]> CyberLeo.Net >> Repos - FreeBSD/releng/10.2.git/blob - sys/dev/usb/wlan/if_ural.c
- Copy stable/10@285827 to releng/10.2 in preparation for 10.2-RC1
[FreeBSD/releng/10.2.git] / sys / dev / usb / wlan / if_ural.c
1 /*      $FreeBSD$       */
2
3 /*-
4  * Copyright (c) 2005, 2006
5  *      Damien Bergamini <damien.bergamini@free.fr>
6  *
7  * Copyright (c) 2006, 2008
8  *      Hans Petter Selasky <hselasky@FreeBSD.org>
9  *
10  * Permission to use, copy, modify, and distribute this software for any
11  * purpose with or without fee is hereby granted, provided that the above
12  * copyright notice and this permission notice appear in all copies.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21  */
22
23 #include <sys/cdefs.h>
24 __FBSDID("$FreeBSD$");
25
26 /*-
27  * Ralink Technology RT2500USB chipset driver
28  * http://www.ralinktech.com/
29  */
30
31 #include <sys/param.h>
32 #include <sys/sockio.h>
33 #include <sys/sysctl.h>
34 #include <sys/lock.h>
35 #include <sys/mutex.h>
36 #include <sys/mbuf.h>
37 #include <sys/kernel.h>
38 #include <sys/socket.h>
39 #include <sys/systm.h>
40 #include <sys/malloc.h>
41 #include <sys/module.h>
42 #include <sys/bus.h>
43 #include <sys/endian.h>
44 #include <sys/kdb.h>
45
46 #include <machine/bus.h>
47 #include <machine/resource.h>
48 #include <sys/rman.h>
49
50 #include <net/bpf.h>
51 #include <net/if.h>
52 #include <net/if_arp.h>
53 #include <net/ethernet.h>
54 #include <net/if_dl.h>
55 #include <net/if_media.h>
56 #include <net/if_types.h>
57
58 #ifdef INET
59 #include <netinet/in.h>
60 #include <netinet/in_systm.h>
61 #include <netinet/in_var.h>
62 #include <netinet/if_ether.h>
63 #include <netinet/ip.h>
64 #endif
65
66 #include <net80211/ieee80211_var.h>
67 #include <net80211/ieee80211_regdomain.h>
68 #include <net80211/ieee80211_radiotap.h>
69 #include <net80211/ieee80211_ratectl.h>
70
71 #include <dev/usb/usb.h>
72 #include <dev/usb/usbdi.h>
73 #include "usbdevs.h"
74
75 #define USB_DEBUG_VAR ural_debug
76 #include <dev/usb/usb_debug.h>
77
78 #include <dev/usb/wlan/if_uralreg.h>
79 #include <dev/usb/wlan/if_uralvar.h>
80
81 #ifdef USB_DEBUG
82 static int ural_debug = 0;
83
84 static SYSCTL_NODE(_hw_usb, OID_AUTO, ural, CTLFLAG_RW, 0, "USB ural");
85 SYSCTL_INT(_hw_usb_ural, OID_AUTO, debug, CTLFLAG_RW, &ural_debug, 0,
86     "Debug level");
87 #endif
88
89 #define URAL_RSSI(rssi)                                 \
90         ((rssi) > (RAL_NOISE_FLOOR + RAL_RSSI_CORR) ?   \
91          ((rssi) - (RAL_NOISE_FLOOR + RAL_RSSI_CORR)) : 0)
92
93 /* various supported device vendors/products */
94 static const STRUCT_USB_HOST_ID ural_devs[] = {
95 #define URAL_DEV(v,p)  { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) }
96         URAL_DEV(ASUS, WL167G),
97         URAL_DEV(ASUS, RT2570),
98         URAL_DEV(BELKIN, F5D7050),
99         URAL_DEV(BELKIN, F5D7051),
100         URAL_DEV(CISCOLINKSYS, HU200TS),
101         URAL_DEV(CISCOLINKSYS, WUSB54G),
102         URAL_DEV(CISCOLINKSYS, WUSB54GP),
103         URAL_DEV(CONCEPTRONIC2, C54RU),
104         URAL_DEV(DLINK, DWLG122),
105         URAL_DEV(GIGABYTE, GN54G),
106         URAL_DEV(GIGABYTE, GNWBKG),
107         URAL_DEV(GUILLEMOT, HWGUSB254),
108         URAL_DEV(MELCO, KG54),
109         URAL_DEV(MELCO, KG54AI),
110         URAL_DEV(MELCO, KG54YB),
111         URAL_DEV(MELCO, NINWIFI),
112         URAL_DEV(MSI, RT2570),
113         URAL_DEV(MSI, RT2570_2),
114         URAL_DEV(MSI, RT2570_3),
115         URAL_DEV(NOVATECH, NV902),
116         URAL_DEV(RALINK, RT2570),
117         URAL_DEV(RALINK, RT2570_2),
118         URAL_DEV(RALINK, RT2570_3),
119         URAL_DEV(SIEMENS2, WL54G),
120         URAL_DEV(SMC, 2862WG),
121         URAL_DEV(SPHAIRON, UB801R),
122         URAL_DEV(SURECOM, RT2570),
123         URAL_DEV(VTECH, RT2570),
124         URAL_DEV(ZINWELL, RT2570),
125 #undef URAL_DEV
126 };
127
128 static usb_callback_t ural_bulk_read_callback;
129 static usb_callback_t ural_bulk_write_callback;
130
131 static usb_error_t      ural_do_request(struct ural_softc *sc,
132                             struct usb_device_request *req, void *data);
133 static struct ieee80211vap *ural_vap_create(struct ieee80211com *,
134                             const char [IFNAMSIZ], int, enum ieee80211_opmode,
135                             int, const uint8_t [IEEE80211_ADDR_LEN],
136                             const uint8_t [IEEE80211_ADDR_LEN]);
137 static void             ural_vap_delete(struct ieee80211vap *);
138 static void             ural_tx_free(struct ural_tx_data *, int);
139 static void             ural_setup_tx_list(struct ural_softc *);
140 static void             ural_unsetup_tx_list(struct ural_softc *);
141 static int              ural_newstate(struct ieee80211vap *,
142                             enum ieee80211_state, int);
143 static void             ural_setup_tx_desc(struct ural_softc *,
144                             struct ural_tx_desc *, uint32_t, int, int);
145 static int              ural_tx_bcn(struct ural_softc *, struct mbuf *,
146                             struct ieee80211_node *);
147 static int              ural_tx_mgt(struct ural_softc *, struct mbuf *,
148                             struct ieee80211_node *);
149 static int              ural_tx_data(struct ural_softc *, struct mbuf *,
150                             struct ieee80211_node *);
151 static void             ural_start(struct ifnet *);
152 static int              ural_ioctl(struct ifnet *, u_long, caddr_t);
153 static void             ural_set_testmode(struct ural_softc *);
154 static void             ural_eeprom_read(struct ural_softc *, uint16_t, void *,
155                             int);
156 static uint16_t         ural_read(struct ural_softc *, uint16_t);
157 static void             ural_read_multi(struct ural_softc *, uint16_t, void *,
158                             int);
159 static void             ural_write(struct ural_softc *, uint16_t, uint16_t);
160 static void             ural_write_multi(struct ural_softc *, uint16_t, void *,
161                             int) __unused;
162 static void             ural_bbp_write(struct ural_softc *, uint8_t, uint8_t);
163 static uint8_t          ural_bbp_read(struct ural_softc *, uint8_t);
164 static void             ural_rf_write(struct ural_softc *, uint8_t, uint32_t);
165 static void             ural_scan_start(struct ieee80211com *);
166 static void             ural_scan_end(struct ieee80211com *);
167 static void             ural_set_channel(struct ieee80211com *);
168 static void             ural_set_chan(struct ural_softc *,
169                             struct ieee80211_channel *);
170 static void             ural_disable_rf_tune(struct ural_softc *);
171 static void             ural_enable_tsf_sync(struct ural_softc *);
172 static void             ural_enable_tsf(struct ural_softc *);
173 static void             ural_update_slot(struct ifnet *);
174 static void             ural_set_txpreamble(struct ural_softc *);
175 static void             ural_set_basicrates(struct ural_softc *,
176                             const struct ieee80211_channel *);
177 static void             ural_set_bssid(struct ural_softc *, const uint8_t *);
178 static void             ural_set_macaddr(struct ural_softc *, uint8_t *);
179 static void             ural_update_promisc(struct ifnet *);
180 static void             ural_setpromisc(struct ural_softc *);
181 static const char       *ural_get_rf(int);
182 static void             ural_read_eeprom(struct ural_softc *);
183 static int              ural_bbp_init(struct ural_softc *);
184 static void             ural_set_txantenna(struct ural_softc *, int);
185 static void             ural_set_rxantenna(struct ural_softc *, int);
186 static void             ural_init_locked(struct ural_softc *);
187 static void             ural_init(void *);
188 static void             ural_stop(struct ural_softc *);
189 static int              ural_raw_xmit(struct ieee80211_node *, struct mbuf *,
190                             const struct ieee80211_bpf_params *);
191 static void             ural_ratectl_start(struct ural_softc *,
192                             struct ieee80211_node *);
193 static void             ural_ratectl_timeout(void *);
194 static void             ural_ratectl_task(void *, int);
195 static int              ural_pause(struct ural_softc *sc, int timeout);
196
197 /*
198  * Default values for MAC registers; values taken from the reference driver.
199  */
200 static const struct {
201         uint16_t        reg;
202         uint16_t        val;
203 } ural_def_mac[] = {
204         { RAL_TXRX_CSR5,  0x8c8d },
205         { RAL_TXRX_CSR6,  0x8b8a },
206         { RAL_TXRX_CSR7,  0x8687 },
207         { RAL_TXRX_CSR8,  0x0085 },
208         { RAL_MAC_CSR13,  0x1111 },
209         { RAL_MAC_CSR14,  0x1e11 },
210         { RAL_TXRX_CSR21, 0xe78f },
211         { RAL_MAC_CSR9,   0xff1d },
212         { RAL_MAC_CSR11,  0x0002 },
213         { RAL_MAC_CSR22,  0x0053 },
214         { RAL_MAC_CSR15,  0x0000 },
215         { RAL_MAC_CSR8,   RAL_FRAME_SIZE },
216         { RAL_TXRX_CSR19, 0x0000 },
217         { RAL_TXRX_CSR18, 0x005a },
218         { RAL_PHY_CSR2,   0x0000 },
219         { RAL_TXRX_CSR0,  0x1ec0 },
220         { RAL_PHY_CSR4,   0x000f }
221 };
222
223 /*
224  * Default values for BBP registers; values taken from the reference driver.
