]> CyberLeo.Net >> Repos - FreeBSD/releng/10.2.git/blob - sys/dev/sound/pci/hda/hdac.c
- Copy stable/10@285827 to releng/10.2 in preparation for 10.2-RC1
[FreeBSD/releng/10.2.git] / sys / dev / sound / pci / hda / hdac.c
1 /*-
2  * Copyright (c) 2006 Stephane E. Potvin <sepotvin@videotron.ca>
3  * Copyright (c) 2006 Ariff Abdullah <ariff@FreeBSD.org>
4  * Copyright (c) 2008-2012 Alexander Motin <mav@FreeBSD.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28
29 /*
30  * Intel High Definition Audio (Controller) driver for FreeBSD.
31  */
32
33 #ifdef HAVE_KERNEL_OPTION_HEADERS
34 #include "opt_snd.h"
35 #endif
36
37 #include <dev/sound/pcm/sound.h>
38 #include <dev/pci/pcireg.h>
39 #include <dev/pci/pcivar.h>
40
41 #include <sys/ctype.h>
42 #include <sys/taskqueue.h>
43
44 #include <dev/sound/pci/hda/hdac_private.h>
45 #include <dev/sound/pci/hda/hdac_reg.h>
46 #include <dev/sound/pci/hda/hda_reg.h>
47 #include <dev/sound/pci/hda/hdac.h>
48
49 #define HDA_DRV_TEST_REV        "20120126_0002"
50
51 SND_DECLARE_FILE("$FreeBSD$");
52
53 #define hdac_lock(sc)           snd_mtxlock((sc)->lock)
54 #define hdac_unlock(sc)         snd_mtxunlock((sc)->lock)
55 #define hdac_lockassert(sc)     snd_mtxassert((sc)->lock)
56 #define hdac_lockowned(sc)      mtx_owned((sc)->lock)
57
58 #define HDAC_QUIRK_64BIT        (1 << 0)
59 #define HDAC_QUIRK_DMAPOS       (1 << 1)
60 #define HDAC_QUIRK_MSI          (1 << 2)
61
62 static const struct {
63         const char *key;
64         uint32_t value;
65 } hdac_quirks_tab[] = {
66         { "64bit", HDAC_QUIRK_DMAPOS },
67         { "dmapos", HDAC_QUIRK_DMAPOS },
68         { "msi", HDAC_QUIRK_MSI },
69 };
70
71 MALLOC_DEFINE(M_HDAC, "hdac", "HDA Controller");
72
73 static const struct {
74         uint32_t        model;
75         const char      *desc;
76         char            quirks_on;
77         char            quirks_off;
78 } hdac_devices[] = {
79         { HDA_INTEL_OAK,     "Intel Oaktrail",  0, 0 },
80         { HDA_INTEL_BAY,     "Intel BayTrail",  0, 0 },
81         { HDA_INTEL_HSW1,    "Intel Haswell",   0, 0 },
82         { HDA_INTEL_HSW2,    "Intel Haswell",   0, 0 },
83         { HDA_INTEL_HSW3,    "Intel Haswell",   0, 0 },
84         { HDA_INTEL_BDW1,    "Intel Broadwell", 0, 0 },
85         { HDA_INTEL_BDW2,    "Intel Broadwell", 0, 0 },
86         { HDA_INTEL_CPT,     "Intel Cougar Point",      0, 0 },
87         { HDA_INTEL_PATSBURG,"Intel Patsburg",  0, 0 },
88         { HDA_INTEL_PPT1,    "Intel Panther Point",     0, 0 },
89         { HDA_INTEL_LPT1,    "Intel Lynx Point",        0, 0 },
90         { HDA_INTEL_LPT2,    "Intel Lynx Point",        0, 0 },
91         { HDA_INTEL_WCPT,    "Intel Wildcat Point",     0, 0 },
92         { HDA_INTEL_WELLS1,  "Intel Wellsburg", 0, 0 },
93         { HDA_INTEL_WELLS2,  "Intel Wellsburg", 0, 0 },
94         { HDA_INTEL_LPTLP1,  "Intel Lynx Point-LP",     0, 0 },
95         { HDA_INTEL_LPTLP2,  "Intel Lynx Point-LP",     0, 0 },
96         { HDA_INTEL_82801F,  "Intel 82801F",    0, 0 },
97         { HDA_INTEL_63XXESB, "Intel 631x/632xESB",      0, 0 },
98         { HDA_INTEL_82801G,  "Intel 82801G",    0, 0 },
99         { HDA_INTEL_82801H,  "Intel 82801H",    0, 0 },
100         { HDA_INTEL_82801I,  "Intel 82801I",    0, 0 },
101         { HDA_INTEL_82801JI, "Intel 82801JI",   0, 0 },
102         { HDA_INTEL_82801JD, "Intel 82801JD",   0, 0 },
103         { HDA_INTEL_PCH,     "Intel 5 Series/3400 Series",      0, 0 },
104         { HDA_INTEL_PCH2,    "Intel 5 Series/3400 Series",      0, 0 },
105         { HDA_INTEL_SCH,     "Intel SCH",       0, 0 },
106         { HDA_NVIDIA_MCP51,  "NVIDIA MCP51",    0, HDAC_QUIRK_MSI },
107         { HDA_NVIDIA_MCP55,  "NVIDIA MCP55",    0, HDAC_QUIRK_MSI },
108         { HDA_NVIDIA_MCP61_1, "NVIDIA MCP61",   0, 0 },
109         { HDA_NVIDIA_MCP61_2, "NVIDIA MCP61",   0, 0 },
110         { HDA_NVIDIA_MCP65_1, "NVIDIA MCP65",   0, 0 },
111         { HDA_NVIDIA_MCP65_2, "NVIDIA MCP65",   0, 0 },
112         { HDA_NVIDIA_MCP67_1, "NVIDIA MCP67",   0, 0 },
113         { HDA_NVIDIA_MCP67_2, "NVIDIA MCP67",   0, 0 },
114         { HDA_NVIDIA_MCP73_1, "NVIDIA MCP73",   0, 0 },
115         { HDA_NVIDIA_MCP73_2, "NVIDIA MCP73",   0, 0 },
116         { HDA_NVIDIA_MCP78_1, "NVIDIA MCP78",   0, HDAC_QUIRK_64BIT },
117         { HDA_NVIDIA_MCP78_2, "NVIDIA MCP78",   0, HDAC_QUIRK_64BIT },
118         { HDA_NVIDIA_MCP78_3, "NVIDIA MCP78",   0, HDAC_QUIRK_64BIT },
119         { HDA_NVIDIA_MCP78_4, "NVIDIA MCP78",   0, HDAC_QUIRK_64BIT },
120         { HDA_NVIDIA_MCP79_1, "NVIDIA MCP79",   0, 0 },
121         { HDA_NVIDIA_MCP79_2, "NVIDIA MCP79",   0, 0 },
122         { HDA_NVIDIA_MCP79_3, "NVIDIA MCP79",   0, 0 },
123         { HDA_NVIDIA_MCP79_4, "NVIDIA MCP79",   0, 0 },
124         { HDA_NVIDIA_MCP89_1, "NVIDIA MCP89",   0, 0 },
125         { HDA_NVIDIA_MCP89_2, "NVIDIA MCP89",   0, 0 },
126         { HDA_NVIDIA_MCP89_3, "NVIDIA MCP89",   0, 0 },
127         { HDA_NVIDIA_MCP89_4, "NVIDIA MCP89",   0, 0 },
128         { HDA_NVIDIA_0BE2,   "NVIDIA (0x0be2)", 0, HDAC_QUIRK_MSI },
129         { HDA_NVIDIA_0BE3,   "NVIDIA (0x0be3)", 0, HDAC_QUIRK_MSI },
130         { HDA_NVIDIA_0BE4,   "NVIDIA (0x0be4)", 0, HDAC_QUIRK_MSI },
131         { HDA_NVIDIA_GT100,  "NVIDIA GT100",    0, HDAC_QUIRK_MSI },
132         { HDA_NVIDIA_GT104,  "NVIDIA GT104",    0, HDAC_QUIRK_MSI },
133         { HDA_NVIDIA_GT106,  "NVIDIA GT106",    0, HDAC_QUIRK_MSI },
134         { HDA_NVIDIA_GT108,  "NVIDIA GT108",    0, HDAC_QUIRK_MSI },
135         { HDA_NVIDIA_GT116,  "NVIDIA GT116",    0, HDAC_QUIRK_MSI },
136         { HDA_NVIDIA_GF119,  "NVIDIA GF119",    0, 0 },
137         { HDA_NVIDIA_GF110_1, "NVIDIA GF110",   0, HDAC_QUIRK_MSI },
138         { HDA_NVIDIA_GF110_2, "NVIDIA GF110",   0, HDAC_QUIRK_MSI },
139         { HDA_ATI_SB450,     "ATI SB450",       0, 0 },
140         { HDA_ATI_SB600,     "ATI SB600",       0, 0 },
141         { HDA_ATI_RS600,     "ATI RS600",       0, 0 },
142         { HDA_ATI_RS690,     "ATI RS690",       0, 0 },
143         { HDA_ATI_RS780,     "ATI RS780",       0, 0 },
144         { HDA_ATI_R600,      "ATI R600",        0, 0 },
145         { HDA_ATI_RV610,     "ATI RV610",       0, 0 },
146         { HDA_ATI_RV620,     "ATI RV620",       0, 0 },
147         { HDA_ATI_RV630,     "ATI RV630",       0, 0 },
148         { HDA_ATI_RV635,     "ATI RV635",       0, 0 },
149         { HDA_ATI_RV710,     "ATI RV710",       0, 0 },
150         { HDA_ATI_RV730,     "ATI RV730",       0, 0 },
151         { HDA_ATI_RV740,     "ATI RV740",       0, 0 },
152         { HDA_ATI_RV770,     "ATI RV770",       0, 0 },
153         { HDA_ATI_RV810,     "ATI RV810",       0, 0 },
154         { HDA_ATI_RV830,     "ATI RV830",       0, 0 },
155         { HDA_ATI_RV840,     "ATI RV840",       0, 0 },
156         { HDA_ATI_RV870,     "ATI RV870",       0, 0 },
157         { HDA_ATI_RV910,     "ATI RV910",       0, 0 },
158         { HDA_ATI_RV930,     "ATI RV930",       0, 0 },
159         { HDA_ATI_RV940,     "ATI RV940",       0, 0 },
160         { HDA_ATI_RV970,     "ATI RV970",       0, 0 },
161         { HDA_ATI_R1000,     "ATI R1000",       0, 0 },
162         { HDA_RDC_M3010,     "RDC M3010",       0, 0 },
163         { HDA_VIA_VT82XX,    "VIA VT8251/8237A",0, 0 },
164         { HDA_SIS_966,       "SiS 966",         0, 0 },
165         { HDA_ULI_M5461,     "ULI M5461",       0, 0 },
166         /* Unknown */
167         { HDA_INTEL_ALL,  "Intel",              0, 0 },
168         { HDA_NVIDIA_ALL, "NVIDIA",             0, 0 },
169         { HDA_ATI_ALL,    "ATI",                0, 0 },
170         { HDA_VIA_ALL,    "VIA",                0, 0 },
171         { HDA_SIS_ALL,    "SiS",                0, 0 },
172         { HDA_ULI_ALL,    "ULI",                0, 0 },
173 };
174
175 static const struct {
176         uint16_t vendor;
177         uint8_t reg;
178         uint8_t mask;
179         uint8_t enable;
180 } hdac_pcie_snoop[] = {
181         {  INTEL_VENDORID, 0x00, 0x00, 0x00 },
182         {    ATI_VENDORID, 0x42, 0xf8, 0x02 },
183         { NVIDIA_VENDORID, 0x4e, 0xf0, 0x0f },
184 };
185
186 /****************************************************************************
187  * Function prototypes
188  ****************************************************************************/
189 static void     hdac_intr_handler(void *);
190 static int      hdac_reset(struct hdac_softc *, int);
191 static int      hdac_get_capabilities(struct hdac_softc *);
192 static void     hdac_dma_cb(void *, bus_dma_segment_t *, int, int);
193 static int      hdac_dma_alloc(struct hdac_softc *,
194                                         struct hdac_dma *, bus_size_t);
195 static void     hdac_dma_free(struct hdac_softc *, struct hdac_dma *);
196 static int      hdac_mem_alloc(struct hdac_softc *);
197 static void     hdac_mem_free(struct hdac_softc *);
198 static int      hdac_irq_alloc(struct hdac_softc *);
199 static void     hdac_irq_free(struct hdac_softc *);
