]> CyberLeo.Net >> Repos - FreeBSD/releng/10.2.git/blob - sys/kern/kern_tc.c
- Copy stable/10@285827 to releng/10.2 in preparation for 10.2-RC1
[FreeBSD/releng/10.2.git] / sys / kern / kern_tc.c
1 /*-
2  * ----------------------------------------------------------------------------
3  * "THE BEER-WARE LICENSE" (Revision 42):
4  * <phk@FreeBSD.ORG> wrote this file.  As long as you retain this notice you
5  * can do whatever you want with this stuff. If we meet some day, and you think
6  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
7  * ----------------------------------------------------------------------------
8  *
9  * Copyright (c) 2011 The FreeBSD Foundation
10  * All rights reserved.
11  *
12  * Portions of this software were developed by Julien Ridoux at the University
13  * of Melbourne under sponsorship from the FreeBSD Foundation.
14  */
15
16 #include <sys/cdefs.h>
17 __FBSDID("$FreeBSD$");
18
19 #include "opt_compat.h"
20 #include "opt_ntp.h"
21 #include "opt_ffclock.h"
22
23 #include <sys/param.h>
24 #include <sys/kernel.h>
25 #include <sys/limits.h>
26 #include <sys/lock.h>
27 #include <sys/mutex.h>
28 #include <sys/sysctl.h>
29 #include <sys/syslog.h>
30 #include <sys/systm.h>
31 #include <sys/timeffc.h>
32 #include <sys/timepps.h>
33 #include <sys/timetc.h>
34 #include <sys/timex.h>
35 #include <sys/vdso.h>
36
37 /*
38  * A large step happens on boot.  This constant detects such steps.
39  * It is relatively small so that ntp_update_second gets called enough
40  * in the typical 'missed a couple of seconds' case, but doesn't loop
41  * forever when the time step is large.
42  */
43 #define LARGE_STEP      200
44
45 /*
46  * Implement a dummy timecounter which we can use until we get a real one
47  * in the air.  This allows the console and other early stuff to use
48  * time services.
49  */
50
51 static u_int
52 dummy_get_timecount(struct timecounter *tc)
53 {
54         static u_int now;
55
56         return (++now);
57 }
58
59 static struct timecounter dummy_timecounter = {
60         dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000
61 };
62
63 struct timehands {
64         /* These fields must be initialized by the driver. */
65         struct timecounter      *th_counter;
66         int64_t                 th_adjustment;
67         uint64_t                th_scale;
68         u_int                   th_offset_count;
69         struct bintime          th_offset;
70         struct timeval          th_microtime;
71         struct timespec         th_nanotime;
72         /* Fields not to be copied in tc_windup start with th_generation. */
73         volatile u_int          th_generation;
74         struct timehands        *th_next;
75 };
76
77 static struct timehands th0;
78 static struct timehands th9 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th0};
79 static struct timehands th8 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th9};
80 static struct timehands th7 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th8};
81 static struct timehands th6 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th7};
82 static struct timehands th5 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th6};
83 static struct timehands th4 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th5};
84 static struct timehands th3 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th4};
85 static struct timehands th2 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th3};
86 static struct timehands th1 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th2};
87 static struct timehands th0 = {
88         &dummy_timecounter,
89         0,
90         (uint64_t)-1 / 1000000,
91         0,
92         {1, 0},
93         {0, 0},
94         {0, 0},
95         1,
96         &th1
97 };
98
99 static struct timehands *volatile timehands = &th0;
100 struct timecounter *timecounter = &dummy_timecounter;
101 static struct timecounter *timecounters = &dummy_timecounter;
102
103 int tc_min_ticktock_freq = 1;
104
105 volatile time_t time_second = 1;
106 volatile time_t time_uptime = 1;
107
108 struct bintime boottimebin;
109 struct timeval boottime;
110 static int sysctl_kern_boottime(SYSCTL_HANDLER_ARGS);
111 SYSCTL_PROC(_kern, KERN_BOOTTIME, boottime, CTLTYPE_STRUCT|CTLFLAG_RD,
112     NULL, 0, sysctl_kern_boottime, "S,timeval", "System boottime");
113
114 SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, "");
115 static SYSCTL_NODE(_kern_timecounter, OID_AUTO, tc, CTLFLAG_RW, 0, "");
116
117 static int timestepwarnings;
118 SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
119     &timestepwarnings, 0, "Log time steps");
120
121 struct bintime bt_timethreshold;
122 struct bintime bt_tickthreshold;
123 sbintime_t sbt_timethreshold;
124 sbintime_t sbt_tickthreshold;
125 struct bintime tc_tick_bt;
126 sbintime_t tc_tick_sbt;
127 int tc_precexp;
128 int tc_timepercentage = TC_DEFAULTPERC;
129 TUNABLE_INT("kern.timecounter.alloweddeviation", &tc_timepercentage);
130 static int sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS);
131 SYSCTL_PROC(_kern_timecounter, OID_AUTO, alloweddeviation,
132     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0,
133     sysctl_kern_timecounter_adjprecision, "I",
134     "Allowed time interval deviation in percents");
135
136 static void tc_windup(void);
137 static void cpu_tick_calibrate(int);
138
139 void dtrace_getnanotime(struct timespec *tsp);
140
141 static int
142 sysctl_kern_boottime(SYSCTL_HANDLER_ARGS)
143 {
144 #ifndef __mips__
145 #ifdef SCTL_MASK32
146         int tv[2];
147
148         if (req->flags & SCTL_MASK32) {
149                 tv[0] = boottime.tv_sec;
150                 tv[1] = boottime.tv_usec;
151                 return SYSCTL_OUT(req, tv, sizeof(tv));
152         } else
153 #endif
154 #endif
155                 return SYSCTL_OUT(req, &boottime, sizeof(boottime));
156 }
157
158 static int
159 sysctl_kern_timecounter_get(SYSCTL_HANDLER_ARGS)
160 {
161         u_int ncount;
162         struct timecounter *tc = arg1;
163
164         ncount = tc->tc_get_timecount(tc);
165         return sysctl_handle_int(oidp, &ncount, 0, req);
166 }
167
168 static int
169 sysctl_kern_timecounter_freq(SYSCTL_HANDLER_ARGS)
170 {
171         uint64_t freq;
172         struct timecounter *tc = arg1;
173
174         freq = tc->tc_frequency;
175         return sysctl_handle_64(oidp, &freq, 0, req);
176 }
177
178 /*
179  * Return the difference between the timehands' counter value now and what
180  * was when we copied it to the timehands' offset_count.
181  */
182 static __inline u_int
183 tc_delta(struct timehands *th)
184 {
185         struct timecounter *tc;
186
187         tc = th->th_counter;
188         return ((tc->tc_get_timecount(tc) - th->th_offset_count) &
189             tc->tc_counter_mask);
190 }
191
192 /*
193  * Functions for reading the time.  We have to loop until we are sure that
194  * the timehands that we operated on was not updated under our feet.  See
195  * the comment in <sys/time.h> for a description of these 12 functions.