225  */
226 static const struct {
227         uint8_t reg;
228         uint8_t val;
229 } ural_def_bbp[] = {
230         {  3, 0x02 },
231         {  4, 0x19 },
232         { 14, 0x1c },
233         { 15, 0x30 },
234         { 16, 0xac },
235         { 17, 0x48 },
236         { 18, 0x18 },
237         { 19, 0xff },
238         { 20, 0x1e },
239         { 21, 0x08 },
240         { 22, 0x08 },
241         { 23, 0x08 },
242         { 24, 0x80 },
243         { 25, 0x50 },
244         { 26, 0x08 },
245         { 27, 0x23 },
246         { 30, 0x10 },
247         { 31, 0x2b },
248         { 32, 0xb9 },
249         { 34, 0x12 },
250         { 35, 0x50 },
251         { 39, 0xc4 },
252         { 40, 0x02 },
253         { 41, 0x60 },
254         { 53, 0x10 },
255         { 54, 0x18 },
256         { 56, 0x08 },
257         { 57, 0x10 },
258         { 58, 0x08 },
259         { 61, 0x60 },
260         { 62, 0x10 },
261         { 75, 0xff }
262 };
263
264 /*
265  * Default values for RF register R2 indexed by channel numbers.
266  */
267 static const uint32_t ural_rf2522_r2[] = {
268         0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814,
269         0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e
270 };
271
272 static const uint32_t ural_rf2523_r2[] = {
273         0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
274         0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
275 };
276
277 static const uint32_t ural_rf2524_r2[] = {
278         0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
279         0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
280 };
281
282 static const uint32_t ural_rf2525_r2[] = {
283         0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d,
284         0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346
285 };
286
287 static const uint32_t ural_rf2525_hi_r2[] = {
288         0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345,
289         0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e
290 };
291
292 static const uint32_t ural_rf2525e_r2[] = {
293         0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463,
294         0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b
295 };
296
297 static const uint32_t ural_rf2526_hi_r2[] = {
298         0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d,
299         0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241
300 };
301
302 static const uint32_t ural_rf2526_r2[] = {
303         0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229,
304         0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d
305 };
306
307 /*
308  * For dual-band RF, RF registers R1 and R4 also depend on channel number;
309  * values taken from the reference driver.
310  */
311 static const struct {
312         uint8_t         chan;
313         uint32_t        r1;
314         uint32_t        r2;
315         uint32_t        r4;
316 } ural_rf5222[] = {
317         {   1, 0x08808, 0x0044d, 0x00282 },
318         {   2, 0x08808, 0x0044e, 0x00282 },
319         {   3, 0x08808, 0x0044f, 0x00282 },
320         {   4, 0x08808, 0x00460, 0x00282 },
321         {   5, 0x08808, 0x00461, 0x00282 },
322         {   6, 0x08808, 0x00462, 0x00282 },
323         {   7, 0x08808, 0x00463, 0x00282 },
324         {   8, 0x08808, 0x00464, 0x00282 },
325         {   9, 0x08808, 0x00465, 0x00282 },
326         {  10, 0x08808, 0x00466, 0x00282 },
327         {  11, 0x08808, 0x00467, 0x00282 },
328         {  12, 0x08808, 0x00468, 0x00282 },
329         {  13, 0x08808, 0x00469, 0x00282 },
330         {  14, 0x08808, 0x0046b, 0x00286 },
331
332         {  36, 0x08804, 0x06225, 0x00287 },
333         {  40, 0x08804, 0x06226, 0x00287 },
334         {  44, 0x08804, 0x06227, 0x00287 },
335         {  48, 0x08804, 0x06228, 0x00287 },
336         {  52, 0x08804, 0x06229, 0x00287 },
337         {  56, 0x08804, 0x0622a, 0x00287 },
338         {  60, 0x08804, 0x0622b, 0x00287 },
339         {  64, 0x08804, 0x0622c, 0x00287 },
340
341         { 100, 0x08804, 0x02200, 0x00283 },
342         { 104, 0x08804, 0x02201, 0x00283 },
343         { 108, 0x08804, 0x02202, 0x00283 },
344         { 112, 0x08804, 0x02203, 0x00283 },
345         { 116, 0x08804, 0x02204, 0x00283 },
346         { 120, 0x08804, 0x02205, 0x00283 },
347         { 124, 0x08804, 0x02206, 0x00283 },
348         { 128, 0x08804, 0x02207, 0x00283 },
349         { 132, 0x08804, 0x02208, 0x00283 },
350         { 136, 0x08804, 0x02209, 0x00283 },
351         { 140, 0x08804, 0x0220a, 0x00283 },
352
353         { 149, 0x08808, 0x02429, 0x00281 },
354         { 153, 0x08808, 0x0242b, 0x00281 },
355         { 157, 0x08808, 0x0242d, 0x00281 },
356         { 161, 0x08808, 0x0242f, 0x00281 }
357 };
358
359 static const struct usb_config ural_config[URAL_N_TRANSFER] = {
360         [URAL_BULK_WR] = {
361                 .type = UE_BULK,
362                 .endpoint = UE_ADDR_ANY,
363                 .direction = UE_DIR_OUT,
364                 .bufsize = (RAL_FRAME_SIZE + RAL_TX_DESC_SIZE + 4),
365                 .flags = {.pipe_bof = 1,.force_short_xfer = 1,},
366                 .callback = ural_bulk_write_callback,
367                 .timeout = 5000,        /* ms */
368         },
369         [URAL_BULK_RD] = {
370                 .type = UE_BULK,
371                 .endpoint = UE_ADDR_ANY,
372                 .direction = UE_DIR_IN,
373                 .bufsize = (RAL_FRAME_SIZE + RAL_RX_DESC_SIZE),
374                 .flags = {.pipe_bof = 1,.short_xfer_ok = 1,},
375                 .callback = ural_bulk_read_callback,
376         },
377 };
378
379 static device_probe_t ural_match;
380 static device_attach_t ural_attach;
381 static device_detach_t ural_detach;
382
383 static device_method_t ural_methods[] = {
384         /* Device interface */
385         DEVMETHOD(device_probe,         ural_match),
386         DEVMETHOD(device_attach,        ural_attach),
387         DEVMETHOD(device_detach,        ural_detach),
388         DEVMETHOD_END
389 };
390
391 static driver_t ural_driver = {
392         .name = "ural",
393         .methods = ural_methods,
394         .size = sizeof(struct ural_softc),
395 };
396
397 static devclass_t ural_devclass;
398
399 DRIVER_MODULE(ural, uhub, ural_driver, ural_devclass, NULL, 0);
400 MODULE_DEPEND(ural, usb, 1, 1, 1);
401 MODULE_DEPEND(ural, wlan, 1, 1, 1);
402 MODULE_VERSION(ural, 1);
403
404 static int
405 ural_match(device_t self)
406 {
407         struct usb_attach_arg *uaa = device_get_ivars(self);
408
409         if (uaa->usb_mode != USB_MODE_HOST)
410                 return (ENXIO);
411         if (uaa->info.bConfigIndex != 0)
412                 return (ENXIO);
413         if (uaa->info.bIfaceIndex != RAL_IFACE_INDEX)
414                 return (ENXIO);
415
416         return (usbd_lookup_id_by_uaa(ural_devs, sizeof(ural_devs), uaa));
417 }
418
419 static int
420 ural_attach(device_t self)
421 {
422         struct usb_attach_arg *uaa = device_get_ivars(self);
423         struct ural_softc *sc = device_get_softc(self);
424         struct ifnet *ifp;
425         struct ieee80211com *ic;
426         uint8_t iface_index, bands;
427         int error;
428
429         device_set_usb_desc(self);
430         sc->sc_udev = uaa->device;
431         sc->sc_dev = self;
432
433         mtx_init(&sc->sc_mtx, device_get_nameunit(self),
434             MTX_NETWORK_LOCK, MTX_DEF);
435
436         iface_index = RAL_IFACE_INDEX;
437         error = usbd_transfer_setup(uaa->device,
438             &iface_index, sc->sc_xfer, ural_config,
439             URAL_N_TRANSFER, sc, &sc->sc_mtx);
440         if (error) {
441                 device_printf(self, "could not allocate USB transfers, "
442                     "err=%s\n", usbd_errstr(error));
443                 goto detach;
444         }
445
446         RAL_LOCK(sc);
447         /* retrieve RT2570 rev. no */
448         sc->asic_rev = ural_read(sc, RAL_MAC_CSR0);
449
450         /* retrieve MAC address and various other things from EEPROM */
451         ural_read_eeprom(sc);
452         RAL_UNLOCK(sc);
453
454         device_printf(self, "MAC/BBP RT2570 (rev 0x%02x), RF %s\n",
455             sc->asic_rev, ural_get_rf(sc->rf_rev));
456
457         ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
458         if (ifp == NULL) {
459                 device_printf(sc->sc_dev, "can not if_alloc()\n");
460                 goto detach;
461         }
462         ic = ifp->if_l2com;
463
464         ifp->if_softc = sc;
465         if_initname(ifp, "ural", device_get_unit(sc->sc_dev));
466         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
467         ifp->if_init = ural_init;
468         ifp->if_ioctl = ural_ioctl;
469         ifp->if_start = ural_start;
470         IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
471         ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
472         IFQ_SET_READY(&ifp->if_snd);
473
474         ic->ic_ifp = ifp;
475         ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
476
477         /* set device capabilities */
478         ic->ic_caps =
479               IEEE80211_C_STA           /* station mode supported */
480             | IEEE80211_C_IBSS          /* IBSS mode supported */
481             | IEEE80211_C_MONITOR       /* monitor mode supported */
482             | IEEE80211_C_HOSTAP        /* HostAp mode supported */
483             | IEEE80211_C_TXPMGT        /* tx power management */
484             | IEEE80211_C_SHPREAMBLE    /* short preamble supported */
485             | IEEE80211_C_SHSLOT        /* short slot time supported */
486             | IEEE80211_C_BGSCAN        /* bg scanning supported */
487             | IEEE80211_C_WPA           /* 802.11i */
488             ;
489
490         bands = 0;
491         setbit(&bands, IEEE80211_MODE_11B);
492         setbit(&bands, IEEE80211_MODE_11G);
493         if (sc->rf_rev == RAL_RF_5222)
494                 setbit(&bands, IEEE80211_MODE_11A);
495         ieee80211_init_channels(ic, NULL, &bands);
496
497         ieee80211_ifattach(ic, sc->sc_bssid);
498         ic->ic_update_promisc = ural_update_promisc;
499         ic->ic_raw_xmit = ural_raw_xmit;
500         ic->ic_scan_start = ural_scan_start;
501         ic->ic_scan_end = ural_scan_end;
502         ic->ic_set_channel = ural_set_channel;
503
504         ic->ic_vap_create = ural_vap_create;
505         ic->ic_vap_delete = ural_vap_delete;
506
507         ieee80211_radiotap_attach(ic,
508             &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
509                 RAL_TX_RADIOTAP_PRESENT,
510             &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
511                 RAL_RX_RADIOTAP_PRESENT);
512
513         if (bootverbose)
514                 ieee80211_announce(ic);
515
516         return (0);
517
518 detach:
519         ural_detach(self);
520         return (ENXIO);                 /* failure */
521 }
522
523 static int
524 ural_detach(device_t self)
525 {
526         struct ural_softc *sc = device_get_softc(self);
527         struct ifnet *ifp = sc->sc_ifp;
528         struct ieee80211com *ic;
529
530         /* prevent further ioctls */
531         RAL_LOCK(sc);
532         sc->sc_detached = 1;
533         RAL_UNLOCK(sc);
534
535         /* stop all USB transfers */
536         usbd_transfer_unsetup(sc->sc_xfer, URAL_N_TRANSFER);
537
538         /* free TX list, if any */
539         RAL_LOCK(sc);
540         ural_unsetup_tx_list(sc);
541         RAL_UNLOCK(sc);
542
543         if (ifp) {