200 static void     hdac_corb_init(struct hdac_softc *);
201 static void     hdac_rirb_init(struct hdac_softc *);
202 static void     hdac_corb_start(struct hdac_softc *);
203 static void     hdac_rirb_start(struct hdac_softc *);
204
205 static void     hdac_attach2(void *);
206
207 static uint32_t hdac_send_command(struct hdac_softc *, nid_t, uint32_t);
208
209 static int      hdac_probe(device_t);
210 static int      hdac_attach(device_t);
211 static int      hdac_detach(device_t);
212 static int      hdac_suspend(device_t);
213 static int      hdac_resume(device_t);
214
215 static int      hdac_rirb_flush(struct hdac_softc *sc);
216 static int      hdac_unsolq_flush(struct hdac_softc *sc);
217
218 #define hdac_command(a1, a2, a3)        \
219                 hdac_send_command(a1, a3, a2)
220
221 /* This function surely going to make its way into upper level someday. */
222 static void
223 hdac_config_fetch(struct hdac_softc *sc, uint32_t *on, uint32_t *off)
224 {
225         const char *res = NULL;
226         int i = 0, j, k, len, inv;
227
228         if (resource_string_value(device_get_name(sc->dev),
229             device_get_unit(sc->dev), "config", &res) != 0)
230                 return;
231         if (!(res != NULL && strlen(res) > 0))
232                 return;
233         HDA_BOOTVERBOSE(
234                 device_printf(sc->dev, "Config options:");
235         );
236         for (;;) {
237                 while (res[i] != '\0' &&
238                     (res[i] == ',' || isspace(res[i]) != 0))
239                         i++;
240                 if (res[i] == '\0') {
241                         HDA_BOOTVERBOSE(
242                                 printf("\n");
243                         );
244                         return;
245                 }
246                 j = i;
247                 while (res[j] != '\0' &&
248                     !(res[j] == ',' || isspace(res[j]) != 0))
249                         j++;
250                 len = j - i;
251                 if (len > 2 && strncmp(res + i, "no", 2) == 0)
252                         inv = 2;
253                 else
254                         inv = 0;
255                 for (k = 0; len > inv && k < nitems(hdac_quirks_tab); k++) {
256                         if (strncmp(res + i + inv,
257                             hdac_quirks_tab[k].key, len - inv) != 0)
258                                 continue;
259                         if (len - inv != strlen(hdac_quirks_tab[k].key))
260                                 continue;
261                         HDA_BOOTVERBOSE(
262                                 printf(" %s%s", (inv != 0) ? "no" : "",
263                                     hdac_quirks_tab[k].key);
264                         );
265                         if (inv == 0) {
266                                 *on |= hdac_quirks_tab[k].value;
267                                 *on &= ~hdac_quirks_tab[k].value;
268                         } else if (inv != 0) {
269                                 *off |= hdac_quirks_tab[k].value;
270                                 *off &= ~hdac_quirks_tab[k].value;
271                         }
272                         break;
273                 }
274                 i = j;
275         }
276 }
277
278 /****************************************************************************
279  * void hdac_intr_handler(void *)
280  *
281  * Interrupt handler. Processes interrupts received from the hdac.
282  ****************************************************************************/
283 static void
284 hdac_intr_handler(void *context)
285 {
286         struct hdac_softc *sc;
287         device_t dev;
288         uint32_t intsts;
289         uint8_t rirbsts;
290         int i;
291
292         sc = (struct hdac_softc *)context;
293         hdac_lock(sc);
294
295         /* Do we have anything to do? */
296         intsts = HDAC_READ_4(&sc->mem, HDAC_INTSTS);
297         if ((intsts & HDAC_INTSTS_GIS) == 0) {
298                 hdac_unlock(sc);
299                 return;
300         }
301
302         /* Was this a controller interrupt? */
303         if (intsts & HDAC_INTSTS_CIS) {
304                 rirbsts = HDAC_READ_1(&sc->mem, HDAC_RIRBSTS);
305                 /* Get as many responses that we can */
306                 while (rirbsts & HDAC_RIRBSTS_RINTFL) {
307                         HDAC_WRITE_1(&sc->mem,
308                             HDAC_RIRBSTS, HDAC_RIRBSTS_RINTFL);
309                         hdac_rirb_flush(sc);
310                         rirbsts = HDAC_READ_1(&sc->mem, HDAC_RIRBSTS);
311                 }
312                 if (sc->unsolq_rp != sc->unsolq_wp)
313                         taskqueue_enqueue(taskqueue_thread, &sc->unsolq_task);
314         }
315
316         if (intsts & HDAC_INTSTS_SIS_MASK) {
317                 for (i = 0; i < sc->num_ss; i++) {
318                         if ((intsts & (1 << i)) == 0)
319                                 continue;
320                         HDAC_WRITE_1(&sc->mem, (i << 5) + HDAC_SDSTS,
321                             HDAC_SDSTS_DESE | HDAC_SDSTS_FIFOE | HDAC_SDSTS_BCIS );
322                         if ((dev = sc->streams[i].dev) != NULL) {
323                                 HDAC_STREAM_INTR(dev,
324                                     sc->streams[i].dir, sc->streams[i].stream);
325                         }
326                 }
327         }
328
329         HDAC_WRITE_4(&sc->mem, HDAC_INTSTS, intsts);
330         hdac_unlock(sc);
331 }
332
333 static void
334 hdac_poll_callback(void *arg)
335 {
336         struct hdac_softc *sc = arg;
337
338         if (sc == NULL)
339                 return;
340
341         hdac_lock(sc);
342         if (sc->polling == 0) {
343                 hdac_unlock(sc);
344                 return;
345         }
346         callout_reset(&sc->poll_callout, sc->poll_ival,
347             hdac_poll_callback, sc);
348         hdac_unlock(sc);
349
350         hdac_intr_handler(sc);
351 }
352
353 /****************************************************************************
354  * int hdac_reset(hdac_softc *, int)
355  *
356  * Reset the hdac to a quiescent and known state.
357  ****************************************************************************/
358 static int
359 hdac_reset(struct hdac_softc *sc, int wakeup)
360 {
361         uint32_t gctl;
362         int count, i;
363
364         /*
365          * Stop all Streams DMA engine
366          */
367         for (i = 0; i < sc->num_iss; i++)
368                 HDAC_WRITE_4(&sc->mem, HDAC_ISDCTL(sc, i), 0x0);
369         for (i = 0; i < sc->num_oss; i++)
370                 HDAC_WRITE_4(&sc->mem, HDAC_OSDCTL(sc, i), 0x0);
371         for (i = 0; i < sc->num_bss; i++)
372                 HDAC_WRITE_4(&sc->mem, HDAC_BSDCTL(sc, i), 0x0);
373
374         /*
375          * Stop Control DMA engines.
376          */
377         HDAC_WRITE_1(&sc->mem, HDAC_CORBCTL, 0x0);
378         HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL, 0x0);
379
380         /*
381          * Reset DMA position buffer.
382          */
383         HDAC_WRITE_4(&sc->mem, HDAC_DPIBLBASE, 0x0);
384         HDAC_WRITE_4(&sc->mem, HDAC_DPIBUBASE, 0x0);
385
386         /*
387          * Reset the controller. The reset must remain asserted for
388          * a minimum of 100us.
389          */
390         gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL);
391         HDAC_WRITE_4(&sc->mem, HDAC_GCTL, gctl & ~HDAC_GCTL_CRST);
392         count = 10000;
393         do {
394                 gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL);
395                 if (!(gctl & HDAC_GCTL_CRST))
396                         break;
397                 DELAY(10);
398         } while (--count);
399         if (gctl & HDAC_GCTL_CRST) {
400                 device_printf(sc->dev, "Unable to put hdac in reset\n");
401                 return (ENXIO);
402         }
403
404         /* If wakeup is not requested - leave the controller in reset state. */
405         if (!wakeup)
406                 return (0);
407
408         DELAY(100);
409         gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL);
410         HDAC_WRITE_4(&sc->mem, HDAC_GCTL, gctl | HDAC_GCTL_CRST);
411         count = 10000;
412         do {
413                 gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL);
414                 if (gctl & HDAC_GCTL_CRST)
415                         break;
416                 DELAY(10);
417         } while (--count);
418         if (!(gctl & HDAC_GCTL_CRST)) {
419                 device_printf(sc->dev, "Device stuck in reset\n");
420                 return (ENXIO);
421         }
422
423         /*
424          * Wait for codecs to finish their own reset sequence. The delay here
425          * should be of 250us but for some reasons, on it's not enough on my
426          * computer. Let's use twice as much as necessary to make sure that
427          * it's reset properly.
