]> CyberLeo.Net >> Repos - FreeBSD/releng/10.2.git/blob - sys/geom/raid/g_raid.c
- Copy stable/10@285827 to releng/10.2 in preparation for 10.2-RC1
[FreeBSD/releng/10.2.git] / sys / geom / raid / g_raid.c
1 /*-
2  * Copyright (c) 2010 Alexander Motin <mav@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/kernel.h>
33 #include <sys/module.h>
34 #include <sys/limits.h>
35 #include <sys/lock.h>
36 #include <sys/mutex.h>
37 #include <sys/bio.h>
38 #include <sys/sbuf.h>
39 #include <sys/sysctl.h>
40 #include <sys/malloc.h>
41 #include <sys/eventhandler.h>
42 #include <vm/uma.h>
43 #include <geom/geom.h>
44 #include <sys/proc.h>
45 #include <sys/kthread.h>
46 #include <sys/sched.h>
47 #include <geom/raid/g_raid.h>
48 #include "g_raid_md_if.h"
49 #include "g_raid_tr_if.h"
50
51 static MALLOC_DEFINE(M_RAID, "raid_data", "GEOM_RAID Data");
52
53 SYSCTL_DECL(_kern_geom);
54 SYSCTL_NODE(_kern_geom, OID_AUTO, raid, CTLFLAG_RW, 0, "GEOM_RAID stuff");
55 int g_raid_enable = 1;
56 TUNABLE_INT("kern.geom.raid.enable", &g_raid_enable);
57 SYSCTL_INT(_kern_geom_raid, OID_AUTO, enable, CTLFLAG_RW,
58     &g_raid_enable, 0, "Enable on-disk metadata taste");
59 u_int g_raid_aggressive_spare = 0;
60 TUNABLE_INT("kern.geom.raid.aggressive_spare", &g_raid_aggressive_spare);
61 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, aggressive_spare, CTLFLAG_RW,
62     &g_raid_aggressive_spare, 0, "Use disks without metadata as spare");
63 u_int g_raid_debug = 0;
64 TUNABLE_INT("kern.geom.raid.debug", &g_raid_debug);
65 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, debug, CTLFLAG_RW, &g_raid_debug, 0,
66     "Debug level");
67 int g_raid_read_err_thresh = 10;
68 TUNABLE_INT("kern.geom.raid.read_err_thresh", &g_raid_read_err_thresh);
69 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, read_err_thresh, CTLFLAG_RW,
70     &g_raid_read_err_thresh, 0,
71     "Number of read errors equated to disk failure");
72 u_int g_raid_start_timeout = 30;
73 TUNABLE_INT("kern.geom.raid.start_timeout", &g_raid_start_timeout);
74 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, start_timeout, CTLFLAG_RW,
75     &g_raid_start_timeout, 0,
76     "Time to wait for all array components");
77 static u_int g_raid_clean_time = 5;
78 TUNABLE_INT("kern.geom.raid.clean_time", &g_raid_clean_time);
79 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, clean_time, CTLFLAG_RW,
80     &g_raid_clean_time, 0, "Mark volume as clean when idling");
81 static u_int g_raid_disconnect_on_failure = 1;
82 TUNABLE_INT("kern.geom.raid.disconnect_on_failure",
83     &g_raid_disconnect_on_failure);
84 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, disconnect_on_failure, CTLFLAG_RW,
85     &g_raid_disconnect_on_failure, 0, "Disconnect component on I/O failure.");
86 static u_int g_raid_name_format = 0;
87 TUNABLE_INT("kern.geom.raid.name_format", &g_raid_name_format);
88 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, name_format, CTLFLAG_RW,
89     &g_raid_name_format, 0, "Providers name format.");
90 static u_int g_raid_idle_threshold = 1000000;
91 TUNABLE_INT("kern.geom.raid.idle_threshold", &g_raid_idle_threshold);
92 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, idle_threshold, CTLFLAG_RW,
93     &g_raid_idle_threshold, 1000000,
94     "Time in microseconds to consider a volume idle.");
95 static u_int ar_legacy_aliases = 1;
96 SYSCTL_INT(_kern_geom_raid, OID_AUTO, legacy_aliases, CTLFLAG_RW,
97            &ar_legacy_aliases, 0, "Create aliases named as the legacy ataraid style.");
98 TUNABLE_INT("kern.geom_raid.legacy_aliases", &ar_legacy_aliases);
99
100
101 #define MSLEEP(rv, ident, mtx, priority, wmesg, timeout)        do {    \
102         G_RAID_DEBUG(4, "%s: Sleeping %p.", __func__, (ident));         \
103         rv = msleep((ident), (mtx), (priority), (wmesg), (timeout));    \
104         G_RAID_DEBUG(4, "%s: Woken up %p.", __func__, (ident));         \
105 } while (0)
106
107 LIST_HEAD(, g_raid_md_class) g_raid_md_classes =
108     LIST_HEAD_INITIALIZER(g_raid_md_classes);
109
110 LIST_HEAD(, g_raid_tr_class) g_raid_tr_classes =
111     LIST_HEAD_INITIALIZER(g_raid_tr_classes);
112
113 LIST_HEAD(, g_raid_volume) g_raid_volumes =
114     LIST_HEAD_INITIALIZER(g_raid_volumes);
115
116 static eventhandler_tag g_raid_post_sync = NULL;
117 static int g_raid_started = 0;
118 static int g_raid_shutdown = 0;
119
120 static int g_raid_destroy_geom(struct gctl_req *req, struct g_class *mp,
121     struct g_geom *gp);
122 static g_taste_t g_raid_taste;
123 static void g_raid_init(struct g_class *mp);
124 static void g_raid_fini(struct g_class *mp);
125
126 struct g_class g_raid_class = {
127         .name = G_RAID_CLASS_NAME,
128         .version = G_VERSION,
129         .ctlreq = g_raid_ctl,
130         .taste = g_raid_taste,
131         .destroy_geom = g_raid_destroy_geom,
132         .init = g_raid_init,
133         .fini = g_raid_fini
134 };
135
136 static void g_raid_destroy_provider(struct g_raid_volume *vol);
137 static int g_raid_update_disk(struct g_raid_disk *disk, u_int event);
138 static int g_raid_update_subdisk(struct g_raid_subdisk *subdisk, u_int event);
139 static int g_raid_update_volume(struct g_raid_volume *vol, u_int event);
140 static int g_raid_update_node(struct g_raid_softc *sc, u_int event);
141 static void g_raid_dumpconf(struct sbuf *sb, const char *indent,
142     struct g_geom *gp, struct g_consumer *cp, struct g_provider *pp);
143 static void g_raid_start(struct bio *bp);
144 static void g_raid_start_request(struct bio *bp);
145 static void g_raid_disk_done(struct bio *bp);
146 static void g_raid_poll(struct g_raid_softc *sc);
147
148 static const char *
149 g_raid_node_event2str(int event)
150 {
151
152         switch (event) {
153         case G_RAID_NODE_E_WAKE:
154                 return ("WAKE");
155         case G_RAID_NODE_E_START:
156                 return ("START");
157         default:
158                 return ("INVALID");
159         }
160 }
161
162 const char *
163 g_raid_disk_state2str(int state)
164 {
165
166         switch (state) {
167         case G_RAID_DISK_S_NONE:
168                 return ("NONE");
169         case G_RAID_DISK_S_OFFLINE:
170                 return ("OFFLINE");
171         case G_RAID_DISK_S_DISABLED:
172                 return ("DISABLED");
173         case G_RAID_DISK_S_FAILED:
174                 return ("FAILED");
175         case G_RAID_DISK_S_STALE_FAILED:
176                 return ("STALE_FAILED");
177         case G_RAID_DISK_S_SPARE:
178                 return ("SPARE");
179         case G_RAID_DISK_S_STALE:
180                 return ("STALE");
181         case G_RAID_DISK_S_ACTIVE:
182                 return ("ACTIVE");
183         default:
184                 return ("INVALID");
185         }
186 }
187
188 static const char *
189 g_raid_disk_event2str(int event)
190 {
191
192         switch (event) {
193         case G_RAID_DISK_E_DISCONNECTED:
194                 return ("DISCONNECTED");
195         default:
196                 return ("INVALID");
197         }
198 }
199
200 const char *
201 g_raid_subdisk_state2str(int state)
202 {
203
204         switch (state) {
205         case G_RAID_SUBDISK_S_NONE:
206                 return ("NONE");
207         case G_RAID_SUBDISK_S_FAILED:
208                 return ("FAILED");
209         case G_RAID_SUBDISK_S_NEW:
210                 return ("NEW");
211         case G_RAID_SUBDISK_S_REBUILD:
212                 return ("REBUILD");
213         case G_RAID_SUBDISK_S_UNINITIALIZED:
214                 return ("UNINITIALIZED");
215         case G_RAID_SUBDISK_S_STALE:
216                 return ("STALE");
217         case G_RAID_SUBDISK_S_RESYNC:
218                 return ("RESYNC");
219         case G_RAID_SUBDISK_S_ACTIVE:
220                 return ("ACTIVE");
221         default:
222                 return ("INVALID");
223         }
224 }
225
226 static const char *
227 g_raid_subdisk_event2str(int event)
228 {
229
230         switch (event) {
231         case G_RAID_SUBDISK_E_NEW:
232                 return ("NEW");
233         case G_RAID_SUBDISK_E_FAILED:
234                 return ("FAILED");
235         case G_RAID_SUBDISK_E_DISCONNECTED:
236                 return ("DISCONNECTED");
237         default:
238                 return ("INVALID");
239         }
240 }
241
242 const char *
243 g_raid_volume_state2str(int state)
244 {
245
246         switch (state) {
247         case G_RAID_VOLUME_S_STARTING:
248                 return ("STARTING");
249         case G_RAID_VOLUME_S_BROKEN:
250                 return ("BROKEN");
251         case G_RAID_VOLUME_S_DEGRADED:
252                 return ("DEGRADED");
253         case G_RAID_VOLUME_S_SUBOPTIMAL:
254                 return ("SUBOPTIMAL");
255         case G_RAID_VOLUME_S_OPTIMAL:
256                 return ("OPTIMAL");
257         case G_RAID_VOLUME_S_UNSUPPORTED:
258                 return ("UNSUPPORTED");
259         case G_RAID_VOLUME_S_STOPPED:
260                 return ("STOPPED");
261         default:
262                 return ("INVALID");
263         }
264 }
265
266 static const char *
267 g_raid_volume_event2str(int event)
268 {
269
270         switch (event) {
271         case G_RAID_VOLUME_E_UP:
272                 return ("UP");
273         case G_RAID_VOLUME_E_DOWN:
274                 return ("DOWN");
275         case G_RAID_VOLUME_E_START:
276                 return ("START");
277         case G_RAID_VOLUME_E_STARTMD:
278                 return ("STARTMD");
279         default:
280                 return ("INVALID");
281         }
282 }
283
284 const char *
285 g_raid_volume_level2str(int level, int qual)
286 {
287
288         switch (level) {
289         case G_RAID_VOLUME_RL_RAID0:
290                 return ("RAID0");
291         case G_RAID_VOLUME_RL_RAID1:
292                 return ("RAID1");
293         case G_RAID_VOLUME_RL_RAID3:
294                 if (qual == G_RAID_VOLUME_RLQ_R3P0)
295                         return ("RAID3-P0");
296                 if (qual == G_RAID_VOLUME_RLQ_R3PN)
297                         return ("RAID3-PN");
298                 return ("RAID3");
299         case G_RAID_VOLUME_RL_RAID4:
300                 if (qual == G_RAID_VOLUME_RLQ_R4P0)
301                         return ("RAID4-P0");
302                 if (qual == G_RAID_VOLUME_RLQ_R4PN)
303                         return ("RAID4-PN");
304                 return ("RAID4");
305         case G_RAID_VOLUME_RL_RAID5:
306                 if (qual == G_RAID_VOLUME_RLQ_R5RA)
307                         return ("RAID5-RA");
308                 if (qual == G_RAID_VOLUME_RLQ_R5RS)
309                         return ("RAID5-RS");
310                 if (qual == G_RAID_VOLUME_RLQ_R5LA)
311                         return ("RAID5-LA");
312                 if (qual == G_RAID_VOLUME_RLQ_R5LS)
313                         return ("RAID5-LS");
314                 return ("RAID5");
315         case G_RAID_VOLUME_RL_RAID6:
316                 if (qual == G_RAID_VOLUME_RLQ_R6RA)
317                         return ("RAID6-RA");
318                 if (qual == G_RAID_VOLUME_RLQ_R6RS)
319                         return ("RAID6-RS");
320                 if (qual == G_RAID_VOLUME_RLQ_R6LA)
321                         return ("RAID6-LA");
322                 if (qual == G_RAID_VOLUME_RLQ_R6LS)
323                         return ("RAID6-LS");
324                 return ("RAID6");
325         case G_RAID_VOLUME_RL_RAIDMDF:
326                 if (qual == G_RAID_VOLUME_RLQ_RMDFRA)
327                         return ("RAIDMDF-RA");
328                 if (qual == G_RAID_VOLUME_RLQ_RMDFRS)
329                         return ("RAIDMDF-RS");
330                 if (qual == G_RAID_VOLUME_RLQ_RMDFLA)
331                         return ("RAIDMDF-LA");
332                 if (qual == G_RAID_VOLUME_RLQ_RMDFLS)
333                         return ("RAIDMDF-LS");
334                 return ("RAIDMDF");
335         case G_RAID_VOLUME_RL_RAID1E:
336                 if (qual == G_RAID_VOLUME_RLQ_R1EA)
337                         return ("RAID1E-A");
338                 if (qual == G_RAID_VOLUME_RLQ_R1EO)
339                         return ("RAID1E-O");
340                 return ("RAID1E");
341         case G_RAID_VOLUME_RL_SINGLE:
342                 return ("SINGLE");