544                 ic = ifp->if_l2com;
545                 ieee80211_ifdetach(ic);
546                 if_free(ifp);
547         }
548         mtx_destroy(&sc->sc_mtx);
549
550         return (0);
551 }
552
553 static usb_error_t
554 ural_do_request(struct ural_softc *sc,
555     struct usb_device_request *req, void *data)
556 {
557         usb_error_t err;
558         int ntries = 10;
559
560         while (ntries--) {
561                 err = usbd_do_request_flags(sc->sc_udev, &sc->sc_mtx,
562                     req, data, 0, NULL, 250 /* ms */);
563                 if (err == 0)
564                         break;
565
566                 DPRINTFN(1, "Control request failed, %s (retrying)\n",
567                     usbd_errstr(err));
568                 if (ural_pause(sc, hz / 100))
569                         break;
570         }
571         return (err);
572 }
573
574 static struct ieee80211vap *
575 ural_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
576     enum ieee80211_opmode opmode, int flags,
577     const uint8_t bssid[IEEE80211_ADDR_LEN],
578     const uint8_t mac[IEEE80211_ADDR_LEN])
579 {
580         struct ural_softc *sc = ic->ic_ifp->if_softc;
581         struct ural_vap *uvp;
582         struct ieee80211vap *vap;
583
584         if (!TAILQ_EMPTY(&ic->ic_vaps))         /* only one at a time */
585                 return NULL;
586         uvp = (struct ural_vap *) malloc(sizeof(struct ural_vap),
587             M_80211_VAP, M_NOWAIT | M_ZERO);
588         if (uvp == NULL)
589                 return NULL;
590         vap = &uvp->vap;
591         /* enable s/w bmiss handling for sta mode */
592
593         if (ieee80211_vap_setup(ic, vap, name, unit, opmode,
594             flags | IEEE80211_CLONE_NOBEACONS, bssid, mac) != 0) {
595                 /* out of memory */
596                 free(uvp, M_80211_VAP);
597                 return (NULL);
598         }
599
600         /* override state transition machine */
601         uvp->newstate = vap->iv_newstate;
602         vap->iv_newstate = ural_newstate;
603
604         usb_callout_init_mtx(&uvp->ratectl_ch, &sc->sc_mtx, 0);
605         TASK_INIT(&uvp->ratectl_task, 0, ural_ratectl_task, uvp);
606         ieee80211_ratectl_init(vap);
607         ieee80211_ratectl_setinterval(vap, 1000 /* 1 sec */);
608
609         /* complete setup */
610         ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
611         ic->ic_opmode = opmode;
612         return vap;
613 }
614
615 static void
616 ural_vap_delete(struct ieee80211vap *vap)
617 {
618         struct ural_vap *uvp = URAL_VAP(vap);
619         struct ieee80211com *ic = vap->iv_ic;
620
621         usb_callout_drain(&uvp->ratectl_ch);
622         ieee80211_draintask(ic, &uvp->ratectl_task);
623         ieee80211_ratectl_deinit(vap);
624         ieee80211_vap_detach(vap);
625         free(uvp, M_80211_VAP);
626 }
627
628 static void
629 ural_tx_free(struct ural_tx_data *data, int txerr)
630 {
631         struct ural_softc *sc = data->sc;
632
633         if (data->m != NULL) {
634                 if (data->m->m_flags & M_TXCB)
635                         ieee80211_process_callback(data->ni, data->m,
636                             txerr ? ETIMEDOUT : 0);
637                 m_freem(data->m);
638                 data->m = NULL;
639
640                 ieee80211_free_node(data->ni);
641                 data->ni = NULL;
642         }
643         STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
644         sc->tx_nfree++;
645 }
646
647 static void
648 ural_setup_tx_list(struct ural_softc *sc)
649 {
650         struct ural_tx_data *data;
651         int i;
652
653         sc->tx_nfree = 0;
654         STAILQ_INIT(&sc->tx_q);
655         STAILQ_INIT(&sc->tx_free);
656
657         for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
658                 data = &sc->tx_data[i];
659
660                 data->sc = sc;
661                 STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
662                 sc->tx_nfree++;
663         }
664 }
665
666 static void
667 ural_unsetup_tx_list(struct ural_softc *sc)
668 {
669         struct ural_tx_data *data;
670         int i;
671
672         /* make sure any subsequent use of the queues will fail */
673         sc->tx_nfree = 0;
674         STAILQ_INIT(&sc->tx_q);
675         STAILQ_INIT(&sc->tx_free);
676
677         /* free up all node references and mbufs */
678         for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
679                 data = &sc->tx_data[i];
680
681                 if (data->m != NULL) {
682                         m_freem(data->m);
683                         data->m = NULL;
684                 }
685                 if (data->ni != NULL) {
686                         ieee80211_free_node(data->ni);
687                         data->ni = NULL;
688                 }
689         }
690 }
691
692 static int
693 ural_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
694 {
695         struct ural_vap *uvp = URAL_VAP(vap);
696         struct ieee80211com *ic = vap->iv_ic;
697         struct ural_softc *sc = ic->ic_ifp->if_softc;
698         const struct ieee80211_txparam *tp;
699         struct ieee80211_node *ni;
700         struct mbuf *m;
701
702         DPRINTF("%s -> %s\n",
703                 ieee80211_state_name[vap->iv_state],
704                 ieee80211_state_name[nstate]);
705
706         IEEE80211_UNLOCK(ic);
707         RAL_LOCK(sc);
708         usb_callout_stop(&uvp->ratectl_ch);
709
710         switch (nstate) {
711         case IEEE80211_S_INIT:
712                 if (vap->iv_state == IEEE80211_S_RUN) {
713                         /* abort TSF synchronization */
714                         ural_write(sc, RAL_TXRX_CSR19, 0);
715
716                         /* force tx led to stop blinking */
717                         ural_write(sc, RAL_MAC_CSR20, 0);
718                 }
719                 break;
720
721         case IEEE80211_S_RUN:
722                 ni = ieee80211_ref_node(vap->iv_bss);
723
724                 if (vap->iv_opmode != IEEE80211_M_MONITOR) {
725                         if (ic->ic_bsschan == IEEE80211_CHAN_ANYC) {
726                                 RAL_UNLOCK(sc);
727                                 IEEE80211_LOCK(ic);
728                                 ieee80211_free_node(ni);
729                                 return (-1);
730                         }
731                         ural_update_slot(ic->ic_ifp);
732                         ural_set_txpreamble(sc);
733                         ural_set_basicrates(sc, ic->ic_bsschan);
734                         IEEE80211_ADDR_COPY(sc->sc_bssid, ni->ni_bssid);
735                         ural_set_bssid(sc, sc->sc_bssid);
736                 }
737
738                 if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
739                     vap->iv_opmode == IEEE80211_M_IBSS) {
740                         m = ieee80211_beacon_alloc(ni, &uvp->bo);
741                         if (m == NULL) {
742                                 device_printf(sc->sc_dev,
743                                     "could not allocate beacon\n");
744                                 RAL_UNLOCK(sc);
745                                 IEEE80211_LOCK(ic);
746                                 ieee80211_free_node(ni);
747                                 return (-1);
748                         }
749                         ieee80211_ref_node(ni);
750                         if (ural_tx_bcn(sc, m, ni) != 0) {
751                                 device_printf(sc->sc_dev,
752                                     "could not send beacon\n");
753                                 RAL_UNLOCK(sc);
754                                 IEEE80211_LOCK(ic);
755                                 ieee80211_free_node(ni);
756                                 return (-1);
757                         }
758                 }
759
760                 /* make tx led blink on tx (controlled by ASIC) */
761                 ural_write(sc, RAL_MAC_CSR20, 1);
762
763                 if (vap->iv_opmode != IEEE80211_M_MONITOR)
764                         ural_enable_tsf_sync(sc);
765                 else
766                         ural_enable_tsf(sc);
767
768                 /* enable automatic rate adaptation */
769                 /* XXX should use ic_bsschan but not valid until after newstate call below */
770                 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
771                 if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE)
772                         ural_ratectl_start(sc, ni);
773                 ieee80211_free_node(ni);
774                 break;
775
776         default:
777                 break;
778         }
779         RAL_UNLOCK(sc);
780         IEEE80211_LOCK(ic);
781         return (uvp->newstate(vap, nstate, arg));
782 }
783
784
785 static void
786 ural_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error)
787 {
788         struct ural_softc *sc = usbd_xfer_softc(xfer);
789         struct ifnet *ifp = sc->sc_ifp;
790         struct ieee80211vap *vap;
791         struct ural_tx_data *data;
792         struct mbuf *m;
793         struct usb_page_cache *pc;
794         int len;
795
796         usbd_xfer_status(xfer, &len, NULL, NULL, NULL);
797
798         switch (USB_GET_STATE(xfer)) {
799         case USB_ST_TRANSFERRED:
800                 DPRINTFN(11, "transfer complete, %d bytes\n", len);
801
802                 /* free resources */
803                 data = usbd_xfer_get_priv(xfer);
804                 ural_tx_free(data, 0);
805                 usbd_xfer_set_priv(xfer, NULL);
806
807                 ifp->if_opackets++;
808                 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
809
810                 /* FALLTHROUGH */
811         case USB_ST_SETUP:
812 tr_setup:
813                 data = STAILQ_FIRST(&sc->tx_q);
814                 if (data) {
815                         STAILQ_REMOVE_HEAD(&sc->tx_q, next);
816                         m = data->m;
817
818                         if (m->m_pkthdr.len > (int)(RAL_FRAME_SIZE + RAL_TX_DESC_SIZE)) {
819                                 DPRINTFN(0, "data overflow, %u bytes\n",
820                                     m->m_pkthdr.len);
821                                 m->m_pkthdr.len = (RAL_FRAME_SIZE + RAL_TX_DESC_SIZE);
822                         }
823                         pc = usbd_xfer_get_frame(xfer, 0);
824                         usbd_copy_in(pc, 0, &data->desc, RAL_TX_DESC_SIZE);
825                         usbd_m_copy_in(pc, RAL_TX_DESC_SIZE, m, 0,
826                             m->m_pkthdr.len);
827
828                         vap = data->ni->ni_vap;
829                         if (ieee80211_radiotap_active_vap(vap)) {
830                                 struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
831
832                                 tap->wt_flags = 0;
833                                 tap->wt_rate = data->rate;
834                                 tap->wt_antenna = sc->tx_ant;
835
836                                 ieee80211_radiotap_tx(vap, m);
837                         }
838
839                         /* xfer length needs to be a multiple of two! */
840                         len = (RAL_TX_DESC_SIZE + m->m_pkthdr.len + 1) & ~1;
841                         if ((len % 64) == 0)
842                                 len += 2;
843
844                         DPRINTFN(11, "sending frame len=%u xferlen=%u\n",