428          */
429         DELAY(1000);
430
431         return (0);
432 }
433
434
435 /****************************************************************************
436  * int hdac_get_capabilities(struct hdac_softc *);
437  *
438  * Retreive the general capabilities of the hdac;
439  *      Number of Input Streams
440  *      Number of Output Streams
441  *      Number of bidirectional Streams
442  *      64bit ready
443  *      CORB and RIRB sizes
444  ****************************************************************************/
445 static int
446 hdac_get_capabilities(struct hdac_softc *sc)
447 {
448         uint16_t gcap;
449         uint8_t corbsize, rirbsize;
450
451         gcap = HDAC_READ_2(&sc->mem, HDAC_GCAP);
452         sc->num_iss = HDAC_GCAP_ISS(gcap);
453         sc->num_oss = HDAC_GCAP_OSS(gcap);
454         sc->num_bss = HDAC_GCAP_BSS(gcap);
455         sc->num_ss = sc->num_iss + sc->num_oss + sc->num_bss;
456         sc->num_sdo = HDAC_GCAP_NSDO(gcap);
457         sc->support_64bit = (gcap & HDAC_GCAP_64OK) != 0;
458         if (sc->quirks_on & HDAC_QUIRK_64BIT)
459                 sc->support_64bit = 1;
460         else if (sc->quirks_off & HDAC_QUIRK_64BIT)
461                 sc->support_64bit = 0;
462
463         corbsize = HDAC_READ_1(&sc->mem, HDAC_CORBSIZE);
464         if ((corbsize & HDAC_CORBSIZE_CORBSZCAP_256) ==
465             HDAC_CORBSIZE_CORBSZCAP_256)
466                 sc->corb_size = 256;
467         else if ((corbsize & HDAC_CORBSIZE_CORBSZCAP_16) ==
468             HDAC_CORBSIZE_CORBSZCAP_16)
469                 sc->corb_size = 16;
470         else if ((corbsize & HDAC_CORBSIZE_CORBSZCAP_2) ==
471             HDAC_CORBSIZE_CORBSZCAP_2)
472                 sc->corb_size = 2;
473         else {
474                 device_printf(sc->dev, "%s: Invalid corb size (%x)\n",
475                     __func__, corbsize);
476                 return (ENXIO);
477         }
478
479         rirbsize = HDAC_READ_1(&sc->mem, HDAC_RIRBSIZE);
480         if ((rirbsize & HDAC_RIRBSIZE_RIRBSZCAP_256) ==
481             HDAC_RIRBSIZE_RIRBSZCAP_256)
482                 sc->rirb_size = 256;
483         else if ((rirbsize & HDAC_RIRBSIZE_RIRBSZCAP_16) ==
484             HDAC_RIRBSIZE_RIRBSZCAP_16)
485                 sc->rirb_size = 16;
486         else if ((rirbsize & HDAC_RIRBSIZE_RIRBSZCAP_2) ==
487             HDAC_RIRBSIZE_RIRBSZCAP_2)
488                 sc->rirb_size = 2;
489         else {
490                 device_printf(sc->dev, "%s: Invalid rirb size (%x)\n",
491                     __func__, rirbsize);
492                 return (ENXIO);
493         }
494
495         HDA_BOOTVERBOSE(
496                 device_printf(sc->dev, "Caps: OSS %d, ISS %d, BSS %d, "
497                     "NSDO %d%s, CORB %d, RIRB %d\n",
498                     sc->num_oss, sc->num_iss, sc->num_bss, 1 << sc->num_sdo,
499                     sc->support_64bit ? ", 64bit" : "",
500                     sc->corb_size, sc->rirb_size);
501         );
502
503         return (0);
504 }
505
506
507 /****************************************************************************
508  * void hdac_dma_cb
509  *
510  * This function is called by bus_dmamap_load when the mapping has been
511  * established. We just record the physical address of the mapping into
512  * the struct hdac_dma passed in.
513  ****************************************************************************/
514 static void
515 hdac_dma_cb(void *callback_arg, bus_dma_segment_t *segs, int nseg, int error)
516 {
517         struct hdac_dma *dma;
518
519         if (error == 0) {
520                 dma = (struct hdac_dma *)callback_arg;
521                 dma->dma_paddr = segs[0].ds_addr;
522         }
523 }
524
525
526 /****************************************************************************
527  * int hdac_dma_alloc
528  *
529  * This function allocate and setup a dma region (struct hdac_dma).
530  * It must be freed by a corresponding hdac_dma_free.
531  ****************************************************************************/
532 static int
533 hdac_dma_alloc(struct hdac_softc *sc, struct hdac_dma *dma, bus_size_t size)
534 {
535         bus_size_t roundsz;
536         int result;
537
538         roundsz = roundup2(size, HDA_DMA_ALIGNMENT);
539         bzero(dma, sizeof(*dma));
540
541         /*
542          * Create a DMA tag
543          */
544         result = bus_dma_tag_create(
545             bus_get_dma_tag(sc->dev),           /* parent */
546             HDA_DMA_ALIGNMENT,                  /* alignment */
547             0,                                  /* boundary */
548             (sc->support_64bit) ? BUS_SPACE_MAXADDR :
549                 BUS_SPACE_MAXADDR_32BIT,        /* lowaddr */
550             BUS_SPACE_MAXADDR,                  /* highaddr */
551             NULL,                               /* filtfunc */
552             NULL,                               /* fistfuncarg */
553             roundsz,                            /* maxsize */
554             1,                                  /* nsegments */
555             roundsz,                            /* maxsegsz */
556             0,                                  /* flags */
557             NULL,                               /* lockfunc */
558             NULL,                               /* lockfuncarg */
559             &dma->dma_tag);                     /* dmat */
560         if (result != 0) {
561                 device_printf(sc->dev, "%s: bus_dma_tag_create failed (%x)\n",
562                     __func__, result);
563                 goto hdac_dma_alloc_fail;
564         }
565
566         /*
567          * Allocate DMA memory
568          */
569         result = bus_dmamem_alloc(dma->dma_tag, (void **)&dma->dma_vaddr,
570             BUS_DMA_NOWAIT | BUS_DMA_ZERO |
571             ((sc->flags & HDAC_F_DMA_NOCACHE) ? BUS_DMA_NOCACHE : 0),
572             &dma->dma_map);
573         if (result != 0) {
574                 device_printf(sc->dev, "%s: bus_dmamem_alloc failed (%x)\n",
575                     __func__, result);
576                 goto hdac_dma_alloc_fail;
577         }
578
579         dma->dma_size = roundsz;
580
581         /*
582          * Map the memory
583          */
584         result = bus_dmamap_load(dma->dma_tag, dma->dma_map,
585             (void *)dma->dma_vaddr, roundsz, hdac_dma_cb, (void *)dma, 0);
586         if (result != 0 || dma->dma_paddr == 0) {
587                 if (result == 0)
588                         result = ENOMEM;
589                 device_printf(sc->dev, "%s: bus_dmamem_load failed (%x)\n",
590                     __func__, result);
591                 goto hdac_dma_alloc_fail;
592         }
593
594         HDA_BOOTHVERBOSE(
595                 device_printf(sc->dev, "%s: size=%ju -> roundsz=%ju\n",
596                     __func__, (uintmax_t)size, (uintmax_t)roundsz);
597         );
598
599         return (0);
600
601 hdac_dma_alloc_fail:
602         hdac_dma_free(sc, dma);
603
604         return (result);
605 }
606
607
608 /****************************************************************************
609  * void hdac_dma_free(struct hdac_softc *, struct hdac_dma *)
610  *
611  * Free a struct dhac_dma that has been previously allocated via the
612  * hdac_dma_alloc function.
613  ****************************************************************************/
614 static void
615 hdac_dma_free(struct hdac_softc *sc, struct hdac_dma *dma)
616 {
617         if (dma->dma_map != NULL) {
618 #if 0
619                 /* Flush caches */
620                 bus_dmamap_sync(dma->dma_tag, dma->dma_map,
621                     BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
622 #endif
623                 bus_dmamap_unload(dma->dma_tag, dma->dma_map);
624         }
625         if (dma->dma_vaddr != NULL) {
626                 bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
627                 dma->dma_vaddr = NULL;
628         }
629         dma->dma_map = NULL;
630         if (dma->dma_tag != NULL) {
631                 bus_dma_tag_destroy(dma->dma_tag);
632                 dma->dma_tag = NULL;
633         }
634         dma->dma_size = 0;
635 }
636
637 /****************************************************************************
638  * int hdac_mem_alloc(struct hdac_softc *)
639  *
640  * Allocate all the bus resources necessary to speak with the physical
641  * controller.
642  ****************************************************************************/
643 static int
644 hdac_mem_alloc(struct hdac_softc *sc)
645 {
646         struct hdac_mem *mem;
647
648         mem = &sc->mem;
649         mem->mem_rid = PCIR_BAR(0);
650         mem->mem_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
651             &mem->mem_rid, RF_ACTIVE);
652         if (mem->mem_res == NULL) {
653                 device_printf(sc->dev,
654                     "%s: Unable to allocate memory resource\n", __func__);
655                 return (ENOMEM);
656         }
657         mem->mem_tag = rman_get_bustag(mem->mem_res);
658         mem->mem_handle = rman_get_bushandle(mem->mem_res);
659
660         return (0);
661 }
662
663 /****************************************************************************
664  * void hdac_mem_free(struct hdac_softc *)
665  *
666  * Free up resources previously allocated by hdac_mem_alloc.
667  ****************************************************************************/
668 static void
669 hdac_mem_free(struct hdac_softc *sc)
670 {
671         struct hdac_mem *mem;
672
673         mem = &sc->mem;
674         if (mem->mem_res != NULL)
675                 bus_release_resource(sc->dev, SYS_RES_MEMORY, mem->mem_rid,
676                     mem->mem_res);
677         mem->mem_res = NULL;
678 }
679
680 /****************************************************************************
681  * int hdac_irq_alloc(struct hdac_softc *)
682  *
683  * Allocate and setup the resources necessary for interrupt handling.
684  ****************************************************************************/
685 static int
686 hdac_irq_alloc(struct hdac_softc *sc)
687 {
688         struct hdac_irq *irq;
689         int result;
690
691         irq = &sc->irq;
692         irq->irq_rid = 0x0;
693
694         if ((sc->quirks_off & HDAC_QUIRK_MSI) == 0 &&
695             (result = pci_msi_count(sc->dev)) == 1 &&
696             pci_alloc_msi(sc->dev, &result) == 0)
697                 irq->irq_rid = 0x1;
698
699         irq->irq_res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ,
700             &irq->irq_rid, RF_SHAREABLE | RF_ACTIVE);
701         if (irq->irq_res == NULL) {
702                 device_printf(sc->dev, "%s: Unable to allocate irq\n",
703                     __func__);
704                 goto hdac_irq_alloc_fail;
705         }
706         result = bus_setup_intr(sc->dev, irq->irq_res, INTR_MPSAFE | INTR_TYPE_AV,
707             NULL, hdac_intr_handler, sc, &irq->irq_handle);
708         if (result != 0) {
709                 device_printf(sc->dev,
710                     "%s: Unable to setup interrupt handler (%x)\n",
711                     __func__, result);
712                 goto hdac_irq_alloc_fail;
713         }
714
715         return (0);
716
717 hdac_irq_alloc_fail:
718         hdac_irq_free(sc);
719
720         return (ENXIO);
721 }
722
723 /****************************************************************************
724  * void hdac_irq_free(struct hdac_softc *)
725  *
726  * Free up resources previously allocated by hdac_irq_alloc.
727  ****************************************************************************/
728 static void
729 hdac_irq_free(struct hdac_softc *sc)
730 {
731         struct hdac_irq *irq;
732
733         irq = &sc->irq;
734         if (irq->irq_res != NULL && irq->irq_handle != NULL)
735                 bus_teardown_intr(sc->dev, irq->irq_res, irq->irq_handle);
736         if (irq->irq_res != NULL)
737                 bus_release_resource(sc->dev, SYS_RES_IRQ, irq->irq_rid,
738                     irq->irq_res);
739         if (irq->irq_rid == 0x1)
740                 pci_release_msi(sc->dev);
741         irq->irq_handle = NULL;
742         irq->irq_res = NULL;
743         irq->irq_rid = 0x0;
744 }
745
746 /****************************************************************************
747  * void hdac_corb_init(struct hdac_softc *)
748  *
749  * Initialize the corb registers for operations but do not start it up yet.