196  */
197
198 #ifdef FFCLOCK
199 void
200 fbclock_binuptime(struct bintime *bt)
201 {
202         struct timehands *th;
203         unsigned int gen;
204
205         do {
206                 th = timehands;
207                 gen = th->th_generation;
208                 *bt = th->th_offset;
209                 bintime_addx(bt, th->th_scale * tc_delta(th));
210         } while (gen == 0 || gen != th->th_generation);
211 }
212
213 void
214 fbclock_nanouptime(struct timespec *tsp)
215 {
216         struct bintime bt;
217
218         fbclock_binuptime(&bt);
219         bintime2timespec(&bt, tsp);
220 }
221
222 void
223 fbclock_microuptime(struct timeval *tvp)
224 {
225         struct bintime bt;
226
227         fbclock_binuptime(&bt);
228         bintime2timeval(&bt, tvp);
229 }
230
231 void
232 fbclock_bintime(struct bintime *bt)
233 {
234
235         fbclock_binuptime(bt);
236         bintime_add(bt, &boottimebin);
237 }
238
239 void
240 fbclock_nanotime(struct timespec *tsp)
241 {
242         struct bintime bt;
243
244         fbclock_bintime(&bt);
245         bintime2timespec(&bt, tsp);
246 }
247
248 void
249 fbclock_microtime(struct timeval *tvp)
250 {
251         struct bintime bt;
252
253         fbclock_bintime(&bt);
254         bintime2timeval(&bt, tvp);
255 }
256
257 void
258 fbclock_getbinuptime(struct bintime *bt)
259 {
260         struct timehands *th;
261         unsigned int gen;
262
263         do {
264                 th = timehands;
265                 gen = th->th_generation;
266                 *bt = th->th_offset;
267         } while (gen == 0 || gen != th->th_generation);
268 }
269
270 void
271 fbclock_getnanouptime(struct timespec *tsp)
272 {
273         struct timehands *th;
274         unsigned int gen;
275
276         do {
277                 th = timehands;
278                 gen = th->th_generation;
279                 bintime2timespec(&th->th_offset, tsp);
280         } while (gen == 0 || gen != th->th_generation);
281 }
282
283 void
284 fbclock_getmicrouptime(struct timeval *tvp)
285 {
286         struct timehands *th;
287         unsigned int gen;
288
289         do {
290                 th = timehands;
291                 gen = th->th_generation;
292                 bintime2timeval(&th->th_offset, tvp);
293         } while (gen == 0 || gen != th->th_generation);
294 }
295
296 void
297 fbclock_getbintime(struct bintime *bt)
298 {
299         struct timehands *th;
300         unsigned int gen;
301
302         do {
303                 th = timehands;
304                 gen = th->th_generation;
305                 *bt = th->th_offset;
306         } while (gen == 0 || gen != th->th_generation);
307         bintime_add(bt, &boottimebin);
308 }
309
310 void
311 fbclock_getnanotime(struct timespec *tsp)
312 {
313         struct timehands *th;
314         unsigned int gen;
315
316         do {
317                 th = timehands;
318                 gen = th->th_generation;
319                 *tsp = th->th_nanotime;
320         } while (gen == 0 || gen != th->th_generation);
321 }
322
323 void
324 fbclock_getmicrotime(struct timeval *tvp)
325 {
326         struct timehands *th;
327         unsigned int gen;
328
329         do {
330                 th = timehands;
331                 gen = th->th_generation;
332                 *tvp = th->th_microtime;
333         } while (gen == 0 || gen != th->th_generation);
334 }
335 #else /* !FFCLOCK */
336 void
337 binuptime(struct bintime *bt)
338 {
339         struct timehands *th;
340         u_int gen;
341
342         do {
343                 th = timehands;
344                 gen = th->th_generation;
345                 *bt = th->th_offset;
346                 bintime_addx(bt, th->th_scale * tc_delta(th));
347         } while (gen == 0 || gen != th->th_generation);
348 }
349
350 void
351 nanouptime(struct timespec *tsp)
352 {
353         struct bintime bt;
354
355         binuptime(&bt);
356         bintime2timespec(&bt, tsp);
357 }
358
359 void
360 microuptime(struct timeval *tvp)
361 {
362         struct bintime bt;
363
364         binuptime(&bt);
365         bintime2timeval(&bt, tvp);
366 }
367
368 void
369 bintime(struct bintime *bt)
370 {
371
372         binuptime(bt);
373         bintime_add(bt, &boottimebin);
374 }
375
376 void
377 nanotime(struct timespec *tsp)
378 {
379         struct bintime bt;
380
381         bintime(&bt);
382         bintime2timespec(&bt, tsp);
383 }
384
385 void
386 microtime(struct timeval *tvp)
387 {
388         struct bintime bt;
389
390         bintime(&bt);
391         bintime2timeval(&bt, tvp);
392 }
393
394 void
395 getbinuptime(struct bintime *bt)
396 {
397         struct timehands *th;
398         u_int gen;
399
400         do {
401                 th = timehands;
402                 gen = th->th_generation;
403                 *bt = th->th_offset;
404         } while (gen == 0 || gen != th->th_generation);
405 }
406
407 void
408 getnanouptime(struct timespec *tsp)
409 {
410         struct timehands *th;
411         u_int gen;
412
413         do {
414                 th = timehands;
415                 gen = th->th_generation;
416                 bintime2timespec(&th->th_offset, tsp);
417         } while (gen == 0 || gen != th->th_generation);
418 }
419
420 void
421 getmicrouptime(struct timeval *tvp)
422 {
423         struct timehands *th;
424         u_int gen;
425
426         do {
427                 th = timehands;
428                 gen = th->th_generation;
429                 bintime2timeval(&th->th_offset, tvp);
430         } while (gen == 0 || gen != th->th_generation);
431 }
432
433 void
434 getbintime(struct bintime *bt)
435 {
436         struct timehands *th;
437         u_int gen;
438
439         do {
440                 th = timehands;
441                 gen = th->th_generation;
442                 *bt = th->th_offset;
443         } while (gen == 0 || gen != th->th_generation);
444         bintime_add(bt, &boottimebin);
445 }
446
447 void
448 getnanotime(struct timespec *tsp)
449 {
450         struct timehands *th;
451         u_int gen;
452
453         do {
454                 th = timehands;
455                 gen = th->th_generation;
456                 *tsp = th->th_nanotime;
457         } while (gen == 0 || gen != th->th_generation);
458 }
459
460 void
461 getmicrotime(struct timeval *tvp)
462 {
463         struct timehands *th;
464         u_int gen;
465
466         do {
467                 th = timehands;
468                 gen = th->th_generation;
469                 *tvp = th->th_microtime;
470         } while (gen == 0 || gen != th->th_generation);
471 }
472 #endif /* FFCLOCK */
473
474 #ifdef FFCLOCK
475 /*
476  * Support for feed-forward synchronization algorithms. This is heavily inspired
477  * by the timehands mechanism but kept independent from it. *_windup() functions
478  * have some connection to avoid accessing the timecounter hardware more than
479  * necessary.
480  */
481
482 /* Feed-forward clock estimates kept updated by the synchronization daemon. */
483 struct ffclock_estimate ffclock_estimate;
484 struct bintime ffclock_boottime;        /* Feed-forward boot time estimate. */
485 uint32_t ffclock_status;                /* Feed-forward clock status. */
486 int8_t ffclock_updated;                 /* New estimates are available. */
487 struct mtx ffclock_mtx;                 /* Mutex on ffclock_estimate. */
488
489 struct fftimehands {
490         struct ffclock_estimate cest;
491         struct bintime          tick_time;
492         struct bintime          tick_time_lerp;
493         ffcounter               tick_ffcount;
494         uint64_t                period_lerp;
495         volatile uint8_t        gen;
496         struct fftimehands      *next;
497 };
498
499 #define NUM_ELEMENTS(x) (sizeof(x) / sizeof(*x))
500
501 static struct fftimehands ffth[10];
502 static struct fftimehands *volatile fftimehands = ffth;
503
504 static void
505 ffclock_init(void)
506 {
507         struct fftimehands *cur;
508         struct fftimehands *last;
509
510         memset(ffth, 0, sizeof(ffth));
511
512         last = ffth + NUM_ELEMENTS(ffth) - 1;
513         for (cur = ffth; cur < last; cur++)
514                 cur->next = cur + 1;
515         last->next = ffth;
516
517         ffclock_updated = 0;
518         ffclock_status = FFCLOCK_STA_UNSYNC;
519         mtx_init(&ffclock_mtx, "ffclock lock", NULL, MTX_DEF);
520 }
521
522 /*
523  * Reset the feed-forward clock estimates. Called from inittodr() to get things
524  * kick started and uses the timecounter nominal frequency as a first period
525  * estimate. Note: this function may be called several time just after boot.
526  * Note: this is the only function that sets the value of boot time for the
527  * monotonic (i.e. uptime) version of the feed-forward clock.
528  */
529 void
530 ffclock_reset_clock(struct timespec *ts)
531 {
532         struct timecounter *tc;
533         struct ffclock_estimate cest;
534
535         tc = timehands->th_counter;
536         memset(&cest, 0, sizeof(struct ffclock_estimate));
537
538         timespec2bintime(ts, &ffclock_boottime);
539         timespec2bintime(ts, &(cest.update_time));
540         ffclock_read_counter(&cest.update_ffcount);
541         cest.leapsec_next = 0;
542         cest.period = ((1ULL << 63) / tc->tc_frequency) << 1;
543         cest.errb_abs = 0;
544         cest.errb_rate = 0;
545         cest.status = FFCLOCK_STA_UNSYNC;
546         cest.leapsec_total = 0;
547         cest.leapsec = 0;
548
549         mtx_lock(&ffclock_mtx);
550         bcopy(&cest, &ffclock_estimate, sizeof(struct ffclock_estimate));
551         ffclock_updated = INT8_MAX;
552         mtx_unlock(&ffclock_mtx);
553
554         printf("ffclock reset: %s (%llu Hz), time = %ld.%09lu\n", tc->tc_name,
555             (unsigned long long)tc->tc_frequency, (long)ts->tv_sec,
556             (unsigned long)ts->tv_nsec);
557 }
558
559 /*
560  * Sub-routine to convert a time interval measured in RAW counter units to time
561  * in seconds stored in bintime format.
562  * NOTE: bintime_mul requires u_int, but the value of the ffcounter may be
563  * larger than the max value of u_int (on 32 bit architecture). Loop to consume
564  * extra cycles.
565  */
566 static void
567 ffclock_convert_delta(ffcounter ffdelta, uint64_t period, struct bintime *bt)
568 {
569         struct bintime bt2;
570         ffcounter delta, delta_max;
571
572         delta_max = (1ULL << (8 * sizeof(unsigned int))) - 1;
573         bintime_clear(bt);
574         do {
575                 if (ffdelta > delta_max)
576                         delta = delta_max;
577                 else
578                         delta = ffdelta;
579                 bt2.sec = 0;
580                 bt2.frac = period;
581                 bintime_mul(&bt2, (unsigned int)delta);
582                 bintime_add(bt, &bt2);
583                 ffdelta -= delta;
584         } while (ffdelta > 0);
585 }
586
587 /*
588  * Update the fftimehands.
