]> CyberLeo.Net >> Repos - FreeBSD/releng/10.2.git/blob - sys/geom/raid/tr_raid1.c
- Copy stable/10@285827 to releng/10.2 in preparation for 10.2-RC1
[FreeBSD/releng/10.2.git] / sys / geom / raid / tr_raid1.c
1 /*-
2  * Copyright (c) 2010 Alexander Motin <mav@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29
30 #include <sys/param.h>
31 #include <sys/bio.h>
32 #include <sys/endian.h>
33 #include <sys/kernel.h>
34 #include <sys/kobj.h>
35 #include <sys/limits.h>
36 #include <sys/lock.h>
37 #include <sys/malloc.h>
38 #include <sys/mutex.h>
39 #include <sys/sysctl.h>
40 #include <sys/systm.h>
41 #include <geom/geom.h>
42 #include "geom/raid/g_raid.h"
43 #include "g_raid_tr_if.h"
44
45 SYSCTL_DECL(_kern_geom_raid_raid1);
46
47 #define RAID1_REBUILD_SLAB      (1 << 20) /* One transation in a rebuild */
48 static int g_raid1_rebuild_slab = RAID1_REBUILD_SLAB;
49 TUNABLE_INT("kern.geom.raid.raid1.rebuild_slab_size",
50     &g_raid1_rebuild_slab);
51 SYSCTL_UINT(_kern_geom_raid_raid1, OID_AUTO, rebuild_slab_size, CTLFLAG_RW,
52     &g_raid1_rebuild_slab, 0,
53     "Amount of the disk to rebuild each read/write cycle of the rebuild.");
54
55 #define RAID1_REBUILD_FAIR_IO 20 /* use 1/x of the available I/O */
56 static int g_raid1_rebuild_fair_io = RAID1_REBUILD_FAIR_IO;
57 TUNABLE_INT("kern.geom.raid.raid1.rebuild_fair_io",
58     &g_raid1_rebuild_fair_io);
59 SYSCTL_UINT(_kern_geom_raid_raid1, OID_AUTO, rebuild_fair_io, CTLFLAG_RW,
60     &g_raid1_rebuild_fair_io, 0,
61     "Fraction of the I/O bandwidth to use when disk busy for rebuild.");
62
63 #define RAID1_REBUILD_CLUSTER_IDLE 100
64 static int g_raid1_rebuild_cluster_idle = RAID1_REBUILD_CLUSTER_IDLE;
65 TUNABLE_INT("kern.geom.raid.raid1.rebuild_cluster_idle",
66     &g_raid1_rebuild_cluster_idle);
67 SYSCTL_UINT(_kern_geom_raid_raid1, OID_AUTO, rebuild_cluster_idle, CTLFLAG_RW,
68     &g_raid1_rebuild_cluster_idle, 0,
69     "Number of slabs to do each time we trigger a rebuild cycle");
70
71 #define RAID1_REBUILD_META_UPDATE 1024 /* update meta data every 1GB or so */
72 static int g_raid1_rebuild_meta_update = RAID1_REBUILD_META_UPDATE;
73 TUNABLE_INT("kern.geom.raid.raid1.rebuild_meta_update",
74     &g_raid1_rebuild_meta_update);
75 SYSCTL_UINT(_kern_geom_raid_raid1, OID_AUTO, rebuild_meta_update, CTLFLAG_RW,
76     &g_raid1_rebuild_meta_update, 0,
77     "When to update the meta data.");
78
79 static MALLOC_DEFINE(M_TR_RAID1, "tr_raid1_data", "GEOM_RAID RAID1 data");
80
81 #define TR_RAID1_NONE 0
82 #define TR_RAID1_REBUILD 1
83 #define TR_RAID1_RESYNC 2
84
85 #define TR_RAID1_F_DOING_SOME   0x1
86 #define TR_RAID1_F_LOCKED       0x2
87 #define TR_RAID1_F_ABORT        0x4
88
89 struct g_raid_tr_raid1_object {
90         struct g_raid_tr_object  trso_base;
91         int                      trso_starting;
92         int                      trso_stopping;
93         int                      trso_type;
94         int                      trso_recover_slabs; /* slabs before rest */
95         int                      trso_fair_io;
96         int                      trso_meta_update;
97         int                      trso_flags;
98         struct g_raid_subdisk   *trso_failed_sd; /* like per volume */
99         void                    *trso_buffer;    /* Buffer space */
100         struct bio               trso_bio;
101 };
102
103 static g_raid_tr_taste_t g_raid_tr_taste_raid1;
104 static g_raid_tr_event_t g_raid_tr_event_raid1;
105 static g_raid_tr_start_t g_raid_tr_start_raid1;
106 static g_raid_tr_stop_t g_raid_tr_stop_raid1;
107 static g_raid_tr_iostart_t g_raid_tr_iostart_raid1;
108 static g_raid_tr_iodone_t g_raid_tr_iodone_raid1;
109 static g_raid_tr_kerneldump_t g_raid_tr_kerneldump_raid1;
110 static g_raid_tr_locked_t g_raid_tr_locked_raid1;
111 static g_raid_tr_idle_t g_raid_tr_idle_raid1;
112 static g_raid_tr_free_t g_raid_tr_free_raid1;
113
114 static kobj_method_t g_raid_tr_raid1_methods[] = {
115         KOBJMETHOD(g_raid_tr_taste,     g_raid_tr_taste_raid1),
116         KOBJMETHOD(g_raid_tr_event,     g_raid_tr_event_raid1),
117         KOBJMETHOD(g_raid_tr_start,     g_raid_tr_start_raid1),
118         KOBJMETHOD(g_raid_tr_stop,      g_raid_tr_stop_raid1),
119         KOBJMETHOD(g_raid_tr_iostart,   g_raid_tr_iostart_raid1),
120         KOBJMETHOD(g_raid_tr_iodone,    g_raid_tr_iodone_raid1),
121         KOBJMETHOD(g_raid_tr_kerneldump, g_raid_tr_kerneldump_raid1),
122         KOBJMETHOD(g_raid_tr_locked,    g_raid_tr_locked_raid1),
123         KOBJMETHOD(g_raid_tr_idle,      g_raid_tr_idle_raid1),
