]> CyberLeo.Net >> Repos - FreeBSD/releng/10.2.git/blob - sys/kern/kern_clocksource.c
- Copy stable/10@285827 to releng/10.2 in preparation for 10.2-RC1
[FreeBSD/releng/10.2.git] / sys / kern / kern_clocksource.c
1 /*-
2  * Copyright (c) 2010-2013 Alexander Motin <mav@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification, immediately at the beginning of the file.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29
30 /*
31  * Common routines to manage event timers hardware.
32  */
33
34 #include "opt_device_polling.h"
35 #include "opt_kdtrace.h"
36
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/bus.h>
40 #include <sys/limits.h>
41 #include <sys/lock.h>
42 #include <sys/kdb.h>
43 #include <sys/ktr.h>
44 #include <sys/mutex.h>
45 #include <sys/proc.h>
46 #include <sys/kernel.h>
47 #include <sys/sched.h>
48 #include <sys/smp.h>
49 #include <sys/sysctl.h>
50 #include <sys/timeet.h>
51 #include <sys/timetc.h>
52
53 #include <machine/atomic.h>
54 #include <machine/clock.h>
55 #include <machine/cpu.h>
56 #include <machine/smp.h>
57
58 int                     cpu_deepest_sleep = 0;  /* Deepest Cx state available. */
59 int                     cpu_disable_c2_sleep = 0; /* Timer dies in C2. */
60 int                     cpu_disable_c3_sleep = 0; /* Timer dies in C3. */
61
62 static void             setuptimer(void);
63 static void             loadtimer(sbintime_t now, int first);
64 static int              doconfigtimer(void);
65 static void             configtimer(int start);
66 static int              round_freq(struct eventtimer *et, int freq);
67
68 static sbintime_t       getnextcpuevent(int idle);
69 static sbintime_t       getnextevent(void);
70 static int              handleevents(sbintime_t now, int fake);
71
72 static struct mtx       et_hw_mtx;
73
74 #define ET_HW_LOCK(state)                                               \
75         {                                                               \
76                 if (timer->et_flags & ET_FLAGS_PERCPU)                  \
77                         mtx_lock_spin(&(state)->et_hw_mtx);             \
78                 else                                                    \
79                         mtx_lock_spin(&et_hw_mtx);                      \
80         }
81
82 #define ET_HW_UNLOCK(state)                                             \
83         {                                                               \
84                 if (timer->et_flags & ET_FLAGS_PERCPU)                  \
85                         mtx_unlock_spin(&(state)->et_hw_mtx);           \
86                 else                                                    \
87                         mtx_unlock_spin(&et_hw_mtx);                    \
88         }
89
90 static struct eventtimer *timer = NULL;
91 static sbintime_t       timerperiod;    /* Timer period for periodic mode. */
92 static sbintime_t       statperiod;     /* statclock() events period. */
93 static sbintime_t       profperiod;     /* profclock() events period. */
94 static sbintime_t       nexttick;       /* Next global timer tick time. */
95 static u_int            busy = 1;       /* Reconfiguration is in progress. */
96 static int              profiling = 0;  /* Profiling events enabled. */
97
98 static char             timername[32];  /* Wanted timer. */
99 TUNABLE_STR("kern.eventtimer.timer", timername, sizeof(timername));
100
101 static int              singlemul = 0;  /* Multiplier for periodic mode. */
102 TUNABLE_INT("kern.eventtimer.singlemul", &singlemul);
103 SYSCTL_INT(_kern_eventtimer, OID_AUTO, singlemul, CTLFLAG_RW, &singlemul,
104     0, "Multiplier for periodic mode");
105
106 static u_int            idletick = 0;   /* Run periodic events when idle. */
107 TUNABLE_INT("kern.eventtimer.idletick", &idletick);
108 SYSCTL_UINT(_kern_eventtimer, OID_AUTO, idletick, CTLFLAG_RW, &idletick,
109     0, "Run periodic events when idle");
110
111 static int              periodic = 0;   /* Periodic or one-shot mode. */
112 static int              want_periodic = 0; /* What mode to prefer. */
113 TUNABLE_INT("kern.eventtimer.periodic", &want_periodic);
114
115 struct pcpu_state {
116         struct mtx      et_hw_mtx;      /* Per-CPU timer mutex. */
117         u_int           action;         /* Reconfiguration requests. */
118         u_int           handle;         /* Immediate handle resuests. */
119         sbintime_t      now;            /* Last tick time. */
120         sbintime_t      nextevent;      /* Next scheduled event on this CPU. */
121         sbintime_t      nexttick;       /* Next timer tick time. */
122         sbintime_t      nexthard;       /* Next hardlock() event. */
123         sbintime_t      nextstat;       /* Next statclock() event. */
124         sbintime_t      nextprof;       /* Next profclock() event. */
125         sbintime_t      nextcall;       /* Next callout event. */
126         sbintime_t      nextcallopt;    /* Next optional callout event. */
127         int             ipi;            /* This CPU needs IPI. */
128         int             idle;           /* This CPU is in idle mode. */
129 };
130
131 static DPCPU_DEFINE(struct pcpu_state, timerstate);
132 DPCPU_DEFINE(sbintime_t, hardclocktime);
133
134 /*
135  * Timer broadcast IPI handler.