750  * The CORB engine must not be running when this function is called.
751  ****************************************************************************/
752 static void
753 hdac_corb_init(struct hdac_softc *sc)
754 {
755         uint8_t corbsize;
756         uint64_t corbpaddr;
757
758         /* Setup the CORB size. */
759         switch (sc->corb_size) {
760         case 256:
761                 corbsize = HDAC_CORBSIZE_CORBSIZE(HDAC_CORBSIZE_CORBSIZE_256);
762                 break;
763         case 16:
764                 corbsize = HDAC_CORBSIZE_CORBSIZE(HDAC_CORBSIZE_CORBSIZE_16);
765                 break;
766         case 2:
767                 corbsize = HDAC_CORBSIZE_CORBSIZE(HDAC_CORBSIZE_CORBSIZE_2);
768                 break;
769         default:
770                 panic("%s: Invalid CORB size (%x)\n", __func__, sc->corb_size);
771         }
772         HDAC_WRITE_1(&sc->mem, HDAC_CORBSIZE, corbsize);
773
774         /* Setup the CORB Address in the hdac */
775         corbpaddr = (uint64_t)sc->corb_dma.dma_paddr;
776         HDAC_WRITE_4(&sc->mem, HDAC_CORBLBASE, (uint32_t)corbpaddr);
777         HDAC_WRITE_4(&sc->mem, HDAC_CORBUBASE, (uint32_t)(corbpaddr >> 32));
778
779         /* Set the WP and RP */
780         sc->corb_wp = 0;
781         HDAC_WRITE_2(&sc->mem, HDAC_CORBWP, sc->corb_wp);
782         HDAC_WRITE_2(&sc->mem, HDAC_CORBRP, HDAC_CORBRP_CORBRPRST);
783         /*
784          * The HDA specification indicates that the CORBRPRST bit will always
785          * read as zero. Unfortunately, it seems that at least the 82801G
786          * doesn't reset the bit to zero, which stalls the corb engine.
787          * manually reset the bit to zero before continuing.
788          */
789         HDAC_WRITE_2(&sc->mem, HDAC_CORBRP, 0x0);
790
791         /* Enable CORB error reporting */
792 #if 0
793         HDAC_WRITE_1(&sc->mem, HDAC_CORBCTL, HDAC_CORBCTL_CMEIE);
794 #endif
795 }
796
797 /****************************************************************************
798  * void hdac_rirb_init(struct hdac_softc *)
799  *
800  * Initialize the rirb registers for operations but do not start it up yet.
801  * The RIRB engine must not be running when this function is called.
802  ****************************************************************************/
803 static void
804 hdac_rirb_init(struct hdac_softc *sc)
805 {
806         uint8_t rirbsize;
807         uint64_t rirbpaddr;
808
809         /* Setup the RIRB size. */
810         switch (sc->rirb_size) {
811         case 256:
812                 rirbsize = HDAC_RIRBSIZE_RIRBSIZE(HDAC_RIRBSIZE_RIRBSIZE_256);
813                 break;
814         case 16:
815                 rirbsize = HDAC_RIRBSIZE_RIRBSIZE(HDAC_RIRBSIZE_RIRBSIZE_16);
816                 break;
817         case 2:
818                 rirbsize = HDAC_RIRBSIZE_RIRBSIZE(HDAC_RIRBSIZE_RIRBSIZE_2);
819                 break;
820         default:
821                 panic("%s: Invalid RIRB size (%x)\n", __func__, sc->rirb_size);
822         }
823         HDAC_WRITE_1(&sc->mem, HDAC_RIRBSIZE, rirbsize);
824
825         /* Setup the RIRB Address in the hdac */
826         rirbpaddr = (uint64_t)sc->rirb_dma.dma_paddr;
827         HDAC_WRITE_4(&sc->mem, HDAC_RIRBLBASE, (uint32_t)rirbpaddr);
828         HDAC_WRITE_4(&sc->mem, HDAC_RIRBUBASE, (uint32_t)(rirbpaddr >> 32));
829
830         /* Setup the WP and RP */
831         sc->rirb_rp = 0;
832         HDAC_WRITE_2(&sc->mem, HDAC_RIRBWP, HDAC_RIRBWP_RIRBWPRST);
833
834         /* Setup the interrupt threshold */
835         HDAC_WRITE_2(&sc->mem, HDAC_RINTCNT, sc->rirb_size / 2);
836
837         /* Enable Overrun and response received reporting */
838 #if 0
839         HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL,
840             HDAC_RIRBCTL_RIRBOIC | HDAC_RIRBCTL_RINTCTL);
841 #else
842         HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL, HDAC_RIRBCTL_RINTCTL);
843 #endif
844
845 #if 0
846         /*
847          * Make sure that the Host CPU cache doesn't contain any dirty
848          * cache lines that falls in the rirb. If I understood correctly, it
849          * should be sufficient to do this only once as the rirb is purely
850          * read-only from now on.
851          */
852         bus_dmamap_sync(sc->rirb_dma.dma_tag, sc->rirb_dma.dma_map,
853             BUS_DMASYNC_PREREAD);
854 #endif
855 }
856
857 /****************************************************************************
858  * void hdac_corb_start(hdac_softc *)
859  *
860  * Startup the corb DMA engine
861  ****************************************************************************/
862 static void
863 hdac_corb_start(struct hdac_softc *sc)
864 {
865         uint32_t corbctl;
866
867         corbctl = HDAC_READ_1(&sc->mem, HDAC_CORBCTL);
868         corbctl |= HDAC_CORBCTL_CORBRUN;
869         HDAC_WRITE_1(&sc->mem, HDAC_CORBCTL, corbctl);
870 }
871
872 /****************************************************************************
873  * void hdac_rirb_start(hdac_softc *)
874  *
875  * Startup the rirb DMA engine
876  ****************************************************************************/
877 static void
878 hdac_rirb_start(struct hdac_softc *sc)
879 {
880         uint32_t rirbctl;
881
882         rirbctl = HDAC_READ_1(&sc->mem, HDAC_RIRBCTL);
883         rirbctl |= HDAC_RIRBCTL_RIRBDMAEN;
884         HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL, rirbctl);
885 }
886
887 static int
888 hdac_rirb_flush(struct hdac_softc *sc)
889 {
890         struct hdac_rirb *rirb_base, *rirb;
891         nid_t cad;
892         uint32_t resp;
893         uint8_t rirbwp;
894         int ret;
895
896         rirb_base = (struct hdac_rirb *)sc->rirb_dma.dma_vaddr;
897         rirbwp = HDAC_READ_1(&sc->mem, HDAC_RIRBWP);
898 #if 0
899         bus_dmamap_sync(sc->rirb_dma.dma_tag, sc->rirb_dma.dma_map,
900             BUS_DMASYNC_POSTREAD);
901 #endif
902
903         ret = 0;
904         while (sc->rirb_rp != rirbwp) {
905                 sc->rirb_rp++;
906                 sc->rirb_rp %= sc->rirb_size;
907                 rirb = &rirb_base[sc->rirb_rp];
908                 cad = HDAC_RIRB_RESPONSE_EX_SDATA_IN(rirb->response_ex);
909                 resp = rirb->response;
910                 if (rirb->response_ex & HDAC_RIRB_RESPONSE_EX_UNSOLICITED) {
911                         sc->unsolq[sc->unsolq_wp++] = resp;
912                         sc->unsolq_wp %= HDAC_UNSOLQ_MAX;
913                         sc->unsolq[sc->unsolq_wp++] = cad;
914                         sc->unsolq_wp %= HDAC_UNSOLQ_MAX;
915                 } else if (sc->codecs[cad].pending <= 0) {
916                         device_printf(sc->dev, "Unexpected unsolicited "
917                             "response from address %d: %08x\n", cad, resp);
918                 } else {
919                         sc->codecs[cad].response = resp;
920                         sc->codecs[cad].pending--;
921                 }
922                 ret++;
923         }
924         return (ret);
925 }
926
927 static int
928 hdac_unsolq_flush(struct hdac_softc *sc)
929 {
930         device_t child;
931         nid_t cad;
932         uint32_t resp;
933         int ret = 0;
934
935         if (sc->unsolq_st == HDAC_UNSOLQ_READY) {
936                 sc->unsolq_st = HDAC_UNSOLQ_BUSY;
937                 while (sc->unsolq_rp != sc->unsolq_wp) {
938                         resp = sc->unsolq[sc->unsolq_rp++];
939                         sc->unsolq_rp %= HDAC_UNSOLQ_MAX;
940                         cad = sc->unsolq[sc->unsolq_rp++];
941                         sc->unsolq_rp %= HDAC_UNSOLQ_MAX;
942                         if ((child = sc->codecs[cad].dev) != NULL)
943                                 HDAC_UNSOL_INTR(child, resp);
944                         ret++;
945                 }
946                 sc->unsolq_st = HDAC_UNSOLQ_READY;
947         }
948
949         return (ret);
950 }
951
952 /****************************************************************************
953  * uint32_t hdac_command_sendone_internal
954  *
955  * Wrapper function that sends only one command to a given codec
956  ****************************************************************************/
957 static uint32_t
958 hdac_send_command(struct hdac_softc *sc, nid_t cad, uint32_t verb)
959 {
960         int timeout;
961         uint32_t *corb;
962
963         if (!hdac_lockowned(sc))
964                 device_printf(sc->dev, "WARNING!!!! mtx not owned!!!!\n");
965         verb &= ~HDA_CMD_CAD_MASK;
966         verb |= ((uint32_t)cad) << HDA_CMD_CAD_SHIFT;
967         sc->codecs[cad].response = HDA_INVALID;
968
969         sc->codecs[cad].pending++;
970         sc->corb_wp++;
971         sc->corb_wp %= sc->corb_size;
972         corb = (uint32_t *)sc->corb_dma.dma_vaddr;
973 #if 0
974         bus_dmamap_sync(sc->corb_dma.dma_tag,
975             sc->corb_dma.dma_map, BUS_DMASYNC_PREWRITE);
976 #endif
977         corb[sc->corb_wp] = verb;
978 #if 0
979         bus_dmamap_sync(sc->corb_dma.dma_tag,
980             sc->corb_dma.dma_map, BUS_DMASYNC_POSTWRITE);
981 #endif
982         HDAC_WRITE_2(&sc->mem, HDAC_CORBWP, sc->corb_wp);
983
984         timeout = 10000;
985         do {
986                 if (hdac_rirb_flush(sc) == 0)
987                         DELAY(10);
988         } while (sc->codecs[cad].pending != 0 && --timeout);
989
990         if (sc->codecs[cad].pending != 0) {
991                 device_printf(sc->dev, "Command timeout on address %d\n", cad);
992                 sc->codecs[cad].pending = 0;
993         }
994
995         if (sc->unsolq_rp != sc->unsolq_wp)
996                 taskqueue_enqueue(taskqueue_thread, &sc->unsolq_task);
997         return (sc->codecs[cad].response);
998 }
999
1000 /****************************************************************************
1001  * Device Methods
1002  ****************************************************************************/
1003
1004 /****************************************************************************
1005  * int hdac_probe(device_t)
1006  *
1007  * Probe for the presence of an hdac. If none is found, check for a generic
1008  * match using the subclass of the device.