343         case G_RAID_VOLUME_RL_CONCAT:
344                 return ("CONCAT");
345         case G_RAID_VOLUME_RL_RAID5E:
346                 if (qual == G_RAID_VOLUME_RLQ_R5ERA)
347                         return ("RAID5E-RA");
348                 if (qual == G_RAID_VOLUME_RLQ_R5ERS)
349                         return ("RAID5E-RS");
350                 if (qual == G_RAID_VOLUME_RLQ_R5ELA)
351                         return ("RAID5E-LA");
352                 if (qual == G_RAID_VOLUME_RLQ_R5ELS)
353                         return ("RAID5E-LS");
354                 return ("RAID5E");
355         case G_RAID_VOLUME_RL_RAID5EE:
356                 if (qual == G_RAID_VOLUME_RLQ_R5EERA)
357                         return ("RAID5EE-RA");
358                 if (qual == G_RAID_VOLUME_RLQ_R5EERS)
359                         return ("RAID5EE-RS");
360                 if (qual == G_RAID_VOLUME_RLQ_R5EELA)
361                         return ("RAID5EE-LA");
362                 if (qual == G_RAID_VOLUME_RLQ_R5EELS)
363                         return ("RAID5EE-LS");
364                 return ("RAID5EE");
365         case G_RAID_VOLUME_RL_RAID5R:
366                 if (qual == G_RAID_VOLUME_RLQ_R5RRA)
367                         return ("RAID5R-RA");
368                 if (qual == G_RAID_VOLUME_RLQ_R5RRS)
369                         return ("RAID5R-RS");
370                 if (qual == G_RAID_VOLUME_RLQ_R5RLA)
371                         return ("RAID5R-LA");
372                 if (qual == G_RAID_VOLUME_RLQ_R5RLS)
373                         return ("RAID5R-LS");
374                 return ("RAID5E");
375         default:
376                 return ("UNKNOWN");
377         }
378 }
379
380 int
381 g_raid_volume_str2level(const char *str, int *level, int *qual)
382 {
383
384         *level = G_RAID_VOLUME_RL_UNKNOWN;
385         *qual = G_RAID_VOLUME_RLQ_NONE;
386         if (strcasecmp(str, "RAID0") == 0)
387                 *level = G_RAID_VOLUME_RL_RAID0;
388         else if (strcasecmp(str, "RAID1") == 0)
389                 *level = G_RAID_VOLUME_RL_RAID1;
390         else if (strcasecmp(str, "RAID3-P0") == 0) {
391                 *level = G_RAID_VOLUME_RL_RAID3;
392                 *qual = G_RAID_VOLUME_RLQ_R3P0;
393         } else if (strcasecmp(str, "RAID3-PN") == 0 ||
394                    strcasecmp(str, "RAID3") == 0) {
395                 *level = G_RAID_VOLUME_RL_RAID3;
396                 *qual = G_RAID_VOLUME_RLQ_R3PN;
397         } else if (strcasecmp(str, "RAID4-P0") == 0) {
398                 *level = G_RAID_VOLUME_RL_RAID4;
399                 *qual = G_RAID_VOLUME_RLQ_R4P0;
400         } else if (strcasecmp(str, "RAID4-PN") == 0 ||
401                    strcasecmp(str, "RAID4") == 0) {
402                 *level = G_RAID_VOLUME_RL_RAID4;
403                 *qual = G_RAID_VOLUME_RLQ_R4PN;
404         } else if (strcasecmp(str, "RAID5-RA") == 0) {
405                 *level = G_RAID_VOLUME_RL_RAID5;
406                 *qual = G_RAID_VOLUME_RLQ_R5RA;
407         } else if (strcasecmp(str, "RAID5-RS") == 0) {
408                 *level = G_RAID_VOLUME_RL_RAID5;
409                 *qual = G_RAID_VOLUME_RLQ_R5RS;
410         } else if (strcasecmp(str, "RAID5") == 0 ||
411                    strcasecmp(str, "RAID5-LA") == 0) {
412                 *level = G_RAID_VOLUME_RL_RAID5;
413                 *qual = G_RAID_VOLUME_RLQ_R5LA;
414         } else if (strcasecmp(str, "RAID5-LS") == 0) {
415                 *level = G_RAID_VOLUME_RL_RAID5;
416                 *qual = G_RAID_VOLUME_RLQ_R5LS;
417         } else if (strcasecmp(str, "RAID6-RA") == 0) {
418                 *level = G_RAID_VOLUME_RL_RAID6;
419                 *qual = G_RAID_VOLUME_RLQ_R6RA;
420         } else if (strcasecmp(str, "RAID6-RS") == 0) {
421                 *level = G_RAID_VOLUME_RL_RAID6;
422                 *qual = G_RAID_VOLUME_RLQ_R6RS;
423         } else if (strcasecmp(str, "RAID6") == 0 ||
424                    strcasecmp(str, "RAID6-LA") == 0) {
425                 *level = G_RAID_VOLUME_RL_RAID6;
426                 *qual = G_RAID_VOLUME_RLQ_R6LA;
427         } else if (strcasecmp(str, "RAID6-LS") == 0) {
428                 *level = G_RAID_VOLUME_RL_RAID6;
429                 *qual = G_RAID_VOLUME_RLQ_R6LS;
430         } else if (strcasecmp(str, "RAIDMDF-RA") == 0) {
431                 *level = G_RAID_VOLUME_RL_RAIDMDF;
432                 *qual = G_RAID_VOLUME_RLQ_RMDFRA;
433         } else if (strcasecmp(str, "RAIDMDF-RS") == 0) {
434                 *level = G_RAID_VOLUME_RL_RAIDMDF;
435                 *qual = G_RAID_VOLUME_RLQ_RMDFRS;
436         } else if (strcasecmp(str, "RAIDMDF") == 0 ||
437                    strcasecmp(str, "RAIDMDF-LA") == 0) {
438                 *level = G_RAID_VOLUME_RL_RAIDMDF;
439                 *qual = G_RAID_VOLUME_RLQ_RMDFLA;
440         } else if (strcasecmp(str, "RAIDMDF-LS") == 0) {
441                 *level = G_RAID_VOLUME_RL_RAIDMDF;
442                 *qual = G_RAID_VOLUME_RLQ_RMDFLS;
443         } else if (strcasecmp(str, "RAID10") == 0 ||
444                    strcasecmp(str, "RAID1E") == 0 ||
445                    strcasecmp(str, "RAID1E-A") == 0) {
446                 *level = G_RAID_VOLUME_RL_RAID1E;
447                 *qual = G_RAID_VOLUME_RLQ_R1EA;
448         } else if (strcasecmp(str, "RAID1E-O") == 0) {
449                 *level = G_RAID_VOLUME_RL_RAID1E;
450                 *qual = G_RAID_VOLUME_RLQ_R1EO;
451         } else if (strcasecmp(str, "SINGLE") == 0)
452                 *level = G_RAID_VOLUME_RL_SINGLE;
453         else if (strcasecmp(str, "CONCAT") == 0)
454                 *level = G_RAID_VOLUME_RL_CONCAT;
455         else if (strcasecmp(str, "RAID5E-RA") == 0) {
456                 *level = G_RAID_VOLUME_RL_RAID5E;
457                 *qual = G_RAID_VOLUME_RLQ_R5ERA;
458         } else if (strcasecmp(str, "RAID5E-RS") == 0) {
459                 *level = G_RAID_VOLUME_RL_RAID5E;
460                 *qual = G_RAID_VOLUME_RLQ_R5ERS;
461         } else if (strcasecmp(str, "RAID5E") == 0 ||
462                    strcasecmp(str, "RAID5E-LA") == 0) {
463                 *level = G_RAID_VOLUME_RL_RAID5E;
464                 *qual = G_RAID_VOLUME_RLQ_R5ELA;
465         } else if (strcasecmp(str, "RAID5E-LS") == 0) {
466                 *level = G_RAID_VOLUME_RL_RAID5E;
467                 *qual = G_RAID_VOLUME_RLQ_R5ELS;
468         } else if (strcasecmp(str, "RAID5EE-RA") == 0) {
469                 *level = G_RAID_VOLUME_RL_RAID5EE;
470                 *qual = G_RAID_VOLUME_RLQ_R5EERA;
471         } else if (strcasecmp(str, "RAID5EE-RS") == 0) {
472                 *level = G_RAID_VOLUME_RL_RAID5EE;
473                 *qual = G_RAID_VOLUME_RLQ_R5EERS;
474         } else if (strcasecmp(str, "RAID5EE") == 0 ||
475                    strcasecmp(str, "RAID5EE-LA") == 0) {
476                 *level = G_RAID_VOLUME_RL_RAID5EE;
477                 *qual = G_RAID_VOLUME_RLQ_R5EELA;
478         } else if (strcasecmp(str, "RAID5EE-LS") == 0) {
479                 *level = G_RAID_VOLUME_RL_RAID5EE;
480                 *qual = G_RAID_VOLUME_RLQ_R5EELS;
481         } else if (strcasecmp(str, "RAID5R-RA") == 0) {
482                 *level = G_RAID_VOLUME_RL_RAID5R;
483                 *qual = G_RAID_VOLUME_RLQ_R5RRA;
484         } else if (strcasecmp(str, "RAID5R-RS") == 0) {
485                 *level = G_RAID_VOLUME_RL_RAID5R;
486                 *qual = G_RAID_VOLUME_RLQ_R5RRS;
487         } else if (strcasecmp(str, "RAID5R") == 0 ||
488                    strcasecmp(str, "RAID5R-LA") == 0) {
489                 *level = G_RAID_VOLUME_RL_RAID5R;
490                 *qual = G_RAID_VOLUME_RLQ_R5RLA;
491         } else if (strcasecmp(str, "RAID5R-LS") == 0) {
492                 *level = G_RAID_VOLUME_RL_RAID5R;
493                 *qual = G_RAID_VOLUME_RLQ_R5RLS;
494         } else
495                 return (-1);
496         return (0);
497 }
498
499 const char *
500 g_raid_get_diskname(struct g_raid_disk *disk)
501 {
502
503         if (disk->d_consumer == NULL || disk->d_consumer->provider == NULL)
504                 return ("[unknown]");
505         return (disk->d_consumer->provider->name);
506 }
507
508 void
509 g_raid_get_disk_info(struct g_raid_disk *disk)
510 {
511         struct g_consumer *cp = disk->d_consumer;
512         int error, len;
513
514         /* Read kernel dumping information. */
515         disk->d_kd.offset = 0;
516         disk->d_kd.length = OFF_MAX;
517         len = sizeof(disk->d_kd);
518         error = g_io_getattr("GEOM::kerneldump", cp, &len, &disk->d_kd);
519         if (error)
520                 disk->d_kd.di.dumper = NULL;
521         if (disk->d_kd.di.dumper == NULL)
522                 G_RAID_DEBUG1(2, disk->d_softc,
523                     "Dumping not supported by %s: %d.", 
524                     cp->provider->name, error);
525
526         /* Read BIO_DELETE support. */
527         error = g_getattr("GEOM::candelete", cp, &disk->d_candelete);
528         if (error)
529                 disk->d_candelete = 0;
530         if (!disk->d_candelete)
531                 G_RAID_DEBUG1(2, disk->d_softc,
532                     "BIO_DELETE not supported by %s: %d.", 
533                     cp->provider->name, error);
534 }
535
536 void
537 g_raid_report_disk_state(struct g_raid_disk *disk)
538 {
539         struct g_raid_subdisk *sd;
540         int len, state;
541         uint32_t s;
542
543         if (disk->d_consumer == NULL)
544                 return;
545         if (disk->d_state == G_RAID_DISK_S_DISABLED) {
546                 s = G_STATE_ACTIVE; /* XXX */
547         } else if (disk->d_state == G_RAID_DISK_S_FAILED ||
548             disk->d_state == G_RAID_DISK_S_STALE_FAILED) {
549                 s = G_STATE_FAILED;
550         } else {
551                 state = G_RAID_SUBDISK_S_ACTIVE;
552                 TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) {
553                         if (sd->sd_state < state)
554                                 state = sd->sd_state;
555                 }
556                 if (state == G_RAID_SUBDISK_S_FAILED)
557                         s = G_STATE_FAILED;
558                 else if (state == G_RAID_SUBDISK_S_NEW ||
559                     state == G_RAID_SUBDISK_S_REBUILD)
560                         s = G_STATE_REBUILD;
561                 else if (state == G_RAID_SUBDISK_S_STALE ||
562                     state == G_RAID_SUBDISK_S_RESYNC)
563                         s = G_STATE_RESYNC;
564                 else
565                         s = G_STATE_ACTIVE;
566         }
567         len = sizeof(s);
568         g_io_getattr("GEOM::setstate", disk->d_consumer, &len, &s);
569         G_RAID_DEBUG1(2, disk->d_softc, "Disk %s state reported as %d.",
570             g_raid_get_diskname(disk), s);
571 }
572
573 void
574 g_raid_change_disk_state(struct g_raid_disk *disk, int state)
575 {
576
577         G_RAID_DEBUG1(0, disk->d_softc, "Disk %s state changed from %s to %s.",
578             g_raid_get_diskname(disk),
579             g_raid_disk_state2str(disk->d_state),
580             g_raid_disk_state2str(state));
581         disk->d_state = state;
582         g_raid_report_disk_state(disk);
583 }
584
585 void
586 g_raid_change_subdisk_state(struct g_raid_subdisk *sd, int state)
587 {
588
589         G_RAID_DEBUG1(0, sd->sd_softc,
590             "Subdisk %s:%d-%s state changed from %s to %s.",
591             sd->sd_volume->v_name, sd->sd_pos,
592             sd->sd_disk ? g_raid_get_diskname(sd->sd_disk) : "[none]",
593             g_raid_subdisk_state2str(sd->sd_state),
594             g_raid_subdisk_state2str(state));
595         sd->sd_state = state;
596         if (sd->sd_disk)
597                 g_raid_report_disk_state(sd->sd_disk);
598 }
599
600 void
601 g_raid_change_volume_state(struct g_raid_volume *vol, int state)
602 {
603
604         G_RAID_DEBUG1(0, vol->v_softc,
605             "Volume %s state changed from %s to %s.",
606             vol->v_name,
607             g_raid_volume_state2str(vol->v_state),
608             g_raid_volume_state2str(state));
609         vol->v_state = state;
610 }
611
612 /*
613  * --- Events handling functions ---
614  * Events in geom_raid are used to maintain subdisks and volumes status
615  * from one thread to simplify locking.