136  */
137 int
138 hardclockintr(void)
139 {
140         sbintime_t now;
141         struct pcpu_state *state;
142         int done;
143
144         if (doconfigtimer() || busy)
145                 return (FILTER_HANDLED);
146         state = DPCPU_PTR(timerstate);
147         now = state->now;
148         CTR3(KTR_SPARE2, "ipi  at %d:    now  %d.%08x",
149             curcpu, (int)(now >> 32), (u_int)(now & 0xffffffff));
150         done = handleevents(now, 0);
151         return (done ? FILTER_HANDLED : FILTER_STRAY);
152 }
153
154 /*
155  * Handle all events for specified time on this CPU
156  */
157 static int
158 handleevents(sbintime_t now, int fake)
159 {
160         sbintime_t t, *hct;
161         struct trapframe *frame;
162         struct pcpu_state *state;
163         int usermode;
164         int done, runs;
165
166         CTR3(KTR_SPARE2, "handle at %d:  now  %d.%08x",
167             curcpu, (int)(now >> 32), (u_int)(now & 0xffffffff));
168         done = 0;
169         if (fake) {
170                 frame = NULL;
171                 usermode = 0;
172         } else {
173                 frame = curthread->td_intr_frame;
174                 usermode = TRAPF_USERMODE(frame);
175         }
176
177         state = DPCPU_PTR(timerstate);
178
179         runs = 0;
180         while (now >= state->nexthard) {
181                 state->nexthard += tick_sbt;
182                 runs++;
183         }
184         if (runs) {
185                 hct = DPCPU_PTR(hardclocktime);
186                 *hct = state->nexthard - tick_sbt;
187                 if (fake < 2) {
188                         hardclock_cnt(runs, usermode);
189                         done = 1;
190                 }
191         }
192         runs = 0;
193         while (now >= state->nextstat) {
194                 state->nextstat += statperiod;
195                 runs++;
196         }
197         if (runs && fake < 2) {
198                 statclock_cnt(runs, usermode);
199                 done = 1;
200         }
201         if (profiling) {
202                 runs = 0;
203                 while (now >= state->nextprof) {
204                         state->nextprof += profperiod;
205                         runs++;
206                 }
207                 if (runs && !fake) {
208                         profclock_cnt(runs, usermode, TRAPF_PC(frame));
209                         done = 1;
210                 }
211         } else
212                 state->nextprof = state->nextstat;
213         if (now >= state->nextcallopt) {
214                 state->nextcall = state->nextcallopt = INT64_MAX;
215                 callout_process(now);
216         }
217
218         t = getnextcpuevent(0);
219         ET_HW_LOCK(state);
220         if (!busy) {
221                 state->idle = 0;
222                 state->nextevent = t;
223                 loadtimer(now, (fake == 2) &&
224                     (timer->et_flags & ET_FLAGS_PERCPU));
225         }
226         ET_HW_UNLOCK(state);
227         return (done);
228 }
229
230 /*
231  * Schedule binuptime of the next event on current CPU.