1009  ****************************************************************************/
1010 static int
1011 hdac_probe(device_t dev)
1012 {
1013         int i, result;
1014         uint32_t model;
1015         uint16_t class, subclass;
1016         char desc[64];
1017
1018         model = (uint32_t)pci_get_device(dev) << 16;
1019         model |= (uint32_t)pci_get_vendor(dev) & 0x0000ffff;
1020         class = pci_get_class(dev);
1021         subclass = pci_get_subclass(dev);
1022
1023         bzero(desc, sizeof(desc));
1024         result = ENXIO;
1025         for (i = 0; i < nitems(hdac_devices); i++) {
1026                 if (hdac_devices[i].model == model) {
1027                         strlcpy(desc, hdac_devices[i].desc, sizeof(desc));
1028                         result = BUS_PROBE_DEFAULT;
1029                         break;
1030                 }
1031                 if (HDA_DEV_MATCH(hdac_devices[i].model, model) &&
1032                     class == PCIC_MULTIMEDIA &&
1033                     subclass == PCIS_MULTIMEDIA_HDA) {
1034                         snprintf(desc, sizeof(desc),
1035                             "%s (0x%04x)",
1036                             hdac_devices[i].desc, pci_get_device(dev));
1037                         result = BUS_PROBE_GENERIC;
1038                         break;
1039                 }
1040         }
1041         if (result == ENXIO && class == PCIC_MULTIMEDIA &&
1042             subclass == PCIS_MULTIMEDIA_HDA) {
1043                 snprintf(desc, sizeof(desc), "Generic (0x%08x)", model);
1044                 result = BUS_PROBE_GENERIC;
1045         }
1046         if (result != ENXIO) {
1047                 strlcat(desc, " HDA Controller", sizeof(desc));
1048                 device_set_desc_copy(dev, desc);
1049         }
1050
1051         return (result);
1052 }
1053
1054 static void
1055 hdac_unsolq_task(void *context, int pending)
1056 {
1057         struct hdac_softc *sc;
1058
1059         sc = (struct hdac_softc *)context;
1060
1061         hdac_lock(sc);
1062         hdac_unsolq_flush(sc);
1063         hdac_unlock(sc);
1064 }
1065
1066 /****************************************************************************
1067  * int hdac_attach(device_t)
1068  *
1069  * Attach the device into the kernel. Interrupts usually won't be enabled
1070  * when this function is called. Setup everything that doesn't require
1071  * interrupts and defer probing of codecs until interrupts are enabled.
1072  ****************************************************************************/
1073 static int
1074 hdac_attach(device_t dev)
1075 {
1076         struct hdac_softc *sc;
1077         int result;
1078         int i, devid = -1;
1079         uint32_t model;
1080         uint16_t class, subclass;
1081         uint16_t vendor;
1082         uint8_t v;
1083
1084         sc = device_get_softc(dev);
1085         HDA_BOOTVERBOSE(
1086                 device_printf(dev, "PCI card vendor: 0x%04x, device: 0x%04x\n",
1087                     pci_get_subvendor(dev), pci_get_subdevice(dev));
1088                 device_printf(dev, "HDA Driver Revision: %s\n",
1089                     HDA_DRV_TEST_REV);
1090         );
1091
1092         model = (uint32_t)pci_get_device(dev) << 16;
1093         model |= (uint32_t)pci_get_vendor(dev) & 0x0000ffff;
1094         class = pci_get_class(dev);
1095         subclass = pci_get_subclass(dev);
1096
1097         for (i = 0; i < nitems(hdac_devices); i++) {
1098                 if (hdac_devices[i].model == model) {
1099                         devid = i;
1100                         break;
1101                 }
1102                 if (HDA_DEV_MATCH(hdac_devices[i].model, model) &&
1103                     class == PCIC_MULTIMEDIA &&
1104                     subclass == PCIS_MULTIMEDIA_HDA) {
1105                         devid = i;
1106                         break;
1107                 }
1108         }
1109
1110         sc->lock = snd_mtxcreate(device_get_nameunit(dev), "HDA driver mutex");
1111         sc->dev = dev;
1112         TASK_INIT(&sc->unsolq_task, 0, hdac_unsolq_task, sc);
1113         callout_init(&sc->poll_callout, CALLOUT_MPSAFE);
1114         for (i = 0; i < HDAC_CODEC_MAX; i++)
1115                 sc->codecs[i].dev = NULL;
1116         if (devid >= 0) {
1117                 sc->quirks_on = hdac_devices[devid].quirks_on;
1118                 sc->quirks_off = hdac_devices[devid].quirks_off;
1119         } else {
1120                 sc->quirks_on = 0;
1121                 sc->quirks_off = 0;
1122         }
1123         if (resource_int_value(device_get_name(dev),
1124             device_get_unit(dev), "msi", &i) == 0) {
1125                 if (i == 0)
1126                         sc->quirks_off |= HDAC_QUIRK_MSI;
1127                 else {
1128                         sc->quirks_on |= HDAC_QUIRK_MSI;
1129                         sc->quirks_off |= ~HDAC_QUIRK_MSI;
1130                 }
1131         }
1132         hdac_config_fetch(sc, &sc->quirks_on, &sc->quirks_off);
1133         HDA_BOOTVERBOSE(
1134                 device_printf(sc->dev,
1135                     "Config options: on=0x%08x off=0x%08x\n",
1136                     sc->quirks_on, sc->quirks_off);
1137         );
1138         sc->poll_ival = hz;
1139         if (resource_int_value(device_get_name(dev),
1140             device_get_unit(dev), "polling", &i) == 0 && i != 0)
1141                 sc->polling = 1;
1142         else
1143                 sc->polling = 0;
1144
1145         pci_enable_busmaster(dev);
1146
1147         vendor = pci_get_vendor(dev);
1148         if (vendor == INTEL_VENDORID) {
1149                 /* TCSEL -> TC0 */
1150                 v = pci_read_config(dev, 0x44, 1);
1151                 pci_write_config(dev, 0x44, v & 0xf8, 1);
1152                 HDA_BOOTHVERBOSE(
1153                         device_printf(dev, "TCSEL: 0x%02d -> 0x%02d\n", v,
1154                             pci_read_config(dev, 0x44, 1));
1155                 );
1156         }
1157
1158 #if defined(__i386__) || defined(__amd64__)
1159         sc->flags |= HDAC_F_DMA_NOCACHE;
1160
1161         if (resource_int_value(device_get_name(dev),
1162             device_get_unit(dev), "snoop", &i) == 0 && i != 0) {
1163 #else
1164         sc->flags &= ~HDAC_F_DMA_NOCACHE;
1165 #endif
1166                 /*
1167                  * Try to enable PCIe snoop to avoid messing around with
1168                  * uncacheable DMA attribute. Since PCIe snoop register
1169                  * config is pretty much vendor specific, there are no
1170                  * general solutions on how to enable it, forcing us (even
1171                  * Microsoft) to enable uncacheable or write combined DMA
1172                  * by default.
1173                  *
1174                  * http://msdn2.microsoft.com/en-us/library/ms790324.aspx
1175                  */
1176                 for (i = 0; i < nitems(hdac_pcie_snoop); i++) {
1177                         if (hdac_pcie_snoop[i].vendor != vendor)
1178                                 continue;
1179                         sc->flags &= ~HDAC_F_DMA_NOCACHE;
1180                         if (hdac_pcie_snoop[i].reg == 0x00)
1181                                 break;
1182                         v = pci_read_config(dev, hdac_pcie_snoop[i].reg, 1);
1183                         if ((v & hdac_pcie_snoop[i].enable) ==
1184                             hdac_pcie_snoop[i].enable)
1185                                 break;
1186                         v &= hdac_pcie_snoop[i].mask;
1187                         v |= hdac_pcie_snoop[i].enable;
1188                         pci_write_config(dev, hdac_pcie_snoop[i].reg, v, 1);
1189                         v = pci_read_config(dev, hdac_pcie_snoop[i].reg, 1);
1190                         if ((v & hdac_pcie_snoop[i].enable) !=
1191                             hdac_pcie_snoop[i].enable) {
1192                                 HDA_BOOTVERBOSE(
1193                                         device_printf(dev,
1194                                             "WARNING: Failed to enable PCIe "
1195                                             "snoop!\n");
1196                                 );
1197 #if defined(__i386__) || defined(__amd64__)
1198                                 sc->flags |= HDAC_F_DMA_NOCACHE;
1199 #endif
1200                         }
1201                         break;
1202                 }
1203 #if defined(__i386__) || defined(__amd64__)
1204         }
1205 #endif
1206
1207         HDA_BOOTHVERBOSE(
1208                 device_printf(dev, "DMA Coherency: %s / vendor=0x%04x\n",
1209                     (sc->flags & HDAC_F_DMA_NOCACHE) ?