616  */
617 static void
618 g_raid_event_free(struct g_raid_event *ep)
619 {
620
621         free(ep, M_RAID);
622 }
623
624 int
625 g_raid_event_send(void *arg, int event, int flags)
626 {
627         struct g_raid_softc *sc;
628         struct g_raid_event *ep;
629         int error;
630
631         if ((flags & G_RAID_EVENT_VOLUME) != 0) {
632                 sc = ((struct g_raid_volume *)arg)->v_softc;
633         } else if ((flags & G_RAID_EVENT_DISK) != 0) {
634                 sc = ((struct g_raid_disk *)arg)->d_softc;
635         } else if ((flags & G_RAID_EVENT_SUBDISK) != 0) {
636                 sc = ((struct g_raid_subdisk *)arg)->sd_softc;
637         } else {
638                 sc = arg;
639         }
640         ep = malloc(sizeof(*ep), M_RAID,
641             sx_xlocked(&sc->sc_lock) ? M_WAITOK : M_NOWAIT);
642         if (ep == NULL)
643                 return (ENOMEM);
644         ep->e_tgt = arg;
645         ep->e_event = event;
646         ep->e_flags = flags;
647         ep->e_error = 0;
648         G_RAID_DEBUG1(4, sc, "Sending event %p. Waking up %p.", ep, sc);
649         mtx_lock(&sc->sc_queue_mtx);
650         TAILQ_INSERT_TAIL(&sc->sc_events, ep, e_next);
651         mtx_unlock(&sc->sc_queue_mtx);
652         wakeup(sc);
653
654         if ((flags & G_RAID_EVENT_WAIT) == 0)
655                 return (0);
656
657         sx_assert(&sc->sc_lock, SX_XLOCKED);
658         G_RAID_DEBUG1(4, sc, "Sleeping on %p.", ep);
659         sx_xunlock(&sc->sc_lock);
660         while ((ep->e_flags & G_RAID_EVENT_DONE) == 0) {
661                 mtx_lock(&sc->sc_queue_mtx);
662                 MSLEEP(error, ep, &sc->sc_queue_mtx, PRIBIO | PDROP, "m:event",
663                     hz * 5);
664         }
665         error = ep->e_error;
666         g_raid_event_free(ep);
667         sx_xlock(&sc->sc_lock);
668         return (error);
669 }
670
671 static void
672 g_raid_event_cancel(struct g_raid_softc *sc, void *tgt)
673 {
674         struct g_raid_event *ep, *tmpep;
675
676         sx_assert(&sc->sc_lock, SX_XLOCKED);
677
678         mtx_lock(&sc->sc_queue_mtx);
679         TAILQ_FOREACH_SAFE(ep, &sc->sc_events, e_next, tmpep) {
680                 if (ep->e_tgt != tgt)
681                         continue;
682                 TAILQ_REMOVE(&sc->sc_events, ep, e_next);
683                 if ((ep->e_flags & G_RAID_EVENT_WAIT) == 0)
684                         g_raid_event_free(ep);
685                 else {
686                         ep->e_error = ECANCELED;
687                         wakeup(ep);
688                 }
689         }
690         mtx_unlock(&sc->sc_queue_mtx);
691 }
692
693 static int
694 g_raid_event_check(struct g_raid_softc *sc, void *tgt)
695 {
696         struct g_raid_event *ep;
697         int     res = 0;
698
699         sx_assert(&sc->sc_lock, SX_XLOCKED);
700
701         mtx_lock(&sc->sc_queue_mtx);
702         TAILQ_FOREACH(ep, &sc->sc_events, e_next) {
703                 if (ep->e_tgt != tgt)
704                         continue;
705                 res = 1;
706                 break;
707         }
708         mtx_unlock(&sc->sc_queue_mtx);
709         return (res);
710 }
711
712 /*
713  * Return the number of disks in given state.
714  * If state is equal to -1, count all connected disks.
715  */
716 u_int
717 g_raid_ndisks(struct g_raid_softc *sc, int state)
718 {
719         struct g_raid_disk *disk;
720         u_int n;
721
722         sx_assert(&sc->sc_lock, SX_LOCKED);
723
724         n = 0;
725         TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
726                 if (disk->d_state == state || state == -1)
727                         n++;
728         }
729         return (n);
730 }
731
732 /*
733  * Return the number of subdisks in given state.
734  * If state is equal to -1, count all connected disks.
735  */
736 u_int
737 g_raid_nsubdisks(struct g_raid_volume *vol, int state)
738 {
739         struct g_raid_subdisk *subdisk;
740         struct g_raid_softc *sc;
741         u_int i, n ;
742
743         sc = vol->v_softc;
744         sx_assert(&sc->sc_lock, SX_LOCKED);
745
746         n = 0;
747         for (i = 0; i < vol->v_disks_count; i++) {
748                 subdisk = &vol->v_subdisks[i];
749                 if ((state == -1 &&
750                      subdisk->sd_state != G_RAID_SUBDISK_S_NONE) ||
751                     subdisk->sd_state == state)
752                         n++;
753         }
754         return (n);
755 }
756
757 /*
758  * Return the first subdisk in given state.
759  * If state is equal to -1, then the first connected disks.
760  */
761 struct g_raid_subdisk *
762 g_raid_get_subdisk(struct g_raid_volume *vol, int state)
763 {
764         struct g_raid_subdisk *sd;
765         struct g_raid_softc *sc;
766         u_int i;
767
768         sc = vol->v_softc;
769         sx_assert(&sc->sc_lock, SX_LOCKED);
770
771         for (i = 0; i < vol->v_disks_count; i++) {
772                 sd = &vol->v_subdisks[i];
773                 if ((state == -1 &&
774                      sd->sd_state != G_RAID_SUBDISK_S_NONE) ||
775                     sd->sd_state == state)
776                         return (sd);
777         }
778         return (NULL);
779 }
780
781 struct g_consumer *
782 g_raid_open_consumer(struct g_raid_softc *sc, const char *name)
783 {
784         struct g_consumer *cp;
785         struct g_provider *pp;
786
787         g_topology_assert();
788
789         if (strncmp(name, "/dev/", 5) == 0)
790                 name += 5;
791         pp = g_provider_by_name(name);
792         if (pp == NULL)
793                 return (NULL);
794         cp = g_new_consumer(sc->sc_geom);
795         cp->flags |= G_CF_DIRECT_RECEIVE;
796         if (g_attach(cp, pp) != 0) {
797                 g_destroy_consumer(cp);
798                 return (NULL);
799         }
800         if (g_access(cp, 1, 1, 1) != 0) {
801                 g_detach(cp);
802                 g_destroy_consumer(cp);
803                 return (NULL);
804         }
805         return (cp);
806 }
807
808 static u_int
809 g_raid_nrequests(struct g_raid_softc *sc, struct g_consumer *cp)
810 {
811         struct bio *bp;
812         u_int nreqs = 0;
813
814         mtx_lock(&sc->sc_queue_mtx);
815         TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) {
816                 if (bp->bio_from == cp)
817                         nreqs++;
818         }
819         mtx_unlock(&sc->sc_queue_mtx);
820         return (nreqs);
821 }
822
823 u_int
824 g_raid_nopens(struct g_raid_softc *sc)
825 {
826         struct g_raid_volume *vol;
827         u_int opens;
828
829         opens = 0;
830         TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
831                 if (vol->v_provider_open != 0)
832                         opens++;
833         }
834         return (opens);
835 }
836
837 static int
838 g_raid_consumer_is_busy(struct g_raid_softc *sc, struct g_consumer *cp)
839 {
840
841         if (cp->index > 0) {
842                 G_RAID_DEBUG1(2, sc,
843                     "I/O requests for %s exist, can't destroy it now.",
844                     cp->provider->name);
845                 return (1);
846         }
847         if (g_raid_nrequests(sc, cp) > 0) {
848                 G_RAID_DEBUG1(2, sc,
849                     "I/O requests for %s in queue, can't destroy it now.",
850                     cp->provider->name);
851                 return (1);
852         }
853         return (0);
854 }
855
856 static void
857 g_raid_destroy_consumer(void *arg, int flags __unused)
858 {
859         struct g_consumer *cp;
860
861         g_topology_assert();
862
863         cp = arg;
864         G_RAID_DEBUG(1, "Consumer %s destroyed.", cp->provider->name);
865         g_detach(cp);
866         g_destroy_consumer(cp);
867 }
868
869 void
870 g_raid_kill_consumer(struct g_raid_softc *sc, struct g_consumer *cp)
871 {
872         struct g_provider *pp;
873         int retaste_wait;
874
875         g_topology_assert_not();
876
877         g_topology_lock();
878         cp->private = NULL;
879         if (g_raid_consumer_is_busy(sc, cp))
880                 goto out;
881         pp = cp->provider;
882         retaste_wait = 0;
883         if (cp->acw == 1) {
884                 if ((pp->geom->flags & G_GEOM_WITHER) == 0)
885                         retaste_wait = 1;
886         }
887         if (cp->acr > 0 || cp->acw > 0 || cp->ace > 0)
888                 g_access(cp, -cp->acr, -cp->acw, -cp->ace);
889         if (retaste_wait) {
890                 /*
891                  * After retaste event was send (inside g_access()), we can send
892                  * event to detach and destroy consumer.
893                  * A class, which has consumer to the given provider connected
894                  * will not receive retaste event for the provider.
895                  * This is the way how I ignore retaste events when I close
896                  * consumers opened for write: I detach and destroy consumer
897                  * after retaste event is sent.
898                  */
899                 g_post_event(g_raid_destroy_consumer, cp, M_WAITOK, NULL);
900                 goto out;
901         }
902         G_RAID_DEBUG(1, "Consumer %s destroyed.", pp->name);
903         g_detach(cp);
904         g_destroy_consumer(cp);
905 out:
906         g_topology_unlock();
907 }
908
909 static void
910 g_raid_orphan(struct g_consumer *cp)
911 {
912         struct g_raid_disk *disk;
913
914         g_topology_assert();
915
916         disk = cp->private;
917         if (disk == NULL)
918                 return;
919         g_raid_event_send(disk, G_RAID_DISK_E_DISCONNECTED,
920             G_RAID_EVENT_DISK);
921 }
922
923 static void
924 g_raid_clean(struct g_raid_volume *vol, int acw)
925 {
926         struct g_raid_softc *sc;
927         int timeout;
928
929         sc = vol->v_softc;
930         g_topology_assert_not();
931         sx_assert(&sc->sc_lock, SX_XLOCKED);
932
933 //      if ((sc->sc_flags & G_RAID_DEVICE_FLAG_NOFAILSYNC) != 0)
934 //              return;
935         if (!vol->v_dirty)
936                 return;
937         if (vol->v_writes > 0)
938                 return;
939         if (acw > 0 || (acw == -1 &&
940             vol->v_provider != NULL && vol->v_provider->acw > 0)) {
941                 timeout = g_raid_clean_time - (time_uptime - vol->v_last_write);
942                 if (!g_raid_shutdown && timeout > 0)
943                         return;
944         }
945         vol->v_dirty = 0;
946         G_RAID_DEBUG1(1, sc, "Volume %s marked as clean.",
947             vol->v_name);
948         g_raid_write_metadata(sc, vol, NULL, NULL);
949 }
950
951 static void
952 g_raid_dirty(struct g_raid_volume *vol)
953 {
954         struct g_raid_softc *sc;
955
956         sc = vol->v_softc;
957         g_topology_assert_not();
958         sx_assert(&sc->sc_lock, SX_XLOCKED);
959
960 //      if ((sc->sc_flags & G_RAID_DEVICE_FLAG_NOFAILSYNC) != 0)
961 //              return;
962         vol->v_dirty = 1;
963         G_RAID_DEBUG1(1, sc, "Volume %s marked as dirty.",
964             vol->v_name);
965         g_raid_write_metadata(sc, vol, NULL, NULL);
966 }
967
968 void
969 g_raid_tr_flush_common(struct g_raid_tr_object *tr, struct bio *bp)
970 {
971         struct g_raid_softc *sc;
972         struct g_raid_volume *vol;
973         struct g_raid_subdisk *sd;
974         struct bio_queue_head queue;
975         struct bio *cbp;
976         int i;
977
978         vol = tr->tro_volume;
979         sc = vol->v_softc;
980
981         /*
982          * Allocate all bios before sending any request, so we can return
983          * ENOMEM in nice and clean way.