232  */
233 static sbintime_t
234 getnextcpuevent(int idle)
235 {
236         sbintime_t event;
237         struct pcpu_state *state;
238         u_int hardfreq;
239
240         state = DPCPU_PTR(timerstate);
241         /* Handle hardclock() events, skipping some if CPU is idle. */
242         event = state->nexthard;
243         if (idle) {
244                 hardfreq = (u_int)hz / 2;
245                 if (tc_min_ticktock_freq > 2
246 #ifdef SMP
247                     && curcpu == CPU_FIRST()
248 #endif
249                     )
250                         hardfreq = hz / tc_min_ticktock_freq;
251                 if (hardfreq > 1)
252                         event += tick_sbt * (hardfreq - 1);
253         }
254         /* Handle callout events. */
255         if (event > state->nextcall)
256                 event = state->nextcall;
257         if (!idle) { /* If CPU is active - handle other types of events. */
258                 if (event > state->nextstat)
259                         event = state->nextstat;
260                 if (profiling && event > state->nextprof)
261                         event = state->nextprof;
262         }
263         return (event);
264 }
265
266 /*
267  * Schedule binuptime of the next event on all CPUs.
268  */
269 static sbintime_t
270 getnextevent(void)
271 {
272         struct pcpu_state *state;
273         sbintime_t event;
274 #ifdef SMP
275         int     cpu;
276 #endif
277         int     c;
278
279         state = DPCPU_PTR(timerstate);
280         event = state->nextevent;
281         c = -1;
282 #ifdef SMP
283         if ((timer->et_flags & ET_FLAGS_PERCPU) == 0) {
284                 CPU_FOREACH(cpu) {
285                         state = DPCPU_ID_PTR(cpu, timerstate);
286                         if (event > state->nextevent) {
287                                 event = state->nextevent;
288                                 c = cpu;
289                         }
290                 }
291         }
292 #endif
293         CTR4(KTR_SPARE2, "next at %d:    next %d.%08x by %d",
294             curcpu, (int)(event >> 32), (u_int)(event & 0xffffffff), c);
295         return (event);
296 }
297
298 /* Hardware timer callback function. */
299 static void
300 timercb(struct eventtimer *et, void *arg)
301 {
302         sbintime_t now;
303         sbintime_t *next;
304         struct pcpu_state *state;
305 #ifdef SMP
306         int cpu, bcast;
307 #endif
308
309         /* Do not touch anything if somebody reconfiguring timers. */
310         if (busy)
311                 return;
312         /* Update present and next tick times. */
313         state = DPCPU_PTR(timerstate);
314         if (et->et_flags & ET_FLAGS_PERCPU) {
315                 next = &state->nexttick;
316         } else
317                 next = &nexttick;
318         now = sbinuptime();
319         if (periodic)
320                 *next = now + timerperiod;
321         else
322                 *next = -1;     /* Next tick is not scheduled yet. */
323         state->now = now;
324         CTR3(KTR_SPARE2, "intr at %d:    now  %d.%08x",
325             curcpu, (int)(now >> 32), (u_int)(now & 0xffffffff));
326
327 #ifdef SMP
328         /* Prepare broadcasting to other CPUs for non-per-CPU timers. */
329         bcast = 0;
330         if ((et->et_flags & ET_FLAGS_PERCPU) == 0 && smp_started) {
331                 CPU_FOREACH(cpu) {
332                         state = DPCPU_ID_PTR(cpu, timerstate);
333                         ET_HW_LOCK(state);
334                         state->now = now;
335                         if (now >= state->nextevent) {
336                                 state->nextevent += SBT_1S;
337                                 if (curcpu != cpu) {
338                                         state->ipi = 1;
339                                         bcast = 1;
340                                 }
341                         }
342                         ET_HW_UNLOCK(state);
343                 }
344         }
345 #endif
346
347         /* Handle events for this time on this CPU. */
348         handleevents(now, 0);
349
350 #ifdef SMP
351         /* Broadcast interrupt to other CPUs for non-per-CPU timers. */
352         if (bcast) {
353                 CPU_FOREACH(cpu) {
354                         if (curcpu == cpu)
355                                 continue;
356                         state = DPCPU_ID_PTR(cpu, timerstate);
357                         if (state->ipi) {
358                                 state->ipi = 0;
359                                 ipi_cpu(cpu, IPI_HARDCLOCK);
360                         }
361                 }
362         }
363 #endif
364 }
365
366 /*
367  * Load new value into hardware timer.