845                             m->m_pkthdr.len, len);
846
847                         usbd_xfer_set_frame_len(xfer, 0, len);
848                         usbd_xfer_set_priv(xfer, data);
849
850                         usbd_transfer_submit(xfer);
851                 }
852                 RAL_UNLOCK(sc);
853                 ural_start(ifp);
854                 RAL_LOCK(sc);
855                 break;
856
857         default:                        /* Error */
858                 DPRINTFN(11, "transfer error, %s\n",
859                     usbd_errstr(error));
860
861                 ifp->if_oerrors++;
862                 data = usbd_xfer_get_priv(xfer);
863                 if (data != NULL) {
864                         ural_tx_free(data, error);
865                         usbd_xfer_set_priv(xfer, NULL);
866                 }
867
868                 if (error == USB_ERR_STALLED) {
869                         /* try to clear stall first */
870                         usbd_xfer_set_stall(xfer);
871                         goto tr_setup;
872                 }
873                 if (error == USB_ERR_TIMEOUT)
874                         device_printf(sc->sc_dev, "device timeout\n");
875                 break;
876         }
877 }
878
879 static void
880 ural_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error)
881 {
882         struct ural_softc *sc = usbd_xfer_softc(xfer);
883         struct ifnet *ifp = sc->sc_ifp;
884         struct ieee80211com *ic = ifp->if_l2com;
885         struct ieee80211_node *ni;
886         struct mbuf *m = NULL;
887         struct usb_page_cache *pc;
888         uint32_t flags;
889         int8_t rssi = 0, nf = 0;
890         int len;
891
892         usbd_xfer_status(xfer, &len, NULL, NULL, NULL);
893
894         switch (USB_GET_STATE(xfer)) {
895         case USB_ST_TRANSFERRED:
896
897                 DPRINTFN(15, "rx done, actlen=%d\n", len);
898
899                 if (len < (int)(RAL_RX_DESC_SIZE + IEEE80211_MIN_LEN)) {
900                         DPRINTF("%s: xfer too short %d\n",
901                             device_get_nameunit(sc->sc_dev), len);
902                         ifp->if_ierrors++;
903                         goto tr_setup;
904                 }
905
906                 len -= RAL_RX_DESC_SIZE;
907                 /* rx descriptor is located at the end */
908                 pc = usbd_xfer_get_frame(xfer, 0);
909                 usbd_copy_out(pc, len, &sc->sc_rx_desc, RAL_RX_DESC_SIZE);
910
911                 rssi = URAL_RSSI(sc->sc_rx_desc.rssi);
912                 nf = RAL_NOISE_FLOOR;
913                 flags = le32toh(sc->sc_rx_desc.flags);
914                 if (flags & (RAL_RX_PHY_ERROR | RAL_RX_CRC_ERROR)) {
915                         /*
916                          * This should not happen since we did not
917                          * request to receive those frames when we
918                          * filled RAL_TXRX_CSR2:
919                          */
920                         DPRINTFN(5, "PHY or CRC error\n");
921                         ifp->if_ierrors++;
922                         goto tr_setup;
923                 }
924
925                 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
926                 if (m == NULL) {
927                         DPRINTF("could not allocate mbuf\n");
928                         ifp->if_ierrors++;
929                         goto tr_setup;
930                 }
931                 usbd_copy_out(pc, 0, mtod(m, uint8_t *), len);
932
933                 /* finalize mbuf */
934                 m->m_pkthdr.rcvif = ifp;
935                 m->m_pkthdr.len = m->m_len = (flags >> 16) & 0xfff;
936
937                 if (ieee80211_radiotap_active(ic)) {
938                         struct ural_rx_radiotap_header *tap = &sc->sc_rxtap;
939
940                         /* XXX set once */
941                         tap->wr_flags = 0;
942                         tap->wr_rate = ieee80211_plcp2rate(sc->sc_rx_desc.rate,
943                             (flags & RAL_RX_OFDM) ?
944                             IEEE80211_T_OFDM : IEEE80211_T_CCK);
945                         tap->wr_antenna = sc->rx_ant;
946                         tap->wr_antsignal = nf + rssi;
947                         tap->wr_antnoise = nf;
948                 }
949                 /* Strip trailing 802.11 MAC FCS. */
950                 m_adj(m, -IEEE80211_CRC_LEN);
951
952                 /* FALLTHROUGH */
953         case USB_ST_SETUP:
954 tr_setup:
955                 usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer));
956                 usbd_transfer_submit(xfer);
957
958                 /*
959                  * At the end of a USB callback it is always safe to unlock
960                  * the private mutex of a device! That is why we do the
961                  * "ieee80211_input" here, and not some lines up!
962                  */
963                 RAL_UNLOCK(sc);
964                 if (m) {
965                         ni = ieee80211_find_rxnode(ic,
966                             mtod(m, struct ieee80211_frame_min *));
967                         if (ni != NULL) {
968                                 (void) ieee80211_input(ni, m, rssi, nf);
969                                 ieee80211_free_node(ni);
970                         } else
971                                 (void) ieee80211_input_all(ic, m, rssi, nf);
972                 }
973                 if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0 &&
974                     !IFQ_IS_EMPTY(&ifp->if_snd))
975                         ural_start(ifp);
976                 RAL_LOCK(sc);
977                 return;
978
979         default:                        /* Error */
980                 if (error != USB_ERR_CANCELLED) {
981                         /* try to clear stall first */
982                         usbd_xfer_set_stall(xfer);
983                         goto tr_setup;
984                 }
985                 return;
986         }
987 }
988
989 static uint8_t
990 ural_plcp_signal(int rate)
991 {
992         switch (rate) {
993         /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
994         case 12:        return 0xb;
995         case 18:        return 0xf;
996         case 24:        return 0xa;
997         case 36:        return 0xe;
998         case 48:        return 0x9;
999         case 72:        return 0xd;
1000         case 96:        return 0x8;
1001         case 108:       return 0xc;
1002
1003         /* CCK rates (NB: not IEEE std, device-specific) */
1004         case 2:         return 0x0;
1005         case 4:         return 0x1;
1006         case 11:        return 0x2;
1007         case 22:        return 0x3;
1008         }
1009         return 0xff;            /* XXX unsupported/unknown rate */
1010 }
1011
1012 static void
1013 ural_setup_tx_desc(struct ural_softc *sc, struct ural_tx_desc *desc,
1014     uint32_t flags, int len, int rate)
1015 {
1016         struct ifnet *ifp = sc->sc_ifp;
1017         struct ieee80211com *ic = ifp->if_l2com;
1018         uint16_t plcp_length;
1019         int remainder;
1020
1021         desc->flags = htole32(flags);
1022         desc->flags |= htole32(RAL_TX_NEWSEQ);
1023         desc->flags |= htole32(len << 16);
1024
1025         desc->wme = htole16(RAL_AIFSN(2) | RAL_LOGCWMIN(3) | RAL_LOGCWMAX(5));
1026         desc->wme |= htole16(RAL_IVOFFSET(sizeof (struct ieee80211_frame)));
1027
1028         /* setup PLCP fields */
1029         desc->plcp_signal  = ural_plcp_signal(rate);
1030         desc->plcp_service = 4;
1031
1032         len += IEEE80211_CRC_LEN;
1033         if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) {
1034                 desc->flags |= htole32(RAL_TX_OFDM);
1035
1036                 plcp_length = len & 0xfff;
1037                 desc->plcp_length_hi = plcp_length >> 6;
1038                 desc->plcp_length_lo = plcp_length & 0x3f;
1039         } else {
1040                 if (rate == 0)
1041                         rate = 2;       /* avoid division by zero */
1042                 plcp_length = (16 * len + rate - 1) / rate;
1043                 if (rate == 22) {
1044                         remainder = (16 * len) % 22;
1045                         if (remainder != 0 && remainder < 7)
1046                                 desc->plcp_service |= RAL_PLCP_LENGEXT;
1047                 }
1048                 desc->plcp_length_hi = plcp_length >> 8;
1049                 desc->plcp_length_lo = plcp_length & 0xff;
1050
1051                 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1052                         desc->plcp_signal |= 0x08;
1053         }
1054
1055         desc->iv = 0;
1056         desc->eiv = 0;
1057 }
1058
1059 #define RAL_TX_TIMEOUT  5000
1060
1061 static int
1062 ural_tx_bcn(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1063 {
1064         struct ieee80211vap *vap = ni->ni_vap;
1065         struct ieee80211com *ic = ni->ni_ic;
1066         struct ifnet *ifp = sc->sc_ifp;
1067         const struct ieee80211_txparam *tp;
1068         struct ural_tx_data *data;
1069
1070         if (sc->tx_nfree == 0) {
1071                 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1072                 m_freem(m0);
1073                 ieee80211_free_node(ni);
1074                 return (EIO);
1075         }
1076         if (ic->ic_bsschan == IEEE80211_CHAN_ANYC) {
1077                 m_freem(m0);
1078                 ieee80211_free_node(ni);
1079                 return (ENXIO);
1080         }
1081         data = STAILQ_FIRST(&sc->tx_free);
1082         STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1083         sc->tx_nfree--;
1084         tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_bsschan)];
1085
1086         data->m = m0;
1087         data->ni = ni;
1088         data->rate = tp->mgmtrate;
1089
1090         ural_setup_tx_desc(sc, &data->desc,
1091             RAL_TX_IFS_NEWBACKOFF | RAL_TX_TIMESTAMP, m0->m_pkthdr.len,
1092             tp->mgmtrate);
1093
1094         DPRINTFN(10, "sending beacon frame len=%u rate=%u\n",
1095             m0->m_pkthdr.len, tp->mgmtrate);
1096
1097         STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1098         usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
1099
1100         return (0);
1101 }
1102
1103 static int
1104 ural_tx_mgt(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1105 {
1106         struct ieee80211vap *vap = ni->ni_vap;
1107         struct ieee80211com *ic = ni->ni_ic;
1108         const struct ieee80211_txparam *tp;
1109         struct ural_tx_data *data;
1110         struct ieee80211_frame *wh;
1111         struct ieee80211_key *k;
1112         uint32_t flags;
1113         uint16_t dur;
1114
1115         RAL_LOCK_ASSERT(sc, MA_OWNED);
1116
1117         data = STAILQ_FIRST(&sc->tx_free);
1118         STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1119         sc->tx_nfree--;
1120
1121         tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
1122
1123         wh = mtod(m0, struct ieee80211_frame *);
1124         if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1125                 k = ieee80211_crypto_encap(ni, m0);
1126                 if (k == NULL) {
1127                         m_freem(m0);
1128                         return ENOBUFS;
1129                 }
1130                 wh = mtod(m0, struct ieee80211_frame *);
1131         }
1132
1133         data->m = m0;
1134         data->ni = ni;
1135         data->rate = tp->mgmtrate;