984          */
985         bioq_init(&queue);
986         for (i = 0; i < vol->v_disks_count; i++) {
987                 sd = &vol->v_subdisks[i];
988                 if (sd->sd_state == G_RAID_SUBDISK_S_NONE ||
989                     sd->sd_state == G_RAID_SUBDISK_S_FAILED)
990                         continue;
991                 cbp = g_clone_bio(bp);
992                 if (cbp == NULL)
993                         goto failure;
994                 cbp->bio_caller1 = sd;
995                 bioq_insert_tail(&queue, cbp);
996         }
997         while ((cbp = bioq_takefirst(&queue)) != NULL) {
998                 sd = cbp->bio_caller1;
999                 cbp->bio_caller1 = NULL;
1000                 g_raid_subdisk_iostart(sd, cbp);
1001         }
1002         return;
1003 failure:
1004         while ((cbp = bioq_takefirst(&queue)) != NULL)
1005                 g_destroy_bio(cbp);
1006         if (bp->bio_error == 0)
1007                 bp->bio_error = ENOMEM;
1008         g_raid_iodone(bp, bp->bio_error);
1009 }
1010
1011 static void
1012 g_raid_tr_kerneldump_common_done(struct bio *bp)
1013 {
1014
1015         bp->bio_flags |= BIO_DONE;
1016 }
1017
1018 int
1019 g_raid_tr_kerneldump_common(struct g_raid_tr_object *tr,
1020     void *virtual, vm_offset_t physical, off_t offset, size_t length)
1021 {
1022         struct g_raid_softc *sc;
1023         struct g_raid_volume *vol;
1024         struct bio bp;
1025
1026         vol = tr->tro_volume;
1027         sc = vol->v_softc;
1028
1029         bzero(&bp, sizeof(bp));
1030         bp.bio_cmd = BIO_WRITE;
1031         bp.bio_done = g_raid_tr_kerneldump_common_done;
1032         bp.bio_attribute = NULL;
1033         bp.bio_offset = offset;
1034         bp.bio_length = length;
1035         bp.bio_data = virtual;
1036         bp.bio_to = vol->v_provider;
1037
1038         g_raid_start(&bp);
1039         while (!(bp.bio_flags & BIO_DONE)) {
1040                 G_RAID_DEBUG1(4, sc, "Poll...");
1041                 g_raid_poll(sc);
1042                 DELAY(10);
1043         }
1044
1045         return (bp.bio_error != 0 ? EIO : 0);
1046 }
1047
1048 static int
1049 g_raid_dump(void *arg,
1050     void *virtual, vm_offset_t physical, off_t offset, size_t length)
1051 {
1052         struct g_raid_volume *vol;
1053         int error;
1054
1055         vol = (struct g_raid_volume *)arg;
1056         G_RAID_DEBUG1(3, vol->v_softc, "Dumping at off %llu len %llu.",
1057             (long long unsigned)offset, (long long unsigned)length);
1058
1059         error = G_RAID_TR_KERNELDUMP(vol->v_tr,
1060             virtual, physical, offset, length);
1061         return (error);
1062 }
1063
1064 static void
1065 g_raid_kerneldump(struct g_raid_softc *sc, struct bio *bp)
1066 {
1067         struct g_kerneldump *gkd;
1068         struct g_provider *pp;
1069         struct g_raid_volume *vol;
1070
1071         gkd = (struct g_kerneldump*)bp->bio_data;
1072         pp = bp->bio_to;
1073         vol = pp->private;
1074         g_trace(G_T_TOPOLOGY, "g_raid_kerneldump(%s, %jd, %jd)",
1075                 pp->name, (intmax_t)gkd->offset, (intmax_t)gkd->length);
1076         gkd->di.dumper = g_raid_dump;
1077         gkd->di.priv = vol;
1078         gkd->di.blocksize = vol->v_sectorsize;
1079         gkd->di.maxiosize = DFLTPHYS;
1080         gkd->di.mediaoffset = gkd->offset;
1081         if ((gkd->offset + gkd->length) > vol->v_mediasize)
1082                 gkd->length = vol->v_mediasize - gkd->offset;
1083         gkd->di.mediasize = gkd->length;
1084         g_io_deliver(bp, 0);
1085 }
1086
1087 static void
1088 g_raid_candelete(struct g_raid_softc *sc, struct bio *bp)
1089 {
1090         struct g_provider *pp;
1091         struct g_raid_volume *vol;
1092         struct g_raid_subdisk *sd;
1093         int *val;
1094         int i;
1095
1096         val = (int *)bp->bio_data;
1097         pp = bp->bio_to;
1098         vol = pp->private;
1099         *val = 0;
1100         for (i = 0; i < vol->v_disks_count; i++) {
1101                 sd = &vol->v_subdisks[i];
1102                 if (sd->sd_state == G_RAID_SUBDISK_S_NONE)
1103                         continue;
1104                 if (sd->sd_disk->d_candelete) {
1105                         *val = 1;
1106                         break;
1107                 }
1108         }
1109         g_io_deliver(bp, 0);
1110 }
1111
1112 static void
1113 g_raid_start(struct bio *bp)
1114 {
1115         struct g_raid_softc *sc;
1116
1117         sc = bp->bio_to->geom->softc;
1118         /*
1119          * If sc == NULL or there are no valid disks, provider's error
1120          * should be set and g_raid_start() should not be called at all.
1121          */
1122 //      KASSERT(sc != NULL && sc->sc_state == G_RAID_VOLUME_S_RUNNING,
1123 //          ("Provider's error should be set (error=%d)(mirror=%s).",
1124 //          bp->bio_to->error, bp->bio_to->name));
1125         G_RAID_LOGREQ(3, bp, "Request received.");
1126
1127         switch (bp->bio_cmd) {
1128         case BIO_READ:
1129         case BIO_WRITE:
1130         case BIO_DELETE:
1131         case BIO_FLUSH:
1132                 break;
1133         case BIO_GETATTR:
1134                 if (!strcmp(bp->bio_attribute, "GEOM::candelete"))
1135                         g_raid_candelete(sc, bp);
1136                 else if (!strcmp(bp->bio_attribute, "GEOM::kerneldump"))
1137                         g_raid_kerneldump(sc, bp);
1138                 else
1139                         g_io_deliver(bp, EOPNOTSUPP);
1140                 return;
1141         default:
1142                 g_io_deliver(bp, EOPNOTSUPP);
1143                 return;
1144         }
1145         mtx_lock(&sc->sc_queue_mtx);
1146         bioq_insert_tail(&sc->sc_queue, bp);
1147         mtx_unlock(&sc->sc_queue_mtx);
1148         if (!dumping) {
1149                 G_RAID_DEBUG1(4, sc, "Waking up %p.", sc);
1150                 wakeup(sc);
1151         }
1152 }
1153
1154 static int
1155 g_raid_bio_overlaps(const struct bio *bp, off_t lstart, off_t len)
1156 {
1157         /*
1158          * 5 cases:
1159          * (1) bp entirely below NO
1160          * (2) bp entirely above NO
1161          * (3) bp start below, but end in range YES
1162          * (4) bp entirely within YES
1163          * (5) bp starts within, ends above YES
1164          *
1165          * lock range 10-19 (offset 10 length 10)
1166          * (1) 1-5: first if kicks it out
1167          * (2) 30-35: second if kicks it out
1168          * (3) 5-15: passes both ifs
1169          * (4) 12-14: passes both ifs
1170          * (5) 19-20: passes both
1171          */
1172         off_t lend = lstart + len - 1;
1173         off_t bstart = bp->bio_offset;
1174         off_t bend = bp->bio_offset + bp->bio_length - 1;
1175
1176         if (bend < lstart)
1177                 return (0);
1178         if (lend < bstart)
1179                 return (0);
1180         return (1);
1181 }
1182
1183 static int
1184 g_raid_is_in_locked_range(struct g_raid_volume *vol, const struct bio *bp)
1185 {
1186         struct g_raid_lock *lp;
1187
1188         sx_assert(&vol->v_softc->sc_lock, SX_LOCKED);
1189
1190         LIST_FOREACH(lp, &vol->v_locks, l_next) {
1191                 if (g_raid_bio_overlaps(bp, lp->l_offset, lp->l_length))
1192                         return (1);
1193         }
1194         return (0);
1195 }
1196
1197 static void
1198 g_raid_start_request(struct bio *bp)
1199 {
1200         struct g_raid_softc *sc;
1201         struct g_raid_volume *vol;
1202
1203         sc = bp->bio_to->geom->softc;
1204         sx_assert(&sc->sc_lock, SX_LOCKED);
1205         vol = bp->bio_to->private;
1206
1207         /*
1208          * Check to see if this item is in a locked range.  If so,
1209          * queue it to our locked queue and return.  We'll requeue
1210          * it when the range is unlocked.  Internal I/O for the
1211          * rebuild/rescan/recovery process is excluded from this
1212          * check so we can actually do the recovery.
1213          */
1214         if (!(bp->bio_cflags & G_RAID_BIO_FLAG_SPECIAL) &&
1215             g_raid_is_in_locked_range(vol, bp)) {
1216                 G_RAID_LOGREQ(3, bp, "Defer request.");
1217                 bioq_insert_tail(&vol->v_locked, bp);
1218                 return;
1219         }
1220
1221         /*
1222          * If we're actually going to do the write/delete, then
1223          * update the idle stats for the volume.
1224          */
1225         if (bp->bio_cmd == BIO_WRITE || bp->bio_cmd == BIO_DELETE) {
1226                 if (!vol->v_dirty)
1227                         g_raid_dirty(vol);
1228                 vol->v_writes++;
1229         }
1230
1231         /*
1232          * Put request onto inflight queue, so we can check if new
1233          * synchronization requests don't collide with it.  Then tell
1234          * the transformation layer to start the I/O.
1235          */
1236         bioq_insert_tail(&vol->v_inflight, bp);
1237         G_RAID_LOGREQ(4, bp, "Request started");
1238         G_RAID_TR_IOSTART(vol->v_tr, bp);
1239 }
1240
1241 static void
1242 g_raid_finish_with_locked_ranges(struct g_raid_volume *vol, struct bio *bp)
1243 {
1244         off_t off, len;
1245         struct bio *nbp;
1246         struct g_raid_lock *lp;
1247
1248         vol->v_pending_lock = 0;
1249         LIST_FOREACH(lp, &vol->v_locks, l_next) {
1250                 if (lp->l_pending) {
1251                         off = lp->l_offset;
1252                         len = lp->l_length;
1253                         lp->l_pending = 0;
1254                         TAILQ_FOREACH(nbp, &vol->v_inflight.queue, bio_queue) {
1255                                 if (g_raid_bio_overlaps(nbp, off, len))
1256                                         lp->l_pending++;
1257                         }
1258                         if (lp->l_pending) {
1259                                 vol->v_pending_lock = 1;
1260                                 G_RAID_DEBUG1(4, vol->v_softc,
1261                                     "Deferred lock(%jd, %jd) has %d pending",
1262                                     (intmax_t)off, (intmax_t)(off + len),
1263                                     lp->l_pending);
1264                                 continue;
1265                         }
1266                         G_RAID_DEBUG1(4, vol->v_softc,
1267                             "Deferred lock of %jd to %jd completed",
1268                             (intmax_t)off, (intmax_t)(off + len));
1269                         G_RAID_TR_LOCKED(vol->v_tr, lp->l_callback_arg);
1270                 }
1271         }
1272 }
1273
1274 void
1275 g_raid_iodone(struct bio *bp, int error)
1276 {
1277         struct g_raid_softc *sc;
1278         struct g_raid_volume *vol;
1279
1280         sc = bp->bio_to->geom->softc;
1281         sx_assert(&sc->sc_lock, SX_LOCKED);
1282         vol = bp->bio_to->private;
1283         G_RAID_LOGREQ(3, bp, "Request done: %d.", error);
1284
1285         /* Update stats if we done write/delete. */
1286         if (bp->bio_cmd == BIO_WRITE || bp->bio_cmd == BIO_DELETE) {
1287                 vol->v_writes--;
1288                 vol->v_last_write = time_uptime;
1289         }
1290
1291         bioq_remove(&vol->v_inflight, bp);
1292         if (vol->v_pending_lock && g_raid_is_in_locked_range(vol, bp))
1293                 g_raid_finish_with_locked_ranges(vol, bp);
1294         getmicrouptime(&vol->v_last_done);
1295         g_io_deliver(bp, error);
1296 }
1297
1298 int
1299 g_raid_lock_range(struct g_raid_volume *vol, off_t off, off_t len,
1300     struct bio *ignore, void *argp)
1301 {
1302         struct g_raid_softc *sc;
1303         struct g_raid_lock *lp;
1304         struct bio *bp;
1305
1306         sc = vol->v_softc;
1307         lp = malloc(sizeof(*lp), M_RAID, M_WAITOK | M_ZERO);
1308         LIST_INSERT_HEAD(&vol->v_locks, lp, l_next);
1309         lp->l_offset = off;
1310         lp->l_length = len;
1311         lp->l_callback_arg = argp;
1312
1313         lp->l_pending = 0;
1314         TAILQ_FOREACH(bp, &vol->v_inflight.queue, bio_queue) {
1315                 if (bp != ignore && g_raid_bio_overlaps(bp, off, len))
1316                         lp->l_pending++;
1317         }       
1318
1319         /*
1320          * If there are any writes that are pending, we return EBUSY.  All
1321          * callers will have to wait until all pending writes clear.