1210                     "Uncacheable" : "PCIe snoop", vendor);
1211         );
1212
1213         /* Allocate resources */
1214         result = hdac_mem_alloc(sc);
1215         if (result != 0)
1216                 goto hdac_attach_fail;
1217         result = hdac_irq_alloc(sc);
1218         if (result != 0)
1219                 goto hdac_attach_fail;
1220
1221         /* Get Capabilities */
1222         result = hdac_get_capabilities(sc);
1223         if (result != 0)
1224                 goto hdac_attach_fail;
1225
1226         /* Allocate CORB, RIRB, POS and BDLs dma memory */
1227         result = hdac_dma_alloc(sc, &sc->corb_dma,
1228             sc->corb_size * sizeof(uint32_t));
1229         if (result != 0)
1230                 goto hdac_attach_fail;
1231         result = hdac_dma_alloc(sc, &sc->rirb_dma,
1232             sc->rirb_size * sizeof(struct hdac_rirb));
1233         if (result != 0)
1234                 goto hdac_attach_fail;
1235         sc->streams = malloc(sizeof(struct hdac_stream) * sc->num_ss,
1236             M_HDAC, M_ZERO | M_WAITOK);
1237         for (i = 0; i < sc->num_ss; i++) {
1238                 result = hdac_dma_alloc(sc, &sc->streams[i].bdl,
1239                     sizeof(struct hdac_bdle) * HDA_BDL_MAX);
1240                 if (result != 0)
1241                         goto hdac_attach_fail;
1242         }
1243         if (sc->quirks_on & HDAC_QUIRK_DMAPOS) {
1244                 if (hdac_dma_alloc(sc, &sc->pos_dma, (sc->num_ss) * 8) != 0) {
1245                         HDA_BOOTVERBOSE(
1246                                 device_printf(dev, "Failed to "
1247                                     "allocate DMA pos buffer "
1248                                     "(non-fatal)\n");
1249                         );
1250                 } else {
1251                         uint64_t addr = sc->pos_dma.dma_paddr;
1252
1253                         HDAC_WRITE_4(&sc->mem, HDAC_DPIBUBASE, addr >> 32);
1254                         HDAC_WRITE_4(&sc->mem, HDAC_DPIBLBASE,
1255                             (addr & HDAC_DPLBASE_DPLBASE_MASK) |
1256                             HDAC_DPLBASE_DPLBASE_DMAPBE);
1257                 }
1258         }
1259
1260         result = bus_dma_tag_create(
1261             bus_get_dma_tag(sc->dev),           /* parent */
1262             HDA_DMA_ALIGNMENT,                  /* alignment */
1263             0,                                  /* boundary */
1264             (sc->support_64bit) ? BUS_SPACE_MAXADDR :
1265                 BUS_SPACE_MAXADDR_32BIT,        /* lowaddr */
1266             BUS_SPACE_MAXADDR,                  /* highaddr */
1267             NULL,                               /* filtfunc */
1268             NULL,                               /* fistfuncarg */
1269             HDA_BUFSZ_MAX,                      /* maxsize */
1270             1,                                  /* nsegments */
1271             HDA_BUFSZ_MAX,                      /* maxsegsz */
1272             0,                                  /* flags */
1273             NULL,                               /* lockfunc */
1274             NULL,                               /* lockfuncarg */
1275             &sc->chan_dmat);                    /* dmat */
1276         if (result != 0) {
1277                 device_printf(dev, "%s: bus_dma_tag_create failed (%x)\n",
1278                      __func__, result);
1279                 goto hdac_attach_fail;
1280         }
1281
1282         /* Quiesce everything */
1283         HDA_BOOTHVERBOSE(
1284                 device_printf(dev, "Reset controller...\n");
1285         );
1286         hdac_reset(sc, 1);
1287
1288         /* Initialize the CORB and RIRB */
1289         hdac_corb_init(sc);
1290         hdac_rirb_init(sc);
1291
1292         /* Defer remaining of initialization until interrupts are enabled */
1293         sc->intrhook.ich_func = hdac_attach2;
1294         sc->intrhook.ich_arg = (void *)sc;
1295         if (cold == 0 || config_intrhook_establish(&sc->intrhook) != 0) {
1296                 sc->intrhook.ich_func = NULL;
1297                 hdac_attach2((void *)sc);
1298         }
1299
1300         return (0);
1301
1302 hdac_attach_fail:
1303         hdac_irq_free(sc);
1304         for (i = 0; i < sc->num_ss; i++)
1305                 hdac_dma_free(sc, &sc->streams[i].bdl);
1306         free(sc->streams, M_HDAC);
1307         hdac_dma_free(sc, &sc->rirb_dma);
1308         hdac_dma_free(sc, &sc->corb_dma);
1309         hdac_mem_free(sc);
1310         snd_mtxfree(sc->lock);
1311
1312         return (ENXIO);
1313 }
1314
1315 static int
1316 sysctl_hdac_pindump(SYSCTL_HANDLER_ARGS)
1317 {
1318         struct hdac_softc *sc;
1319         device_t *devlist;
1320         device_t dev;
1321         int devcount, i, err, val;
1322
1323         dev = oidp->oid_arg1;
1324         sc = device_get_softc(dev);
1325         if (sc == NULL)
1326                 return (EINVAL);
1327         val = 0;
1328         err = sysctl_handle_int(oidp, &val, 0, req);
1329         if (err != 0 || req->newptr == NULL || val == 0)
1330                 return (err);
1331
1332         /* XXX: Temporary. For debugging. */
1333         if (val == 100) {
1334                 hdac_suspend(dev);
1335                 return (0);
1336         } else if (val == 101) {
1337                 hdac_resume(dev);
1338                 return (0);
1339         }
1340
1341         if ((err = device_get_children(dev, &devlist, &devcount)) != 0)
1342                 return (err);
1343         hdac_lock(sc);
1344         for (i = 0; i < devcount; i++)
1345                 HDAC_PINDUMP(devlist[i]);
1346         hdac_unlock(sc);
1347         free(devlist, M_TEMP);
1348         return (0);
1349 }
1350
1351 static int
1352 hdac_mdata_rate(uint16_t fmt)
1353 {
1354         static const int mbits[8] = { 8, 16, 32, 32, 32, 32, 32, 32 };
1355         int rate, bits;
1356
1357         if (fmt & (1 << 14))
1358                 rate = 44100;
1359         else
1360                 rate = 48000;
1361         rate *= ((fmt >> 11) & 0x07) + 1;
1362         rate /= ((fmt >> 8) & 0x07) + 1;
1363         bits = mbits[(fmt >> 4) & 0x03];
1364         bits *= (fmt & 0x0f) + 1;
1365         return (rate * bits);
1366 }
1367
1368 static int
1369 hdac_bdata_rate(uint16_t fmt, int output)
1370 {
1371         static const int bbits[8] = { 8, 16, 20, 24, 32, 32, 32, 32 };
1372         int rate, bits;
1373
1374         rate = 48000;
1375         rate *= ((fmt >> 11) & 0x07) + 1;
1376         bits = bbits[(fmt >> 4) & 0x03];
1377         bits *= (fmt & 0x0f) + 1;
1378         if (!output)
1379                 bits = ((bits + 7) & ~0x07) + 10;
1380         return (rate * bits);
1381 }
1382
1383 static void
1384 hdac_poll_reinit(struct hdac_softc *sc)
1385 {
1386         int i, pollticks, min = 1000000;
1387         struct hdac_stream *s;
1388
1389         if (sc->polling == 0)
1390                 return;
1391         if (sc->unsol_registered > 0)
1392                 min = hz / 2;
1393         for (i = 0; i < sc->num_ss; i++) {
1394                 s = &sc->streams[i];
1395                 if (s->running == 0)
1396                         continue;
1397                 pollticks = ((uint64_t)hz * s->blksz) /
1398                     (hdac_mdata_rate(s->format) / 8);
1399                 pollticks >>= 1;
1400                 if (pollticks > hz)
1401                         pollticks = hz;
1402                 if (pollticks < 1) {
1403                         HDA_BOOTVERBOSE(
1404                                 device_printf(sc->dev,
1405                                     "poll interval < 1 tick !\n");
1406                         );
1407                         pollticks = 1;
1408                 }
1409                 if (min > pollticks)
1410                         min = pollticks;
1411         }
1412         HDA_BOOTVERBOSE(
1413                 device_printf(sc->dev,
1414                     "poll interval %d -> %d ticks\n",
1415                     sc->poll_ival, min);
1416         );
1417         sc->poll_ival = min;
1418         if (min == 1000000)
1419                 callout_stop(&sc->poll_callout);
1420         else
1421                 callout_reset(&sc->poll_callout, 1, hdac_poll_callback, sc);
1422 }
1423
1424 static int
1425 sysctl_hdac_polling(SYSCTL_HANDLER_ARGS)
1426 {
1427         struct hdac_softc *sc;
1428         device_t dev;
1429         uint32_t ctl;
1430         int err, val;
1431
1432         dev = oidp->oid_arg1;
1433         sc = device_get_softc(dev);
1434         if (sc == NULL)
1435                 return (EINVAL);
1436         hdac_lock(sc);
1437         val = sc->polling;
1438         hdac_unlock(sc);
1439         err = sysctl_handle_int(oidp, &val, 0, req);
1440
1441         if (err != 0 || req->newptr == NULL)
1442                 return (err);
1443         if (val < 0 || val > 1)
1444                 return (EINVAL);
1445
1446         hdac_lock(sc);
1447         if (val != sc->polling) {
1448                 if (val == 0) {
1449                         callout_stop(&sc->poll_callout);
1450                         hdac_unlock(sc);
1451                         callout_drain(&sc->poll_callout);
1452                         hdac_lock(sc);
1453                         sc->polling = 0;
1454                         ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL);
1455                         ctl |= HDAC_INTCTL_GIE;
1456                         HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl);
1457                 } else {
1458                         ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL);
1459                         ctl &= ~HDAC_INTCTL_GIE;
1460                         HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl);
1461                         sc->polling = 1;
1462                         hdac_poll_reinit(sc);
1463                 }
1464         }
1465         hdac_unlock(sc);
1466
1467         return (err);
1468 }
1469
1470 static void
1471 hdac_attach2(void *arg)
1472 {
1473         struct hdac_softc *sc;
1474         device_t child;
1475         uint32_t vendorid, revisionid;
1476         int i;
1477         uint16_t statests;
1478
1479         sc = (struct hdac_softc *)arg;
1480
1481         hdac_lock(sc);
1482
1483         /* Remove ourselves from the config hooks */
1484         if (sc->intrhook.ich_func != NULL) {
1485                 config_intrhook_disestablish(&sc->intrhook);
1486                 sc->intrhook.ich_func = NULL;
1487         }
1488
1489         HDA_BOOTHVERBOSE(
1490                 device_printf(sc->dev, "Starting CORB Engine...\n");
1491         );
1492         hdac_corb_start(sc);
1493         HDA_BOOTHVERBOSE(
1494                 device_printf(sc->dev, "Starting RIRB Engine...\n");
1495         );
1496         hdac_rirb_start(sc);
1497         HDA_BOOTHVERBOSE(
1498                 device_printf(sc->dev,
1499                     "Enabling controller interrupt...\n");
1500         );
1501         HDAC_WRITE_4(&sc->mem, HDAC_GCTL, HDAC_READ_4(&sc->mem, HDAC_GCTL) |
1502             HDAC_GCTL_UNSOL);
1503         if (sc->polling == 0) {
1504                 HDAC_WRITE_4(&sc->mem, HDAC_INTCTL,
1505                     HDAC_INTCTL_CIE | HDAC_INTCTL_GIE);
1506         }
1507         DELAY(1000);
1508
1509         HDA_BOOTHVERBOSE(
1510                 device_printf(sc->dev, "Scanning HDA codecs ...\n");
1511         );
1512         statests = HDAC_READ_2(&sc->mem, HDAC_STATESTS);
1513         hdac_unlock(sc);
1514         for (i = 0; i < HDAC_CODEC_MAX; i++) {
1515                 if (HDAC_STATESTS_SDIWAKE(statests, i)) {
1516                         HDA_BOOTHVERBOSE(
1517                                 device_printf(sc->dev,
1518                                     "Found CODEC at address %d\n", i);
1519                         );
1520                         hdac_lock(sc);
1521                         vendorid = hdac_send_command(sc, i,
1522                             HDA_CMD_GET_PARAMETER(0, 0x0, HDA_PARAM_VENDOR_ID));
1523                         revisionid = hdac_send_command(sc, i,
1524                             HDA_CMD_GET_PARAMETER(0, 0x0, HDA_PARAM_REVISION_ID));
1525                         hdac_unlock(sc);
1526                         if (vendorid == HDA_INVALID &&
1527                             revisionid == HDA_INVALID) {
1528                                 device_printf(sc->dev,
1529                                     "CODEC is not responding!\n");
1530                                 continue;
1531                         }
1532                         sc->codecs[i].vendor_id =
1533                             HDA_PARAM_VENDOR_ID_VENDOR_ID(vendorid);
1534                         sc->codecs[i].device_id =
1535                             HDA_PARAM_VENDOR_ID_DEVICE_ID(vendorid);
1536                         sc->codecs[i].revision_id =
1537                             HDA_PARAM_REVISION_ID_REVISION_ID(revisionid);
1538                         sc->codecs[i].stepping_id =
1539                             HDA_PARAM_REVISION_ID_STEPPING_ID(revisionid);
1540                         child = device_add_child(sc->dev, "hdacc", -1);
1541                         if (child == NULL) {
1542                                 device_printf(sc->dev,
1543                                     "Failed to add CODEC device\n");
1544                                 continue;
1545                         }
1546                         device_set_ivars(child, (void *)(intptr_t)i);
1547                         sc->codecs[i].dev = child;
1548                 }
1549         }
1550         bus_generic_attach(sc->dev);
1551
1552         SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->dev),
1553             SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO,
1554             "pindump", CTLTYPE_INT | CTLFLAG_RW, sc->dev, sizeof(sc->dev),
1555             sysctl_hdac_pindump, "I", "Dump pin states/data");
1556         SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->dev),
1557             SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO,
1558             "polling", CTLTYPE_INT | CTLFLAG_RW, sc->dev, sizeof(sc->dev),
1559             sysctl_hdac_polling, "I", "Enable polling mode");
1560 }
1561
1562 /****************************************************************************
1563  * int hdac_suspend(device_t)
1564  *
1565  * Suspend and power down HDA bus and codecs.