589  * Push the tick ffcount and time(s) forward based on current clock estimate.
590  * The conversion from ffcounter to bintime relies on the difference clock
591  * principle, whose accuracy relies on computing small time intervals. If a new
592  * clock estimate has been passed by the synchronisation daemon, make it
593  * current, and compute the linear interpolation for monotonic time if needed.
594  */
595 static void
596 ffclock_windup(unsigned int delta)
597 {
598         struct ffclock_estimate *cest;
599         struct fftimehands *ffth;
600         struct bintime bt, gap_lerp;
601         ffcounter ffdelta;
602         uint64_t frac;
603         unsigned int polling;
604         uint8_t forward_jump, ogen;
605
606         /*
607          * Pick the next timehand, copy current ffclock estimates and move tick
608          * times and counter forward.
609          */
610         forward_jump = 0;
611         ffth = fftimehands->next;
612         ogen = ffth->gen;
613         ffth->gen = 0;
614         cest = &ffth->cest;
615         bcopy(&fftimehands->cest, cest, sizeof(struct ffclock_estimate));
616         ffdelta = (ffcounter)delta;
617         ffth->period_lerp = fftimehands->period_lerp;
618
619         ffth->tick_time = fftimehands->tick_time;
620         ffclock_convert_delta(ffdelta, cest->period, &bt);
621         bintime_add(&ffth->tick_time, &bt);
622
623         ffth->tick_time_lerp = fftimehands->tick_time_lerp;
624         ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt);
625         bintime_add(&ffth->tick_time_lerp, &bt);
626
627         ffth->tick_ffcount = fftimehands->tick_ffcount + ffdelta;
628
629         /*
630          * Assess the status of the clock, if the last update is too old, it is
631          * likely the synchronisation daemon is dead and the clock is free
632          * running.
633          */
634         if (ffclock_updated == 0) {
635                 ffdelta = ffth->tick_ffcount - cest->update_ffcount;
636                 ffclock_convert_delta(ffdelta, cest->period, &bt);
637                 if (bt.sec > 2 * FFCLOCK_SKM_SCALE)
638                         ffclock_status |= FFCLOCK_STA_UNSYNC;
639         }
640
641         /*
642          * If available, grab updated clock estimates and make them current.
643          * Recompute time at this tick using the updated estimates. The clock
644          * estimates passed the feed-forward synchronisation daemon may result
645          * in time conversion that is not monotonically increasing (just after
646          * the update). time_lerp is a particular linear interpolation over the
647          * synchronisation algo polling period that ensures monotonicity for the
648          * clock ids requesting it.
649          */
650         if (ffclock_updated > 0) {
651                 bcopy(&ffclock_estimate, cest, sizeof(struct ffclock_estimate));
652                 ffdelta = ffth->tick_ffcount - cest->update_ffcount;
653                 ffth->tick_time = cest->update_time;
654                 ffclock_convert_delta(ffdelta, cest->period, &bt);
655                 bintime_add(&ffth->tick_time, &bt);
656
657                 /* ffclock_reset sets ffclock_updated to INT8_MAX */
658                 if (ffclock_updated == INT8_MAX)
659                         ffth->tick_time_lerp = ffth->tick_time;
660
661                 if (bintime_cmp(&ffth->tick_time, &ffth->tick_time_lerp, >))
662                         forward_jump = 1;
663                 else
664                         forward_jump = 0;
665
666                 bintime_clear(&gap_lerp);
667                 if (forward_jump) {
668                         gap_lerp = ffth->tick_time;
669                         bintime_sub(&gap_lerp, &ffth->tick_time_lerp);
670                 } else {
671                         gap_lerp = ffth->tick_time_lerp;
672                         bintime_sub(&gap_lerp, &ffth->tick_time);
673                 }
674
675                 /*
676                  * The reset from the RTC clock may be far from accurate, and
677                  * reducing the gap between real time and interpolated time
678                  * could take a very long time if the interpolated clock insists
679                  * on strict monotonicity. The clock is reset under very strict
680                  * conditions (kernel time is known to be wrong and
681                  * synchronization daemon has been restarted recently.
682                  * ffclock_boottime absorbs the jump to ensure boot time is
683                  * correct and uptime functions stay consistent.
684                  */
685                 if (((ffclock_status & FFCLOCK_STA_UNSYNC) == FFCLOCK_STA_UNSYNC) &&
686                     ((cest->status & FFCLOCK_STA_UNSYNC) == 0) &&
687                     ((cest->status & FFCLOCK_STA_WARMUP) == FFCLOCK_STA_WARMUP)) {
688                         if (forward_jump)
689                                 bintime_add(&ffclock_boottime, &gap_lerp);
690                         else
691                                 bintime_sub(&ffclock_boottime, &gap_lerp);
692                         ffth->tick_time_lerp = ffth->tick_time;
693                         bintime_clear(&gap_lerp);
694                 }
695
696                 ffclock_status = cest->status;
697                 ffth->period_lerp = cest->period;
698
699                 /*
700                  * Compute corrected period used for the linear interpolation of
701                  * time. The rate of linear interpolation is capped to 5000PPM
702                  * (5ms/s).
703                  */
704                 if (bintime_isset(&gap_lerp)) {
705                         ffdelta = cest->update_ffcount;
706                         ffdelta -= fftimehands->cest.update_ffcount;
707                         ffclock_convert_delta(ffdelta, cest->period, &bt);
708                         polling = bt.sec;
709                         bt.sec = 0;
710                         bt.frac = 5000000 * (uint64_t)18446744073LL;
711                         bintime_mul(&bt, polling);
712                         if (bintime_cmp(&gap_lerp, &bt, >))
713                                 gap_lerp = bt;
714
715                         /* Approximate 1 sec by 1-(1/2^64) to ease arithmetic */
716                         frac = 0;
717                         if (gap_lerp.sec > 0) {
718                                 frac -= 1;
719                                 frac /= ffdelta / gap_lerp.sec;
720                         }
721                         frac += gap_lerp.frac / ffdelta;
722
723                         if (forward_jump)
724                                 ffth->period_lerp += frac;
725                         else
726                                 ffth->period_lerp -= frac;
727                 }
728
729                 ffclock_updated = 0;
730         }
731         if (++ogen == 0)
732                 ogen = 1;
733         ffth->gen = ogen;
734         fftimehands = ffth;
735 }
736
737 /*
738  * Adjust the fftimehands when the timecounter is changed. Stating the obvious,
739  * the old and new hardware counter cannot be read simultaneously. tc_windup()
740  * does read the two counters 'back to back', but a few cycles are effectively
741  * lost, and not accumulated in tick_ffcount. This is a fairly radical
742  * operation for a feed-forward synchronization daemon, and it is its job to not
743  * pushing irrelevant data to the kernel. Because there is no locking here,
744  * simply force to ignore pending or next update to give daemon a chance to
745  * realize the counter has changed.
746  */
747 static void
748 ffclock_change_tc(struct timehands *th)
749 {
750         struct fftimehands *ffth;
751         struct ffclock_estimate *cest;
752         struct timecounter *tc;
753         uint8_t ogen;
754
755         tc = th->th_counter;
756         ffth = fftimehands->next;
757         ogen = ffth->gen;
758         ffth->gen = 0;
759
760         cest = &ffth->cest;
761         bcopy(&(fftimehands->cest), cest, sizeof(struct ffclock_estimate));
762         cest->period = ((1ULL << 63) / tc->tc_frequency ) << 1;
763         cest->errb_abs = 0;
764         cest->errb_rate = 0;
765         cest->status |= FFCLOCK_STA_UNSYNC;
766
767         ffth->tick_ffcount = fftimehands->tick_ffcount;
768         ffth->tick_time_lerp = fftimehands->tick_time_lerp;
769         ffth->tick_time = fftimehands->tick_time;
770         ffth->period_lerp = cest->period;
771
772         /* Do not lock but ignore next update from synchronization daemon. */
773         ffclock_updated--;
774
775         if (++ogen == 0)
776                 ogen = 1;
777         ffth->gen = ogen;
778         fftimehands = ffth;
779 }
780
781 /*
782  * Retrieve feed-forward counter and time of last kernel tick.
783  */
784 void
785 ffclock_last_tick(ffcounter *ffcount, struct bintime *bt, uint32_t flags)
786 {
787         struct fftimehands *ffth;
788         uint8_t gen;
789
790         /*
791          * No locking but check generation has not changed. Also need to make
792          * sure ffdelta is positive, i.e. ffcount > tick_ffcount.