368  */
369 static void
370 loadtimer(sbintime_t now, int start)
371 {
372         struct pcpu_state *state;
373         sbintime_t new;
374         sbintime_t *next;
375         uint64_t tmp;
376         int eq;
377
378         if (timer->et_flags & ET_FLAGS_PERCPU) {
379                 state = DPCPU_PTR(timerstate);
380                 next = &state->nexttick;
381         } else
382                 next = &nexttick;
383         if (periodic) {
384                 if (start) {
385                         /*
386                          * Try to start all periodic timers aligned
387                          * to period to make events synchronous.
388                          */
389                         tmp = now % timerperiod;
390                         new = timerperiod - tmp;
391                         if (new < tmp)          /* Left less then passed. */
392                                 new += timerperiod;
393                         CTR5(KTR_SPARE2, "load p at %d:   now %d.%08x first in %d.%08x",
394                             curcpu, (int)(now >> 32), (u_int)(now & 0xffffffff),
395                             (int)(new >> 32), (u_int)(new & 0xffffffff));
396                         *next = new + now;
397                         et_start(timer, new, timerperiod);
398                 }
399         } else {
400                 new = getnextevent();
401                 eq = (new == *next);
402                 CTR4(KTR_SPARE2, "load at %d:    next %d.%08x eq %d",
403                     curcpu, (int)(new >> 32), (u_int)(new & 0xffffffff), eq);
404                 if (!eq) {
405                         *next = new;
406                         et_start(timer, new - now, 0);
407                 }
408         }
409 }
410
411 /*
412  * Prepare event timer parameters after configuration changes.
413  */
414 static void
415 setuptimer(void)
416 {
417         int freq;
418
419         if (periodic && (timer->et_flags & ET_FLAGS_PERIODIC) == 0)
420                 periodic = 0;
421         else if (!periodic && (timer->et_flags & ET_FLAGS_ONESHOT) == 0)
422                 periodic = 1;
423         singlemul = MIN(MAX(singlemul, 1), 20);
424         freq = hz * singlemul;
425         while (freq < (profiling ? profhz : stathz))
426                 freq += hz;
427         freq = round_freq(timer, freq);
428         timerperiod = SBT_1S / freq;
429 }
430
431 /*
432  * Reconfigure specified per-CPU timer on other CPU. Called from IPI handler.
433  */
434 static int
435 doconfigtimer(void)
436 {
437         sbintime_t now;
438         struct pcpu_state *state;
439
440         state = DPCPU_PTR(timerstate);
441         switch (atomic_load_acq_int(&state->action)) {
442         case 1:
443                 now = sbinuptime();
444                 ET_HW_LOCK(state);
445                 loadtimer(now, 1);
446                 ET_HW_UNLOCK(state);
447                 state->handle = 0;
448                 atomic_store_rel_int(&state->action, 0);
449                 return (1);
450         case 2:
451                 ET_HW_LOCK(state);
452                 et_stop(timer);
453                 ET_HW_UNLOCK(state);
454                 state->handle = 0;
455                 atomic_store_rel_int(&state->action, 0);
456                 return (1);
457         }
458         if (atomic_readandclear_int(&state->handle) && !busy) {
459                 now = sbinuptime();
460                 handleevents(now, 0);
461                 return (1);
462         }
463         return (0);
464 }
465
466 /*
467  * Reconfigure specified timer.
468  * For per-CPU timers use IPI to make other CPUs to reconfigure.