124         KOBJMETHOD(g_raid_tr_free,      g_raid_tr_free_raid1),
125         { 0, 0 }
126 };
127
128 static struct g_raid_tr_class g_raid_tr_raid1_class = {
129         "RAID1",
130         g_raid_tr_raid1_methods,
131         sizeof(struct g_raid_tr_raid1_object),
132         .trc_enable = 1,
133         .trc_priority = 100,
134         .trc_accept_unmapped = 1
135 };
136
137 static void g_raid_tr_raid1_rebuild_abort(struct g_raid_tr_object *tr);
138 static void g_raid_tr_raid1_maybe_rebuild(struct g_raid_tr_object *tr,
139     struct g_raid_subdisk *sd);
140
141 static int
142 g_raid_tr_taste_raid1(struct g_raid_tr_object *tr, struct g_raid_volume *vol)
143 {
144         struct g_raid_tr_raid1_object *trs;
145
146         trs = (struct g_raid_tr_raid1_object *)tr;
147         if (tr->tro_volume->v_raid_level != G_RAID_VOLUME_RL_RAID1 ||
148             (tr->tro_volume->v_raid_level_qualifier != G_RAID_VOLUME_RLQ_R1SM &&
149              tr->tro_volume->v_raid_level_qualifier != G_RAID_VOLUME_RLQ_R1MM))
150                 return (G_RAID_TR_TASTE_FAIL);
151         trs->trso_starting = 1;
152         return (G_RAID_TR_TASTE_SUCCEED);
153 }
154
155 static int
156 g_raid_tr_update_state_raid1(struct g_raid_volume *vol,
157     struct g_raid_subdisk *sd)
158 {
159         struct g_raid_tr_raid1_object *trs;
160         struct g_raid_softc *sc;
161         struct g_raid_subdisk *tsd, *bestsd;
162         u_int s;
163         int i, na, ns;
164
165         sc = vol->v_softc;
166         trs = (struct g_raid_tr_raid1_object *)vol->v_tr;
167         if (trs->trso_stopping &&
168             (trs->trso_flags & TR_RAID1_F_DOING_SOME) == 0)
169                 s = G_RAID_VOLUME_S_STOPPED;
170         else if (trs->trso_starting)
171                 s = G_RAID_VOLUME_S_STARTING;
172         else {
173                 /* Make sure we have at least one ACTIVE disk. */
174                 na = g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_ACTIVE);
175                 if (na == 0) {
176                         /*
177                          * Critical situation! We have no any active disk!
178                          * Choose the best disk we have to make it active.
179                          */
180                         bestsd = &vol->v_subdisks[0];
181                         for (i = 1; i < vol->v_disks_count; i++) {
182                                 tsd = &vol->v_subdisks[i];
183                                 if (tsd->sd_state > bestsd->sd_state)
184                                         bestsd = tsd;
185                                 else if (tsd->sd_state == bestsd->sd_state &&
186                                     (tsd->sd_state == G_RAID_SUBDISK_S_REBUILD ||
187                                      tsd->sd_state == G_RAID_SUBDISK_S_RESYNC) &&
188                                     tsd->sd_rebuild_pos > bestsd->sd_rebuild_pos)
189                                         bestsd = tsd;
190                         }
191                         if (bestsd->sd_state >= G_RAID_SUBDISK_S_UNINITIALIZED) {
192                                 /* We found reasonable candidate. */
193                                 G_RAID_DEBUG1(1, sc,
194                                     "Promote subdisk %s:%d from %s to ACTIVE.",
195                                     vol->v_name, bestsd->sd_pos,
196                                     g_raid_subdisk_state2str(bestsd->sd_state));
197                                 g_raid_change_subdisk_state(bestsd,
198                                     G_RAID_SUBDISK_S_ACTIVE);
199                                 g_raid_write_metadata(sc,
200                                     vol, bestsd, bestsd->sd_disk);
201                         }
202                 }
203                 na = g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_ACTIVE);
204                 ns = g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_STALE) +
205                      g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_RESYNC);
206                 if (na == vol->v_disks_count)
207                         s = G_RAID_VOLUME_S_OPTIMAL;
208                 else if (na + ns == vol->v_disks_count)
209                         s = G_RAID_VOLUME_S_SUBOPTIMAL;
210                 else if (na > 0)
211                         s = G_RAID_VOLUME_S_DEGRADED;
212                 else
213                         s = G_RAID_VOLUME_S_BROKEN;
214                 g_raid_tr_raid1_maybe_rebuild(vol->v_tr, sd);
215         }
216         if (s != vol->v_state) {
217                 g_raid_event_send(vol, G_RAID_VOLUME_S_ALIVE(s) ?
