc, RL_RXCFG, CSR_READ_4(sc, RL_RXCFG) &
3579             ~(RL_RXCFG_RX_ALLPHYS | RL_RXCFG_RX_INDIV | RL_RXCFG_RX_MULTI |
3580             RL_RXCFG_RX_BROAD));
3581
3582         if ((sc->rl_flags & RL_FLAG_WAIT_TXPOLL) != 0) {
3583                 for (i = RL_TIMEOUT; i > 0; i--) {
3584                         if ((CSR_READ_1(sc, sc->rl_txstart) &
3585                             RL_TXSTART_START) == 0)
3586                                 break;
3587                         DELAY(20);
3588                 }
3589                 if (i == 0)
3590                         device_printf(sc->rl_dev,
3591                             "stopping TX poll timed out!\n");
3592                 CSR_WRITE_1(sc, RL_COMMAND, 0x00);
3593         } else if ((sc->rl_flags & RL_FLAG_CMDSTOP) != 0) {
3594                 CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_STOPREQ | RL_CMD_TX_ENB |
3595                     RL_CMD_RX_ENB);
3596                 if ((sc->rl_flags & RL_FLAG_CMDSTOP_WAIT_TXQ) != 0) {
3597                         for (i = RL_TIMEOUT; i > 0; i--) {
3598                                 if ((CSR_READ_4(sc, RL_TXCFG) &
3599                                     RL_TXCFG_QUEUE_EMPTY) != 0)
3600                                         break;
3601                                 DELAY(100);
3602                         }
3603                         if (i == 0)
3604                                 device_printf(sc->rl_dev,
3605                                    "stopping TXQ timed out!\n");
3606                 }
3607         } else
3608                 CSR_WRITE_1(sc, RL_COMMAND, 0x00);
3609         DELAY(1000);
3610         CSR_WRITE_2(sc, RL_IMR, 0x0000);
3611         CSR_WRITE_2(sc, RL_ISR, 0xFFFF);
3612
3613         if (sc->rl_head != NULL) {
3614                 m_freem(sc->rl_head);
3615                 sc->rl_head = sc->rl_tail = NULL;
3616         }
3617
3618         /* Free the TX list buffers. */
3619         for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) {
3620                 txd = &sc->rl_ldata.rl_tx_desc[i];
3621                 if (txd->tx_m != NULL) {
3622                         bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag,
3623                             txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
3624                         bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag,
3625                             txd->tx_dmamap);
3626                         m_freem(txd->tx_m);
3627                         txd->tx_m = NULL;
3628                 }
3629         }
3630
3631         /* Free the RX list buffers. */
3632         for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
3633                 rxd = &sc->rl_ldata.rl_rx_desc[i];
3634                 if (rxd->rx_m != NULL) {
3635                         bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag,
3636                             rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3637                         bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag,
3638                             rxd->rx_dmamap);
3639                         m_freem(rxd->rx_m);
3640                         rxd->rx_m = NULL;
3641                 }
3642         }
3643
3644         if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0) {
3645                 for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
3646                         rxd = &sc->rl_ldata.rl_jrx_desc[i];
3647                         if (rxd->rx_m != NULL) {
3648                                 bus_dmamap_sync(sc->rl_ldata.rl_jrx_mtag,
3649                                     rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3650                                 bus_dmamap_unload(sc->rl_ldata.rl_jrx_mtag,
3651                                     rxd->rx_dmamap);
3652                                 m_freem(rxd->rx_m);
3653                                 rxd->rx_m = NULL;
3654                         }
3655                 }
3656         }
3657 }
3658
3659 /*
3660  * Device suspend routine.  Stop the interface and save some PCI
3661  * settings in case the BIOS doesn't restore them properly on
3662  * resume.
3663  */
3664 static int
3665 re_suspend(device_t dev)
3666 {
3667         struct rl_softc         *sc;
3668
3669         sc = device_get_softc(dev);
3670
3671         RL_LOCK(sc);
3672         re_stop(sc);
3673         re_setwol(sc);
3674         sc->suspended = 1;
3675         RL_UNLOCK(sc);
3676
3677         return (0);
3678 }
3679
3680 /*
3681  * Device resume routine.  Restore some PCI settings in case the BIOS
3682  * doesn't, re-enable busmastering, and restart the interface if
3683  * appropriate.
3684  */
3685 static int
3686 re_resume(device_t dev)
3687 {
3688         struct rl_softc         *sc;
3689         struct ifnet            *ifp;
3690
3691         sc = device_get_softc(dev);
3692
3693         RL_LOCK(sc);
3694
3695         ifp = sc->rl_ifp;
3696         /* Take controller out of sleep mode. */
3697         if ((sc->rl_flags & RL_FLAG_MACSLEEP) != 0) {
3698                 if ((CSR_READ_1(sc, RL_MACDBG) & 0x80) == 0x80)
3699                         CSR_WRITE_1(sc, RL_GPIO,
3700                             CSR_READ_1(sc, RL_GPIO) | 0x01);
3701         }
3702
3703         /*
3704          * Clear WOL matching such that normal Rx filtering
3705          * wouldn't interfere with WOL patterns.