1136
1137         flags = 0;
1138         if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1139                 flags |= RAL_TX_ACK;
1140
1141                 dur = ieee80211_ack_duration(ic->ic_rt, tp->mgmtrate, 
1142                     ic->ic_flags & IEEE80211_F_SHPREAMBLE);
1143                 USETW(wh->i_dur, dur);
1144
1145                 /* tell hardware to add timestamp for probe responses */
1146                 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1147                     IEEE80211_FC0_TYPE_MGT &&
1148                     (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1149                     IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1150                         flags |= RAL_TX_TIMESTAMP;
1151         }
1152
1153         ural_setup_tx_desc(sc, &data->desc, flags, m0->m_pkthdr.len, tp->mgmtrate);
1154
1155         DPRINTFN(10, "sending mgt frame len=%u rate=%u\n",
1156             m0->m_pkthdr.len, tp->mgmtrate);
1157
1158         STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1159         usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
1160
1161         return 0;
1162 }
1163
1164 static int
1165 ural_sendprot(struct ural_softc *sc,
1166     const struct mbuf *m, struct ieee80211_node *ni, int prot, int rate)
1167 {
1168         struct ieee80211com *ic = ni->ni_ic;
1169         const struct ieee80211_frame *wh;
1170         struct ural_tx_data *data;
1171         struct mbuf *mprot;
1172         int protrate, ackrate, pktlen, flags, isshort;
1173         uint16_t dur;
1174
1175         KASSERT(prot == IEEE80211_PROT_RTSCTS || prot == IEEE80211_PROT_CTSONLY,
1176             ("protection %d", prot));
1177
1178         wh = mtod(m, const struct ieee80211_frame *);
1179         pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
1180
1181         protrate = ieee80211_ctl_rate(ic->ic_rt, rate);
1182         ackrate = ieee80211_ack_rate(ic->ic_rt, rate);
1183
1184         isshort = (ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0;
1185         dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort)
1186             + ieee80211_ack_duration(ic->ic_rt, rate, isshort);
1187         flags = RAL_TX_RETRY(7);
1188         if (prot == IEEE80211_PROT_RTSCTS) {
1189                 /* NB: CTS is the same size as an ACK */
1190                 dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort);
1191                 flags |= RAL_TX_ACK;
1192                 mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur);
1193         } else {
1194                 mprot = ieee80211_alloc_cts(ic, ni->ni_vap->iv_myaddr, dur);
1195         }
1196         if (mprot == NULL) {
1197                 /* XXX stat + msg */
1198                 return ENOBUFS;
1199         }
1200         data = STAILQ_FIRST(&sc->tx_free);
1201         STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1202         sc->tx_nfree--;
1203
1204         data->m = mprot;
1205         data->ni = ieee80211_ref_node(ni);
1206         data->rate = protrate;
1207         ural_setup_tx_desc(sc, &data->desc, flags, mprot->m_pkthdr.len, protrate);
1208
1209         STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1210         usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
1211
1212         return 0;
1213 }
1214
1215 static int
1216 ural_tx_raw(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1217     const struct ieee80211_bpf_params *params)
1218 {
1219         struct ieee80211com *ic = ni->ni_ic;
1220         struct ural_tx_data *data;
1221         uint32_t flags;
1222         int error;
1223         int rate;
1224
1225         RAL_LOCK_ASSERT(sc, MA_OWNED);
1226         KASSERT(params != NULL, ("no raw xmit params"));
1227
1228         rate = params->ibp_rate0;
1229         if (!ieee80211_isratevalid(ic->ic_rt, rate)) {
1230                 m_freem(m0);
1231                 return EINVAL;
1232         }
1233         flags = 0;
1234         if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
1235                 flags |= RAL_TX_ACK;
1236         if (params->ibp_flags & (IEEE80211_BPF_RTS|IEEE80211_BPF_CTS)) {
1237                 error = ural_sendprot(sc, m0, ni,
1238                     params->ibp_flags & IEEE80211_BPF_RTS ?
1239                          IEEE80211_PROT_RTSCTS : IEEE80211_PROT_CTSONLY,
1240                     rate);
1241                 if (error || sc->tx_nfree == 0) {
1242                         m_freem(m0);
1243                         return ENOBUFS;
1244                 }
1245                 flags |= RAL_TX_IFS_SIFS;
1246         }
1247
1248         data = STAILQ_FIRST(&sc->tx_free);
1249         STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1250         sc->tx_nfree--;
1251
1252         data->m = m0;
1253         data->ni = ni;
1254         data->rate = rate;
1255
1256         /* XXX need to setup descriptor ourself */
1257         ural_setup_tx_desc(sc, &data->desc, flags, m0->m_pkthdr.len, rate);
1258
1259         DPRINTFN(10, "sending raw frame len=%u rate=%u\n",
1260             m0->m_pkthdr.len, rate);
1261
1262         STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1263         usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
1264
1265         return 0;
1266 }
1267
1268 static int
1269 ural_tx_data(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1270 {
1271         struct ieee80211vap *vap = ni->ni_vap;
1272         struct ieee80211com *ic = ni->ni_ic;
1273         struct ural_tx_data *data;
1274         struct ieee80211_frame *wh;
1275         const struct ieee80211_txparam *tp;
1276         struct ieee80211_key *k;
1277         uint32_t flags = 0;
1278         uint16_t dur;
1279         int error, rate;
1280
1281         RAL_LOCK_ASSERT(sc, MA_OWNED);
1282
1283         wh = mtod(m0, struct ieee80211_frame *);
1284
1285         tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
1286         if (IEEE80211_IS_MULTICAST(wh->i_addr1))
1287                 rate = tp->mcastrate;
1288         else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
1289                 rate = tp->ucastrate;
1290         else
1291                 rate = ni->ni_txrate;
1292
1293         if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1294                 k = ieee80211_crypto_encap(ni, m0);
1295                 if (k == NULL) {
1296                         m_freem(m0);
1297                         return ENOBUFS;
1298                 }
1299                 /* packet header may have moved, reset our local pointer */
1300                 wh = mtod(m0, struct ieee80211_frame *);
1301         }
1302
1303         if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1304                 int prot = IEEE80211_PROT_NONE;
1305                 if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold)
1306                         prot = IEEE80211_PROT_RTSCTS;
1307                 else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1308                     ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM)
1309                         prot = ic->ic_protmode;
1310                 if (prot != IEEE80211_PROT_NONE) {
1311                         error = ural_sendprot(sc, m0, ni, prot, rate);
1312                         if (error || sc->tx_nfree == 0) {
1313                                 m_freem(m0);
1314                                 return ENOBUFS;
1315                         }
1316                         flags |= RAL_TX_IFS_SIFS;
1317                 }
1318         }
1319
1320         data = STAILQ_FIRST(&sc->tx_free);
1321         STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1322         sc->tx_nfree--;
1323
1324         data->m = m0;
1325         data->ni = ni;
1326         data->rate = rate;
1327
1328         if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1329                 flags |= RAL_TX_ACK;
1330                 flags |= RAL_TX_RETRY(7);
1331
1332                 dur = ieee80211_ack_duration(ic->ic_rt, rate, 
1333                     ic->ic_flags & IEEE80211_F_SHPREAMBLE);
1334                 USETW(wh->i_dur, dur);
1335         }
1336
1337         ural_setup_tx_desc(sc, &data->desc, flags, m0->m_pkthdr.len, rate);
1338
1339         DPRINTFN(10, "sending data frame len=%u rate=%u\n",
1340             m0->m_pkthdr.len, rate);
1341
1342         STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1343         usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
1344
1345         return 0;
1346 }
1347
1348 static void
1349 ural_start(struct ifnet *ifp)
1350 {
1351         struct ural_softc *sc = ifp->if_softc;
1352         struct ieee80211_node *ni;
1353         struct mbuf *m;
1354
1355         RAL_LOCK(sc);
1356         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1357                 RAL_UNLOCK(sc);
1358                 return;
1359         }
1360         for (;;) {
1361                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
1362                 if (m == NULL)
1363                         break;
1364                 if (sc->tx_nfree < RAL_TX_MINFREE) {
1365                         IFQ_DRV_PREPEND(&ifp->if_snd, m);
1366                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1367                         break;
1368                 }
1369                 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1370                 if (ural_tx_data(sc, m, ni) != 0) {
1371                         ieee80211_free_node(ni);
1372                         ifp->if_oerrors++;
1373                         break;
1374                 }
1375         }
1376         RAL_UNLOCK(sc);
1377 }
1378
1379 static int
1380 ural_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1381 {
1382         struct ural_softc *sc = ifp->if_softc;
1383         struct ieee80211com *ic = ifp->if_l2com;
1384         struct ifreq *ifr = (struct ifreq *) data;
1385         int error;
1386         int startall = 0;
1387
1388         RAL_LOCK(sc);
1389         error = sc->sc_detached ? ENXIO : 0;
1390         RAL_UNLOCK(sc);
1391         if (error)
1392                 return (error);
1393
1394         switch (cmd) {
1395         case SIOCSIFFLAGS:
1396                 RAL_LOCK(sc);
1397                 if (ifp->if_flags & IFF_UP) {
1398                         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1399                                 ural_init_locked(sc);
1400                                 startall = 1;
1401                         } else
1402                                 ural_setpromisc(sc);
1403                 } else {
1404                         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1405                                 ural_stop(sc);
1406                 }
1407                 RAL_UNLOCK(sc);
1408                 if (startall)
1409                         ieee80211_start_all(ic);
1410                 break;
1411         case SIOCGIFMEDIA:
1412         case SIOCSIFMEDIA:
1413                 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
1414                 break;
1415         default:
1416                 error = ether_ioctl(ifp, cmd, data);
1417                 break;
1418         }
1419         return error;
1420 }
1421
1422 static void
1423 ural_set_testmode(struct ural_softc *sc)
1424 {
1425         struct usb_device_request req;
1426         usb_error_t error;
1427
1428         req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1429         req.bRequest = RAL_VENDOR_REQUEST;
1430         USETW(req.wValue, 4);