218                     G_RAID_VOLUME_E_UP : G_RAID_VOLUME_E_DOWN,
219                     G_RAID_EVENT_VOLUME);
220                 g_raid_change_volume_state(vol, s);
221                 if (!trs->trso_starting && !trs->trso_stopping)
222                         g_raid_write_metadata(sc, vol, NULL, NULL);
223         }
224         return (0);
225 }
226
227 static void
228 g_raid_tr_raid1_fail_disk(struct g_raid_softc *sc, struct g_raid_subdisk *sd,
229     struct g_raid_disk *disk)
230 {
231         /*
232          * We don't fail the last disk in the pack, since it still has decent
233          * data on it and that's better than failing the disk if it is the root
234          * file system.
235          *
236          * XXX should this be controlled via a tunable?  It makes sense for
237          * the volume that has / on it.  I can't think of a case where we'd
238          * want the volume to go away on this kind of event.
239          */
240         if (g_raid_nsubdisks(sd->sd_volume, G_RAID_SUBDISK_S_ACTIVE) == 1 &&
241             g_raid_get_subdisk(sd->sd_volume, G_RAID_SUBDISK_S_ACTIVE) == sd)
242                 return;
243         g_raid_fail_disk(sc, sd, disk);
244 }
245
246 static void
247 g_raid_tr_raid1_rebuild_some(struct g_raid_tr_object *tr)
248 {
249         struct g_raid_tr_raid1_object *trs;
250         struct g_raid_subdisk *sd, *good_sd;
251         struct bio *bp;
252
253         trs = (struct g_raid_tr_raid1_object *)tr;
254         if (trs->trso_flags & TR_RAID1_F_DOING_SOME)
255                 return;
256         sd = trs->trso_failed_sd;
257         good_sd = g_raid_get_subdisk(sd->sd_volume, G_RAID_SUBDISK_S_ACTIVE);
258         if (good_sd == NULL) {
259                 g_raid_tr_raid1_rebuild_abort(tr);
260                 return;
261         }
262         bp = &trs->trso_bio;
263         memset(bp, 0, sizeof(*bp));
264         bp->bio_offset = sd->sd_rebuild_pos;
265         bp->bio_length = MIN(g_raid1_rebuild_slab,
266             sd->sd_size - sd->sd_rebuild_pos);
267         bp->bio_data = trs->trso_buffer;
268         bp->bio_cmd = BIO_READ;
269         bp->bio_cflags = G_RAID_BIO_FLAG_SYNC;
270         bp->bio_caller1 = good_sd;
271         trs->trso_flags |= TR_RAID1_F_DOING_SOME;
272         trs->trso_flags |= TR_RAID1_F_LOCKED;
273         g_raid_lock_range(sd->sd_volume,        /* Lock callback starts I/O */
274            bp->bio_offset, bp->bio_length, NULL, bp);
275 }
276
277 static void
278 g_raid_tr_raid1_rebuild_done(struct g_raid_tr_raid1_object *trs)
279 {
280         struct g_raid_volume *vol;
281         struct g_raid_subdisk *sd;
282
283         vol = trs->trso_base.tro_volume;
284         sd = trs->trso_failed_sd;
285         g_raid_write_metadata(vol->v_softc, vol, sd, sd->sd_disk);
286         free(trs->trso_buffer, M_TR_RAID1);
287         trs->trso_buffer = NULL;
288         trs->trso_flags &= ~TR_RAID1_F_DOING_SOME;
289         trs->trso_type = TR_RAID1_NONE;
290         trs->trso_recover_slabs = 0;
291         trs->trso_failed_sd = NULL;
292         g_raid_tr_update_state_raid1(vol, NULL);
293 }
294
295 static void
296 g_raid_tr_raid1_rebuild_finish(struct g_raid_tr_object *tr)
297 {
298         struct g_raid_tr_raid1_object *trs;
299         struct g_raid_subdisk *sd;
300
301         trs = (struct g_raid_tr_raid1_object *)tr;
302         sd = trs->trso_failed_sd;
303         G_RAID_DEBUG1(0, tr->tro_volume->v_softc,
304             "Subdisk %s:%d-%s rebuild completed.",
305             sd->sd_volume->v_name, sd->sd_pos,
306             sd->sd_disk ? g_raid_get_diskname(sd->sd_disk) : "[none]");
307         g_raid_change_subdisk_state(sd, G_RAID_SUBDISK_S_ACTIVE);
308         sd->sd_rebuild_pos = 0;
309         g_raid_tr_raid1_rebuild_done(trs);
310 }
311
312 static void
313 g_raid_tr_raid1_rebuild_abort(struct g_raid_tr_object *tr)
314 {
315         struct g_raid_tr_raid1_object *trs;
316         struct g_raid_subdisk *sd;
317         struct g_raid_volume *vol;
318         off_t len;
319
320         vol = tr->tro_volume;
321         trs = (struct g_raid_tr_raid1_object *)tr;
322         sd = trs->trso_failed_sd;
323         if (trs->trso_flags & TR_RAID1_F_DOING_SOME) {
324                 G_RAID_DEBUG1(1, vol->v_softc,
325                     "Subdisk %s:%d-%s rebuild is aborting.",
326                     sd->sd_volume->v_name, sd->sd_pos,
327                     sd->sd_disk ? g_raid_get_diskname(sd->sd_disk) : "[none]");
328                 trs->trso_flags |= TR_RAID1_F_ABORT;
329         } else {
330                 G_RAID_DEBUG1(0, vol->v_softc,
331                     "Subdisk %s:%d-%s rebuild aborted.",
332                     sd->sd_volume->v_name, sd->sd_pos,
333                     sd->sd_disk ? g_raid_get_diskname(sd->sd_disk) : "[none]");
334                 trs->trso_flags &= ~TR_RAID1_F_ABORT;
335                 if (trs->trso_flags & TR_RAID1_F_LOCKED) {
336                         trs->trso_flags &= ~TR_RAID1_F_LOCKED;
337                         len = MIN(g_raid1_rebuild_slab,
338                             sd->sd_size - sd->sd_rebuild_pos);
339                         g_raid_unlock_range(tr->tro_volume,
340                             sd->sd_rebuild_pos, len);
341                 }
342                 g_raid_tr_raid1_rebuild_done(trs);
343         }
344 }
345
346 static void
347 g_raid_tr_raid1_rebuild_start(struct g_raid_tr_object *tr)
348 {
349         struct g_raid_volume *vol;
350         struct g_raid_tr_raid1_object *trs;
351         struct g_raid_subdisk *sd, *fsd;
352
353         vol = tr->tro_volume;
354         trs = (struct g_raid_tr_raid1_object *)tr;
355         if (trs->trso_failed_sd) {