3706          */
3707         re_clrwol(sc);
3708
3709         /* reinitialize interface if necessary */
3710         if (ifp->if_flags & IFF_UP)
3711                 re_init_locked(sc);
3712
3713         sc->suspended = 0;
3714         RL_UNLOCK(sc);
3715
3716         return (0);
3717 }
3718
3719 /*
3720  * Stop all chip I/O so that the kernel's probe routines don't
3721  * get confused by errant DMAs when rebooting.
3722  */
3723 static int
3724 re_shutdown(device_t dev)
3725 {
3726         struct rl_softc         *sc;
3727
3728         sc = device_get_softc(dev);
3729
3730         RL_LOCK(sc);
3731         re_stop(sc);
3732         /*
3733          * Mark interface as down since otherwise we will panic if
3734          * interrupt comes in later on, which can happen in some
3735          * cases.
3736          */
3737         sc->rl_ifp->if_flags &= ~IFF_UP;
3738         re_setwol(sc);
3739         RL_UNLOCK(sc);
3740
3741         return (0);
3742 }
3743
3744 static void
3745 re_set_linkspeed(struct rl_softc *sc)
3746 {
3747         struct mii_softc *miisc;
3748         struct mii_data *mii;
3749         int aneg, i, phyno;
3750
3751         RL_LOCK_ASSERT(sc);
3752
3753         mii = device_get_softc(sc->rl_miibus);
3754         mii_pollstat(mii);
3755         aneg = 0;
3756         if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
3757             (IFM_ACTIVE | IFM_AVALID)) {
3758                 switch IFM_SUBTYPE(mii->mii_media_active) {
3759                 case IFM_10_T:
3760                 case IFM_100_TX:
3761                         return;
3762                 case IFM_1000_T:
3763                         aneg++;
3764                         break;
3765                 default:
3766                         break;
3767                 }
3768         }
3769         miisc = LIST_FIRST(&mii->mii_phys);
3770         phyno = miisc->mii_phy;
3771         LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
3772                 PHY_RESET(miisc);
3773         re_miibus_writereg(sc->rl_dev, phyno, MII_100T2CR, 0);
3774         re_miibus_writereg(sc->rl_dev, phyno,
3775             MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
3776         re_miibus_writereg(sc->rl_dev, phyno,
3777             MII_BMCR, BMCR_AUTOEN | BMCR_STARTNEG);
3778         DELAY(1000);
3779         if (aneg != 0) {
3780                 /*
3781                  * Poll link state until re(4) get a 10/100Mbps link.
3782                  */
3783                 for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
3784                         mii_pollstat(mii);
3785                         if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID))
3786                             == (IFM_ACTIVE | IFM_AVALID)) {
3787                                 switch (IFM_SUBTYPE(mii->mii_media_active)) {
3788                                 case IFM_10_T:
3789                                 case IFM_100_TX:
3790                                         return;
3791                                 default:
3792                                         break;
3793                                 }
3794                         }
3795                         RL_UNLOCK(sc);
3796                         pause("relnk", hz);
3797                         RL_LOCK(sc);
3798                 }
3799                 if (i == MII_ANEGTICKS_GIGE)
3800                         device_printf(sc->rl_dev,
3801                             "establishing a link failed, WOL may not work!");
3802         }
3803         /*
3804          * No link, force MAC to have 100Mbps, full-duplex link.
3805          * MAC does not require reprogramming on resolved speed/duplex,
3806          * so this is just for completeness.