1322          */
1323         if (lp->l_pending > 0) {
1324                 vol->v_pending_lock = 1;
1325                 G_RAID_DEBUG1(4, sc, "Locking range %jd to %jd deferred %d pend",
1326                     (intmax_t)off, (intmax_t)(off+len), lp->l_pending);
1327                 return (EBUSY);
1328         }
1329         G_RAID_DEBUG1(4, sc, "Locking range %jd to %jd",
1330             (intmax_t)off, (intmax_t)(off+len));
1331         G_RAID_TR_LOCKED(vol->v_tr, lp->l_callback_arg);
1332         return (0);
1333 }
1334
1335 int
1336 g_raid_unlock_range(struct g_raid_volume *vol, off_t off, off_t len)
1337 {
1338         struct g_raid_lock *lp;
1339         struct g_raid_softc *sc;
1340         struct bio *bp;
1341
1342         sc = vol->v_softc;
1343         LIST_FOREACH(lp, &vol->v_locks, l_next) {
1344                 if (lp->l_offset == off && lp->l_length == len) {
1345                         LIST_REMOVE(lp, l_next);
1346                         /* XXX
1347                          * Right now we just put them all back on the queue
1348                          * and hope for the best.  We hope this because any
1349                          * locked ranges will go right back on this list
1350                          * when the worker thread runs.
1351                          * XXX
1352                          */
1353                         G_RAID_DEBUG1(4, sc, "Unlocked %jd to %jd",
1354                             (intmax_t)lp->l_offset,
1355                             (intmax_t)(lp->l_offset+lp->l_length));
1356                         mtx_lock(&sc->sc_queue_mtx);
1357                         while ((bp = bioq_takefirst(&vol->v_locked)) != NULL)
1358                                 bioq_insert_tail(&sc->sc_queue, bp);
1359                         mtx_unlock(&sc->sc_queue_mtx);
1360                         free(lp, M_RAID);
1361                         return (0);
1362                 }
1363         }
1364         return (EINVAL);
1365 }
1366
1367 void
1368 g_raid_subdisk_iostart(struct g_raid_subdisk *sd, struct bio *bp)
1369 {
1370         struct g_consumer *cp;
1371         struct g_raid_disk *disk, *tdisk;
1372
1373         bp->bio_caller1 = sd;
1374
1375         /*
1376          * Make sure that the disk is present. Generally it is a task of
1377          * transformation layers to not send requests to absent disks, but
1378          * it is better to be safe and report situation then sorry.
1379          */
1380         if (sd->sd_disk == NULL) {
1381                 G_RAID_LOGREQ(0, bp, "Warning! I/O request to an absent disk!");
1382 nodisk:
1383                 bp->bio_from = NULL;
1384                 bp->bio_to = NULL;
1385                 bp->bio_error = ENXIO;
1386                 g_raid_disk_done(bp);
1387                 return;
1388         }
1389         disk = sd->sd_disk;
1390         if (disk->d_state != G_RAID_DISK_S_ACTIVE &&
1391             disk->d_state != G_RAID_DISK_S_FAILED) {
1392                 G_RAID_LOGREQ(0, bp, "Warning! I/O request to a disk in a "
1393                     "wrong state (%s)!", g_raid_disk_state2str(disk->d_state));
1394                 goto nodisk;
1395         }
1396
1397         cp = disk->d_consumer;
1398         bp->bio_from = cp;
1399         bp->bio_to = cp->provider;
1400         cp->index++;
1401
1402         /* Update average disks load. */
1403         TAILQ_FOREACH(tdisk, &sd->sd_softc->sc_disks, d_next) {
1404                 if (tdisk->d_consumer == NULL)
1405                         tdisk->d_load = 0;
1406                 else
1407                         tdisk->d_load = (tdisk->d_consumer->index *
1408                             G_RAID_SUBDISK_LOAD_SCALE + tdisk->d_load * 7) / 8;
1409         }
1410
1411         disk->d_last_offset = bp->bio_offset + bp->bio_length;
1412         if (dumping) {
1413                 G_RAID_LOGREQ(3, bp, "Sending dumping request.");
1414                 if (bp->bio_cmd == BIO_WRITE) {
1415                         bp->bio_error = g_raid_subdisk_kerneldump(sd,
1416                             bp->bio_data, 0, bp->bio_offset, bp->bio_length);
1417                 } else
1418                         bp->bio_error = EOPNOTSUPP;
1419                 g_raid_disk_done(bp);
1420         } else {
1421                 bp->bio_done = g_raid_disk_done;
1422                 bp->bio_offset += sd->sd_offset;
1423                 G_RAID_LOGREQ(3, bp, "Sending request.");
1424                 g_io_request(bp, cp);
1425         }
1426 }
1427
1428 int
1429 g_raid_subdisk_kerneldump(struct g_raid_subdisk *sd,
1430     void *virtual, vm_offset_t physical, off_t offset, size_t length)
1431 {
1432
1433         if (sd->sd_disk == NULL)
1434                 return (ENXIO);
1435         if (sd->sd_disk->d_kd.di.dumper == NULL)
1436                 return (EOPNOTSUPP);
1437         return (dump_write(&sd->sd_disk->d_kd.di,
1438             virtual, physical,
1439             sd->sd_disk->d_kd.di.mediaoffset + sd->sd_offset + offset,
1440             length));
1441 }
1442
1443 static void
1444 g_raid_disk_done(struct bio *bp)
1445 {
1446         struct g_raid_softc *sc;
1447         struct g_raid_subdisk *sd;
1448
1449         sd = bp->bio_caller1;
1450         sc = sd->sd_softc;
1451         mtx_lock(&sc->sc_queue_mtx);
1452         bioq_insert_tail(&sc->sc_queue, bp);
1453         mtx_unlock(&sc->sc_queue_mtx);
1454         if (!dumping)
1455                 wakeup(sc);
1456 }
1457
1458 static void
1459 g_raid_disk_done_request(struct bio *bp)
1460 {
1461         struct g_raid_softc *sc;
1462         struct g_raid_disk *disk;
1463         struct g_raid_subdisk *sd;
1464         struct g_raid_volume *vol;
1465
1466         g_topology_assert_not();
1467
1468         G_RAID_LOGREQ(3, bp, "Disk request done: %d.", bp->bio_error);
1469         sd = bp->bio_caller1;
1470         sc = sd->sd_softc;
1471         vol = sd->sd_volume;
1472         if (bp->bio_from != NULL) {
1473                 bp->bio_from->index--;
1474                 disk = bp->bio_from->private;
1475                 if (disk == NULL)
1476                         g_raid_kill_consumer(sc, bp->bio_from);
1477         }
1478         bp->bio_offset -= sd->sd_offset;
1479
1480         G_RAID_TR_IODONE(vol->v_tr, sd, bp);
1481 }
1482
1483 static void
1484 g_raid_handle_event(struct g_raid_softc *sc, struct g_raid_event *ep)
1485 {
1486
1487         if ((ep->e_flags & G_RAID_EVENT_VOLUME) != 0)
1488                 ep->e_error = g_raid_update_volume(ep->e_tgt, ep->e_event);
1489         else if ((ep->e_flags & G_RAID_EVENT_DISK) != 0)
1490                 ep->e_error = g_raid_update_disk(ep->e_tgt, ep->e_event);
1491         else if ((ep->e_flags & G_RAID_EVENT_SUBDISK) != 0)
1492                 ep->e_error = g_raid_update_subdisk(ep->e_tgt, ep->e_event);
1493         else
1494                 ep->e_error = g_raid_update_node(ep->e_tgt, ep->e_event);
1495         if ((ep->e_flags & G_RAID_EVENT_WAIT) == 0) {
1496                 KASSERT(ep->e_error == 0,
1497                     ("Error cannot be handled."));
1498                 g_raid_event_free(ep);
1499         } else {
1500                 ep->e_flags |= G_RAID_EVENT_DONE;
1501                 G_RAID_DEBUG1(4, sc, "Waking up %p.", ep);
1502                 mtx_lock(&sc->sc_queue_mtx);
1503                 wakeup(ep);
1504                 mtx_unlock(&sc->sc_queue_mtx);
1505         }
1506 }
1507
1508 /*
1509  * Worker thread.
1510  */
1511 static void
1512 g_raid_worker(void *arg)
1513 {
1514         struct g_raid_softc *sc;
1515         struct g_raid_event *ep;
1516         struct g_raid_volume *vol;
1517         struct bio *bp;
1518         struct timeval now, t;
1519         int timeout, rv;
1520
1521         sc = arg;
1522         thread_lock(curthread);
1523         sched_prio(curthread, PRIBIO);
1524         thread_unlock(curthread);
1525
1526         sx_xlock(&sc->sc_lock);
1527         for (;;) {
1528                 mtx_lock(&sc->sc_queue_mtx);
1529                 /*
1530                  * First take a look at events.
1531                  * This is important to handle events before any I/O requests.
1532                  */
1533                 bp = NULL;
1534                 vol = NULL;
1535                 rv = 0;
1536                 ep = TAILQ_FIRST(&sc->sc_events);
1537                 if (ep != NULL)
1538                         TAILQ_REMOVE(&sc->sc_events, ep, e_next);
1539                 else if ((bp = bioq_takefirst(&sc->sc_queue)) != NULL)
1540                         ;
1541                 else {
1542                         getmicrouptime(&now);
1543                         t = now;
1544                         TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
1545                                 if (bioq_first(&vol->v_inflight) == NULL &&
1546                                     vol->v_tr &&
1547                                     timevalcmp(&vol->v_last_done, &t, < ))
1548                                         t = vol->v_last_done;
1549                         }
1550                         timevalsub(&t, &now);
1551                         timeout = g_raid_idle_threshold +
1552                             t.tv_sec * 1000000 + t.tv_usec;
1553                         if (timeout > 0) {
1554                                 /*
1555                                  * Two steps to avoid overflows at HZ=1000
1556                                  * and idle timeouts > 2.1s.  Some rounding
1557                                  * errors can occur, but they are < 1tick,
1558                                  * which is deemed to be close enough for
1559                                  * this purpose.
1560                                  */
1561                                 int micpertic = 1000000 / hz;
1562                                 timeout = (timeout + micpertic - 1) / micpertic;
1563                                 sx_xunlock(&sc->sc_lock);
1564                                 MSLEEP(rv, sc, &sc->sc_queue_mtx,
1565                                     PRIBIO | PDROP, "-", timeout);
1566                                 sx_xlock(&sc->sc_lock);
1567                                 goto process;
1568                         } else
1569                                 rv = EWOULDBLOCK;
1570                 }
1571                 mtx_unlock(&sc->sc_queue_mtx);
1572 process:
1573                 if (ep != NULL) {
1574                         g_raid_handle_event(sc, ep);
1575                 } else if (bp != NULL) {
1576                         if (bp->bio_to != NULL &&
1577                             bp->bio_to->geom == sc->sc_geom)
1578                                 g_raid_start_request(bp);
1579                         else
1580                                 g_raid_disk_done_request(bp);
1581                 } else if (rv == EWOULDBLOCK) {
1582                         TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
1583                                 g_raid_clean(vol, -1);
1584                                 if (bioq_first(&vol->v_inflight) == NULL &&
1585                                     vol->v_tr) {
1586                                         t.tv_sec = g_raid_idle_threshold / 1000000;
1587                                         t.tv_usec = g_raid_idle_threshold % 1000000;
1588                                         timevaladd(&t, &vol->v_last_done);
1589                                         getmicrouptime(&now);
1590                                         if (timevalcmp(&t, &now, <= )) {
1591                                                 G_RAID_TR_IDLE(vol->v_tr);
1592                                                 vol->v_last_done = now;
1593                                         }
1594                                 }
1595                         }
1596                 }
1597                 if (sc->sc_stopping == G_RAID_DESTROY_HARD)
1598                         g_raid_destroy_node(sc, 1);     /* May not return. */
1599         }
1600 }
1601
1602 static void
1603 g_raid_poll(struct g_raid_softc *sc)
1604 {
1605         struct g_raid_event *ep;
1606         struct bio *bp;
1607
1608         sx_xlock(&sc->sc_lock);
1609         mtx_lock(&sc->sc_queue_mtx);
1610         /*
1611          * First take a look at events.
1612          * This is important to handle events before any I/O requests.
1613          */
1614         ep = TAILQ_FIRST(&sc->sc_events);
1615         if (ep != NULL) {
1616                 TAILQ_REMOVE(&sc->sc_events, ep, e_next);
1617                 mtx_unlock(&sc->sc_queue_mtx);
1618                 g_raid_handle_event(sc, ep);
1619                 goto out;
1620         }
1621         bp = bioq_takefirst(&sc->sc_queue);
1622         if (bp != NULL) {
1623                 mtx_unlock(&sc->sc_queue_mtx);
1624                 if (bp->bio_from == NULL ||
1625                     bp->bio_from->geom != sc->sc_geom)
1626                         g_raid_start_request(bp);
1627                 else
1628                         g_raid_disk_done_request(bp);
1629         }
1630 out:
1631         sx_xunlock(&sc->sc_lock);
1632 }
1633
1634 static void
1635 g_raid_launch_provider(struct g_raid_volume *vol)
1636 {
1637         struct g_raid_disk *disk;
1638         struct g_raid_subdisk *sd;
1639         struct g_raid_softc *sc;
1640         struct g_provider *pp;
1641         char name[G_RAID_MAX_VOLUMENAME];
1642         char   announce_buf[80], buf1[32];
1643         off_t off;
1644         int i;
1645
1646         sc = vol->v_softc;
1647         sx_assert(&sc->sc_lock, SX_LOCKED);
1648
1649         g_topology_lock();
1650         /* Try to name provider with volume name. */
1651         snprintf(name, sizeof(name), "raid/%s", vol->v_name);
1652         if (g_raid_name_format == 0 || vol->v_name[0] == 0 ||
1653             g_provider_by_name(name) != NULL) {
1654                 /* Otherwise use sequential volume number. */
1655                 snprintf(name, sizeof(name), "raid/r%d", vol->v_global_id);
1656         }
1657
1658         /*
1659          * Create a /dev/ar%d that the old ataraid(4) stack once
1660          * created as an alias for /dev/raid/r%d if requested.