793          */
794         do {
795                 ffth = fftimehands;
796                 gen = ffth->gen;
797                 if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP)
798                         *bt = ffth->tick_time_lerp;
799                 else
800                         *bt = ffth->tick_time;
801                 *ffcount = ffth->tick_ffcount;
802         } while (gen == 0 || gen != ffth->gen);
803 }
804
805 /*
806  * Absolute clock conversion. Low level function to convert ffcounter to
807  * bintime. The ffcounter is converted using the current ffclock period estimate
808  * or the "interpolated period" to ensure monotonicity.
809  * NOTE: this conversion may have been deferred, and the clock updated since the
810  * hardware counter has been read.
811  */
812 void
813 ffclock_convert_abs(ffcounter ffcount, struct bintime *bt, uint32_t flags)
814 {
815         struct fftimehands *ffth;
816         struct bintime bt2;
817         ffcounter ffdelta;
818         uint8_t gen;
819
820         /*
821          * No locking but check generation has not changed. Also need to make
822          * sure ffdelta is positive, i.e. ffcount > tick_ffcount.
823          */
824         do {
825                 ffth = fftimehands;
826                 gen = ffth->gen;
827                 if (ffcount > ffth->tick_ffcount)
828                         ffdelta = ffcount - ffth->tick_ffcount;
829                 else
830                         ffdelta = ffth->tick_ffcount - ffcount;
831
832                 if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP) {
833                         *bt = ffth->tick_time_lerp;
834                         ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt2);
835                 } else {
836                         *bt = ffth->tick_time;
837                         ffclock_convert_delta(ffdelta, ffth->cest.period, &bt2);
838                 }
839
840                 if (ffcount > ffth->tick_ffcount)
841                         bintime_add(bt, &bt2);
842                 else
843                         bintime_sub(bt, &bt2);
844         } while (gen == 0 || gen != ffth->gen);
845 }
846
847 /*
848  * Difference clock conversion.
849  * Low level function to Convert a time interval measured in RAW counter units
850  * into bintime. The difference clock allows measuring small intervals much more
851  * reliably than the absolute clock.
852  */
853 void
854 ffclock_convert_diff(ffcounter ffdelta, struct bintime *bt)
855 {
856         struct fftimehands *ffth;
857         uint8_t gen;
858
859         /* No locking but check generation has not changed. */
860         do {
861                 ffth = fftimehands;
862                 gen = ffth->gen;
863                 ffclock_convert_delta(ffdelta, ffth->cest.period, bt);
864         } while (gen == 0 || gen != ffth->gen);
865 }
866
867 /*
868  * Access to current ffcounter value.
869  */
870 void
871 ffclock_read_counter(ffcounter *ffcount)
872 {
873         struct timehands *th;
874         struct fftimehands *ffth;
875         unsigned int gen, delta;
876
877         /*
878          * ffclock_windup() called from tc_windup(), safe to rely on
879          * th->th_generation only, for correct delta and ffcounter.
880          */
881         do {
882                 th = timehands;
883                 gen = th->th_generation;
884                 ffth = fftimehands;
885                 delta = tc_delta(th);
886                 *ffcount = ffth->tick_ffcount;
887         } while (gen == 0 || gen != th->th_generation);
888
889         *ffcount += delta;
890 }
891
892 void
893 binuptime(struct bintime *bt)
894 {
895
896         binuptime_fromclock(bt, sysclock_active);
897 }
898
899 void
900 nanouptime(struct timespec *tsp)
901 {
902
903         nanouptime_fromclock(tsp, sysclock_active);
904 }
905
906 void
907 microuptime(struct timeval *tvp)
908 {
909
910         microuptime_fromclock(tvp, sysclock_active);
911 }
912
913 void
914 bintime(struct bintime *bt)
915 {
916
917         bintime_fromclock(bt, sysclock_active);
918 }
919
920 void
921 nanotime(struct timespec *tsp)
922 {
923
924         nanotime_fromclock(tsp, sysclock_active);
925 }
926
927 void
928 microtime(struct timeval *tvp)
929 {
930
931         microtime_fromclock(tvp, sysclock_active);
932 }
933
934 void
935 getbinuptime(struct bintime *bt)
936 {
937
938         getbinuptime_fromclock(bt, sysclock_active);
939 }
940
941 void
942 getnanouptime(struct timespec *tsp)
943 {
944
945         getnanouptime_fromclock(tsp, sysclock_active);
946 }
947
948 void
949 getmicrouptime(struct timeval *tvp)
950 {
951
952         getmicrouptime_fromclock(tvp, sysclock_active);
953 }
954
955 void
956 getbintime(struct bintime *bt)
957 {
958
959         getbintime_fromclock(bt, sysclock_active);
960 }
961
962 void
963 getnanotime(struct timespec *tsp)
964 {
965
966         getnanotime_fromclock(tsp, sysclock_active);
967 }
968
969 void
970 getmicrotime(struct timeval *tvp)
971 {
972
973         getmicrouptime_fromclock(tvp, sysclock_active);
974 }
975
976 #endif /* FFCLOCK */
977
978 /*
979  * This is a clone of getnanotime and used for walltimestamps.
980  * The dtrace_ prefix prevents fbt from creating probes for
981  * it so walltimestamp can be safely used in all fbt probes.
982  */
983 void
984 dtrace_getnanotime(struct timespec *tsp)
985 {
986         struct timehands *th;
987         u_int gen;
988
989         do {
990                 th = timehands;
991                 gen = th->th_generation;
992                 *tsp = th->th_nanotime;
993         } while (gen == 0 || gen != th->th_generation);
994 }
995
996 /*
997  * System clock currently providing time to the system. Modifiable via sysctl
998  * when the FFCLOCK option is defined.
999  */
1000 int sysclock_active = SYSCLOCK_FBCK;
1001
1002 /* Internal NTP status and error estimates. */
1003 extern int time_status;
1004 extern long time_esterror;
1005
1006 /*
1007  * Take a snapshot of sysclock data which can be used to compare system clocks
1008  * and generate timestamps after the fact.
1009  */
1010 void
1011 sysclock_getsnapshot(struct sysclock_snap *clock_snap, int fast)
1012 {
1013         struct fbclock_info *fbi;
1014         struct timehands *th;
1015         struct bintime bt;
1016         unsigned int delta, gen;
1017 #ifdef FFCLOCK
1018         ffcounter ffcount;
1019         struct fftimehands *ffth;
1020         struct ffclock_info *ffi;
1021         struct ffclock_estimate cest;
1022
1023         ffi = &clock_snap->ff_info;
1024 #endif
1025
1026         fbi = &clock_snap->fb_info;
1027         delta = 0;
1028
1029         do {
1030                 th = timehands;
1031                 gen = th->th_generation;
1032                 fbi->th_scale = th->th_scale;
1033                 fbi->tick_time = th->th_offset;
1034 #ifdef FFCLOCK
1035                 ffth = fftimehands;
1036                 ffi->tick_time = ffth->tick_time_lerp;
1037                 ffi->tick_time_lerp = ffth->tick_time_lerp;
1038                 ffi->period = ffth->cest.period;
1039                 ffi->period_lerp = ffth->period_lerp;
1040                 clock_snap->ffcount = ffth->tick_ffcount;
1041                 cest = ffth->cest;
1042 #endif
1043                 if (!fast)
1044                         delta = tc_delta(th);
1045         } while (gen == 0 || gen != th->th_generation);
1046
1047         clock_snap->delta = delta;
1048         clock_snap->sysclock_active = sysclock_active;
1049
1050         /* Record feedback clock status and error. */
1051         clock_snap->fb_info.status = time_status;
1052         /* XXX: Very crude estimate of feedback clock error. */
1053         bt.sec = time_esterror / 1000000;
1054         bt.frac = ((time_esterror - bt.sec) * 1000000) *
1055             (uint64_t)18446744073709ULL;
1056         clock_snap->fb_info.error = bt;
1057
1058 #ifdef FFCLOCK
1059         if (!fast)
1060                 clock_snap->ffcount += delta;
1061
1062         /* Record feed-forward clock leap second adjustment. */
1063         ffi->leapsec_adjustment = cest.leapsec_total;
1064         if (clock_snap->ffcount > cest.leapsec_next)
1065                 ffi->leapsec_adjustment -= cest.leapsec;
1066
1067         /* Record feed-forward clock status and error. */
1068         clock_snap->ff_info.status = cest.status;
1069         ffcount = clock_snap->ffcount - cest.update_ffcount;
1070         ffclock_convert_delta(ffcount, cest.period, &bt);
1071         /* 18446744073709 = int(2^64/1e12), err_bound_rate in [ps/s]. */
1072         bintime_mul(&bt, cest.errb_rate * (uint64_t)18446744073709ULL);
1073         /* 18446744073 = int(2^64 / 1e9), since err_abs in [ns]. */
1074         bintime_addx(&bt, cest.errb_abs * (uint64_t)18446744073ULL);
1075         clock_snap->ff_info.error = bt;
1076 #endif
1077 }
1078
1079 /*
1080  * Convert a sysclock snapshot into a struct bintime based on the specified
1081  * clock source and flags.