356                 G_RAID_DEBUG1(1, vol->v_softc,
357                     "Already rebuild in start rebuild. pos %jd\n",
358                     (intmax_t)trs->trso_failed_sd->sd_rebuild_pos);
359                 return;
360         }
361         sd = g_raid_get_subdisk(vol, G_RAID_SUBDISK_S_ACTIVE);
362         if (sd == NULL) {
363                 G_RAID_DEBUG1(1, vol->v_softc,
364                     "No active disk to rebuild.  night night.");
365                 return;
366         }
367         fsd = g_raid_get_subdisk(vol, G_RAID_SUBDISK_S_RESYNC);
368         if (fsd == NULL)
369                 fsd = g_raid_get_subdisk(vol, G_RAID_SUBDISK_S_REBUILD);
370         if (fsd == NULL) {
371                 fsd = g_raid_get_subdisk(vol, G_RAID_SUBDISK_S_STALE);
372                 if (fsd != NULL) {
373                         fsd->sd_rebuild_pos = 0;
374                         g_raid_change_subdisk_state(fsd,
375                             G_RAID_SUBDISK_S_RESYNC);
376                         g_raid_write_metadata(vol->v_softc, vol, fsd, NULL);
377                 } else {
378                         fsd = g_raid_get_subdisk(vol,
379                             G_RAID_SUBDISK_S_UNINITIALIZED);
380                         if (fsd == NULL)
381                                 fsd = g_raid_get_subdisk(vol,
382                                     G_RAID_SUBDISK_S_NEW);
383                         if (fsd != NULL) {
384                                 fsd->sd_rebuild_pos = 0;
385                                 g_raid_change_subdisk_state(fsd,
386                                     G_RAID_SUBDISK_S_REBUILD);
387                                 g_raid_write_metadata(vol->v_softc,
388                                     vol, fsd, NULL);
389                         }
390                 }
391         }
392         if (fsd == NULL) {
393                 G_RAID_DEBUG1(1, vol->v_softc,
394                     "No failed disk to rebuild.  night night.");
395                 return;
396         }
397         trs->trso_failed_sd = fsd;
398         G_RAID_DEBUG1(0, vol->v_softc,
399             "Subdisk %s:%d-%s rebuild start at %jd.",
400             fsd->sd_volume->v_name, fsd->sd_pos,
401             fsd->sd_disk ? g_raid_get_diskname(fsd->sd_disk) : "[none]",
402             trs->trso_failed_sd->sd_rebuild_pos);
403         trs->trso_type = TR_RAID1_REBUILD;
404         trs->trso_buffer = malloc(g_raid1_rebuild_slab, M_TR_RAID1, M_WAITOK);
405         trs->trso_meta_update = g_raid1_rebuild_meta_update;
406         g_raid_tr_raid1_rebuild_some(tr);
407 }
408
409
410 static void
411 g_raid_tr_raid1_maybe_rebuild(struct g_raid_tr_object *tr,
412     struct g_raid_subdisk *sd)
413 {
414         struct g_raid_volume *vol;
415         struct g_raid_tr_raid1_object *trs;
416         int na, nr;
417         
418         /*
419          * If we're stopping, don't do anything.  If we don't have at least one
420          * good disk and one bad disk, we don't do anything.  And if there's a
421          * 'good disk' stored in the trs, then we're in progress and we punt.
422          * If we make it past all these checks, we need to rebuild.
423          */
424         vol = tr->tro_volume;
425         trs = (struct g_raid_tr_raid1_object *)tr;
426         if (trs->trso_stopping)
427                 return;
428         na = g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_ACTIVE);
429         nr = g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_REBUILD) +
430             g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_RESYNC);
431         switch(trs->trso_type) {
432         case TR_RAID1_NONE:
433                 if (na == 0)
434                         return;
435                 if (nr == 0) {
436                         nr = g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_NEW) +
437                             g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_STALE) +
438                             g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_UNINITIALIZED);
439                         if (nr == 0)
440                                 return;
441                 }
442                 g_raid_tr_raid1_rebuild_start(tr);
443                 break;
444         case TR_RAID1_REBUILD:
445                 if (na == 0 || nr == 0 || trs->trso_failed_sd == sd)
446                         g_raid_tr_raid1_rebuild_abort(tr);
447                 break;
448         case TR_RAID1_RESYNC:
449                 break;
450         }
451 }
452
453 static int
454 g_raid_tr_event_raid1(struct g_raid_tr_object *tr,
455     struct g_raid_subdisk *sd, u_int event)
456 {
457
458         g_raid_tr_update_state_raid1(tr->tro_volume, sd);
459         return (0);
460 }
461
462 static int
463 g_raid_tr_start_raid1(struct g_raid_tr_object *tr)
464 {
465         struct g_raid_tr_raid1_object *trs;
466         struct g_raid_volume *vol;
467
468         trs = (struct g_raid_tr_raid1_object *)tr;
469         vol = tr->tro_volume;
470         trs->trso_starting = 0;
471         g_raid_tr_update_state_raid1(vol, NULL);
472         return (0);
473 }
474
475 static int
476 g_raid_tr_stop_raid1(struct g_raid_tr_object *tr)
477 {
478         struct g_raid_tr_raid1_object *trs;
479         struct g_raid_volume *vol;
480
481         trs = (struct g_raid_tr_raid1_object *)tr;
482         vol = tr->tro_volume;
483         trs->trso_starting = 0;
484         trs->trso_stopping = 1;
485         g_raid_tr_update_state_raid1(vol, NULL);
486         return (0);
487 }
488
489 /*
490  * Select the disk to read from.  Take into account: subdisk state, running
491  * error recovery, average disk load, head position and possible cache hits.