1661          * This helps going from stable/7 ataraid devices to newer
1662          * FreeBSD releases. sbruno 07 MAY 2013
1663          */
1664
1665         if (ar_legacy_aliases) {
1666                 snprintf(announce_buf, sizeof(announce_buf),
1667                         "kern.devalias.%s", name);
1668                 snprintf(buf1, sizeof(buf1),
1669                         "ar%d", vol->v_global_id);
1670                 setenv(announce_buf, buf1);
1671         }
1672
1673         pp = g_new_providerf(sc->sc_geom, "%s", name);
1674         pp->flags |= G_PF_DIRECT_RECEIVE;
1675         if (vol->v_tr->tro_class->trc_accept_unmapped) {
1676                 pp->flags |= G_PF_ACCEPT_UNMAPPED;
1677                 for (i = 0; i < vol->v_disks_count; i++) {
1678                         sd = &vol->v_subdisks[i];
1679                         if (sd->sd_state == G_RAID_SUBDISK_S_NONE)
1680                                 continue;
1681                         if ((sd->sd_disk->d_consumer->provider->flags &
1682                             G_PF_ACCEPT_UNMAPPED) == 0)
1683                                 pp->flags &= ~G_PF_ACCEPT_UNMAPPED;
1684                 }
1685         }
1686         pp->private = vol;
1687         pp->mediasize = vol->v_mediasize;
1688         pp->sectorsize = vol->v_sectorsize;
1689         pp->stripesize = 0;
1690         pp->stripeoffset = 0;
1691         if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1 ||
1692             vol->v_raid_level == G_RAID_VOLUME_RL_RAID3 ||
1693             vol->v_raid_level == G_RAID_VOLUME_RL_SINGLE ||
1694             vol->v_raid_level == G_RAID_VOLUME_RL_CONCAT) {
1695                 if ((disk = vol->v_subdisks[0].sd_disk) != NULL &&
1696                     disk->d_consumer != NULL &&
1697                     disk->d_consumer->provider != NULL) {
1698                         pp->stripesize = disk->d_consumer->provider->stripesize;
1699                         off = disk->d_consumer->provider->stripeoffset;
1700                         pp->stripeoffset = off + vol->v_subdisks[0].sd_offset;
1701                         if (off > 0)
1702                                 pp->stripeoffset %= off;
1703                 }
1704                 if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID3) {
1705                         pp->stripesize *= (vol->v_disks_count - 1);
1706                         pp->stripeoffset *= (vol->v_disks_count - 1);
1707                 }
1708         } else
1709                 pp->stripesize = vol->v_strip_size;
1710         vol->v_provider = pp;
1711         g_error_provider(pp, 0);
1712         g_topology_unlock();
1713         G_RAID_DEBUG1(0, sc, "Provider %s for volume %s created.",
1714             pp->name, vol->v_name);
1715 }
1716
1717 static void
1718 g_raid_destroy_provider(struct g_raid_volume *vol)
1719 {
1720         struct g_raid_softc *sc;
1721         struct g_provider *pp;
1722         struct bio *bp, *tmp;
1723
1724         g_topology_assert_not();
1725         sc = vol->v_softc;
1726         pp = vol->v_provider;
1727         KASSERT(pp != NULL, ("NULL provider (volume=%s).", vol->v_name));
1728
1729         g_topology_lock();
1730         g_error_provider(pp, ENXIO);
1731         mtx_lock(&sc->sc_queue_mtx);
1732         TAILQ_FOREACH_SAFE(bp, &sc->sc_queue.queue, bio_queue, tmp) {
1733                 if (bp->bio_to != pp)
1734                         continue;
1735                 bioq_remove(&sc->sc_queue, bp);
1736                 g_io_deliver(bp, ENXIO);
1737         }
1738         mtx_unlock(&sc->sc_queue_mtx);
1739         G_RAID_DEBUG1(0, sc, "Provider %s for volume %s destroyed.",
1740             pp->name, vol->v_name);
1741         g_wither_provider(pp, ENXIO);
1742         g_topology_unlock();
1743         vol->v_provider = NULL;
1744 }
1745
1746 /*
1747  * Update device state.
1748  */
1749 static int
1750 g_raid_update_volume(struct g_raid_volume *vol, u_int event)
1751 {
1752         struct g_raid_softc *sc;
1753
1754         sc = vol->v_softc;
1755         sx_assert(&sc->sc_lock, SX_XLOCKED);
1756
1757         G_RAID_DEBUG1(2, sc, "Event %s for volume %s.",
1758             g_raid_volume_event2str(event),
1759             vol->v_name);
1760         switch (event) {
1761         case G_RAID_VOLUME_E_DOWN:
1762                 if (vol->v_provider != NULL)
1763                         g_raid_destroy_provider(vol);
1764                 break;
1765         case G_RAID_VOLUME_E_UP:
1766                 if (vol->v_provider == NULL)
1767                         g_raid_launch_provider(vol);
1768                 break;
1769         case G_RAID_VOLUME_E_START:
1770                 if (vol->v_tr)
1771                         G_RAID_TR_START(vol->v_tr);
1772                 return (0);
1773         default:
1774                 if (sc->sc_md)
1775                         G_RAID_MD_VOLUME_EVENT(sc->sc_md, vol, event);
1776                 return (0);
1777         }
1778
1779         /* Manage root mount release. */
1780         if (vol->v_starting) {
1781                 vol->v_starting = 0;
1782                 G_RAID_DEBUG1(1, sc, "root_mount_rel %p", vol->v_rootmount);
1783                 root_mount_rel(vol->v_rootmount);
1784                 vol->v_rootmount = NULL;
1785         }
1786         if (vol->v_stopping && vol->v_provider_open == 0)
1787                 g_raid_destroy_volume(vol);
1788         return (0);
1789 }
1790
1791 /*
1792  * Update subdisk state.
1793  */
1794 static int
1795 g_raid_update_subdisk(struct g_raid_subdisk *sd, u_int event)
1796 {
1797         struct g_raid_softc *sc;
1798         struct g_raid_volume *vol;
1799
1800         sc = sd->sd_softc;
1801         vol = sd->sd_volume;
1802         sx_assert(&sc->sc_lock, SX_XLOCKED);
1803
1804         G_RAID_DEBUG1(2, sc, "Event %s for subdisk %s:%d-%s.",
1805             g_raid_subdisk_event2str(event),
1806             vol->v_name, sd->sd_pos,
1807             sd->sd_disk ? g_raid_get_diskname(sd->sd_disk) : "[none]");
1808         if (vol->v_tr)
1809                 G_RAID_TR_EVENT(vol->v_tr, sd, event);
1810
1811         return (0);
1812 }
1813
1814 /*
1815  * Update disk state.
1816  */
1817 static int
1818 g_raid_update_disk(struct g_raid_disk *disk, u_int event)
1819 {
1820         struct g_raid_softc *sc;
1821
1822         sc = disk->d_softc;
1823         sx_assert(&sc->sc_lock, SX_XLOCKED);
1824
1825         G_RAID_DEBUG1(2, sc, "Event %s for disk %s.",
1826             g_raid_disk_event2str(event),
1827             g_raid_get_diskname(disk));
1828
1829         if (sc->sc_md)
1830                 G_RAID_MD_EVENT(sc->sc_md, disk, event);
1831         return (0);
1832 }
1833
1834 /*
1835  * Node event.
1836  */
1837 static int
1838 g_raid_update_node(struct g_raid_softc *sc, u_int event)
1839 {
1840         sx_assert(&sc->sc_lock, SX_XLOCKED);
1841
1842         G_RAID_DEBUG1(2, sc, "Event %s for the array.",
1843             g_raid_node_event2str(event));
1844
1845         if (event == G_RAID_NODE_E_WAKE)
1846                 return (0);
1847         if (sc->sc_md)
1848                 G_RAID_MD_EVENT(sc->sc_md, NULL, event);
1849         return (0);
1850 }
1851
1852 static int
1853 g_raid_access(struct g_provider *pp, int acr, int acw, int ace)
1854 {
1855         struct g_raid_volume *vol;
1856         struct g_raid_softc *sc;
1857         int dcw, opens, error = 0;
1858
1859         g_topology_assert();
1860         sc = pp->geom->softc;
1861         vol = pp->private;
1862         KASSERT(sc != NULL, ("NULL softc (provider=%s).", pp->name));
1863         KASSERT(vol != NULL, ("NULL volume (provider=%s).", pp->name));
1864
1865         G_RAID_DEBUG1(2, sc, "Access request for %s: r%dw%de%d.", pp->name,
1866             acr, acw, ace);
1867         dcw = pp->acw + acw;
1868
1869         g_topology_unlock();
1870         sx_xlock(&sc->sc_lock);
1871         /* Deny new opens while dying. */
1872         if (sc->sc_stopping != 0 && (acr > 0 || acw > 0 || ace > 0)) {
1873                 error = ENXIO;
1874                 goto out;
1875         }
1876         /* Deny write opens for read-only volumes. */
1877         if (vol->v_read_only && acw > 0) {
1878                 error = EROFS;
1879                 goto out;
1880         }
1881         if (dcw == 0)
1882                 g_raid_clean(vol, dcw);
1883         vol->v_provider_open += acr + acw + ace;
1884         /* Handle delayed node destruction. */
1885         if (sc->sc_stopping == G_RAID_DESTROY_DELAYED &&
1886             vol->v_provider_open == 0) {
1887                 /* Count open volumes. */
1888                 opens = g_raid_nopens(sc);
1889                 if (opens == 0) {
1890                         sc->sc_stopping = G_RAID_DESTROY_HARD;
1891                         /* Wake up worker to make it selfdestruct. */
1892                         g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0);
1893                 }
1894         }
1895         /* Handle open volume destruction. */
1896         if (vol->v_stopping && vol->v_provider_open == 0)
1897                 g_raid_destroy_volume(vol);
1898 out:
1899         sx_xunlock(&sc->sc_lock);
1900         g_topology_lock();
1901         return (error);
1902 }
1903
1904 struct g_raid_softc *
1905 g_raid_create_node(struct g_class *mp,
1906     const char *name, struct g_raid_md_object *md)
1907 {
1908         struct g_raid_softc *sc;
1909         struct g_geom *gp;
1910         int error;
1911
1912         g_topology_assert();
1913         G_RAID_DEBUG(1, "Creating array %s.", name);
1914
1915         gp = g_new_geomf(mp, "%s", name);
1916         sc = malloc(sizeof(*sc), M_RAID, M_WAITOK | M_ZERO);
1917         gp->start = g_raid_start;
1918         gp->orphan = g_raid_orphan;
1919         gp->access = g_raid_access;
1920         gp->dumpconf = g_raid_dumpconf;
1921
1922         sc->sc_md = md;
1923         sc->sc_geom = gp;
1924         sc->sc_flags = 0;
1925         TAILQ_INIT(&sc->sc_volumes);
1926         TAILQ_INIT(&sc->sc_disks);
1927         sx_init(&sc->sc_lock, "graid:lock");
1928         mtx_init(&sc->sc_queue_mtx, "graid:queue", NULL, MTX_DEF);
1929         TAILQ_INIT(&sc->sc_events);
1930         bioq_init(&sc->sc_queue);
1931         gp->softc = sc;
1932         error = kproc_create(g_raid_worker, sc, &sc->sc_worker, 0, 0,
1933             "g_raid %s", name);
1934         if (error != 0) {
1935                 G_RAID_DEBUG(0, "Cannot create kernel thread for %s.", name);
1936                 mtx_destroy(&sc->sc_queue_mtx);
1937                 sx_destroy(&sc->sc_lock);
1938                 g_destroy_geom(sc->sc_geom);
1939                 free(sc, M_RAID);
1940                 return (NULL);
1941         }
1942
1943         G_RAID_DEBUG1(0, sc, "Array %s created.", name);
1944         return (sc);
1945 }
1946
1947 struct g_raid_volume *
1948 g_raid_create_volume(struct g_raid_softc *sc, const char *name, int id)
1949 {
1950         struct g_raid_volume    *vol, *vol1;
1951         int i;
1952
1953         G_RAID_DEBUG1(1, sc, "Creating volume %s.", name);
1954         vol = malloc(sizeof(*vol), M_RAID, M_WAITOK | M_ZERO);
1955         vol->v_softc = sc;
1956         strlcpy(vol->v_name, name, G_RAID_MAX_VOLUMENAME);
1957         vol->v_state = G_RAID_VOLUME_S_STARTING;
1958         vol->v_raid_level = G_RAID_VOLUME_RL_UNKNOWN;
1959         vol->v_raid_level_qualifier = G_RAID_VOLUME_RLQ_UNKNOWN;
1960         vol->v_rotate_parity = 1;
1961         bioq_init(&vol->v_inflight);
1962         bioq_init(&vol->v_locked);
1963         LIST_INIT(&vol->v_locks);
1964         for (i = 0; i < G_RAID_MAX_SUBDISKS; i++) {