1082  */
1083 int
1084 sysclock_snap2bintime(struct sysclock_snap *cs, struct bintime *bt,
1085     int whichclock, uint32_t flags)
1086 {
1087 #ifdef FFCLOCK
1088         struct bintime bt2;
1089         uint64_t period;
1090 #endif
1091
1092         switch (whichclock) {
1093         case SYSCLOCK_FBCK:
1094                 *bt = cs->fb_info.tick_time;
1095
1096                 /* If snapshot was created with !fast, delta will be >0. */
1097                 if (cs->delta > 0)
1098                         bintime_addx(bt, cs->fb_info.th_scale * cs->delta);
1099
1100                 if ((flags & FBCLOCK_UPTIME) == 0)
1101                         bintime_add(bt, &boottimebin);
1102                 break;
1103 #ifdef FFCLOCK
1104         case SYSCLOCK_FFWD:
1105                 if (flags & FFCLOCK_LERP) {
1106                         *bt = cs->ff_info.tick_time_lerp;
1107                         period = cs->ff_info.period_lerp;
1108                 } else {
1109                         *bt = cs->ff_info.tick_time;
1110                         period = cs->ff_info.period;
1111                 }
1112
1113                 /* If snapshot was created with !fast, delta will be >0. */
1114                 if (cs->delta > 0) {
1115                         ffclock_convert_delta(cs->delta, period, &bt2);
1116                         bintime_add(bt, &bt2);
1117                 }
1118
1119                 /* Leap second adjustment. */
1120                 if (flags & FFCLOCK_LEAPSEC)
1121                         bt->sec -= cs->ff_info.leapsec_adjustment;
1122
1123                 /* Boot time adjustment, for uptime/monotonic clocks. */
1124                 if (flags & FFCLOCK_UPTIME)
1125                         bintime_sub(bt, &ffclock_boottime);
1126                 break;
1127 #endif
1128         default:
1129                 return (EINVAL);
1130                 break;
1131         }
1132
1133         return (0);
1134 }
1135
1136 /*
1137  * Initialize a new timecounter and possibly use it.
1138  */
1139 void
1140 tc_init(struct timecounter *tc)
1141 {
1142         u_int u;
1143         struct sysctl_oid *tc_root;
1144
1145         u = tc->tc_frequency / tc->tc_counter_mask;
1146         /* XXX: We need some margin here, 10% is a guess */
1147         u *= 11;
1148         u /= 10;
1149         if (u > hz && tc->tc_quality >= 0) {
1150                 tc->tc_quality = -2000;
1151                 if (bootverbose) {
1152                         printf("Timecounter \"%s\" frequency %ju Hz",
1153                             tc->tc_name, (uintmax_t)tc->tc_frequency);
1154                         printf(" -- Insufficient hz, needs at least %u\n", u);
1155                 }
1156         } else if (tc->tc_quality >= 0 || bootverbose) {
1157                 printf("Timecounter \"%s\" frequency %ju Hz quality %d\n",
1158                     tc->tc_name, (uintmax_t)tc->tc_frequency,
1159                     tc->tc_quality);
1160         }
1161
1162         tc->tc_next = timecounters;
1163         timecounters = tc;
1164         /*
1165          * Set up sysctl tree for this counter.
1166          */
1167         tc_root = SYSCTL_ADD_NODE(NULL,
1168             SYSCTL_STATIC_CHILDREN(_kern_timecounter_tc), OID_AUTO, tc->tc_name,
1169             CTLFLAG_RW, 0, "timecounter description");
1170         SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1171             "mask", CTLFLAG_RD, &(tc->tc_counter_mask), 0,
1172             "mask for implemented bits");
1173         SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1174             "counter", CTLTYPE_UINT | CTLFLAG_RD, tc, sizeof(*tc),
1175             sysctl_kern_timecounter_get, "IU", "current timecounter value");
1176         SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1177             "frequency", CTLTYPE_U64 | CTLFLAG_RD, tc, sizeof(*tc),
1178              sysctl_kern_timecounter_freq, "QU", "timecounter frequency");
1179         SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1180             "quality", CTLFLAG_RD, &(tc->tc_quality), 0,
1181             "goodness of time counter");
1182         /*
1183          * Never automatically use a timecounter with negative quality.
1184          * Even though we run on the dummy counter, switching here may be
1185          * worse since this timecounter may not be monotonous.
1186          */
1187         if (tc->tc_quality < 0)
1188                 return;
1189         if (tc->tc_quality < timecounter->tc_quality)
1190                 return;
1191         if (tc->tc_quality == timecounter->tc_quality &&
1192             tc->tc_frequency < timecounter->tc_frequency)
1193                 return;
1194         (void)tc->tc_get_timecount(tc);
1195         (void)tc->tc_get_timecount(tc);
1196         timecounter = tc;
1197 }
1198
1199 /* Report the frequency of the current timecounter. */
1200 uint64_t
1201 tc_getfrequency(void)
1202 {
1203
1204         return (timehands->th_counter->tc_frequency);
1205 }
1206
1207 /*
1208  * Step our concept of UTC.  This is done by modifying our estimate of
1209  * when we booted.
1210  * XXX: not locked.
1211  */
1212 void
1213 tc_setclock(struct timespec *ts)
1214 {
1215         struct timespec tbef, taft;
1216         struct bintime bt, bt2;
1217
1218         cpu_tick_calibrate(1);
1219         nanotime(&tbef);
1220         timespec2bintime(ts, &bt);
1221         binuptime(&bt2);
1222         bintime_sub(&bt, &bt2);
1223         bintime_add(&bt2, &boottimebin);
1224         boottimebin = bt;
1225         bintime2timeval(&bt, &boottime);
1226
1227         /* XXX fiddle all the little crinkly bits around the fiords... */
1228         tc_windup();
1229         nanotime(&taft);
1230         if (timestepwarnings) {
1231                 log(LOG_INFO,
1232                     "Time stepped from %jd.%09ld to %jd.%09ld (%jd.%09ld)\n",
1233                     (intmax_t)tbef.tv_sec, tbef.tv_nsec,
1234                     (intmax_t)taft.tv_sec, taft.tv_nsec,
1235                     (intmax_t)ts->tv_sec, ts->tv_nsec);
1236         }
1237         cpu_tick_calibrate(1);
1238 }
1239
1240 /*
1241  * Initialize the next struct timehands in the ring and make
1242  * it the active timehands.  Along the way we might switch to a different
1243  * timecounter and/or do seconds processing in NTP.  Slightly magic.
1244  */
1245 static void
1246 tc_windup(void)
1247 {
1248         struct bintime bt;
1249         struct timehands *th, *tho;
1250         uint64_t scale;
1251         u_int delta, ncount, ogen;
1252         int i;
1253         time_t t;
1254
1255         /*
1256          * Make the next timehands a copy of the current one, but do not
1257          * overwrite the generation or next pointer.  While we update
1258          * the contents, the generation must be zero.
1259          */
1260         tho = timehands;
1261         th = tho->th_next;
1262         ogen = th->th_generation;
1263         th->th_generation = 0;
1264         bcopy(tho, th, offsetof(struct timehands, th_generation));
1265
1266         /*
1267          * Capture a timecounter delta on the current timecounter and if
1268          * changing timecounters, a counter value from the new timecounter.
1269          * Update the offset fields accordingly.
1270          */
1271         delta = tc_delta(th);
1272         if (th->th_counter != timecounter)
1273                 ncount = timecounter->tc_get_timecount(timecounter);
1274         else
1275                 ncount = 0;
1276 #ifdef FFCLOCK
1277         ffclock_windup(delta);
1278 #endif
1279         th->th_offset_count += delta;
1280         th->th_offset_count &= th->th_counter->tc_counter_mask;
1281         while (delta > th->th_counter->tc_frequency) {
1282                 /* Eat complete unadjusted seconds. */
1283                 delta -= th->th_counter->tc_frequency;
1284                 th->th_offset.sec++;
1285         }
1286         if ((delta > th->th_counter->tc_frequency / 2) &&
1287             (th->th_scale * delta < ((uint64_t)1 << 63))) {
1288                 /* The product th_scale * delta just barely overflows. */
1289                 th->th_offset.sec++;
1290         }
1291         bintime_addx(&th->th_offset, th->th_scale * delta);
1292
1293         /*
1294          * Hardware latching timecounters may not generate interrupts on
1295          * PPS events, so instead we poll them.  There is a finite risk that
1296          * the hardware might capture a count which is later than the one we
1297          * got above, and therefore possibly in the next NTP second which might
1298          * have a different rate than the current NTP second.  It doesn't
1299          * matter in practice.
1300          */
1301         if (tho->th_counter->tc_poll_pps)
1302                 tho->th_counter->tc_poll_pps(tho->th_counter);
1303
1304         /*
1305          * Deal with NTP second processing.  The for loop normally
1306          * iterates at most once, but in extreme situations it might
1307          * keep NTP sane if timeouts are not run for several seconds.
1308          * At boot, the time step can be large when the TOD hardware
1309          * has been read, so on really large steps, we call
1310          * ntp_update_second only twice.  We need to call it twice in
1311          * case we missed a leap second.