469  */
470 static void
471 configtimer(int start)
472 {
473         sbintime_t now, next;
474         struct pcpu_state *state;
475         int cpu;
476
477         if (start) {
478                 setuptimer();
479                 now = sbinuptime();
480         } else
481                 now = 0;
482         critical_enter();
483         ET_HW_LOCK(DPCPU_PTR(timerstate));
484         if (start) {
485                 /* Initialize time machine parameters. */
486                 next = now + timerperiod;
487                 if (periodic)
488                         nexttick = next;
489                 else
490                         nexttick = -1;
491                 CPU_FOREACH(cpu) {
492                         state = DPCPU_ID_PTR(cpu, timerstate);
493                         state->now = now;
494                         if (!smp_started && cpu != CPU_FIRST())
495                                 state->nextevent = INT64_MAX;
496                         else
497                                 state->nextevent = next;
498                         if (periodic)
499                                 state->nexttick = next;
500                         else
501                                 state->nexttick = -1;
502                         state->nexthard = next;
503                         state->nextstat = next;
504                         state->nextprof = next;
505                         state->nextcall = next;
506                         state->nextcallopt = next;
507                         hardclock_sync(cpu);
508                 }
509                 busy = 0;
510                 /* Start global timer or per-CPU timer of this CPU. */
511                 loadtimer(now, 1);
512         } else {
513                 busy = 1;
514                 /* Stop global timer or per-CPU timer of this CPU. */
515                 et_stop(timer);
516         }
517         ET_HW_UNLOCK(DPCPU_PTR(timerstate));
518 #ifdef SMP
519         /* If timer is global or there is no other CPUs yet - we are done. */
520         if ((timer->et_flags & ET_FLAGS_PERCPU) == 0 || !smp_started) {
521                 critical_exit();
522                 return;
523         }
524         /* Set reconfigure flags for other CPUs. */
525         CPU_FOREACH(cpu) {
526                 state = DPCPU_ID_PTR(cpu, timerstate);
527                 atomic_store_rel_int(&state->action,
528                     (cpu == curcpu) ? 0 : ( start ? 1 : 2));
529         }
530         /* Broadcast reconfigure IPI. */
531         ipi_all_but_self(IPI_HARDCLOCK);
532         /* Wait for reconfiguration completed. */
533 restart:
534         cpu_spinwait();
535         CPU_FOREACH(cpu) {
536                 if (cpu == curcpu)
537                         continue;
538                 state = DPCPU_ID_PTR(cpu, timerstate);
539                 if (atomic_load_acq_int(&state->action))
540                         goto restart;
541         }
542 #endif
543         critical_exit();
544 }
545
546 /*
547  * Calculate nearest frequency supported by hardware timer.
548  */
549 static int
550 round_freq(struct eventtimer *et, int freq)
551 {
552         uint64_t div;
553
554         if (et->et_frequency != 0) {
555                 div = lmax((et->et_frequency + freq / 2) / freq, 1);
556                 if (et->et_flags & ET_FLAGS_POW2DIV)
557                         div = 1 << (flsl(div + div / 2) - 1);
558                 freq = (et->et_frequency + div / 2) / div;
559         }
560         if (et->et_min_period > SBT_1S)
561                 panic("Event timer \"%s\" doesn't support sub-second periods!",
562                     et->et_name);
563         else if (et->et_min_period != 0)
564                 freq = min(freq, SBT2FREQ(et->et_min_period));
565         if (et->et_max_period < SBT_1S && et->et_max_period != 0)
566                 freq = max(freq, SBT2FREQ(et->et_max_period));
567         return (freq);
568 }
569
570 /*
571  * Configure and start event timers (BSP part).