1566  ****************************************************************************/
1567 static int
1568 hdac_suspend(device_t dev)
1569 {
1570         struct hdac_softc *sc = device_get_softc(dev);
1571
1572         HDA_BOOTHVERBOSE(
1573                 device_printf(dev, "Suspend...\n");
1574         );
1575         bus_generic_suspend(dev);
1576
1577         hdac_lock(sc);
1578         HDA_BOOTHVERBOSE(
1579                 device_printf(dev, "Reset controller...\n");
1580         );
1581         callout_stop(&sc->poll_callout);
1582         hdac_reset(sc, 0);
1583         hdac_unlock(sc);
1584         callout_drain(&sc->poll_callout);
1585         taskqueue_drain(taskqueue_thread, &sc->unsolq_task);
1586         HDA_BOOTHVERBOSE(
1587                 device_printf(dev, "Suspend done\n");
1588         );
1589         return (0);
1590 }
1591
1592 /****************************************************************************
1593  * int hdac_resume(device_t)
1594  *
1595  * Powerup and restore HDA bus and codecs state.
1596  ****************************************************************************/
1597 static int
1598 hdac_resume(device_t dev)
1599 {
1600         struct hdac_softc *sc = device_get_softc(dev);
1601         int error;
1602
1603         HDA_BOOTHVERBOSE(
1604                 device_printf(dev, "Resume...\n");
1605         );
1606         hdac_lock(sc);
1607
1608         /* Quiesce everything */
1609         HDA_BOOTHVERBOSE(
1610                 device_printf(dev, "Reset controller...\n");
1611         );
1612         hdac_reset(sc, 1);
1613
1614         /* Initialize the CORB and RIRB */
1615         hdac_corb_init(sc);
1616         hdac_rirb_init(sc);
1617
1618         HDA_BOOTHVERBOSE(
1619                 device_printf(dev, "Starting CORB Engine...\n");
1620         );
1621         hdac_corb_start(sc);
1622         HDA_BOOTHVERBOSE(
1623                 device_printf(dev, "Starting RIRB Engine...\n");
1624         );
1625         hdac_rirb_start(sc);
1626         HDA_BOOTHVERBOSE(
1627                 device_printf(dev, "Enabling controller interrupt...\n");
1628         );
1629         HDAC_WRITE_4(&sc->mem, HDAC_GCTL, HDAC_READ_4(&sc->mem, HDAC_GCTL) |
1630             HDAC_GCTL_UNSOL);
1631         HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, HDAC_INTCTL_CIE | HDAC_INTCTL_GIE);
1632         DELAY(1000);
1633         hdac_poll_reinit(sc);
1634         hdac_unlock(sc);
1635
1636         error = bus_generic_resume(dev);
1637         HDA_BOOTHVERBOSE(
1638                 device_printf(dev, "Resume done\n");
1639         );
1640         return (error);
1641 }
1642
1643 /****************************************************************************
1644  * int hdac_detach(device_t)
1645  *
1646  * Detach and free up resources utilized by the hdac device.
1647  ****************************************************************************/
1648 static int
1649 hdac_detach(device_t dev)
1650 {
1651         struct hdac_softc *sc = device_get_softc(dev);
1652         device_t *devlist;
1653         int cad, i, devcount, error;
1654
1655         if ((error = device_get_children(dev, &devlist, &devcount)) != 0)
1656                 return (error);
1657         for (i = 0; i < devcount; i++) {
1658                 cad = (intptr_t)device_get_ivars(devlist[i]);
1659                 if ((error = device_delete_child(dev, devlist[i])) != 0) {
1660                         free(devlist, M_TEMP);
1661                         return (error);
1662                 }
1663                 sc->codecs[cad].dev = NULL;
1664         }
1665         free(devlist, M_TEMP);
1666
1667         hdac_lock(sc);
1668         hdac_reset(sc, 0);
1669         hdac_unlock(sc);
1670         taskqueue_drain(taskqueue_thread, &sc->unsolq_task);
1671         hdac_irq_free(sc);
1672
1673         for (i = 0; i < sc->num_ss; i++)
1674                 hdac_dma_free(sc, &sc->streams[i].bdl);
1675         free(sc->streams, M_HDAC);
1676         hdac_dma_free(sc, &sc->pos_dma);
1677         hdac_dma_free(sc, &sc->rirb_dma);
1678         hdac_dma_free(sc, &sc->corb_dma);
1679         if (sc->chan_dmat != NULL) {
1680                 bus_dma_tag_destroy(sc->chan_dmat);
1681                 sc->chan_dmat = NULL;
1682         }
1683         hdac_mem_free(sc);
1684         snd_mtxfree(sc->lock);
1685         return (0);
1686 }
1687
1688 static bus_dma_tag_t
1689 hdac_get_dma_tag(device_t dev, device_t child)
1690 {
1691         struct hdac_softc *sc = device_get_softc(dev);
1692
1693         return (sc->chan_dmat);
1694 }
1695
1696 static int
1697 hdac_print_child(device_t dev, device_t child)
1698 {
1699         int retval;
1700
1701         retval = bus_print_child_header(dev, child);
1702         retval += printf(" at cad %d",
1703             (int)(intptr_t)device_get_ivars(child));
1704         retval += bus_print_child_footer(dev, child);
1705
1706         return (retval);
1707 }
1708
1709 static int
1710 hdac_child_location_str(device_t dev, device_t child, char *buf,
1711     size_t buflen)
1712 {
1713
1714         snprintf(buf, buflen, "cad=%d",
1715             (int)(intptr_t)device_get_ivars(child));
1716         return (0);
1717 }
1718
1719 static int
1720 hdac_child_pnpinfo_str_method(device_t dev, device_t child, char *buf,
1721     size_t buflen)
1722 {
1723         struct hdac_softc *sc = device_get_softc(dev);
1724         nid_t cad = (uintptr_t)device_get_ivars(child);
1725
1726         snprintf(buf, buflen, "vendor=0x%04x device=0x%04x revision=0x%02x "
1727             "stepping=0x%02x",
1728             sc->codecs[cad].vendor_id, sc->codecs[cad].device_id,
1729             sc->codecs[cad].revision_id, sc->codecs[cad].stepping_id);
1730         return (0);
1731 }
1732
1733 static int
1734 hdac_read_ivar(device_t dev, device_t child, int which, uintptr_t *result)
1735 {
1736         struct hdac_softc *sc = device_get_softc(dev);
1737         nid_t cad = (uintptr_t)device_get_ivars(child);
1738
1739         switch (which) {
1740         case HDA_IVAR_CODEC_ID:
1741                 *result = cad;
1742                 break;
1743         case HDA_IVAR_VENDOR_ID:
1744                 *result = sc->codecs[cad].vendor_id;
1745                 break;
1746         case HDA_IVAR_DEVICE_ID:
1747                 *result = sc->codecs[cad].device_id;
1748                 break;
1749         case HDA_IVAR_REVISION_ID:
1750                 *result = sc->codecs[cad].revision_id;
1751                 break;
1752         case HDA_IVAR_STEPPING_ID:
1753                 *result = sc->codecs[cad].stepping_id;
1754                 break;
1755         case HDA_IVAR_SUBVENDOR_ID:
1756                 *result = pci_get_subvendor(dev);
1757                 break;
1758         case HDA_IVAR_SUBDEVICE_ID:
1759                 *result = pci_get_subdevice(dev);
1760                 break;
1761         case HDA_IVAR_DMA_NOCACHE:
1762                 *result = (sc->flags & HDAC_F_DMA_NOCACHE) != 0;
1763                 break;
1764         default:
1765                 return (ENOENT);
1766         }
1767         return (0);
1768 }
1769
1770 static struct mtx *
1771 hdac_get_mtx(device_t dev, device_t child)
1772 {
1773         struct hdac_softc *sc = device_get_softc(dev);
1774
1775         return (sc->lock);
1776 }
1777
1778 static uint32_t
1779 hdac_codec_command(device_t dev, device_t child, uint32_t verb)
1780 {
1781
1782         return (hdac_send_command(device_get_softc(dev),
1783             (intptr_t)device_get_ivars(child), verb));
1784 }
1785
1786 static int
1787 hdac_find_stream(struct hdac_softc *sc, int dir, int stream)
1788 {
1789         int i, ss;
1790
1791         ss = -1;
1792         /* Allocate ISS/BSS first. */
1793         if (dir == 0) {
1794                 for (i = 0; i < sc->num_iss; i++) {
1795                         if (sc->streams[i].stream == stream) {
1796                                 ss = i;
1797                                 break;
1798                         }
1799                 }
1800         } else {
1801                 for (i = 0; i < sc->num_oss; i++) {
1802                         if (sc->streams[i + sc->num_iss].stream == stream) {
1803                                 ss = i + sc->num_iss;
1804                                 break;
1805                         }
1806                 }
1807         }
1808         /* Fallback to BSS. */
1809         if (ss == -1) {
1810                 for (i = 0; i < sc->num_bss; i++) {
1811                         if (sc->streams[i + sc->num_iss + sc->num_oss].stream
1812                             == stream) {
1813                                 ss = i + sc->num_iss + sc->num_oss;
1814                                 break;
1815                         }
1816                 }
1817         }
1818         return (ss);
1819 }
1820
1821 static int
1822 hdac_stream_alloc(device_t dev, device_t child, int dir, int format, int stripe,
1823     uint32_t **dmapos)
1824 {
1825         struct hdac_softc *sc = device_get_softc(dev);
1826         nid_t cad = (uintptr_t)device_get_ivars(child);
1827         int stream, ss, bw, maxbw, prevbw;
1828
1829         /* Look for empty stream. */
1830         ss = hdac_find_stream(sc, dir, 0);
1831
1832         /* Return if found nothing. */
1833         if (ss < 0)
1834                 return (0);
1835
1836         /* Check bus bandwidth. */
1837         bw = hdac_bdata_rate(format, dir);
1838         if (dir == 1) {
1839                 bw *= 1 << (sc->num_sdo - stripe);
1840                 prevbw = sc->sdo_bw_used;
1841                 maxbw = 48000 * 960 * (1 << sc->num_sdo);
1842         } else {
1843                 prevbw = sc->codecs[cad].sdi_bw_used;