1312          */
1313         bt = th->th_offset;
1314         bintime_add(&bt, &boottimebin);
1315         i = bt.sec - tho->th_microtime.tv_sec;
1316         if (i > LARGE_STEP)
1317                 i = 2;
1318         for (; i > 0; i--) {
1319                 t = bt.sec;
1320                 ntp_update_second(&th->th_adjustment, &bt.sec);
1321                 if (bt.sec != t)
1322                         boottimebin.sec += bt.sec - t;
1323         }
1324         /* Update the UTC timestamps used by the get*() functions. */
1325         /* XXX shouldn't do this here.  Should force non-`get' versions. */
1326         bintime2timeval(&bt, &th->th_microtime);
1327         bintime2timespec(&bt, &th->th_nanotime);
1328
1329         /* Now is a good time to change timecounters. */
1330         if (th->th_counter != timecounter) {
1331 #ifndef __arm__
1332                 if ((timecounter->tc_flags & TC_FLAGS_C2STOP) != 0)
1333                         cpu_disable_c2_sleep++;
1334                 if ((th->th_counter->tc_flags & TC_FLAGS_C2STOP) != 0)
1335                         cpu_disable_c2_sleep--;
1336 #endif
1337                 th->th_counter = timecounter;
1338                 th->th_offset_count = ncount;
1339                 tc_min_ticktock_freq = max(1, timecounter->tc_frequency /
1340                     (((uint64_t)timecounter->tc_counter_mask + 1) / 3));
1341 #ifdef FFCLOCK
1342                 ffclock_change_tc(th);
1343 #endif
1344         }
1345
1346         /*-
1347          * Recalculate the scaling factor.  We want the number of 1/2^64
1348          * fractions of a second per period of the hardware counter, taking
1349          * into account the th_adjustment factor which the NTP PLL/adjtime(2)
1350          * processing provides us with.
1351          *
1352          * The th_adjustment is nanoseconds per second with 32 bit binary
1353          * fraction and we want 64 bit binary fraction of second:
1354          *
1355          *       x = a * 2^32 / 10^9 = a * 4.294967296
1356          *
1357          * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
1358          * we can only multiply by about 850 without overflowing, that
1359          * leaves no suitably precise fractions for multiply before divide.
1360          *
1361          * Divide before multiply with a fraction of 2199/512 results in a
1362          * systematic undercompensation of 10PPM of th_adjustment.  On a
1363          * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
1364          *
1365          * We happily sacrifice the lowest of the 64 bits of our result
1366          * to the goddess of code clarity.
1367          *
1368          */
1369         scale = (uint64_t)1 << 63;
1370         scale += (th->th_adjustment / 1024) * 2199;
1371         scale /= th->th_counter->tc_frequency;
1372         th->th_scale = scale * 2;
1373
1374         /*
1375          * Now that the struct timehands is again consistent, set the new
1376          * generation number, making sure to not make it zero.
1377          */
1378         if (++ogen == 0)
1379                 ogen = 1;
1380         th->th_generation = ogen;
1381
1382         /* Go live with the new struct timehands. */
1383 #ifdef FFCLOCK
1384         switch (sysclock_active) {
1385         case SYSCLOCK_FBCK:
1386 #endif
1387                 time_second = th->th_microtime.tv_sec;
1388                 time_uptime = th->th_offset.sec;
1389 #ifdef FFCLOCK
1390                 break;
1391         case SYSCLOCK_FFWD:
1392                 time_second = fftimehands->tick_time_lerp.sec;
1393                 time_uptime = fftimehands->tick_time_lerp.sec - ffclock_boottime.sec;
1394                 break;
1395         }
1396 #endif
1397
1398         timehands = th;
1399         timekeep_push_vdso();
1400 }
1401
1402 /* Report or change the active timecounter hardware. */
1403 static int
1404 sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)
1405 {
1406         char newname[32];
1407         struct timecounter *newtc, *tc;
1408         int error;
1409
1410         tc = timecounter;
1411         strlcpy(newname, tc->tc_name, sizeof(newname));
1412
1413         error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
1414         if (error != 0 || req->newptr == NULL ||
1415             strcmp(newname, tc->tc_name) == 0)
1416                 return (error);
1417         for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
1418                 if (strcmp(newname, newtc->tc_name) != 0)
1419                         continue;
1420
1421                 /* Warm up new timecounter. */
1422                 (void)newtc->tc_get_timecount(newtc);
1423                 (void)newtc->tc_get_timecount(newtc);
1424
1425                 timecounter = newtc;
1426                 timekeep_push_vdso();
1427                 return (0);
1428         }
1429         return (EINVAL);
1430 }
1431
1432 SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW,
1433     0, 0, sysctl_kern_timecounter_hardware, "A",
1434     "Timecounter hardware selected");
1435
1436
1437 /* Report or change the active timecounter hardware. */
1438 static int
1439 sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS)
1440 {
1441         char buf[32], *spc;
1442         struct timecounter *tc;
1443         int error;
1444
1445         spc = "";
1446         error = 0;
1447         for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
1448                 sprintf(buf, "%s%s(%d)",
1449                     spc, tc->tc_name, tc->tc_quality);
1450                 error = SYSCTL_OUT(req, buf, strlen(buf));
1451                 spc = " ";
1452         }
1453         return (error);
1454 }
1455
1456 SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, CTLTYPE_STRING | CTLFLAG_RD,
1457     0, 0, sysctl_kern_timecounter_choice, "A", "Timecounter hardware detected");
1458
1459 /*
1460  * RFC 2783 PPS-API implementation.
1461  */
1462
1463 /*
1464  *  Return true if the driver is aware of the abi version extensions in the
1465  *  pps_state structure, and it supports at least the given abi version number.
1466  */
1467 static inline int
1468 abi_aware(struct pps_state *pps, int vers)
1469 {
1470
1471         return ((pps->kcmode & KCMODE_ABIFLAG) && pps->driver_abi >= vers);
1472 }
1473
1474 static int
1475 pps_fetch(struct pps_fetch_args *fapi, struct pps_state *pps)
1476 {
1477         int err, timo;
1478         pps_seq_t aseq, cseq;
1479         struct timeval tv;
1480
1481         if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
1482                 return (EINVAL);
1483
1484         /*
1485          * If no timeout is requested, immediately return whatever values were
1486          * most recently captured.  If timeout seconds is -1, that's a request
1487          * to block without a timeout.  WITNESS won't let us sleep forever
1488          * without a lock (we really don't need a lock), so just repeatedly
1489          * sleep a long time.