572  */
573 void
574 cpu_initclocks_bsp(void)
575 {
576         struct pcpu_state *state;
577         int base, div, cpu;
578
579         mtx_init(&et_hw_mtx, "et_hw_mtx", NULL, MTX_SPIN);
580         CPU_FOREACH(cpu) {
581                 state = DPCPU_ID_PTR(cpu, timerstate);
582                 mtx_init(&state->et_hw_mtx, "et_hw_mtx", NULL, MTX_SPIN);
583                 state->nextcall = INT64_MAX;
584                 state->nextcallopt = INT64_MAX;
585         }
586         periodic = want_periodic;
587         /* Grab requested timer or the best of present. */
588         if (timername[0])
589                 timer = et_find(timername, 0, 0);
590         if (timer == NULL && periodic) {
591                 timer = et_find(NULL,
592                     ET_FLAGS_PERIODIC, ET_FLAGS_PERIODIC);
593         }
594         if (timer == NULL) {
595                 timer = et_find(NULL,
596                     ET_FLAGS_ONESHOT, ET_FLAGS_ONESHOT);
597         }
598         if (timer == NULL && !periodic) {
599                 timer = et_find(NULL,
600                     ET_FLAGS_PERIODIC, ET_FLAGS_PERIODIC);
601         }
602         if (timer == NULL)
603                 panic("No usable event timer found!");
604         et_init(timer, timercb, NULL, NULL);
605
606         /* Adapt to timer capabilities. */
607         if (periodic && (timer->et_flags & ET_FLAGS_PERIODIC) == 0)
608                 periodic = 0;
609         else if (!periodic && (timer->et_flags & ET_FLAGS_ONESHOT) == 0)
610                 periodic = 1;
611         if (timer->et_flags & ET_FLAGS_C3STOP)
612                 cpu_disable_c3_sleep++;
613
614         /*
615          * We honor the requested 'hz' value.
616          * We want to run stathz in the neighborhood of 128hz.
617          * We would like profhz to run as often as possible.
618          */
619         if (singlemul <= 0 || singlemul > 20) {
620                 if (hz >= 1500 || (hz % 128) == 0)
621                         singlemul = 1;
622                 else if (hz >= 750)
623                         singlemul = 2;
624                 else
625                         singlemul = 4;
626         }
627         if (periodic) {
628                 base = round_freq(timer, hz * singlemul);
629                 singlemul = max((base + hz / 2) / hz, 1);
630                 hz = (base + singlemul / 2) / singlemul;
631                 if (base <= 128)
632                         stathz = base;
633                 else {
634                         div = base / 128;
635                         if (div >= singlemul && (div % singlemul) == 0)
636                                 div++;
637                         stathz = base / div;
638                 }
639                 profhz = stathz;
640                 while ((profhz + stathz) <= 128 * 64)
641                         profhz += stathz;
642                 profhz = round_freq(timer, profhz);
643         } else {
644                 hz = round_freq(timer, hz);
645                 stathz = round_freq(timer, 127);
646                 profhz = round_freq(timer, stathz * 64);
647         }
648         tick = 1000000 / hz;
649         tick_sbt = SBT_1S / hz;
650         tick_bt = sbttobt(tick_sbt);
651         statperiod = SBT_1S / stathz;
652         profperiod = SBT_1S / profhz;
653         ET_LOCK();
654         configtimer(1);
655         ET_UNLOCK();
656 }
657
658 /*
659  * Start per-CPU event timers on APs.
660  */
661 void
662 cpu_initclocks_ap(void)
663 {
664         sbintime_t now;
665         struct pcpu_state *state;
666         struct thread *td;
667
668         state = DPCPU_PTR(timerstate);
669         now = sbinuptime();
670         ET_HW_LOCK(state);
671         state->now = now;
672         hardclock_sync(curcpu);
673         spinlock_enter();
674         ET_HW_UNLOCK(state);
675         td = curthread;
676         td->td_intr_nesting_level++;
677         handleevents(state->now, 2);
678         td->td_intr_nesting_level--;
679         spinlock_exit();
680 }
681
682 /*
683  * Switch to profiling clock rates.
684  */
685 void
686 cpu_startprofclock(void)
687 {
688
689         ET_LOCK();
690         if (profiling == 0) {
691                 if (periodic) {
692                         configtimer(0);
693                         profiling = 1;
694                         configtimer(1);
695                 } else
696                         profiling = 1;
697         } else
698                 profiling++;
699         ET_UNLOCK();
700 }
701
702 /*
703  * Switch to regular clock rates.
704  */
705 void
706 cpu_stopprofclock(void)
707 {
708
709         ET_LOCK();
710         if (profiling == 1) {
711                 if (periodic) {
712                         configtimer(0);
713                         profiling = 0;
714                         configtimer(1);
715                 } else
716                 profiling = 0;
717         } else
718                 profiling--;
719         ET_UNLOCK();
720 }
721
722 /*
723  * Switch to idle mode (all ticks handled).