1965                 vol->v_subdisks[i].sd_softc = sc;
1966                 vol->v_subdisks[i].sd_volume = vol;
1967                 vol->v_subdisks[i].sd_pos = i;
1968                 vol->v_subdisks[i].sd_state = G_RAID_DISK_S_NONE;
1969         }
1970
1971         /* Find free ID for this volume. */
1972         g_topology_lock();
1973         vol1 = vol;
1974         if (id >= 0) {
1975                 LIST_FOREACH(vol1, &g_raid_volumes, v_global_next) {
1976                         if (vol1->v_global_id == id)
1977                                 break;
1978                 }
1979         }
1980         if (vol1 != NULL) {
1981                 for (id = 0; ; id++) {
1982                         LIST_FOREACH(vol1, &g_raid_volumes, v_global_next) {
1983                                 if (vol1->v_global_id == id)
1984                                         break;
1985                         }
1986                         if (vol1 == NULL)
1987                                 break;
1988                 }
1989         }
1990         vol->v_global_id = id;
1991         LIST_INSERT_HEAD(&g_raid_volumes, vol, v_global_next);
1992         g_topology_unlock();
1993
1994         /* Delay root mounting. */
1995         vol->v_rootmount = root_mount_hold("GRAID");
1996         G_RAID_DEBUG1(1, sc, "root_mount_hold %p", vol->v_rootmount);
1997         vol->v_starting = 1;
1998         TAILQ_INSERT_TAIL(&sc->sc_volumes, vol, v_next);
1999         return (vol);
2000 }
2001
2002 struct g_raid_disk *
2003 g_raid_create_disk(struct g_raid_softc *sc)
2004 {
2005         struct g_raid_disk      *disk;
2006
2007         G_RAID_DEBUG1(1, sc, "Creating disk.");
2008         disk = malloc(sizeof(*disk), M_RAID, M_WAITOK | M_ZERO);
2009         disk->d_softc = sc;
2010         disk->d_state = G_RAID_DISK_S_NONE;
2011         TAILQ_INIT(&disk->d_subdisks);
2012         TAILQ_INSERT_TAIL(&sc->sc_disks, disk, d_next);
2013         return (disk);
2014 }
2015
2016 int g_raid_start_volume(struct g_raid_volume *vol)
2017 {
2018         struct g_raid_tr_class *class;
2019         struct g_raid_tr_object *obj;
2020         int status;
2021
2022         G_RAID_DEBUG1(2, vol->v_softc, "Starting volume %s.", vol->v_name);
2023         LIST_FOREACH(class, &g_raid_tr_classes, trc_list) {
2024                 if (!class->trc_enable)
2025                         continue;
2026                 G_RAID_DEBUG1(2, vol->v_softc,
2027                     "Tasting volume %s for %s transformation.",
2028                     vol->v_name, class->name);
2029                 obj = (void *)kobj_create((kobj_class_t)class, M_RAID,
2030                     M_WAITOK);
2031                 obj->tro_class = class;
2032                 obj->tro_volume = vol;
2033                 status = G_RAID_TR_TASTE(obj, vol);
2034                 if (status != G_RAID_TR_TASTE_FAIL)
2035                         break;
2036                 kobj_delete((kobj_t)obj, M_RAID);
2037         }
2038         if (class == NULL) {
2039                 G_RAID_DEBUG1(0, vol->v_softc,
2040                     "No transformation module found for %s.",
2041                     vol->v_name);
2042                 vol->v_tr = NULL;
2043                 g_raid_change_volume_state(vol, G_RAID_VOLUME_S_UNSUPPORTED);
2044                 g_raid_event_send(vol, G_RAID_VOLUME_E_DOWN,
2045                     G_RAID_EVENT_VOLUME);
2046                 return (-1);
2047         }
2048         G_RAID_DEBUG1(2, vol->v_softc,
2049             "Transformation module %s chosen for %s.",
2050             class->name, vol->v_name);
2051         vol->v_tr = obj;
2052         return (0);
2053 }
2054
2055 int
2056 g_raid_destroy_node(struct g_raid_softc *sc, int worker)
2057 {
2058         struct g_raid_volume *vol, *tmpv;
2059         struct g_raid_disk *disk, *tmpd;
2060         int error = 0;
2061
2062         sc->sc_stopping = G_RAID_DESTROY_HARD;
2063         TAILQ_FOREACH_SAFE(vol, &sc->sc_volumes, v_next, tmpv) {
2064                 if (g_raid_destroy_volume(vol))
2065                         error = EBUSY;
2066         }
2067         if (error)
2068                 return (error);
2069         TAILQ_FOREACH_SAFE(disk, &sc->sc_disks, d_next, tmpd) {
2070                 if (g_raid_destroy_disk(disk))
2071                         error = EBUSY;
2072         }
2073         if (error)
2074                 return (error);
2075         if (sc->sc_md) {
2076                 G_RAID_MD_FREE(sc->sc_md);
2077                 kobj_delete((kobj_t)sc->sc_md, M_RAID);
2078                 sc->sc_md = NULL;
2079         }
2080         if (sc->sc_geom != NULL) {
2081                 G_RAID_DEBUG1(0, sc, "Array %s destroyed.", sc->sc_name);
2082                 g_topology_lock();
2083                 sc->sc_geom->softc = NULL;
2084                 g_wither_geom(sc->sc_geom, ENXIO);
2085                 g_topology_unlock();
2086                 sc->sc_geom = NULL;
2087         } else
2088                 G_RAID_DEBUG(1, "Array destroyed.");
2089         if (worker) {
2090                 g_raid_event_cancel(sc, sc);
2091                 mtx_destroy(&sc->sc_queue_mtx);
2092                 sx_xunlock(&sc->sc_lock);
2093                 sx_destroy(&sc->sc_lock);
2094                 wakeup(&sc->sc_stopping);
2095                 free(sc, M_RAID);
2096                 curthread->td_pflags &= ~TDP_GEOM;
2097                 G_RAID_DEBUG(1, "Thread exiting.");
2098                 kproc_exit(0);
2099         } else {
2100                 /* Wake up worker to make it selfdestruct. */
2101                 g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0);
2102         }
2103         return (0);
2104 }
2105
2106 int
2107 g_raid_destroy_volume(struct g_raid_volume *vol)
2108 {
2109         struct g_raid_softc *sc;
2110         struct g_raid_disk *disk;
2111         int i;
2112
2113         sc = vol->v_softc;
2114         G_RAID_DEBUG1(2, sc, "Destroying volume %s.", vol->v_name);
2115         vol->v_stopping = 1;
2116         if (vol->v_state != G_RAID_VOLUME_S_STOPPED) {
2117                 if (vol->v_tr) {
2118                         G_RAID_TR_STOP(vol->v_tr);
2119                         return (EBUSY);
2120                 } else
2121                         vol->v_state = G_RAID_VOLUME_S_STOPPED;
2122         }
2123         if (g_raid_event_check(sc, vol) != 0)
2124                 return (EBUSY);
2125         if (vol->v_provider != NULL)
2126                 return (EBUSY);
2127         if (vol->v_provider_open != 0)
2128                 return (EBUSY);
2129         if (vol->v_tr) {
2130                 G_RAID_TR_FREE(vol->v_tr);
2131                 kobj_delete((kobj_t)vol->v_tr, M_RAID);
2132                 vol->v_tr = NULL;
2133         }
2134         if (vol->v_rootmount)
2135                 root_mount_rel(vol->v_rootmount);
2136         g_topology_lock();
2137         LIST_REMOVE(vol, v_global_next);
2138         g_topology_unlock();
2139         TAILQ_REMOVE(&sc->sc_volumes, vol, v_next);
2140         for (i = 0; i < G_RAID_MAX_SUBDISKS; i++) {
2141                 g_raid_event_cancel(sc, &vol->v_subdisks[i]);
2142                 disk = vol->v_subdisks[i].sd_disk;
2143                 if (disk == NULL)
2144                         continue;
2145                 TAILQ_REMOVE(&disk->d_subdisks, &vol->v_subdisks[i], sd_next);
2146         }
2147         G_RAID_DEBUG1(2, sc, "Volume %s destroyed.", vol->v_name);
2148         if (sc->sc_md)
2149                 G_RAID_MD_FREE_VOLUME(sc->sc_md, vol);
2150         g_raid_event_cancel(sc, vol);
2151         free(vol, M_RAID);
2152         if (sc->sc_stopping == G_RAID_DESTROY_HARD) {
2153                 /* Wake up worker to let it selfdestruct. */
2154                 g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0);
2155         }
2156         return (0);
2157 }
2158
2159 int
2160 g_raid_destroy_disk(struct g_raid_disk *disk)
2161 {
2162         struct g_raid_softc *sc;
2163         struct g_raid_subdisk *sd, *tmp;
2164
2165         sc = disk->d_softc;
2166         G_RAID_DEBUG1(2, sc, "Destroying disk.");
2167         if (disk->d_consumer) {
2168                 g_raid_kill_consumer(sc, disk->d_consumer);
2169                 disk->d_consumer = NULL;
2170         }
2171         TAILQ_FOREACH_SAFE(sd, &disk->d_subdisks, sd_next, tmp) {
2172                 g_raid_change_subdisk_state(sd, G_RAID_SUBDISK_S_NONE);
2173                 g_raid_event_send(sd, G_RAID_SUBDISK_E_DISCONNECTED,
2174                     G_RAID_EVENT_SUBDISK);
2175                 TAILQ_REMOVE(&disk->d_subdisks, sd, sd_next);
2176                 sd->sd_disk = NULL;
2177         }
2178         TAILQ_REMOVE(&sc->sc_disks, disk, d_next);
2179         if (sc->sc_md)
2180                 G_RAID_MD_FREE_DISK(sc->sc_md, disk);
2181         g_raid_event_cancel(sc, disk);
2182         free(disk, M_RAID);
2183         return (0);
2184 }
2185
2186 int
2187 g_raid_destroy(struct g_raid_softc *sc, int how)
2188 {
2189         int error, opens;
2190
2191         g_topology_assert_not();
2192         if (sc == NULL)
2193                 return (ENXIO);
2194         sx_assert(&sc->sc_lock, SX_XLOCKED);
2195
2196         /* Count open volumes. */
2197         opens = g_raid_nopens(sc);
2198
2199         /* React on some opened volumes. */
2200         if (opens > 0) {
2201                 switch (how) {
2202                 case G_RAID_DESTROY_SOFT:
2203                         G_RAID_DEBUG1(1, sc,
2204                             "%d volumes are still open.",
2205                             opens);
2206                         sx_xunlock(&sc->sc_lock);
2207                         return (EBUSY);
2208                 case G_RAID_DESTROY_DELAYED:
2209                         G_RAID_DEBUG1(1, sc,
2210                             "Array will be destroyed on last close.");
2211                         sc->sc_stopping = G_RAID_DESTROY_DELAYED;
2212                         sx_xunlock(&sc->sc_lock);
2213                         return (EBUSY);
2214                 case G_RAID_DESTROY_HARD:
2215                         G_RAID_DEBUG1(1, sc,
2216                             "%d volumes are still open.",
2217                             opens);
2218                 }
2219         }
2220
2221         /* Mark node for destruction. */
2222         sc->sc_stopping = G_RAID_DESTROY_HARD;
2223         /* Wake up worker to let it selfdestruct. */
2224         g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0);
2225         /* Sleep until node destroyed. */
2226         error = sx_sleep(&sc->sc_stopping, &sc->sc_lock,
2227             PRIBIO | PDROP, "r:destroy", hz * 3);
2228         return (error == EWOULDBLOCK ? EBUSY : 0);
2229 }
2230
2231 static void
2232 g_raid_taste_orphan(struct g_consumer *cp)
2233 {
2234
2235         KASSERT(1 == 0, ("%s called while tasting %s.", __func__,
2236             cp->provider->name));
2237 }
2238
2239 static struct g_geom *
2240 g_raid_taste(struct g_class *mp, struct g_provider *pp, int flags __unused)
2241 {
2242         struct g_consumer *cp;
2243         struct g_geom *gp, *geom;
2244         struct g_raid_md_class *class;
2245         struct g_raid_md_object *obj;
2246         int status;
2247
2248         g_topology_assert();
2249         g_trace(G_T_TOPOLOGY, "%s(%s, %s)", __func__, mp->name, pp->name);
2250         if (!g_raid_enable)
2251                 return (NULL);
2252         G_RAID_DEBUG(2, "Tasting provider %s.", pp->name);
2253
2254         geom = NULL;
2255         status = G_RAID_MD_TASTE_FAIL;
2256         gp = g_new_geomf(mp, "raid:taste");
2257         /*
2258          * This orphan function should be never called.