1431         USETW(req.wIndex, 1);
1432         USETW(req.wLength, 0);
1433
1434         error = ural_do_request(sc, &req, NULL);
1435         if (error != 0) {
1436                 device_printf(sc->sc_dev, "could not set test mode: %s\n",
1437                     usbd_errstr(error));
1438         }
1439 }
1440
1441 static void
1442 ural_eeprom_read(struct ural_softc *sc, uint16_t addr, void *buf, int len)
1443 {
1444         struct usb_device_request req;
1445         usb_error_t error;
1446
1447         req.bmRequestType = UT_READ_VENDOR_DEVICE;
1448         req.bRequest = RAL_READ_EEPROM;
1449         USETW(req.wValue, 0);
1450         USETW(req.wIndex, addr);
1451         USETW(req.wLength, len);
1452
1453         error = ural_do_request(sc, &req, buf);
1454         if (error != 0) {
1455                 device_printf(sc->sc_dev, "could not read EEPROM: %s\n",
1456                     usbd_errstr(error));
1457         }
1458 }
1459
1460 static uint16_t
1461 ural_read(struct ural_softc *sc, uint16_t reg)
1462 {
1463         struct usb_device_request req;
1464         usb_error_t error;
1465         uint16_t val;
1466
1467         req.bmRequestType = UT_READ_VENDOR_DEVICE;
1468         req.bRequest = RAL_READ_MAC;
1469         USETW(req.wValue, 0);
1470         USETW(req.wIndex, reg);
1471         USETW(req.wLength, sizeof (uint16_t));
1472
1473         error = ural_do_request(sc, &req, &val);
1474         if (error != 0) {
1475                 device_printf(sc->sc_dev, "could not read MAC register: %s\n",
1476                     usbd_errstr(error));
1477                 return 0;
1478         }
1479
1480         return le16toh(val);
1481 }
1482
1483 static void
1484 ural_read_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1485 {
1486         struct usb_device_request req;
1487         usb_error_t error;
1488
1489         req.bmRequestType = UT_READ_VENDOR_DEVICE;
1490         req.bRequest = RAL_READ_MULTI_MAC;
1491         USETW(req.wValue, 0);
1492         USETW(req.wIndex, reg);
1493         USETW(req.wLength, len);
1494
1495         error = ural_do_request(sc, &req, buf);
1496         if (error != 0) {
1497                 device_printf(sc->sc_dev, "could not read MAC register: %s\n",
1498                     usbd_errstr(error));
1499         }
1500 }
1501
1502 static void
1503 ural_write(struct ural_softc *sc, uint16_t reg, uint16_t val)
1504 {
1505         struct usb_device_request req;
1506         usb_error_t error;
1507
1508         req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1509         req.bRequest = RAL_WRITE_MAC;
1510         USETW(req.wValue, val);
1511         USETW(req.wIndex, reg);
1512         USETW(req.wLength, 0);
1513
1514         error = ural_do_request(sc, &req, NULL);
1515         if (error != 0) {
1516                 device_printf(sc->sc_dev, "could not write MAC register: %s\n",
1517                     usbd_errstr(error));
1518         }
1519 }
1520
1521 static void
1522 ural_write_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1523 {
1524         struct usb_device_request req;
1525         usb_error_t error;
1526
1527         req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1528         req.bRequest = RAL_WRITE_MULTI_MAC;
1529         USETW(req.wValue, 0);
1530         USETW(req.wIndex, reg);
1531         USETW(req.wLength, len);
1532
1533         error = ural_do_request(sc, &req, buf);
1534         if (error != 0) {
1535                 device_printf(sc->sc_dev, "could not write MAC register: %s\n",
1536                     usbd_errstr(error));
1537         }
1538 }
1539
1540 static void
1541 ural_bbp_write(struct ural_softc *sc, uint8_t reg, uint8_t val)
1542 {
1543         uint16_t tmp;
1544         int ntries;
1545
1546         for (ntries = 0; ntries < 100; ntries++) {
1547                 if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1548                         break;
1549                 if (ural_pause(sc, hz / 100))
1550                         break;
1551         }
1552         if (ntries == 100) {
1553                 device_printf(sc->sc_dev, "could not write to BBP\n");
1554                 return;
1555         }
1556
1557         tmp = reg << 8 | val;
1558         ural_write(sc, RAL_PHY_CSR7, tmp);
1559 }
1560
1561 static uint8_t
1562 ural_bbp_read(struct ural_softc *sc, uint8_t reg)
1563 {
1564         uint16_t val;
1565         int ntries;
1566
1567         val = RAL_BBP_WRITE | reg << 8;
1568         ural_write(sc, RAL_PHY_CSR7, val);
1569
1570         for (ntries = 0; ntries < 100; ntries++) {
1571                 if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1572                         break;
1573                 if (ural_pause(sc, hz / 100))
1574                         break;
1575         }
1576         if (ntries == 100) {
1577                 device_printf(sc->sc_dev, "could not read BBP\n");
1578                 return 0;
1579         }
1580
1581         return ural_read(sc, RAL_PHY_CSR7) & 0xff;
1582 }
1583
1584 static void
1585 ural_rf_write(struct ural_softc *sc, uint8_t reg, uint32_t val)
1586 {
1587         uint32_t tmp;
1588         int ntries;
1589
1590         for (ntries = 0; ntries < 100; ntries++) {
1591                 if (!(ural_read(sc, RAL_PHY_CSR10) & RAL_RF_LOBUSY))
1592                         break;
1593                 if (ural_pause(sc, hz / 100))
1594                         break;
1595         }
1596         if (ntries == 100) {
1597                 device_printf(sc->sc_dev, "could not write to RF\n");
1598                 return;
1599         }
1600
1601         tmp = RAL_RF_BUSY | RAL_RF_20BIT | (val & 0xfffff) << 2 | (reg & 0x3);
1602         ural_write(sc, RAL_PHY_CSR9,  tmp & 0xffff);
1603         ural_write(sc, RAL_PHY_CSR10, tmp >> 16);
1604
1605         /* remember last written value in sc */
1606         sc->rf_regs[reg] = val;
1607
1608         DPRINTFN(15, "RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff);
1609 }
1610
1611 static void
1612 ural_scan_start(struct ieee80211com *ic)
1613 {
1614         struct ifnet *ifp = ic->ic_ifp;
1615         struct ural_softc *sc = ifp->if_softc;
1616
1617         RAL_LOCK(sc);
1618         ural_write(sc, RAL_TXRX_CSR19, 0);
1619         ural_set_bssid(sc, ifp->if_broadcastaddr);
1620         RAL_UNLOCK(sc);
1621 }
1622
1623 static void
1624 ural_scan_end(struct ieee80211com *ic)
1625 {
1626         struct ural_softc *sc = ic->ic_ifp->if_softc;
1627
1628         RAL_LOCK(sc);
1629         ural_enable_tsf_sync(sc);
1630         ural_set_bssid(sc, sc->sc_bssid);
1631         RAL_UNLOCK(sc);
1632
1633 }
1634
1635 static void
1636 ural_set_channel(struct ieee80211com *ic)
1637 {
1638         struct ural_softc *sc = ic->ic_ifp->if_softc;
1639
1640         RAL_LOCK(sc);
1641         ural_set_chan(sc, ic->ic_curchan);
1642         RAL_UNLOCK(sc);
1643 }
1644
1645 static void
1646 ural_set_chan(struct ural_softc *sc, struct ieee80211_channel *c)
1647 {
1648         struct ifnet *ifp = sc->sc_ifp;
1649         struct ieee80211com *ic = ifp->if_l2com;
1650         uint8_t power, tmp;
1651         int i, chan;
1652
1653         chan = ieee80211_chan2ieee(ic, c);
1654         if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1655                 return;
1656
1657         if (IEEE80211_IS_CHAN_2GHZ(c))
1658                 power = min(sc->txpow[chan - 1], 31);
1659         else
1660                 power = 31;
1661
1662         /* adjust txpower using ifconfig settings */
1663         power -= (100 - ic->ic_txpowlimit) / 8;
1664
1665         DPRINTFN(2, "setting channel to %u, txpower to %u\n", chan, power);
1666
1667         switch (sc->rf_rev) {
1668         case RAL_RF_2522:
1669                 ural_rf_write(sc, RAL_RF1, 0x00814);
1670                 ural_rf_write(sc, RAL_RF2, ural_rf2522_r2[chan - 1]);
1671                 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1672                 break;
1673
1674         case RAL_RF_2523:
1675                 ural_rf_write(sc, RAL_RF1, 0x08804);
1676                 ural_rf_write(sc, RAL_RF2, ural_rf2523_r2[chan - 1]);
1677                 ural_rf_write(sc, RAL_RF3, power << 7 | 0x38044);
1678                 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1679                 break;
1680
1681         case RAL_RF_2524:
1682                 ural_rf_write(sc, RAL_RF1, 0x0c808);
1683                 ural_rf_write(sc, RAL_RF2, ural_rf2524_r2[chan - 1]);
1684                 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1685                 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1686                 break;
1687
1688         case RAL_RF_2525:
1689                 ural_rf_write(sc, RAL_RF1, 0x08808);
1690                 ural_rf_write(sc, RAL_RF2, ural_rf2525_hi_r2[chan - 1]);
1691                 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1692                 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1693
1694                 ural_rf_write(sc, RAL_RF1, 0x08808);
1695                 ural_rf_write(sc, RAL_RF2, ural_rf2525_r2[chan - 1]);
1696                 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1697                 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1698                 break;
1699
1700         case RAL_RF_2525E:
1701                 ural_rf_write(sc, RAL_RF1, 0x08808);
1702                 ural_rf_write(sc, RAL_RF2, ural_rf2525e_r2[chan - 1]);
1703                 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1704                 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282);
1705                 break;
1706
1707         case RAL_RF_2526:
1708                 ural_rf_write(sc, RAL_RF2, ural_rf2526_hi_r2[chan - 1]);
1709                 ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1710                 ural_rf_write(sc, RAL_RF1, 0x08804);
1711
1712                 ural_rf_write(sc, RAL_RF2, ural_rf2526_r2[chan - 1]);
1713                 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1714                 ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1715                 break;
1716
1717         /* dual-band RF */
1718         case RAL_RF_5222:
1719                 for (i = 0; ural_rf5222[i].chan != chan; i++);
1720
1721                 ural_rf_write(sc, RAL_RF1, ural_rf5222[i].r1);
1722                 ural_rf_write(sc, RAL_RF2, ural_rf5222[i].r2);
1723                 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1724                 ural_rf_write(sc, RAL_RF4, ural_rf5222[i].r4);
1725                 break;
1726         }
1727
1728         if (ic->ic_opmode != IEEE80211_M_MONITOR &&
1729             (ic->ic_flags & IEEE80211_F_SCAN) == 0) {
1730                 /* set Japan filter bit for channel 14 */
1731                 tmp = ural_bbp_read(sc, 70);
1732
1733                 tmp &= ~RAL_JAPAN_FILTER;
1734                 if (chan == 14)
1735                         tmp |= RAL_JAPAN_FILTER;
1736
1737                 ural_bbp_write(sc, 70, tmp);
1738
1739                 /* clear CRC errors */
1740                 ural_read(sc, RAL_STA_CSR0);
1741
1742                 ural_pause(sc, hz / 100);
1743                 ural_disable_rf_tune(sc);
1744         }
1745
1746         /* XXX doesn't belong here */
1747         /* update basic rate set */
1748         ural_set_basicrates(sc, c);
1749
1750         /* give the hardware some time to do the switchover */
1751         ural_pause(sc, hz / 100);
1752 }
1753
1754 /*
1755  * Disable RF auto-tuning.