724  */
725 sbintime_t
726 cpu_idleclock(void)
727 {
728         sbintime_t now, t;
729         struct pcpu_state *state;
730
731         if (idletick || busy ||
732             (periodic && (timer->et_flags & ET_FLAGS_PERCPU))
733 #ifdef DEVICE_POLLING
734             || curcpu == CPU_FIRST()
735 #endif
736             )
737                 return (-1);
738         state = DPCPU_PTR(timerstate);
739         if (periodic)
740                 now = state->now;
741         else
742                 now = sbinuptime();
743         CTR3(KTR_SPARE2, "idle at %d:    now  %d.%08x",
744             curcpu, (int)(now >> 32), (u_int)(now & 0xffffffff));
745         t = getnextcpuevent(1);
746         ET_HW_LOCK(state);
747         state->idle = 1;
748         state->nextevent = t;
749         if (!periodic)
750                 loadtimer(now, 0);
751         ET_HW_UNLOCK(state);
752         return (MAX(t - now, 0));
753 }
754
755 /*
756  * Switch to active mode (skip empty ticks).
757  */
758 void
759 cpu_activeclock(void)
760 {
761         sbintime_t now;
762         struct pcpu_state *state;
763         struct thread *td;
764
765         state = DPCPU_PTR(timerstate);
766         if (state->idle == 0 || busy)
767                 return;
768         if (periodic)
769                 now = state->now;
770         else
771                 now = sbinuptime();
772         CTR3(KTR_SPARE2, "active at %d:  now  %d.%08x",
773             curcpu, (int)(now >> 32), (u_int)(now & 0xffffffff));
774         spinlock_enter();
775         td = curthread;
776         td->td_intr_nesting_level++;
777         handleevents(now, 1);
778         td->td_intr_nesting_level--;
779         spinlock_exit();
780 }
781
782 /*
783  * Change the frequency of the given timer.  This changes et->et_frequency and
784  * if et is the active timer it reconfigures the timer on all CPUs.  This is
785  * intended to be a private interface for the use of et_change_frequency() only.
786  */
787 void
788 cpu_et_frequency(struct eventtimer *et, uint64_t newfreq)
789 {
790
791         ET_LOCK();
792         if (et == timer) {
793                 configtimer(0);
794                 et->et_frequency = newfreq;
795                 configtimer(1);
796         } else
797                 et->et_frequency = newfreq;
798         ET_UNLOCK();
799 }
800
801 void
802 cpu_new_callout(int cpu, sbintime_t bt, sbintime_t bt_opt)
803 {
804         struct pcpu_state *state;
805
806         /* Do not touch anything if somebody reconfiguring timers. */
807         if (busy)
808                 return;
809         CTR6(KTR_SPARE2, "new co at %d:    on %d at %d.%08x - %d.%08x",
810             curcpu, cpu, (int)(bt_opt >> 32), (u_int)(bt_opt & 0xffffffff),
811             (int)(bt >> 32), (u_int)(bt & 0xffffffff));
812         state = DPCPU_ID_PTR(cpu, timerstate);
813         ET_HW_LOCK(state);
814
815         /*
816          * If there is callout time already set earlier -- do nothing.
817          * This check may appear redundant because we check already in
818          * callout_process() but this double check guarantees we're safe
819          * with respect to race conditions between interrupts execution
820          * and scheduling.
821          */
822         state->nextcallopt = bt_opt;
823         if (bt >= state->nextcall)
824                 goto done;
825         state->nextcall = bt;
826         /* If there is some other event set earlier -- do nothing. */
827         if (bt >= state->nextevent)
828                 goto done;
829         state->nextevent = bt;
830         /* If timer is periodic -- there is nothing to reprogram. */
831         if (periodic)
832                 goto done;
833         /* If timer is global or of the current CPU -- reprogram it. */
834         if ((timer->et_flags & ET_FLAGS_PERCPU) == 0 || cpu == curcpu) {
835                 loadtimer(sbinuptime(), 0);
836 done:
837                 ET_HW_UNLOCK(state);
838                 return;
839         }
840         /* Otherwise make other CPU to reprogram it. */
841         state->handle = 1;
842         ET_HW_UNLOCK(state);
843 #ifdef SMP
844         ipi_cpu(cpu, IPI_HARDCLOCK);
845 #endif
846 }
847
848 /*
849  * Report or change the active event timers hardware.