492  */
493 #define ABS(x)          (((x) >= 0) ? (x) : (-(x)))
494 static struct g_raid_subdisk *
495 g_raid_tr_raid1_select_read_disk(struct g_raid_volume *vol, struct bio *bp,
496     u_int mask)
497 {
498         struct g_raid_subdisk *sd, *best;
499         int i, prio, bestprio;
500
501         best = NULL;
502         bestprio = INT_MAX;
503         for (i = 0; i < vol->v_disks_count; i++) {
504                 sd = &vol->v_subdisks[i];
505                 if (sd->sd_state != G_RAID_SUBDISK_S_ACTIVE &&
506                     ((sd->sd_state != G_RAID_SUBDISK_S_REBUILD &&
507                       sd->sd_state != G_RAID_SUBDISK_S_RESYNC) ||
508                      bp->bio_offset + bp->bio_length > sd->sd_rebuild_pos))
509                         continue;
510                 if ((mask & (1 << i)) != 0)
511                         continue;
512                 prio = G_RAID_SUBDISK_LOAD(sd);
513                 prio += min(sd->sd_recovery, 255) << 22;
514                 prio += (G_RAID_SUBDISK_S_ACTIVE - sd->sd_state) << 16;
515                 /* If disk head is precisely in position - highly prefer it. */
516                 if (G_RAID_SUBDISK_POS(sd) == bp->bio_offset)
517                         prio -= 2 * G_RAID_SUBDISK_LOAD_SCALE;
518                 else
519                 /* If disk head is close to position - prefer it. */
520                 if (ABS(G_RAID_SUBDISK_POS(sd) - bp->bio_offset) <
521                     G_RAID_SUBDISK_TRACK_SIZE)
522                         prio -= 1 * G_RAID_SUBDISK_LOAD_SCALE;
523                 if (prio < bestprio) {
524                         best = sd;
525                         bestprio = prio;
526                 }
527         }
528         return (best);
529 }
530
531 static void
532 g_raid_tr_iostart_raid1_read(struct g_raid_tr_object *tr, struct bio *bp)
533 {
534         struct g_raid_subdisk *sd;
535         struct bio *cbp;
536
537         sd = g_raid_tr_raid1_select_read_disk(tr->tro_volume, bp, 0);
538         KASSERT(sd != NULL, ("No active disks in volume %s.",
539                 tr->tro_volume->v_name));
540
541         cbp = g_clone_bio(bp);
542         if (cbp == NULL) {
543                 g_raid_iodone(bp, ENOMEM);
544                 return;
545         }
546
547         g_raid_subdisk_iostart(sd, cbp);
548 }
549
550 static void
551 g_raid_tr_iostart_raid1_write(struct g_raid_tr_object *tr, struct bio *bp)
552 {
553         struct g_raid_volume *vol;
554         struct g_raid_subdisk *sd;
555         struct bio_queue_head queue;
556         struct bio *cbp;
557         int i;
558
559         vol = tr->tro_volume;
560
561         /*
562          * Allocate all bios before sending any request, so we can return
563          * ENOMEM in nice and clean way.
564          */
565         bioq_init(&queue);
566         for (i = 0; i < vol->v_disks_count; i++) {
567                 sd = &vol->v_subdisks[i];
568                 switch (sd->sd_state) {
569                 case G_RAID_SUBDISK_S_ACTIVE:
570                         break;
571                 case G_RAID_SUBDISK_S_REBUILD:
572                         /*
573                          * When rebuilding, only part of this subdisk is
574                          * writable, the rest will be written as part of the
575                          * that process.
576                          */
577                         if (bp->bio_offset >= sd->sd_rebuild_pos)
578                                 continue;
579                         break;
580                 case G_RAID_SUBDISK_S_STALE:
581                 case G_RAID_SUBDISK_S_RESYNC:
582                         /*
583                          * Resyncing still writes on the theory that the
584                          * resync'd disk is very close and writing it will
585                          * keep it that way better if we keep up while
586                          * resyncing.