3807          */
3808         mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
3809         mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
3810 }
3811
3812 static void
3813 re_setwol(struct rl_softc *sc)
3814 {
3815         struct ifnet            *ifp;
3816         int                     pmc;
3817         uint16_t                pmstat;
3818         uint8_t                 v;
3819
3820         RL_LOCK_ASSERT(sc);
3821
3822         if (pci_find_cap(sc->rl_dev, PCIY_PMG, &pmc) != 0)
3823                 return;
3824
3825         ifp = sc->rl_ifp;
3826         /* Put controller into sleep mode. */
3827         if ((sc->rl_flags & RL_FLAG_MACSLEEP) != 0) {
3828                 if ((CSR_READ_1(sc, RL_MACDBG) & 0x80) == 0x80)
3829                         CSR_WRITE_1(sc, RL_GPIO,
3830                             CSR_READ_1(sc, RL_GPIO) & ~0x01);
3831         }
3832         if ((ifp->if_capenable & IFCAP_WOL) != 0) {
3833                 re_set_rxmode(sc);
3834                 if ((sc->rl_flags & RL_FLAG_WOL_MANLINK) != 0)
3835                         re_set_linkspeed(sc);
3836                 if ((sc->rl_flags & RL_FLAG_WOLRXENB) != 0)
3837                         CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RX_ENB);
3838         }
3839         /* Enable config register write. */
3840         CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
3841
3842         /* Enable PME. */
3843         v = CSR_READ_1(sc, sc->rl_cfg1);
3844         v &= ~RL_CFG1_PME;
3845         if ((ifp->if_capenable & IFCAP_WOL) != 0)
3846                 v |= RL_CFG1_PME;
3847         CSR_WRITE_1(sc, sc->rl_cfg1, v);
3848
3849         v = CSR_READ_1(sc, sc->rl_cfg3);
3850         v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC);
3851         if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
3852                 v |= RL_CFG3_WOL_MAGIC;
3853         CSR_WRITE_1(sc, sc->rl_cfg3, v);
3854
3855         v = CSR_READ_1(sc, sc->rl_cfg5);
3856         v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST |
3857             RL_CFG5_WOL_LANWAKE);
3858         if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
3859                 v |= RL_CFG5_WOL_UCAST;
3860         if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
3861                 v |= RL_CFG5_WOL_MCAST | RL_CFG5_WOL_BCAST;
3862         if ((ifp->if_capenable & IFCAP_WOL) != 0)
3863                 v |= RL_CFG5_WOL_LANWAKE;
3864         CSR_WRITE_1(sc, sc->rl_cfg5, v);
3865
3866         /* Config register write done. */
3867         CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
3868
3869         if ((ifp->if_capenable & IFCAP_WOL) == 0 &&
3870             (sc->rl_flags & RL_FLAG_PHYWAKE_PM) != 0)
3871                 CSR_WRITE_1(sc, RL_PMCH, CSR_READ_1(sc, RL_PMCH) & ~0x80);
3872         /*
3873          * It seems that hardware resets its link speed to 100Mbps in
3874          * power down mode so switching to 100Mbps in driver is not
3875          * needed.
3876          */
3877
3878         /* Request PME if WOL is requested. */
3879         pmstat = pci_read_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, 2);
3880         pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
3881         if ((ifp->if_capenable & IFCAP_WOL) != 0)
3882                 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3883         pci_write_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
3884 }
3885
3886 static void
3887 re_clrwol(struct rl_softc *sc)
3888 {
3889         int                     pmc;
3890         uint8_t                 v;
3891
3892         RL_LOCK_ASSERT(sc);
3893
3894         if (pci_find_cap(sc->rl_dev, PCIY_PMG, &pmc) != 0)
3895                 return;
3896
3897         /* Enable config register write. */
3898         CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
3899
3900         v = CSR_READ_1(sc, sc->rl_cfg3);
3901         v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC);
3902         CSR_WRITE_1(sc, sc->rl_cfg3, v);
3903
3904         /* Config register write done. */
3905         CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
3906
3907         v = CSR_READ_1(sc, sc->rl_cfg5);
3908         v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST);
3909         v &= ~RL_CFG5_WOL_LANWAKE;
3910         CSR_WRITE_1(sc, sc->rl_cfg5, v);
3911 }
3912
3913 static void
3914 re_add_sysctls(struct rl_softc *sc)
3915 {
3916         struct sysctl_ctx_list  *ctx;
3917         struct sysctl_oid_list  *children;
3918         int                     error;
3919
3920         ctx = device_get_sysctl_ctx(sc->rl_dev);
3921         children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->rl_dev));
3922
3923         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "stats",
3924             CTLTYPE_INT | CTLFLAG_RW, sc, 0, re_sysctl_stats, "I",
3925             "Statistics Information");
3926         if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) == 0)
3927                 return;
3928
3929         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "int_rx_mod",
3930             CTLTYPE_INT | CTLFLAG_RW, &sc->rl_int_rx_mod, 0,