1844                 maxbw = 48000 * 464;
1845         }
1846         HDA_BOOTHVERBOSE(
1847                 device_printf(dev, "%dKbps of %dKbps bandwidth used%s\n",
1848                     (bw + prevbw) / 1000, maxbw / 1000,
1849                     bw + prevbw > maxbw ? " -- OVERFLOW!" : "");
1850         );
1851         if (bw + prevbw > maxbw)
1852                 return (0);
1853         if (dir == 1)
1854                 sc->sdo_bw_used += bw;
1855         else
1856                 sc->codecs[cad].sdi_bw_used += bw;
1857
1858         /* Allocate stream number */
1859         if (ss >= sc->num_iss + sc->num_oss)
1860                 stream = 15 - (ss - sc->num_iss + sc->num_oss);
1861         else if (ss >= sc->num_iss)
1862                 stream = ss - sc->num_iss + 1;
1863         else
1864                 stream = ss + 1;
1865
1866         sc->streams[ss].dev = child;
1867         sc->streams[ss].dir = dir;
1868         sc->streams[ss].stream = stream;
1869         sc->streams[ss].bw = bw;
1870         sc->streams[ss].format = format;
1871         sc->streams[ss].stripe = stripe;
1872         if (dmapos != NULL) {
1873                 if (sc->pos_dma.dma_vaddr != NULL)
1874                         *dmapos = (uint32_t *)(sc->pos_dma.dma_vaddr + ss * 8);
1875                 else
1876                         *dmapos = NULL;
1877         }
1878         return (stream);
1879 }
1880
1881 static void
1882 hdac_stream_free(device_t dev, device_t child, int dir, int stream)
1883 {
1884         struct hdac_softc *sc = device_get_softc(dev);
1885         nid_t cad = (uintptr_t)device_get_ivars(child);
1886         int ss;
1887
1888         ss = hdac_find_stream(sc, dir, stream);
1889         KASSERT(ss >= 0,
1890             ("Free for not allocated stream (%d/%d)\n", dir, stream));
1891         if (dir == 1)
1892                 sc->sdo_bw_used -= sc->streams[ss].bw;
1893         else
1894                 sc->codecs[cad].sdi_bw_used -= sc->streams[ss].bw;
1895         sc->streams[ss].stream = 0;
1896         sc->streams[ss].dev = NULL;
1897 }
1898
1899 static int
1900 hdac_stream_start(device_t dev, device_t child,
1901     int dir, int stream, bus_addr_t buf, int blksz, int blkcnt)
1902 {
1903         struct hdac_softc *sc = device_get_softc(dev);
1904         struct hdac_bdle *bdle;
1905         uint64_t addr;
1906         int i, ss, off;
1907         uint32_t ctl;
1908
1909         ss = hdac_find_stream(sc, dir, stream);
1910         KASSERT(ss >= 0,
1911             ("Start for not allocated stream (%d/%d)\n", dir, stream));
1912
1913         addr = (uint64_t)buf;
1914         bdle = (struct hdac_bdle *)sc->streams[ss].bdl.dma_vaddr;
1915         for (i = 0; i < blkcnt; i++, bdle++) {
1916                 bdle->addrl = (uint32_t)addr;
1917                 bdle->addrh = (uint32_t)(addr >> 32);
1918                 bdle->len = blksz;
1919                 bdle->ioc = 1;
1920                 addr += blksz;
1921         }
1922
1923         off = ss << 5;
1924         HDAC_WRITE_4(&sc->mem, off + HDAC_SDCBL, blksz * blkcnt);
1925         HDAC_WRITE_2(&sc->mem, off + HDAC_SDLVI, blkcnt - 1);
1926         addr = sc->streams[ss].bdl.dma_paddr;
1927         HDAC_WRITE_4(&sc->mem, off + HDAC_SDBDPL, (uint32_t)addr);
1928         HDAC_WRITE_4(&sc->mem, off + HDAC_SDBDPU, (uint32_t)(addr >> 32));
1929
1930         ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL2);
1931         if (dir)
1932                 ctl |= HDAC_SDCTL2_DIR;
1933         else
1934                 ctl &= ~HDAC_SDCTL2_DIR;
1935         ctl &= ~HDAC_SDCTL2_STRM_MASK;
1936         ctl |= stream << HDAC_SDCTL2_STRM_SHIFT;
1937         ctl &= ~HDAC_SDCTL2_STRIPE_MASK;
1938         ctl |= sc->streams[ss].stripe << HDAC_SDCTL2_STRIPE_SHIFT;
1939         HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL2, ctl);
1940
1941         HDAC_WRITE_2(&sc->mem, off + HDAC_SDFMT, sc->streams[ss].format);
1942
1943         ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL);
1944         ctl |= 1 << ss;
1945         HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl);
1946
1947         HDAC_WRITE_1(&sc->mem, off + HDAC_SDSTS,
1948             HDAC_SDSTS_DESE | HDAC_SDSTS_FIFOE | HDAC_SDSTS_BCIS);
1949         ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0);
1950         ctl |= HDAC_SDCTL_IOCE | HDAC_SDCTL_FEIE | HDAC_SDCTL_DEIE |
1951             HDAC_SDCTL_RUN;
1952         HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL0, ctl);
1953
1954         sc->streams[ss].blksz = blksz;
1955         sc->streams[ss].running = 1;
1956         hdac_poll_reinit(sc);
1957         return (0);
1958 }
1959
1960 static void
1961 hdac_stream_stop(device_t dev, device_t child, int dir, int stream)
1962 {
1963         struct hdac_softc *sc = device_get_softc(dev);
1964         int ss, off;
1965         uint32_t ctl;
1966
1967         ss = hdac_find_stream(sc, dir, stream);
1968         KASSERT(ss >= 0,
1969             ("Stop for not allocated stream (%d/%d)\n", dir, stream));
1970
1971         off = ss << 5;
1972         ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0);
1973         ctl &= ~(HDAC_SDCTL_IOCE | HDAC_SDCTL_FEIE | HDAC_SDCTL_DEIE |
1974             HDAC_SDCTL_RUN);
1975         HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL0, ctl);
1976
1977         ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL);
1978         ctl &= ~(1 << ss);
1979         HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl);
1980
1981         sc->streams[ss].running = 0;
1982         hdac_poll_reinit(sc);
1983 }
1984
1985 static void
1986 hdac_stream_reset(device_t dev, device_t child, int dir, int stream)
1987 {
1988         struct hdac_softc *sc = device_get_softc(dev);
1989         int timeout = 1000;
1990         int to = timeout;
1991         int ss, off;
1992         uint32_t ctl;
1993
1994         ss = hdac_find_stream(sc, dir, stream);
1995         KASSERT(ss >= 0,
1996             ("Reset for not allocated stream (%d/%d)\n", dir, stream));
1997
1998         off = ss << 5;
1999         ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0);
2000         ctl |= HDAC_SDCTL_SRST;
2001         HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL0, ctl);
2002         do {
2003                 ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0);
2004                 if (ctl & HDAC_SDCTL_SRST)
2005                         break;
2006                 DELAY(10);
2007         } while (--to);
2008         if (!(ctl & HDAC_SDCTL_SRST))
2009                 device_printf(dev, "Reset setting timeout\n");
2010         ctl &= ~HDAC_SDCTL_SRST;
2011         HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL0, ctl);
2012         to = timeout;
2013         do {
2014                 ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0);
2015                 if (!(ctl & HDAC_SDCTL_SRST))
2016                         break;
2017                 DELAY(10);
2018         } while (--to);
2019         if (ctl & HDAC_SDCTL_SRST)
2020                 device_printf(dev, "Reset timeout!\n");
2021 }
2022
2023 static uint32_t
2024 hdac_stream_getptr(device_t dev, device_t child, int dir, int stream)
2025 {
2026         struct hdac_softc *sc = device_get_softc(dev);
2027         int ss, off;
2028
2029         ss = hdac_find_stream(sc, dir, stream);
2030         KASSERT(ss >= 0,
2031             ("Reset for not allocated stream (%d/%d)\n", dir, stream));
2032
2033         off = ss << 5;
2034         return (HDAC_READ_4(&sc->mem, off + HDAC_SDLPIB));
2035 }
2036
2037 static int
2038 hdac_unsol_alloc(device_t dev, device_t child, int tag)
2039 {
2040         struct hdac_softc *sc = device_get_softc(dev);
2041
2042         sc->unsol_registered++;
2043         hdac_poll_reinit(sc);
2044         return (tag);
2045 }
2046
2047 static void
2048 hdac_unsol_free(device_t dev, device_t child, int tag)
2049 {
2050         struct hdac_softc *sc = device_get_softc(dev);
2051
2052         sc->unsol_registered--;
2053         hdac_poll_reinit(sc);
2054 }
2055
2056 static device_method_t hdac_methods[] = {
2057         /* device interface */
2058         DEVMETHOD(device_probe,         hdac_probe),
2059         DEVMETHOD(device_attach,        hdac_attach),
2060         DEVMETHOD(device_detach,        hdac_detach),
2061         DEVMETHOD(device_suspend,       hdac_suspend),
2062         DEVMETHOD(device_resume,        hdac_resume),
2063         /* Bus interface */
2064         DEVMETHOD(bus_get_dma_tag,      hdac_get_dma_tag),
2065         DEVMETHOD(bus_print_child,      hdac_print_child),
2066         DEVMETHOD(bus_child_location_str, hdac_child_location_str),
2067         DEVMETHOD(bus_child_pnpinfo_str, hdac_child_pnpinfo_str_method),
2068         DEVMETHOD(bus_read_ivar,        hdac_read_ivar),
2069         DEVMETHOD(hdac_get_mtx,         hdac_get_mtx),
2070         DEVMETHOD(hdac_codec_command,   hdac_codec_command),
2071         DEVMETHOD(hdac_stream_alloc,    hdac_stream_alloc),
2072         DEVMETHOD(hdac_stream_free,     hdac_stream_free),
2073         DEVMETHOD(hdac_stream_start,    hdac_stream_start),
2074         DEVMETHOD(hdac_stream_stop,     hdac_stream_stop),
2075         DEVMETHOD(hdac_stream_reset,    hdac_stream_reset),
2076         DEVMETHOD(hdac_stream_getptr,   hdac_stream_getptr),
2077         DEVMETHOD(hdac_unsol_alloc,     hdac_unsol_alloc),
2078         DEVMETHOD(hdac_unsol_free,      hdac_unsol_free),
2079         DEVMETHOD_END
2080 };
2081
2082 static driver_t hdac_driver = {
2083         "hdac",
2084         hdac_methods,
2085         sizeof(struct hdac_softc),
2086 };
2087
2088 static devclass_t hdac_devclass;
2089
2090 DRIVER_MODULE(snd_hda, pci, hdac_driver, hdac_devclass, NULL, NULL);