1756  */
1757 static void
1758 ural_disable_rf_tune(struct ural_softc *sc)
1759 {
1760         uint32_t tmp;
1761
1762         if (sc->rf_rev != RAL_RF_2523) {
1763                 tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE;
1764                 ural_rf_write(sc, RAL_RF1, tmp);
1765         }
1766
1767         tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE;
1768         ural_rf_write(sc, RAL_RF3, tmp);
1769
1770         DPRINTFN(2, "disabling RF autotune\n");
1771 }
1772
1773 /*
1774  * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
1775  * synchronization.
1776  */
1777 static void
1778 ural_enable_tsf_sync(struct ural_softc *sc)
1779 {
1780         struct ifnet *ifp = sc->sc_ifp;
1781         struct ieee80211com *ic = ifp->if_l2com;
1782         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1783         uint16_t logcwmin, preload, tmp;
1784
1785         /* first, disable TSF synchronization */
1786         ural_write(sc, RAL_TXRX_CSR19, 0);
1787
1788         tmp = (16 * vap->iv_bss->ni_intval) << 4;
1789         ural_write(sc, RAL_TXRX_CSR18, tmp);
1790
1791         logcwmin = (ic->ic_opmode == IEEE80211_M_IBSS) ? 2 : 0;
1792         preload = (ic->ic_opmode == IEEE80211_M_IBSS) ? 320 : 6;
1793         tmp = logcwmin << 12 | preload;
1794         ural_write(sc, RAL_TXRX_CSR20, tmp);
1795
1796         /* finally, enable TSF synchronization */
1797         tmp = RAL_ENABLE_TSF | RAL_ENABLE_TBCN;
1798         if (ic->ic_opmode == IEEE80211_M_STA)
1799                 tmp |= RAL_ENABLE_TSF_SYNC(1);
1800         else
1801                 tmp |= RAL_ENABLE_TSF_SYNC(2) | RAL_ENABLE_BEACON_GENERATOR;
1802         ural_write(sc, RAL_TXRX_CSR19, tmp);
1803
1804         DPRINTF("enabling TSF synchronization\n");
1805 }
1806
1807 static void
1808 ural_enable_tsf(struct ural_softc *sc)
1809 {
1810         /* first, disable TSF synchronization */
1811         ural_write(sc, RAL_TXRX_CSR19, 0);
1812         ural_write(sc, RAL_TXRX_CSR19, RAL_ENABLE_TSF | RAL_ENABLE_TSF_SYNC(2));
1813 }
1814
1815 #define RAL_RXTX_TURNAROUND     5       /* us */
1816 static void
1817 ural_update_slot(struct ifnet *ifp)
1818 {
1819         struct ural_softc *sc = ifp->if_softc;
1820         struct ieee80211com *ic = ifp->if_l2com;
1821         uint16_t slottime, sifs, eifs;
1822
1823         slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1824
1825         /*
1826          * These settings may sound a bit inconsistent but this is what the
1827          * reference driver does.
1828          */
1829         if (ic->ic_curmode == IEEE80211_MODE_11B) {
1830                 sifs = 16 - RAL_RXTX_TURNAROUND;
1831                 eifs = 364;
1832         } else {
1833                 sifs = 10 - RAL_RXTX_TURNAROUND;
1834                 eifs = 64;
1835         }
1836
1837         ural_write(sc, RAL_MAC_CSR10, slottime);
1838         ural_write(sc, RAL_MAC_CSR11, sifs);
1839         ural_write(sc, RAL_MAC_CSR12, eifs);
1840 }
1841
1842 static void
1843 ural_set_txpreamble(struct ural_softc *sc)
1844 {
1845         struct ifnet *ifp = sc->sc_ifp;
1846         struct ieee80211com *ic = ifp->if_l2com;
1847         uint16_t tmp;
1848
1849         tmp = ural_read(sc, RAL_TXRX_CSR10);
1850
1851         tmp &= ~RAL_SHORT_PREAMBLE;
1852         if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
1853                 tmp |= RAL_SHORT_PREAMBLE;
1854
1855         ural_write(sc, RAL_TXRX_CSR10, tmp);
1856 }
1857
1858 static void
1859 ural_set_basicrates(struct ural_softc *sc, const struct ieee80211_channel *c)
1860 {
1861         /* XXX wrong, take from rate set */
1862         /* update basic rate set */
1863         if (IEEE80211_IS_CHAN_5GHZ(c)) {
1864                 /* 11a basic rates: 6, 12, 24Mbps */
1865                 ural_write(sc, RAL_TXRX_CSR11, 0x150);
1866         } else if (IEEE80211_IS_CHAN_ANYG(c)) {
1867                 /* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
1868                 ural_write(sc, RAL_TXRX_CSR11, 0x15f);
1869         } else {
1870                 /* 11b basic rates: 1, 2Mbps */
1871                 ural_write(sc, RAL_TXRX_CSR11, 0x3);
1872         }
1873 }
1874
1875 static void
1876 ural_set_bssid(struct ural_softc *sc, const uint8_t *bssid)
1877 {
1878         uint16_t tmp;
1879
1880         tmp = bssid[0] | bssid[1] << 8;
1881         ural_write(sc, RAL_MAC_CSR5, tmp);
1882
1883         tmp = bssid[2] | bssid[3] << 8;
1884         ural_write(sc, RAL_MAC_CSR6, tmp);
1885
1886         tmp = bssid[4] | bssid[5] << 8;
1887         ural_write(sc, RAL_MAC_CSR7, tmp);
1888
1889         DPRINTF("setting BSSID to %6D\n", bssid, ":");
1890 }
1891
1892 static void
1893 ural_set_macaddr(struct ural_softc *sc, uint8_t *addr)
1894 {
1895         uint16_t tmp;
1896
1897         tmp = addr[0] | addr[1] << 8;
1898         ural_write(sc, RAL_MAC_CSR2, tmp);
1899
1900         tmp = addr[2] | addr[3] << 8;
1901         ural_write(sc, RAL_MAC_CSR3, tmp);
1902
1903         tmp = addr[4] | addr[5] << 8;
1904         ural_write(sc, RAL_MAC_CSR4, tmp);
1905
1906         DPRINTF("setting MAC address to %6D\n", addr, ":");
1907 }
1908
1909 static void
1910 ural_setpromisc(struct ural_softc *sc)
1911 {
1912         struct ifnet *ifp = sc->sc_ifp;
1913         uint32_t tmp;
1914
1915         tmp = ural_read(sc, RAL_TXRX_CSR2);
1916
1917         tmp &= ~RAL_DROP_NOT_TO_ME;
1918         if (!(ifp->if_flags & IFF_PROMISC))
1919                 tmp |= RAL_DROP_NOT_TO_ME;
1920
1921         ural_write(sc, RAL_TXRX_CSR2, tmp);
1922
1923         DPRINTF("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1924             "entering" : "leaving");
1925 }
1926
1927 static void
1928 ural_update_promisc(struct ifnet *ifp)
1929 {
1930         struct ural_softc *sc = ifp->if_softc;
1931
1932         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1933                 return;
1934
1935         RAL_LOCK(sc);
1936         ural_setpromisc(sc);
1937         RAL_UNLOCK(sc);
1938 }
1939
1940 static const char *
1941 ural_get_rf(int rev)
1942 {
1943         switch (rev) {
1944         case RAL_RF_2522:       return "RT2522";
1945         case RAL_RF_2523:       return "RT2523";
1946         case RAL_RF_2524:       return "RT2524";
1947         case RAL_RF_2525:       return "RT2525";
1948         case RAL_RF_2525E:      return "RT2525e";
1949         case RAL_RF_2526:       return "RT2526";
1950         case RAL_RF_5222:       return "RT5222";
1951         default:                return "unknown";
1952         }
1953 }
1954
1955 static void
1956 ural_read_eeprom(struct ural_softc *sc)
1957 {
1958         uint16_t val;
1959
1960         ural_eeprom_read(sc, RAL_EEPROM_CONFIG0, &val, 2);
1961         val = le16toh(val);
1962         sc->rf_rev =   (val >> 11) & 0x7;
1963         sc->hw_radio = (val >> 10) & 0x1;
1964         sc->led_mode = (val >> 6)  & 0x7;
1965         sc->rx_ant =   (val >> 4)  & 0x3;
1966         sc->tx_ant =   (val >> 2)  & 0x3;
1967         sc->nb_ant =   val & 0x3;
1968
1969         /* read MAC address */
1970         ural_eeprom_read(sc, RAL_EEPROM_ADDRESS, sc->sc_bssid, 6);
1971
1972         /* read default values for BBP registers */
1973         ural_eeprom_read(sc, RAL_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1974
1975         /* read Tx power for all b/g channels */
1976         ural_eeprom_read(sc, RAL_EEPROM_TXPOWER, sc->txpow, 14);
1977 }
1978
1979 static int
1980 ural_bbp_init(struct ural_softc *sc)
1981 {
1982 #define N(a)    ((int)(sizeof (a) / sizeof ((a)[0])))
1983         int i, ntries;
1984
1985         /* wait for BBP to be ready */
1986         for (ntries = 0; ntries < 100; ntries++) {
1987                 if (ural_bbp_read(sc, RAL_BBP_VERSION) != 0)
1988                         break;
1989                 if (ural_pause(sc, hz / 100))
1990                         break;
1991         }
1992         if (ntries == 100) {
1993                 device_printf(sc->sc_dev, "timeout waiting for BBP\n");
1994                 return EIO;
1995         }
1996
1997         /* initialize BBP registers to default values */
1998         for (i = 0; i < N(ural_def_bbp); i++)
1999                 ural_bbp_write(sc, ural_def_bbp[i].reg, ural_def_bbp[i].val);
2000
2001 #if 0
2002         /* initialize BBP registers to values stored in EEPROM */
2003         for (i = 0; i < 16; i++) {
2004                 if (sc->bbp_prom[i].reg == 0xff)
2005                         continue;
2006                 ural_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2007         }
2008 #endif
2009
2010         return 0;
2011 #undef N
2012 }
2013
2014 static void
2015 ural_set_txantenna(struct ural_softc *sc, int antenna)
2016 {
2017         uint16_t tmp;
2018         uint8_t tx;
2019
2020         tx = ural_bbp_read(sc, RAL_BBP_TX) & ~RAL_BBP_ANTMASK;
2021         if (antenna == 1)
2022                 tx |= RAL_BBP_ANTA;
2023         else if (antenna == 2)
2024                 tx |= RAL_BBP_ANTB;
2025         else
2026                 tx |= RAL_BBP_DIVERSITY;
2027
2028         /* need to force I/Q flip for RF 2525e, 2526 and 5222 */
2029         if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526 ||
2030             sc->rf_rev == RAL_RF_5222)
2031                 tx |= RAL_BBP_FLIPIQ;
2032
2033         ural_bbp_write(sc, RAL_BBP_TX, tx);