1490          */
1491         if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec) {
1492                 if (fapi->timeout.tv_sec == -1)
1493                         timo = 0x7fffffff;
1494                 else {
1495                         tv.tv_sec = fapi->timeout.tv_sec;
1496                         tv.tv_usec = fapi->timeout.tv_nsec / 1000;
1497                         timo = tvtohz(&tv);
1498                 }
1499                 aseq = pps->ppsinfo.assert_sequence;
1500                 cseq = pps->ppsinfo.clear_sequence;
1501                 while (aseq == pps->ppsinfo.assert_sequence &&
1502                     cseq == pps->ppsinfo.clear_sequence) {
1503                         if (abi_aware(pps, 1) && pps->driver_mtx != NULL) {
1504                                 if (pps->flags & PPSFLAG_MTX_SPIN) {
1505                                         err = msleep_spin(pps, pps->driver_mtx,
1506                                             "ppsfch", timo);
1507                                 } else {
1508                                         err = msleep(pps, pps->driver_mtx, PCATCH,
1509                                             "ppsfch", timo);
1510                                 }
1511                         } else {
1512                                 err = tsleep(pps, PCATCH, "ppsfch", timo);
1513                         }
1514                         if (err == EWOULDBLOCK && fapi->timeout.tv_sec == -1) {
1515                                 continue;
1516                         } else if (err != 0) {
1517                                 return (err);
1518                         }
1519                 }
1520         }
1521
1522         pps->ppsinfo.current_mode = pps->ppsparam.mode;
1523         fapi->pps_info_buf = pps->ppsinfo;
1524
1525         return (0);
1526 }
1527
1528 int
1529 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
1530 {
1531         pps_params_t *app;
1532         struct pps_fetch_args *fapi;
1533 #ifdef FFCLOCK
1534         struct pps_fetch_ffc_args *fapi_ffc;
1535 #endif
1536 #ifdef PPS_SYNC
1537         struct pps_kcbind_args *kapi;
1538 #endif
1539
1540         KASSERT(pps != NULL, ("NULL pps pointer in pps_ioctl"));
1541         switch (cmd) {
1542         case PPS_IOC_CREATE:
1543                 return (0);
1544         case PPS_IOC_DESTROY:
1545                 return (0);
1546         case PPS_IOC_SETPARAMS:
1547                 app = (pps_params_t *)data;
1548                 if (app->mode & ~pps->ppscap)
1549                         return (EINVAL);
1550 #ifdef FFCLOCK
1551                 /* Ensure only a single clock is selected for ffc timestamp. */
1552                 if ((app->mode & PPS_TSCLK_MASK) == PPS_TSCLK_MASK)
1553                         return (EINVAL);
1554 #endif
1555                 pps->ppsparam = *app;
1556                 return (0);
1557         case PPS_IOC_GETPARAMS:
1558                 app = (pps_params_t *)data;
1559                 *app = pps->ppsparam;
1560                 app->api_version = PPS_API_VERS_1;
1561                 return (0);
1562         case PPS_IOC_GETCAP:
1563                 *(int*)data = pps->ppscap;
1564                 return (0);
1565         case PPS_IOC_FETCH:
1566                 fapi = (struct pps_fetch_args *)data;
1567                 return (pps_fetch(fapi, pps));
1568 #ifdef FFCLOCK
1569         case PPS_IOC_FETCH_FFCOUNTER:
1570                 fapi_ffc = (struct pps_fetch_ffc_args *)data;
1571                 if (fapi_ffc->tsformat && fapi_ffc->tsformat !=
1572                     PPS_TSFMT_TSPEC)
1573                         return (EINVAL);
1574                 if (fapi_ffc->timeout.tv_sec || fapi_ffc->timeout.tv_nsec)
1575                         return (EOPNOTSUPP);
1576                 pps->ppsinfo_ffc.current_mode = pps->ppsparam.mode;
1577                 fapi_ffc->pps_info_buf_ffc = pps->ppsinfo_ffc;
1578                 /* Overwrite timestamps if feedback clock selected. */
1579                 switch (pps->ppsparam.mode & PPS_TSCLK_MASK) {
1580                 case PPS_TSCLK_FBCK:
1581                         fapi_ffc->pps_info_buf_ffc.assert_timestamp =
1582                             pps->ppsinfo.assert_timestamp;
1583                         fapi_ffc->pps_info_buf_ffc.clear_timestamp =
1584                             pps->ppsinfo.clear_timestamp;
1585                         break;
1586                 case PPS_TSCLK_FFWD:
1587                         break;
1588                 default:
1589                         break;
1590                 }
1591                 return (0);
1592 #endif /* FFCLOCK */
1593         case PPS_IOC_KCBIND:
1594 #ifdef PPS_SYNC
1595                 kapi = (struct pps_kcbind_args *)data;
1596                 /* XXX Only root should be able to do this */
1597                 if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
1598                         return (EINVAL);
1599                 if (kapi->kernel_consumer != PPS_KC_HARDPPS)
1600                         return (EINVAL);
1601                 if (kapi->edge & ~pps->ppscap)
1602                         return (EINVAL);
1603                 pps->kcmode = (kapi->edge & KCMODE_EDGEMASK) |
1604                     (pps->kcmode & KCMODE_ABIFLAG);
1605                 return (0);
1606 #else
1607                 return (EOPNOTSUPP);
1608 #endif
1609         default:
1610                 return (ENOIOCTL);
1611         }
1612 }
1613
1614 void
1615 pps_init(struct pps_state *pps)
1616 {
1617         pps->ppscap |= PPS_TSFMT_TSPEC | PPS_CANWAIT;
1618         if (pps->ppscap & PPS_CAPTUREASSERT)
1619                 pps->ppscap |= PPS_OFFSETASSERT;
1620         if (pps->ppscap & PPS_CAPTURECLEAR)
1621                 pps->ppscap |= PPS_OFFSETCLEAR;
1622 #ifdef FFCLOCK
1623         pps->ppscap |= PPS_TSCLK_MASK;
1624 #endif
1625         pps->kcmode &= ~KCMODE_ABIFLAG;
1626 }
1627
1628 void
1629 pps_init_abi(struct pps_state *pps)
1630 {
1631
1632         pps_init(pps);
1633         if (pps->driver_abi > 0) {
1634                 pps->kcmode |= KCMODE_ABIFLAG;
1635                 pps->kernel_abi = PPS_ABI_VERSION;
1636         }
1637 }
1638
1639 void
1640 pps_capture(struct pps_state *pps)
1641 {
1642         struct timehands *th;
1643
1644         KASSERT(pps != NULL, ("NULL pps pointer in pps_capture"));
1645         th = timehands;
1646         pps->capgen = th->th_generation;
1647         pps->capth = th;
1648 #ifdef FFCLOCK
1649         pps->capffth = fftimehands;
1650 #endif
1651         pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
1652         if (pps->capgen != th->th_generation)
1653                 pps->capgen = 0;
1654 }
1655
1656 void
1657 pps_event(struct pps_state *pps, int event)
1658 {
1659         struct bintime bt;
1660         struct timespec ts, *tsp, *osp;
1661         u_int tcount, *pcount;
1662         int foff, fhard;
1663         pps_seq_t *pseq;
1664 #ifdef FFCLOCK
1665         struct timespec *tsp_ffc;
1666         pps_seq_t *pseq_ffc;
1667         ffcounter *ffcount;
1668 #endif
1669
1670         KASSERT(pps != NULL, ("NULL pps pointer in pps_event"));
1671         /* If the timecounter was wound up underneath us, bail out. */
1672         if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
1673                 return;
1674
1675         /* Things would be easier with arrays. */
1676         if (event == PPS_CAPTUREASSERT) {
1677                 tsp = &pps->ppsinfo.assert_timestamp;
1678                 osp = &pps->ppsparam.assert_offset;
1679                 foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
1680                 fhard = pps->kcmode & PPS_CAPTUREASSERT;
1681                 pcount = &pps->ppscount[0];
1682                 pseq = &pps->ppsinfo.assert_sequence;
1683 #ifdef FFCLOCK
1684                 ffcount = &pps->ppsinfo_ffc.assert_ffcount;
1685                 tsp_ffc = &pps->ppsinfo_ffc.assert_timestamp;
1686                 pseq_ffc = &pps->ppsinfo_ffc.assert_sequence;
1687 #endif
1688         } else {
1689                 tsp = &pps->ppsinfo.clear_timestamp;
1690                 osp = &pps->ppsparam.clear_offset;
1691                 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
1692                 fhard = pps->kcmode & PPS_CAPTURECLEAR;
1693                 pcount = &pps->ppscount[1];
1694                 pseq = &pps->ppsinfo.clear_sequence;
1695 #ifdef FFCLOCK
1696                 ffcount = &pps->ppsinfo_ffc.clear_ffcount;
1697                 tsp_ffc = &pps->ppsinfo_ffc.clear_timestamp;
1698                 pseq_ffc = &pps->ppsinfo_ffc.clear_sequence;
1699 #endif
1700         }
1701
1702         /*
1703          * If the timecounter changed, we cannot compare the count values, so
1704          * we have to drop the rest of the PPS-stuff until the next event.
1705          */
1706         if (pps->ppstc != pps->capth->th_counter) {
1707                 pps->ppstc = pps->capth->th_counter;
1708                 *pcount = pps->capcount;
1709                 pps->ppscount[2] = pps->capcount;
1710                 return;
1711         }
1712
1713         /* Convert the count to a timespec. */
1714         tcount = pps->capcount - pps->capth->th_offset_count;
1715         tcount &= pps->capth->th_counter->tc_counter_mask;
1716         bt = pps->capth->th_offset;
1717         bintime_addx(&bt, pps->capth->th_scale * tcount);
1718         bintime_add(&bt, &boottimebin);
1719         bintime2timespec(&bt, &ts);
1720
1721         /* If the timecounter was wound up underneath us, bail out. */
1722         if (pps->capgen != pps->capth->th_generation)
1723                 return;
1724
1725         *pcount = pps->capcount;
1726         (*pseq)++;
1727         *tsp = ts;
1728
1729         if (foff) {
1730                 timespecadd(tsp, osp);
1731                 if (tsp->tv_nsec < 0) {
1732                         tsp->tv_nsec += 1000000000;
1733                         tsp->tv_sec -= 1;
1734                 }
1735         }
1736
1737 #ifdef FFCLOCK
1738         *ffcount = pps->capffth->tick_ffcount + tcount;
1739         bt = pps->capffth->tick_time;
1740         ffclock_convert_delta(tcount, pps->capffth->cest.period, &bt);
1741         bintime_add(&bt, &pps->capffth->tick_time);
1742         bintime2timespec(&bt, &ts);
1743         (*pseq_ffc)++;
1744         *tsp_ffc = ts;
1745 #endif
1746
1747 #ifdef PPS_SYNC
1748         if (fhard) {
1749                 uint64_t scale;
1750
1751                 /*
1752                  * Feed the NTP PLL/FLL.
1753                  * The FLL wants to know how many (hardware) nanoseconds
1754                  * elapsed since the previous event.