3931             sysctl_hw_re_int_mod, "I", "re RX interrupt moderation");
3932         /* Pull in device tunables. */
3933         sc->rl_int_rx_mod = RL_TIMER_DEFAULT;
3934         error = resource_int_value(device_get_name(sc->rl_dev),
3935             device_get_unit(sc->rl_dev), "int_rx_mod", &sc->rl_int_rx_mod);
3936         if (error == 0) {
3937                 if (sc->rl_int_rx_mod < RL_TIMER_MIN ||
3938                     sc->rl_int_rx_mod > RL_TIMER_MAX) {
3939                         device_printf(sc->rl_dev, "int_rx_mod value out of "
3940                             "range; using default: %d\n",
3941                             RL_TIMER_DEFAULT);
3942                         sc->rl_int_rx_mod = RL_TIMER_DEFAULT;
3943                 }
3944         }
3945
3946 }
3947
3948 static int
3949 re_sysctl_stats(SYSCTL_HANDLER_ARGS)
3950 {
3951         struct rl_softc         *sc;
3952         struct rl_stats         *stats;
3953         int                     error, i, result;
3954
3955         result = -1;
3956         error = sysctl_handle_int(oidp, &result, 0, req);
3957         if (error || req->newptr == NULL)
3958                 return (error);
3959
3960         if (result == 1) {
3961                 sc = (struct rl_softc *)arg1;
3962                 RL_LOCK(sc);
3963                 if ((sc->rl_ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
3964                         RL_UNLOCK(sc);
3965                         goto done;
3966                 }
3967                 bus_dmamap_sync(sc->rl_ldata.rl_stag,
3968                     sc->rl_ldata.rl_smap, BUS_DMASYNC_PREREAD);
3969                 CSR_WRITE_4(sc, RL_DUMPSTATS_HI,
3970                     RL_ADDR_HI(sc->rl_ldata.rl_stats_addr));
3971                 CSR_WRITE_4(sc, RL_DUMPSTATS_LO,
3972                     RL_ADDR_LO(sc->rl_ldata.rl_stats_addr));
3973                 CSR_WRITE_4(sc, RL_DUMPSTATS_LO,
3974                     RL_ADDR_LO(sc->rl_ldata.rl_stats_addr |
3975                     RL_DUMPSTATS_START));
3976                 for (i = RL_TIMEOUT; i > 0; i--) {
3977                         if ((CSR_READ_4(sc, RL_DUMPSTATS_LO) &
3978                             RL_DUMPSTATS_START) == 0)
3979                                 break;
3980                         DELAY(1000);
3981                 }
3982                 bus_dmamap_sync(sc->rl_ldata.rl_stag,
3983                     sc->rl_ldata.rl_smap, BUS_DMASYNC_POSTREAD);
3984                 RL_UNLOCK(sc);
3985                 if (i == 0) {
3986                         device_printf(sc->rl_dev,
3987                             "DUMP statistics request timed out\n");
3988                         return (ETIMEDOUT);
3989                 }
3990 done:
3991                 stats = sc->rl_ldata.rl_stats;
3992                 printf("%s statistics:\n", device_get_nameunit(sc->rl_dev));
3993                 printf("Tx frames : %ju\n",
3994                     (uintmax_t)le64toh(stats->rl_tx_pkts));
3995                 printf("Rx frames : %ju\n",
3996                     (uintmax_t)le64toh(stats->rl_rx_pkts));
3997                 printf("Tx errors : %ju\n",
3998                     (uintmax_t)le64toh(stats->rl_tx_errs));
3999                 printf("Rx errors : %u\n",
4000                     le32toh(stats->rl_rx_errs));
4001                 printf("Rx missed frames : %u\n",
4002                     (uint32_t)le16toh(stats->rl_missed_pkts));
4003                 printf("Rx frame alignment errs : %u\n",
4004                     (uint32_t)le16toh(stats->rl_rx_framealign_errs));
4005                 printf("Tx single collisions : %u\n",
4006                     le32toh(stats->rl_tx_onecoll));
4007                 printf("Tx multiple collisions : %u\n",
4008                     le32toh(stats->rl_tx_multicolls));
4009                 printf("Rx unicast frames : %ju\n",
4010                     (uintmax_t)le64toh(stats->rl_rx_ucasts));
4011                 printf("Rx broadcast frames : %ju\n",
4012                     (uintmax_t)le64toh(stats->rl_rx_bcasts));
4013                 printf("Rx multicast frames : %u\n",
4014                     le32toh(stats->rl_rx_mcasts));
4015                 printf("Tx aborts : %u\n",
4016                     (uint32_t)le16toh(stats->rl_tx_aborts));
4017                 printf("Tx underruns : %u\n",
4018                     (uint32_t)le16toh(stats->rl_rx_underruns));
4019         }
4020
4021         return (error);
4022 }
4023
4024 static int
4025 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
4026 {
4027         int error, value;
4028
4029         if (arg1 == NULL)
4030                 return (EINVAL);
4031         value = *(int *)arg1;
4032         error = sysctl_handle_int(oidp, &value, 0, req);
4033         if (error || req->newptr == NULL)
4034                 return (error);
4035         if (value < low || value > high)
4036                 return (EINVAL);
4037         *(int *)arg1 = value;
4038
4039         return (0);
4040 }
4041
4042 static int
4043 sysctl_hw_re_int_mod(SYSCTL_HANDLER_ARGS)
4044 {
4045
4046         return (sysctl_int_range(oidp, arg1, arg2, req, RL_TIMER_MIN,
4047             RL_TIMER_MAX));
4048 }