587                          */
588                         break;
589                 default:
590                         continue;
591                 }
592                 cbp = g_clone_bio(bp);
593                 if (cbp == NULL)
594                         goto failure;
595                 cbp->bio_caller1 = sd;
596                 bioq_insert_tail(&queue, cbp);
597         }
598         while ((cbp = bioq_takefirst(&queue)) != NULL) {
599                 sd = cbp->bio_caller1;
600                 cbp->bio_caller1 = NULL;
601                 g_raid_subdisk_iostart(sd, cbp);
602         }
603         return;
604 failure:
605         while ((cbp = bioq_takefirst(&queue)) != NULL)
606                 g_destroy_bio(cbp);
607         if (bp->bio_error == 0)
608                 bp->bio_error = ENOMEM;
609         g_raid_iodone(bp, bp->bio_error);
610 }
611
612 static void
613 g_raid_tr_iostart_raid1(struct g_raid_tr_object *tr, struct bio *bp)
614 {
615         struct g_raid_volume *vol;
616         struct g_raid_tr_raid1_object *trs;
617
618         vol = tr->tro_volume;
619         trs = (struct g_raid_tr_raid1_object *)tr;
620         if (vol->v_state != G_RAID_VOLUME_S_OPTIMAL &&
621             vol->v_state != G_RAID_VOLUME_S_SUBOPTIMAL &&
622             vol->v_state != G_RAID_VOLUME_S_DEGRADED) {
623                 g_raid_iodone(bp, EIO);
624                 return;
625         }
626         /*
627          * If we're rebuilding, squeeze in rebuild activity every so often,
628          * even when the disk is busy.  Be sure to only count real I/O
629          * to the disk.  All 'SPECIAL' I/O is traffic generated to the disk
630          * by this module.
631          */
632         if (trs->trso_failed_sd != NULL &&
633             !(bp->bio_cflags & G_RAID_BIO_FLAG_SPECIAL)) {
634                 /* Make this new or running now round short. */
635                 trs->trso_recover_slabs = 0;
636                 if (--trs->trso_fair_io <= 0) {
637                         trs->trso_fair_io = g_raid1_rebuild_fair_io;
638                         g_raid_tr_raid1_rebuild_some(tr);
639                 }
640         }
641         switch (bp->bio_cmd) {
642         case BIO_READ:
643                 g_raid_tr_iostart_raid1_read(tr, bp);
644                 break;
645         case BIO_WRITE:
646         case BIO_DELETE:
647                 g_raid_tr_iostart_raid1_write(tr, bp);
648                 break;
649         case BIO_FLUSH:
650                 g_raid_tr_flush_common(tr, bp);
651                 break;
652         default:
653                 KASSERT(1 == 0, ("Invalid command here: %u (volume=%s)",
654                     bp->bio_cmd, vol->v_name));
655                 break;
656         }
657 }
658
659 static void
660 g_raid_tr_iodone_raid1(struct g_raid_tr_object *tr,
661     struct g_raid_subdisk *sd, struct bio *bp)
662 {
663         struct bio *cbp;
664         struct g_raid_subdisk *nsd;
665         struct g_raid_volume *vol;
666         struct bio *pbp;
667         struct g_raid_tr_raid1_object *trs;
668         uintptr_t *mask;
669         int error, do_write;
670
671         trs = (struct g_raid_tr_raid1_object *)tr;
672         vol = tr->tro_volume;
673         if (bp->bio_cflags & G_RAID_BIO_FLAG_SYNC) {
674                 /*
675                  * This operation is part of a rebuild or resync operation.
676                  * See what work just got done, then schedule the next bit of
677                  * work, if any.  Rebuild/resync is done a little bit at a
678                  * time.  Either when a timeout happens, or after we get a
679                  * bunch of I/Os to the disk (to make sure an active system
680                  * will complete in a sane amount of time).
681                  *
682                  * We are setup to do differing amounts of work for each of
683                  * these cases.  so long as the slabs is smallish (less than
684                  * 50 or so, I'd guess, but that's just a WAG), we shouldn't
685                  * have any bio starvation issues.  For active disks, we do
686                  * 5MB of data, for inactive ones, we do 50MB.
687                  */
688                 if (trs->trso_type == TR_RAID1_REBUILD) {
689                         if (bp->bio_cmd == BIO_READ) {
690
691                                 /* Immediately abort rebuild, if requested. */
692                                 if (trs->trso_flags & TR_RAID1_F_ABORT) {
693                                         trs->trso_flags &= ~TR_RAID1_F_DOING_SOME;
694                                         g_raid_tr_raid1_rebuild_abort(tr);
695                                         return;
696                                 }
697
698                                 /* On read error, skip and cross fingers. */
699                                 if (bp->bio_error != 0) {
700                                         G_RAID_LOGREQ(0, bp,
701                                             "Read error during rebuild (%d), "
702                                             "possible data loss!",
703                                             bp->bio_error);
704                                         goto rebuild_round_done;
705                                 }
706
707                                 /*
708                                  * The read operation finished, queue the
709                                  * write and get out.
710                                  */
711                                 G_RAID_LOGREQ(4, bp, "rebuild read done. %d",
712                                     bp->bio_error);
713                                 bp->bio_cmd = BIO_WRITE;
714                                 bp->bio_cflags = G_RAID_BIO_FLAG_SYNC;
715                                 G_RAID_LOGREQ(4, bp, "Queueing rebuild write.");
716                                 g_raid_subdisk_iostart(trs->trso_failed_sd, bp);
717                         } else {
718                                 /*
719                                  * The write operation just finished.  Do
720                                  * another.  We keep cloning the master bio
721                                  * since it has the right buffers allocated to
722                                  * it.