2034
2035         /* update values in PHY_CSR5 and PHY_CSR6 */
2036         tmp = ural_read(sc, RAL_PHY_CSR5) & ~0x7;
2037         ural_write(sc, RAL_PHY_CSR5, tmp | (tx & 0x7));
2038
2039         tmp = ural_read(sc, RAL_PHY_CSR6) & ~0x7;
2040         ural_write(sc, RAL_PHY_CSR6, tmp | (tx & 0x7));
2041 }
2042
2043 static void
2044 ural_set_rxantenna(struct ural_softc *sc, int antenna)
2045 {
2046         uint8_t rx;
2047
2048         rx = ural_bbp_read(sc, RAL_BBP_RX) & ~RAL_BBP_ANTMASK;
2049         if (antenna == 1)
2050                 rx |= RAL_BBP_ANTA;
2051         else if (antenna == 2)
2052                 rx |= RAL_BBP_ANTB;
2053         else
2054                 rx |= RAL_BBP_DIVERSITY;
2055
2056         /* need to force no I/Q flip for RF 2525e and 2526 */
2057         if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526)
2058                 rx &= ~RAL_BBP_FLIPIQ;
2059
2060         ural_bbp_write(sc, RAL_BBP_RX, rx);
2061 }
2062
2063 static void
2064 ural_init_locked(struct ural_softc *sc)
2065 {
2066 #define N(a)    ((int)(sizeof (a) / sizeof ((a)[0])))
2067         struct ifnet *ifp = sc->sc_ifp;
2068         struct ieee80211com *ic = ifp->if_l2com;
2069         uint16_t tmp;
2070         int i, ntries;
2071
2072         RAL_LOCK_ASSERT(sc, MA_OWNED);
2073
2074         ural_set_testmode(sc);
2075         ural_write(sc, 0x308, 0x00f0);  /* XXX magic */
2076
2077         ural_stop(sc);
2078
2079         /* initialize MAC registers to default values */
2080         for (i = 0; i < N(ural_def_mac); i++)
2081                 ural_write(sc, ural_def_mac[i].reg, ural_def_mac[i].val);
2082
2083         /* wait for BBP and RF to wake up (this can take a long time!) */
2084         for (ntries = 0; ntries < 100; ntries++) {
2085                 tmp = ural_read(sc, RAL_MAC_CSR17);
2086                 if ((tmp & (RAL_BBP_AWAKE | RAL_RF_AWAKE)) ==
2087                     (RAL_BBP_AWAKE | RAL_RF_AWAKE))
2088                         break;
2089                 if (ural_pause(sc, hz / 100))
2090                         break;
2091         }
2092         if (ntries == 100) {
2093                 device_printf(sc->sc_dev,
2094                     "timeout waiting for BBP/RF to wakeup\n");
2095                 goto fail;
2096         }
2097
2098         /* we're ready! */
2099         ural_write(sc, RAL_MAC_CSR1, RAL_HOST_READY);
2100
2101         /* set basic rate set (will be updated later) */
2102         ural_write(sc, RAL_TXRX_CSR11, 0x15f);
2103
2104         if (ural_bbp_init(sc) != 0)
2105                 goto fail;
2106
2107         ural_set_chan(sc, ic->ic_curchan);
2108
2109         /* clear statistic registers (STA_CSR0 to STA_CSR10) */
2110         ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta);
2111
2112         ural_set_txantenna(sc, sc->tx_ant);
2113         ural_set_rxantenna(sc, sc->rx_ant);
2114
2115         ural_set_macaddr(sc, IF_LLADDR(ifp));
2116
2117         /*
2118          * Allocate Tx and Rx xfer queues.
2119          */
2120         ural_setup_tx_list(sc);
2121
2122         /* kick Rx */
2123         tmp = RAL_DROP_PHY | RAL_DROP_CRC;
2124         if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2125                 tmp |= RAL_DROP_CTL | RAL_DROP_BAD_VERSION;
2126                 if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2127                         tmp |= RAL_DROP_TODS;
2128                 if (!(ifp->if_flags & IFF_PROMISC))
2129                         tmp |= RAL_DROP_NOT_TO_ME;
2130         }
2131         ural_write(sc, RAL_TXRX_CSR2, tmp);
2132
2133         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2134         ifp->if_drv_flags |= IFF_DRV_RUNNING;
2135         usbd_xfer_set_stall(sc->sc_xfer[URAL_BULK_WR]);
2136         usbd_transfer_start(sc->sc_xfer[URAL_BULK_RD]);
2137         return;
2138
2139 fail:   ural_stop(sc);
2140 #undef N
2141 }
2142
2143 static void
2144 ural_init(void *priv)
2145 {
2146         struct ural_softc *sc = priv;
2147         struct ifnet *ifp = sc->sc_ifp;
2148         struct ieee80211com *ic = ifp->if_l2com;
2149
2150         RAL_LOCK(sc);
2151         ural_init_locked(sc);
2152         RAL_UNLOCK(sc);
2153
2154         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2155                 ieee80211_start_all(ic);                /* start all vap's */
2156 }
2157
2158 static void
2159 ural_stop(struct ural_softc *sc)
2160 {
2161         struct ifnet *ifp = sc->sc_ifp;
2162
2163         RAL_LOCK_ASSERT(sc, MA_OWNED);
2164
2165         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2166
2167         /*
2168          * Drain all the transfers, if not already drained:
2169          */
2170         RAL_UNLOCK(sc);
2171         usbd_transfer_drain(sc->sc_xfer[URAL_BULK_WR]);
2172         usbd_transfer_drain(sc->sc_xfer[URAL_BULK_RD]);
2173         RAL_LOCK(sc);
2174
2175         ural_unsetup_tx_list(sc);
2176
2177         /* disable Rx */
2178         ural_write(sc, RAL_TXRX_CSR2, RAL_DISABLE_RX);
2179         /* reset ASIC and BBP (but won't reset MAC registers!) */
2180         ural_write(sc, RAL_MAC_CSR1, RAL_RESET_ASIC | RAL_RESET_BBP);
2181         /* wait a little */
2182         ural_pause(sc, hz / 10);
2183         ural_write(sc, RAL_MAC_CSR1, 0);
2184         /* wait a little */
2185         ural_pause(sc, hz / 10);
2186 }
2187
2188 static int
2189 ural_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2190         const struct ieee80211_bpf_params *params)
2191 {
2192         struct ieee80211com *ic = ni->ni_ic;
2193         struct ifnet *ifp = ic->ic_ifp;
2194         struct ural_softc *sc = ifp->if_softc;
2195
2196         RAL_LOCK(sc);
2197         /* prevent management frames from being sent if we're not ready */
2198         if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2199                 RAL_UNLOCK(sc);
2200                 m_freem(m);
2201                 ieee80211_free_node(ni);
2202                 return ENETDOWN;
2203         }
2204         if (sc->tx_nfree < RAL_TX_MINFREE) {
2205                 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2206                 RAL_UNLOCK(sc);
2207                 m_freem(m);
2208                 ieee80211_free_node(ni);
2209                 return EIO;
2210         }
2211
2212         ifp->if_opackets++;
2213
2214         if (params == NULL) {
2215                 /*
2216                  * Legacy path; interpret frame contents to decide
2217                  * precisely how to send the frame.
2218                  */
2219                 if (ural_tx_mgt(sc, m, ni) != 0)
2220                         goto bad;
2221         } else {
2222                 /*
2223                  * Caller supplied explicit parameters to use in
2224                  * sending the frame.
2225                  */
2226                 if (ural_tx_raw(sc, m, ni, params) != 0)
2227                         goto bad;
2228         }
2229         RAL_UNLOCK(sc);
2230         return 0;
2231 bad:
2232         ifp->if_oerrors++;
2233         RAL_UNLOCK(sc);
2234         ieee80211_free_node(ni);
2235         return EIO;             /* XXX */
2236 }
2237
2238 static void
2239 ural_ratectl_start(struct ural_softc *sc, struct ieee80211_node *ni)
2240 {
2241         struct ieee80211vap *vap = ni->ni_vap;
2242         struct ural_vap *uvp = URAL_VAP(vap);
2243
2244         /* clear statistic registers (STA_CSR0 to STA_CSR10) */
2245         ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta);
2246
2247         usb_callout_reset(&uvp->ratectl_ch, hz, ural_ratectl_timeout, uvp);
2248 }
2249
2250 static void
2251 ural_ratectl_timeout(void *arg)
2252 {
2253         struct ural_vap *uvp = arg;
2254         struct ieee80211vap *vap = &uvp->vap;
2255         struct ieee80211com *ic = vap->iv_ic;
2256
2257         ieee80211_runtask(ic, &uvp->ratectl_task);
2258 }
2259
2260 static void
2261 ural_ratectl_task(void *arg, int pending)
2262 {
2263         struct ural_vap *uvp = arg;
2264         struct ieee80211vap *vap = &uvp->vap;
2265         struct ieee80211com *ic = vap->iv_ic;
2266         struct ifnet *ifp = ic->ic_ifp;
2267         struct ural_softc *sc = ifp->if_softc;
2268         struct ieee80211_node *ni;
2269         int ok, fail;
2270         int sum, retrycnt;
2271
2272         ni = ieee80211_ref_node(vap->iv_bss);
2273         RAL_LOCK(sc);
2274         /* read and clear statistic registers (STA_CSR0 to STA_CSR10) */
2275         ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof(sc->sta));
2276
2277         ok = sc->sta[7] +               /* TX ok w/o retry */
2278              sc->sta[8];                /* TX ok w/ retry */
2279         fail = sc->sta[9];              /* TX retry-fail count */
2280         sum = ok+fail;
2281         retrycnt = sc->sta[8] + fail;
2282
2283         ieee80211_ratectl_tx_update(vap, ni, &sum, &ok, &retrycnt);
2284         (void) ieee80211_ratectl_rate(ni, NULL, 0);
2285
2286         ifp->if_oerrors += fail;        /* count TX retry-fail as Tx errors */
2287
2288         usb_callout_reset(&uvp->ratectl_ch, hz, ural_ratectl_timeout, uvp);
2289         RAL_UNLOCK(sc);
2290         ieee80211_free_node(ni);
2291 }
2292
2293 static int
2294 ural_pause(struct ural_softc *sc, int timeout)
2295 {
2296
2297         usb_pause_mtx(&sc->sc_mtx, timeout);
2298         return (0);
2299 }