850  */
851 static int
852 sysctl_kern_eventtimer_timer(SYSCTL_HANDLER_ARGS)
853 {
854         char buf[32];
855         struct eventtimer *et;
856         int error;
857
858         ET_LOCK();
859         et = timer;
860         snprintf(buf, sizeof(buf), "%s", et->et_name);
861         ET_UNLOCK();
862         error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
863         ET_LOCK();
864         et = timer;
865         if (error != 0 || req->newptr == NULL ||
866             strcasecmp(buf, et->et_name) == 0) {
867                 ET_UNLOCK();
868                 return (error);
869         }
870         et = et_find(buf, 0, 0);
871         if (et == NULL) {
872                 ET_UNLOCK();
873                 return (ENOENT);
874         }
875         configtimer(0);
876         et_free(timer);
877         if (et->et_flags & ET_FLAGS_C3STOP)
878                 cpu_disable_c3_sleep++;
879         if (timer->et_flags & ET_FLAGS_C3STOP)
880                 cpu_disable_c3_sleep--;
881         periodic = want_periodic;
882         timer = et;
883         et_init(timer, timercb, NULL, NULL);
884         configtimer(1);
885         ET_UNLOCK();
886         return (error);
887 }
888 SYSCTL_PROC(_kern_eventtimer, OID_AUTO, timer,
889     CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
890     0, 0, sysctl_kern_eventtimer_timer, "A", "Chosen event timer");
891
892 /*
893  * Report or change the active event timer periodicity.
894  */
895 static int
896 sysctl_kern_eventtimer_periodic(SYSCTL_HANDLER_ARGS)
897 {
898         int error, val;
899
900         val = periodic;
901         error = sysctl_handle_int(oidp, &val, 0, req);
902         if (error != 0 || req->newptr == NULL)
903                 return (error);
904         ET_LOCK();
905         configtimer(0);
906         periodic = want_periodic = val;
907         configtimer(1);
908         ET_UNLOCK();
909         return (error);
910 }
911 SYSCTL_PROC(_kern_eventtimer, OID_AUTO, periodic,
912     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
913     0, 0, sysctl_kern_eventtimer_periodic, "I", "Enable event timer periodic mode");
914
915 #include "opt_ddb.h"
916
917 #ifdef DDB
918 #include <ddb/ddb.h>
919
920 DB_SHOW_COMMAND(clocksource, db_show_clocksource)
921 {
922         struct pcpu_state *st;
923         int c;
924
925         CPU_FOREACH(c) {
926                 st = DPCPU_ID_PTR(c, timerstate);
927                 db_printf(
928                     "CPU %2d: action %d handle %d  ipi %d idle %d\n"
929                     "        now %#jx nevent %#jx (%jd)\n"
930                     "        ntick %#jx (%jd) nhard %#jx (%jd)\n"
931                     "        nstat %#jx (%jd) nprof %#jx (%jd)\n"
932                     "        ncall %#jx (%jd) ncallopt %#jx (%jd)\n",
933                     c, st->action, st->handle, st->ipi, st->idle,
934                     (uintmax_t)st->now,
935                     (uintmax_t)st->nextevent,
936                     (uintmax_t)(st->nextevent - st->now) / tick_sbt,
937                     (uintmax_t)st->nexttick,
938                     (uintmax_t)(st->nexttick - st->now) / tick_sbt,
939                     (uintmax_t)st->nexthard,
940                     (uintmax_t)(st->nexthard - st->now) / tick_sbt,
941                     (uintmax_t)st->nextstat,
942                     (uintmax_t)(st->nextstat - st->now) / tick_sbt,
943                     (uintmax_t)st->nextprof,
944                     (uintmax_t)(st->nextprof - st->now) / tick_sbt,
945                     (uintmax_t)st->nextcall,
946                     (uintmax_t)(st->nextcall - st->now) / tick_sbt,
947                     (uintmax_t)st->nextcallopt,
948                     (uintmax_t)(st->nextcallopt - st->now) / tick_sbt);
949         }
950 }
951
952 #endif