723                                  */
724                                 G_RAID_LOGREQ(4, bp,
725                                     "rebuild write done. Error %d",
726                                     bp->bio_error);
727                                 nsd = trs->trso_failed_sd;
728                                 if (bp->bio_error != 0 ||
729                                     trs->trso_flags & TR_RAID1_F_ABORT) {
730                                         if ((trs->trso_flags &
731                                             TR_RAID1_F_ABORT) == 0) {
732                                                 g_raid_tr_raid1_fail_disk(sd->sd_softc,
733                                                     nsd, nsd->sd_disk);
734                                         }
735                                         trs->trso_flags &= ~TR_RAID1_F_DOING_SOME;
736                                         g_raid_tr_raid1_rebuild_abort(tr);
737                                         return;
738                                 }
739 rebuild_round_done:
740                                 nsd = trs->trso_failed_sd;
741                                 trs->trso_flags &= ~TR_RAID1_F_LOCKED;
742                                 g_raid_unlock_range(sd->sd_volume,
743                                     bp->bio_offset, bp->bio_length);
744                                 nsd->sd_rebuild_pos += bp->bio_length;
745                                 if (nsd->sd_rebuild_pos >= nsd->sd_size) {
746                                         g_raid_tr_raid1_rebuild_finish(tr);
747                                         return;
748                                 }
749
750                                 /* Abort rebuild if we are stopping */
751                                 if (trs->trso_stopping) {
752                                         trs->trso_flags &= ~TR_RAID1_F_DOING_SOME;
753                                         g_raid_tr_raid1_rebuild_abort(tr);
754                                         return;
755                                 }
756
757                                 if (--trs->trso_meta_update <= 0) {
758                                         g_raid_write_metadata(vol->v_softc,
759                                             vol, nsd, nsd->sd_disk);
760                                         trs->trso_meta_update =
761                                             g_raid1_rebuild_meta_update;
762                                 }
763                                 trs->trso_flags &= ~TR_RAID1_F_DOING_SOME;
764                                 if (--trs->trso_recover_slabs <= 0)
765                                         return;
766                                 g_raid_tr_raid1_rebuild_some(tr);
767                         }
768                 } else if (trs->trso_type == TR_RAID1_RESYNC) {
769                         /*
770                          * read good sd, read bad sd in parallel.  when both
771                          * done, compare the buffers.  write good to the bad
772                          * if different.  do the next bit of work.
773                          */
774                         panic("Somehow, we think we're doing a resync");
775                 }
776                 return;
777         }
778         pbp = bp->bio_parent;
779         pbp->bio_inbed++;
780         if (bp->bio_cmd == BIO_READ && bp->bio_error != 0) {
781                 /*
782                  * Read failed on first drive.  Retry the read error on
783                  * another disk drive, if available, before erroring out the
784                  * read.
785                  */
786                 sd->sd_disk->d_read_errs++;
787                 G_RAID_LOGREQ(0, bp,
788                     "Read error (%d), %d read errors total",
789                     bp->bio_error, sd->sd_disk->d_read_errs);
790
791                 /*
792                  * If there are too many read errors, we move to degraded.
793                  * XXX Do we want to FAIL the drive (eg, make the user redo
794                  * everything to get it back in sync), or just degrade the
795                  * drive, which kicks off a resync?
796                  */
797                 do_write = 1;
798                 if (sd->sd_disk->d_read_errs > g_raid_read_err_thresh) {
799                         g_raid_tr_raid1_fail_disk(sd->sd_softc, sd, sd->sd_disk);
800                         if (pbp->bio_children == 1)
801                                 do_write = 0;
802                 }
803
804                 /*
805                  * Find the other disk, and try to do the I/O to it.
806                  */
807                 mask = (uintptr_t *)(&pbp->bio_driver2);
808                 if (pbp->bio_children == 1) {
809                         /* Save original subdisk. */
810                         pbp->bio_driver1 = do_write ? sd : NULL;
811                         *mask = 0;
812                 }
813                 *mask |= 1 << sd->sd_pos;
814                 nsd = g_raid_tr_raid1_select_read_disk(vol, pbp, *mask);
815                 if (nsd != NULL && (cbp = g_clone_bio(pbp)) != NULL) {
816                         g_destroy_bio(bp);
817                         G_RAID_LOGREQ(2, cbp, "Retrying read from %d",
818                             nsd->sd_pos);
819                         if (pbp->bio_children == 2 && do_write) {
820                                 sd->sd_recovery++;
821                                 cbp->bio_caller1 = nsd;
822                                 pbp->bio_pflags = G_RAID_BIO_FLAG_LOCKED;
823                                 /* Lock callback starts I/O */
824                                 g_raid_lock_range(sd->sd_volume,
825                                     cbp->bio_offset, cbp->bio_length, pbp, cbp);
826                         } else {
827                                 g_raid_subdisk_iostart(nsd, cbp);
828                         }
829                         return;
830                 }
831                 /*
832                  * We can't retry.  Return the original error by falling
833                  * through.  This will happen when there's only one good disk.
834                  * We don't need to fail the raid, since its actual state is
835                  * based on the state of the subdisks.
836                  */
837                 G_RAID_LOGREQ(2, bp, "Couldn't retry read, failing it");
838         }
839         if (bp->bio_cmd == BIO_READ &&
840             bp->bio_error == 0 &&
841             pbp->bio_children > 1 &&
842             pbp->bio_driver1 != NULL) {
843                 /*
844                  * If it was a read, and bio_children is >1, then we just
845                  * recovered the data from the second drive.  We should try to
846                  * write that data to the first drive if sector remapping is
847                  * enabled.  A write should put the data in a new place on the
848                  * disk, remapping the bad sector.  Do we need to do that by
849                  * queueing a request to the main worker thread?  It doesn't
850                  * affect the return code of this current read, and can be
851                  * done at our liesure.  However, to make the code simpler, it
852                  * is done syncrhonously.