2259          */
2260         gp->orphan = g_raid_taste_orphan;
2261         cp = g_new_consumer(gp);
2262         cp->flags |= G_CF_DIRECT_RECEIVE;
2263         g_attach(cp, pp);
2264         if (g_access(cp, 1, 0, 0) != 0)
2265                 goto ofail;
2266
2267         LIST_FOREACH(class, &g_raid_md_classes, mdc_list) {
2268                 if (!class->mdc_enable)
2269                         continue;
2270                 G_RAID_DEBUG(2, "Tasting provider %s for %s metadata.",
2271                     pp->name, class->name);
2272                 obj = (void *)kobj_create((kobj_class_t)class, M_RAID,
2273                     M_WAITOK);
2274                 obj->mdo_class = class;
2275                 status = G_RAID_MD_TASTE(obj, mp, cp, &geom);
2276                 if (status != G_RAID_MD_TASTE_NEW)
2277                         kobj_delete((kobj_t)obj, M_RAID);
2278                 if (status != G_RAID_MD_TASTE_FAIL)
2279                         break;
2280         }
2281
2282         if (status == G_RAID_MD_TASTE_FAIL)
2283                 (void)g_access(cp, -1, 0, 0);
2284 ofail:
2285         g_detach(cp);
2286         g_destroy_consumer(cp);
2287         g_destroy_geom(gp);
2288         G_RAID_DEBUG(2, "Tasting provider %s done.", pp->name);
2289         return (geom);
2290 }
2291
2292 int
2293 g_raid_create_node_format(const char *format, struct gctl_req *req,
2294     struct g_geom **gp)
2295 {
2296         struct g_raid_md_class *class;
2297         struct g_raid_md_object *obj;
2298         int status;
2299
2300         G_RAID_DEBUG(2, "Creating array for %s metadata.", format);
2301         LIST_FOREACH(class, &g_raid_md_classes, mdc_list) {
2302                 if (strcasecmp(class->name, format) == 0)
2303                         break;
2304         }
2305         if (class == NULL) {
2306                 G_RAID_DEBUG(1, "No support for %s metadata.", format);
2307                 return (G_RAID_MD_TASTE_FAIL);
2308         }
2309         obj = (void *)kobj_create((kobj_class_t)class, M_RAID,
2310             M_WAITOK);
2311         obj->mdo_class = class;
2312         status = G_RAID_MD_CREATE_REQ(obj, &g_raid_class, req, gp);
2313         if (status != G_RAID_MD_TASTE_NEW)
2314                 kobj_delete((kobj_t)obj, M_RAID);
2315         return (status);
2316 }
2317
2318 static int
2319 g_raid_destroy_geom(struct gctl_req *req __unused,
2320     struct g_class *mp __unused, struct g_geom *gp)
2321 {
2322         struct g_raid_softc *sc;
2323         int error;
2324
2325         g_topology_unlock();
2326         sc = gp->softc;
2327         sx_xlock(&sc->sc_lock);
2328         g_cancel_event(sc);
2329         error = g_raid_destroy(gp->softc, G_RAID_DESTROY_SOFT);
2330         g_topology_lock();
2331         return (error);
2332 }
2333
2334 void g_raid_write_metadata(struct g_raid_softc *sc, struct g_raid_volume *vol,
2335     struct g_raid_subdisk *sd, struct g_raid_disk *disk)
2336 {
2337
2338         if (sc->sc_stopping == G_RAID_DESTROY_HARD)
2339                 return;
2340         if (sc->sc_md)
2341                 G_RAID_MD_WRITE(sc->sc_md, vol, sd, disk);
2342 }
2343
2344 void g_raid_fail_disk(struct g_raid_softc *sc,
2345     struct g_raid_subdisk *sd, struct g_raid_disk *disk)
2346 {
2347
2348         if (disk == NULL)
2349                 disk = sd->sd_disk;
2350         if (disk == NULL) {
2351                 G_RAID_DEBUG1(0, sc, "Warning! Fail request to an absent disk!");
2352                 return;
2353         }
2354         if (disk->d_state != G_RAID_DISK_S_ACTIVE) {
2355                 G_RAID_DEBUG1(0, sc, "Warning! Fail request to a disk in a "
2356                     "wrong state (%s)!", g_raid_disk_state2str(disk->d_state));
2357                 return;
2358         }
2359         if (sc->sc_md)
2360                 G_RAID_MD_FAIL_DISK(sc->sc_md, sd, disk);
2361 }
2362
2363 static void
2364 g_raid_dumpconf(struct sbuf *sb, const char *indent, struct g_geom *gp,
2365     struct g_consumer *cp, struct g_provider *pp)
2366 {
2367         struct g_raid_softc *sc;
2368         struct g_raid_volume *vol;
2369         struct g_raid_subdisk *sd;
2370         struct g_raid_disk *disk;
2371         int i, s;
2372
2373         g_topology_assert();
2374
2375         sc = gp->softc;
2376         if (sc == NULL)
2377                 return;
2378         if (pp != NULL) {
2379                 vol = pp->private;
2380                 g_topology_unlock();
2381                 sx_xlock(&sc->sc_lock);
2382                 sbuf_printf(sb, "%s<descr>%s %s volume</descr>\n", indent,
2383                     sc->sc_md->mdo_class->name,
2384                     g_raid_volume_level2str(vol->v_raid_level,
2385                     vol->v_raid_level_qualifier));
2386                 sbuf_printf(sb, "%s<Label>%s</Label>\n", indent,
2387                     vol->v_name);
2388                 sbuf_printf(sb, "%s<RAIDLevel>%s</RAIDLevel>\n", indent,
2389                     g_raid_volume_level2str(vol->v_raid_level,
2390                     vol->v_raid_level_qualifier));
2391                 sbuf_printf(sb,
2392                     "%s<Transformation>%s</Transformation>\n", indent,
2393                     vol->v_tr ? vol->v_tr->tro_class->name : "NONE");
2394                 sbuf_printf(sb, "%s<Components>%u</Components>\n", indent,
2395                     vol->v_disks_count);
2396                 sbuf_printf(sb, "%s<Strip>%u</Strip>\n", indent,
2397                     vol->v_strip_size);
2398                 sbuf_printf(sb, "%s<State>%s</State>\n", indent,
2399                     g_raid_volume_state2str(vol->v_state));
2400                 sbuf_printf(sb, "%s<Dirty>%s</Dirty>\n", indent,
2401                     vol->v_dirty ? "Yes" : "No");
2402                 sbuf_printf(sb, "%s<Subdisks>", indent);
2403                 for (i = 0; i < vol->v_disks_count; i++) {
2404                         sd = &vol->v_subdisks[i];
2405                         if (sd->sd_disk != NULL &&
2406                             sd->sd_disk->d_consumer != NULL) {
2407                                 sbuf_printf(sb, "%s ",
2408                                     g_raid_get_diskname(sd->sd_disk));
2409                         } else {
2410                                 sbuf_printf(sb, "NONE ");
2411                         }
2412                         sbuf_printf(sb, "(%s",
2413                             g_raid_subdisk_state2str(sd->sd_state));
2414                         if (sd->sd_state == G_RAID_SUBDISK_S_REBUILD ||
2415                             sd->sd_state == G_RAID_SUBDISK_S_RESYNC) {
2416                                 sbuf_printf(sb, " %d%%",
2417                                     (int)(sd->sd_rebuild_pos * 100 /
2418                                      sd->sd_size));
2419                         }
2420                         sbuf_printf(sb, ")");
2421                         if (i + 1 < vol->v_disks_count)
2422                                 sbuf_printf(sb, ", ");
2423                 }
2424                 sbuf_printf(sb, "</Subdisks>\n");
2425                 sx_xunlock(&sc->sc_lock);
2426                 g_topology_lock();
2427         } else if (cp != NULL) {
2428                 disk = cp->private;
2429                 if (disk == NULL)
2430                         return;
2431                 g_topology_unlock();
2432                 sx_xlock(&sc->sc_lock);
2433                 sbuf_printf(sb, "%s<State>%s", indent,
2434                     g_raid_disk_state2str(disk->d_state));
2435                 if (!TAILQ_EMPTY(&disk->d_subdisks)) {
2436                         sbuf_printf(sb, " (");
2437                         TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) {
2438                                 sbuf_printf(sb, "%s",
2439                                     g_raid_subdisk_state2str(sd->sd_state));
2440                                 if (sd->sd_state == G_RAID_SUBDISK_S_REBUILD ||
2441                                     sd->sd_state == G_RAID_SUBDISK_S_RESYNC) {
2442                                         sbuf_printf(sb, " %d%%",
2443                                             (int)(sd->sd_rebuild_pos * 100 /
2444                                              sd->sd_size));
2445                                 }
2446                                 if (TAILQ_NEXT(sd, sd_next))
2447                                         sbuf_printf(sb, ", ");
2448                         }
2449                         sbuf_printf(sb, ")");
2450                 }
2451                 sbuf_printf(sb, "</State>\n");
2452                 sbuf_printf(sb, "%s<Subdisks>", indent);
2453                 TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) {
2454                         sbuf_printf(sb, "r%d(%s):%d@%ju",
2455                             sd->sd_volume->v_global_id,
2456                             sd->sd_volume->v_name,
2457                             sd->sd_pos, sd->sd_offset);
2458                         if (TAILQ_NEXT(sd, sd_next))
2459                                 sbuf_printf(sb, ", ");
2460                 }
2461                 sbuf_printf(sb, "</Subdisks>\n");
2462                 sbuf_printf(sb, "%s<ReadErrors>%d</ReadErrors>\n", indent,
2463                     disk->d_read_errs);
2464                 sx_xunlock(&sc->sc_lock);
2465                 g_topology_lock();
2466         } else {
2467                 g_topology_unlock();
2468                 sx_xlock(&sc->sc_lock);
2469                 if (sc->sc_md) {
2470                         sbuf_printf(sb, "%s<Metadata>%s</Metadata>\n", indent,
2471                             sc->sc_md->mdo_class->name);
2472                 }
2473                 if (!TAILQ_EMPTY(&sc->sc_volumes)) {
2474                         s = 0xff;
2475                         TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
2476                                 if (vol->v_state < s)
2477                                         s = vol->v_state;
2478                         }
2479                         sbuf_printf(sb, "%s<State>%s</State>\n", indent,
2480                             g_raid_volume_state2str(s));
2481                 }
2482                 sx_xunlock(&sc->sc_lock);
2483                 g_topology_lock();
2484         }
2485 }
2486
2487 static void
2488 g_raid_shutdown_post_sync(void *arg, int howto)
2489 {
2490         struct g_class *mp;
2491         struct g_geom *gp, *gp2;
2492         struct g_raid_softc *sc;
2493         struct g_raid_volume *vol;
2494
2495         mp = arg;
2496         DROP_GIANT();
2497         g_topology_lock();
2498         g_raid_shutdown = 1;
2499         LIST_FOREACH_SAFE(gp, &mp->geom, geom, gp2) {
2500                 if ((sc = gp->softc) == NULL)
2501                         continue;
2502                 g_topology_unlock();
2503                 sx_xlock(&sc->sc_lock);
2504                 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next)
2505                         g_raid_clean(vol, -1);
2506                 g_cancel_event(sc);
2507                 g_raid_destroy(sc, G_RAID_DESTROY_DELAYED);
2508                 g_topology_lock();
2509         }
2510         g_topology_unlock();
2511         PICKUP_GIANT();
2512 }
2513
2514 static void
2515 g_raid_init(struct g_class *mp)
2516 {
2517
2518         g_raid_post_sync = EVENTHANDLER_REGISTER(shutdown_post_sync,
2519             g_raid_shutdown_post_sync, mp, SHUTDOWN_PRI_FIRST);
2520         if (g_raid_post_sync == NULL)
2521                 G_RAID_DEBUG(0, "Warning! Cannot register shutdown event.");
2522         g_raid_started = 1;
2523 }
2524
2525 static void
2526 g_raid_fini(struct g_class *mp)
2527 {
2528
2529         if (g_raid_post_sync != NULL)
2530                 EVENTHANDLER_DEREGISTER(shutdown_post_sync, g_raid_post_sync);
2531         g_raid_started = 0;
2532 }
2533
2534 int
2535 g_raid_md_modevent(module_t mod, int type, void *arg)
2536 {
2537         struct g_raid_md_class *class, *c, *nc;
2538         int error;
2539
2540         error = 0;
2541         class = arg;
2542         switch (type) {
2543         case MOD_LOAD:
2544                 c = LIST_FIRST(&g_raid_md_classes);
2545                 if (c == NULL || c->mdc_priority > class->mdc_priority)
2546                         LIST_INSERT_HEAD(&g_raid_md_classes, class, mdc_list);
2547                 else {
2548                         while ((nc = LIST_NEXT(c, mdc_list)) != NULL &&
2549                             nc->mdc_priority < class->mdc_priority)
2550                                 c = nc;
2551                         LIST_INSERT_AFTER(c, class, mdc_list);
2552                 }
2553                 if (g_raid_started)
2554                         g_retaste(&g_raid_class);
2555                 break;
2556         case MOD_UNLOAD:
2557                 LIST_REMOVE(class, mdc_list);
2558                 break;
2559         default:
2560                 error = EOPNOTSUPP;
2561                 break;
2562         }
2563
2564         return (error);
2565 }
2566
2567 int
2568 g_raid_tr_modevent(module_t mod, int type, void *arg)
2569 {
2570         struct g_raid_tr_class *class, *c, *nc;
2571         int error;
2572
2573         error = 0;
2574         class = arg;
2575         switch (type) {
2576         case MOD_LOAD:
2577                 c = LIST_FIRST(&g_raid_tr_classes);
2578                 if (c == NULL || c->trc_priority > class->trc_priority)
2579                         LIST_INSERT_HEAD(&g_raid_tr_classes, class, trc_list);
2580                 else {
2581                         while ((nc = LIST_NEXT(c, trc_list)) != NULL &&
2582                             nc->trc_priority < class->trc_priority)
2583                                 c = nc;
2584                         LIST_INSERT_AFTER(c, class, trc_list);
2585                 }
2586                 break;
2587         case MOD_UNLOAD:
2588                 LIST_REMOVE(class, trc_list);
2589                 break;
2590         default:
2591                 error = EOPNOTSUPP;
2592                 break;
2593         }
2594
2595         return (error);
2596 }
2597
2598 /*
2599  * Use local implementation of DECLARE_GEOM_CLASS(g_raid_class, g_raid)
2600  * to reduce module priority, allowing submodules to register them first.
2601  */
2602 static moduledata_t g_raid_mod = {
2603         "g_raid",
2604         g_modevent,
2605         &g_raid_class
2606 };
2607 DECLARE_MODULE(g_raid, g_raid_mod, SI_SUB_DRIVERS, SI_ORDER_THIRD);
2608 MODULE_VERSION(geom_raid, 0);