853                  */
854                 G_RAID_LOGREQ(3, bp, "Recovered data from other drive");
855                 cbp = g_clone_bio(pbp);
856                 if (cbp != NULL) {
857                         g_destroy_bio(bp);
858                         cbp->bio_cmd = BIO_WRITE;
859                         cbp->bio_cflags = G_RAID_BIO_FLAG_REMAP;
860                         G_RAID_LOGREQ(2, cbp,
861                             "Attempting bad sector remap on failing drive.");
862                         g_raid_subdisk_iostart(pbp->bio_driver1, cbp);
863                         return;
864                 }
865         }
866         if (pbp->bio_pflags & G_RAID_BIO_FLAG_LOCKED) {
867                 /*
868                  * We're done with a recovery, mark the range as unlocked.
869                  * For any write errors, we agressively fail the disk since
870                  * there was both a READ and a WRITE error at this location.
871                  * Both types of errors generally indicates the drive is on
872                  * the verge of total failure anyway.  Better to stop trusting
873                  * it now.  However, we need to reset error to 0 in that case
874                  * because we're not failing the original I/O which succeeded.
875                  */
876                 if (bp->bio_cmd == BIO_WRITE && bp->bio_error) {
877                         G_RAID_LOGREQ(0, bp, "Remap write failed: "
878                             "failing subdisk.");
879                         g_raid_tr_raid1_fail_disk(sd->sd_softc, sd, sd->sd_disk);
880                         bp->bio_error = 0;
881                 }
882                 if (pbp->bio_driver1 != NULL) {
883                         ((struct g_raid_subdisk *)pbp->bio_driver1)
884                             ->sd_recovery--;
885                 }
886                 G_RAID_LOGREQ(2, bp, "REMAP done %d.", bp->bio_error);
887                 g_raid_unlock_range(sd->sd_volume, bp->bio_offset,
888                     bp->bio_length);
889         }
890         if (pbp->bio_cmd != BIO_READ) {
891                 if (pbp->bio_inbed == 1 || pbp->bio_error != 0)
892                         pbp->bio_error = bp->bio_error;
893                 if (pbp->bio_cmd == BIO_WRITE && bp->bio_error != 0) {
894                         G_RAID_LOGREQ(0, bp, "Write failed: failing subdisk.");
895                         g_raid_tr_raid1_fail_disk(sd->sd_softc, sd, sd->sd_disk);
896                 }
897                 error = pbp->bio_error;
898         } else
899                 error = bp->bio_error;
900         g_destroy_bio(bp);
901         if (pbp->bio_children == pbp->bio_inbed) {
902                 pbp->bio_completed = pbp->bio_length;
903                 g_raid_iodone(pbp, error);
904         }
905 }
906
907 static int
908 g_raid_tr_kerneldump_raid1(struct g_raid_tr_object *tr,
909     void *virtual, vm_offset_t physical, off_t offset, size_t length)
910 {
911         struct g_raid_volume *vol;
912         struct g_raid_subdisk *sd;
913         int error, i, ok;
914
915         vol = tr->tro_volume;
916         error = 0;
917         ok = 0;
918         for (i = 0; i < vol->v_disks_count; i++) {
919                 sd = &vol->v_subdisks[i];
920                 switch (sd->sd_state) {
921                 case G_RAID_SUBDISK_S_ACTIVE:
922                         break;
923                 case G_RAID_SUBDISK_S_REBUILD:
924                         /*
925                          * When rebuilding, only part of this subdisk is
926                          * writable, the rest will be written as part of the
927                          * that process.
928                          */
929                         if (offset >= sd->sd_rebuild_pos)
930                                 continue;
931                         break;
932                 case G_RAID_SUBDISK_S_STALE:
933                 case G_RAID_SUBDISK_S_RESYNC:
934                         /*
935                          * Resyncing still writes on the theory that the
936                          * resync'd disk is very close and writing it will
937                          * keep it that way better if we keep up while
938                          * resyncing.
939                          */
940                         break;
941                 default:
942                         continue;
943                 }
944                 error = g_raid_subdisk_kerneldump(sd,
945                     virtual, physical, offset, length);
946                 if (error == 0)
947                         ok++;
948         }
949         return (ok > 0 ? 0 : error);
950 }
951
952 static int
953 g_raid_tr_locked_raid1(struct g_raid_tr_object *tr, void *argp)
954 {
955         struct bio *bp;
956         struct g_raid_subdisk *sd;
957
958         bp = (struct bio *)argp;
959         sd = (struct g_raid_subdisk *)bp->bio_caller1;
960         g_raid_subdisk_iostart(sd, bp);
961
962         return (0);
963 }
964
965 static int
966 g_raid_tr_idle_raid1(struct g_raid_tr_object *tr)
967 {
968         struct g_raid_tr_raid1_object *trs;
969
970         trs = (struct g_raid_tr_raid1_object *)tr;
971         trs->trso_fair_io = g_raid1_rebuild_fair_io;
972         trs->trso_recover_slabs = g_raid1_rebuild_cluster_idle;
973         if (trs->trso_type == TR_RAID1_REBUILD)
974                 g_raid_tr_raid1_rebuild_some(tr);
975         return (0);
976 }
977
978 static int
979 g_raid_tr_free_raid1(struct g_raid_tr_object *tr)
980 {
981         struct g_raid_tr_raid1_object *trs;
982
983         trs = (struct g_raid_tr_raid1_object *)tr;
984
985         if (trs->trso_buffer != NULL) {
986                 free(trs->trso_buffer, M_TR_RAID1);
987                 trs->trso_buffer = NULL;
988         }
989         return (0);
990 }
991
992 G_RAID_TR_DECLARE(raid1, "RAID1");