1755                  */
1756                 tcount = pps->capcount - pps->ppscount[2];
1757                 pps->ppscount[2] = pps->capcount;
1758                 tcount &= pps->capth->th_counter->tc_counter_mask;
1759                 scale = (uint64_t)1 << 63;
1760                 scale /= pps->capth->th_counter->tc_frequency;
1761                 scale *= 2;
1762                 bt.sec = 0;
1763                 bt.frac = 0;
1764                 bintime_addx(&bt, scale * tcount);
1765                 bintime2timespec(&bt, &ts);
1766                 hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
1767         }
1768 #endif
1769
1770         /* Wakeup anyone sleeping in pps_fetch().  */
1771         wakeup(pps);
1772 }
1773
1774 /*
1775  * Timecounters need to be updated every so often to prevent the hardware
1776  * counter from overflowing.  Updating also recalculates the cached values
1777  * used by the get*() family of functions, so their precision depends on
1778  * the update frequency.
1779  */
1780
1781 static int tc_tick;
1782 SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0,
1783     "Approximate number of hardclock ticks in a millisecond");
1784
1785 void
1786 tc_ticktock(int cnt)
1787 {
1788         static int count;
1789
1790         count += cnt;
1791         if (count < tc_tick)
1792                 return;
1793         count = 0;
1794         tc_windup();
1795 }
1796
1797 static void __inline
1798 tc_adjprecision(void)
1799 {
1800         int t;
1801
1802         if (tc_timepercentage > 0) {
1803                 t = (99 + tc_timepercentage) / tc_timepercentage;
1804                 tc_precexp = fls(t + (t >> 1)) - 1;
1805                 FREQ2BT(hz / tc_tick, &bt_timethreshold);
1806                 FREQ2BT(hz, &bt_tickthreshold);
1807                 bintime_shift(&bt_timethreshold, tc_precexp);
1808                 bintime_shift(&bt_tickthreshold, tc_precexp);
1809         } else {
1810                 tc_precexp = 31;
1811                 bt_timethreshold.sec = INT_MAX;
1812                 bt_timethreshold.frac = ~(uint64_t)0;
1813                 bt_tickthreshold = bt_timethreshold;
1814         }
1815         sbt_timethreshold = bttosbt(bt_timethreshold);
1816         sbt_tickthreshold = bttosbt(bt_tickthreshold);
1817 }
1818
1819 static int
1820 sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS)
1821 {
1822         int error, val;
1823
1824         val = tc_timepercentage;
1825         error = sysctl_handle_int(oidp, &val, 0, req);
1826         if (error != 0 || req->newptr == NULL)
1827                 return (error);
1828         tc_timepercentage = val;
1829         tc_adjprecision();
1830         return (0);
1831 }
1832
1833 static void
1834 inittimecounter(void *dummy)
1835 {
1836         u_int p;
1837         int tick_rate;
1838
1839         /*
1840          * Set the initial timeout to
1841          * max(1, <approx. number of hardclock ticks in a millisecond>).
1842          * People should probably not use the sysctl to set the timeout
1843          * to smaller than its inital value, since that value is the
1844          * smallest reasonable one.  If they want better timestamps they
1845          * should use the non-"get"* functions.
1846          */
1847         if (hz > 1000)
1848                 tc_tick = (hz + 500) / 1000;
1849         else
1850                 tc_tick = 1;
1851         tc_adjprecision();
1852         FREQ2BT(hz, &tick_bt);
1853         tick_sbt = bttosbt(tick_bt);
1854         tick_rate = hz / tc_tick;
1855         FREQ2BT(tick_rate, &tc_tick_bt);
1856         tc_tick_sbt = bttosbt(tc_tick_bt);
1857         p = (tc_tick * 1000000) / hz;
1858         printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
1859
1860 #ifdef FFCLOCK
1861         ffclock_init();
1862 #endif
1863         /* warm up new timecounter (again) and get rolling. */
1864         (void)timecounter->tc_get_timecount(timecounter);
1865         (void)timecounter->tc_get_timecount(timecounter);
1866         tc_windup();
1867 }
1868
1869 SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL);
1870
1871 /* Cpu tick handling -------------------------------------------------*/
1872
1873 static int cpu_tick_variable;
1874 static uint64_t cpu_tick_frequency;
1875
1876 static uint64_t
1877 tc_cpu_ticks(void)
1878 {
1879         static uint64_t base;
1880         static unsigned last;
1881         unsigned u;
1882         struct timecounter *tc;
1883
1884         tc = timehands->th_counter;
1885         u = tc->tc_get_timecount(tc) & tc->tc_counter_mask;
1886         if (u < last)
1887                 base += (uint64_t)tc->tc_counter_mask + 1;
1888         last = u;
1889         return (u + base);
1890 }
1891
1892 void
1893 cpu_tick_calibration(void)
1894 {
1895         static time_t last_calib;
1896
1897         if (time_uptime != last_calib && !(time_uptime & 0xf)) {
1898                 cpu_tick_calibrate(0);
1899                 last_calib = time_uptime;
1900         }
1901 }
1902
1903 /*
1904  * This function gets called every 16 seconds on only one designated
1905  * CPU in the system from hardclock() via cpu_tick_calibration()().
1906  *
1907  * Whenever the real time clock is stepped we get called with reset=1
1908  * to make sure we handle suspend/resume and similar events correctly.
1909  */
1910
1911 static void
1912 cpu_tick_calibrate(int reset)
1913 {
1914         static uint64_t c_last;
1915         uint64_t c_this, c_delta;
1916         static struct bintime  t_last;
1917         struct bintime t_this, t_delta;
1918         uint32_t divi;
1919
1920         if (reset) {
1921                 /* The clock was stepped, abort & reset */
1922                 t_last.sec = 0;
1923                 return;
1924         }
1925
1926         /* we don't calibrate fixed rate cputicks */
1927         if (!cpu_tick_variable)
1928                 return;
1929
1930         getbinuptime(&t_this);
1931         c_this = cpu_ticks();
1932         if (t_last.sec != 0) {
1933                 c_delta = c_this - c_last;
1934                 t_delta = t_this;
1935                 bintime_sub(&t_delta, &t_last);
1936                 /*
1937                  * Headroom:
1938                  *      2^(64-20) / 16[s] =
1939                  *      2^(44) / 16[s] =
1940                  *      17.592.186.044.416 / 16 =
1941                  *      1.099.511.627.776 [Hz]
1942                  */
1943                 divi = t_delta.sec << 20;
1944                 divi |= t_delta.frac >> (64 - 20);
1945                 c_delta <<= 20;
1946                 c_delta /= divi;
1947                 if (c_delta > cpu_tick_frequency) {
1948                         if (0 && bootverbose)
1949                                 printf("cpu_tick increased to %ju Hz\n",
1950                                     c_delta);
1951                         cpu_tick_frequency = c_delta;
1952                 }
1953         }
1954         c_last = c_this;
1955         t_last = t_this;
1956 }
1957
1958 void
1959 set_cputicker(cpu_tick_f *func, uint64_t freq, unsigned var)
1960 {
1961
1962         if (func == NULL) {
1963                 cpu_ticks = tc_cpu_ticks;
1964         } else {
1965                 cpu_tick_frequency = freq;
1966                 cpu_tick_variable = var;
1967                 cpu_ticks = func;
1968         }
1969 }
1970
1971 uint64_t
1972 cpu_tickrate(void)
1973 {
1974
1975         if (cpu_ticks == tc_cpu_ticks) 
1976                 return (tc_getfrequency());
1977         return (cpu_tick_frequency);
1978 }
1979
1980 /*
1981  * We need to be slightly careful converting cputicks to microseconds.
1982  * There is plenty of margin in 64 bits of microseconds (half a million
1983  * years) and in 64 bits at 4 GHz (146 years), but if we do a multiply
1984  * before divide conversion (to retain precision) we find that the
1985  * margin shrinks to 1.5 hours (one millionth of 146y).
1986  * With a three prong approach we never lose significant bits, no
1987  * matter what the cputick rate and length of timeinterval is.
1988  */
1989
1990 uint64_t
1991 cputick2usec(uint64_t tick)
1992 {
1993
1994         if (tick > 18446744073709551LL)         /* floor(2^64 / 1000) */
1995                 return (tick / (cpu_tickrate() / 1000000LL));
1996         else if (tick > 18446744073709LL)       /* floor(2^64 / 1000000) */
1997                 return ((tick * 1000LL) / (cpu_tickrate() / 1000LL));
1998         else
1999                 return ((tick * 1000000LL) / cpu_tickrate());
2000 }
2001
2002 cpu_tick_f      *cpu_ticks = tc_cpu_ticks;
2003
2004 static int vdso_th_enable = 1;
2005 static int
2006 sysctl_fast_gettime(SYSCTL_HANDLER_ARGS)
2007 {
2008         int old_vdso_th_enable, error;
2009
2010         old_vdso_th_enable = vdso_th_enable;
2011         error = sysctl_handle_int(oidp, &old_vdso_th_enable, 0, req);
2012         if (error != 0)
2013                 return (error);
2014         vdso_th_enable = old_vdso_th_enable;
2015         timekeep_push_vdso();
2016         return (0);
2017 }
2018 SYSCTL_PROC(_kern_timecounter, OID_AUTO, fast_gettime,
2019     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
2020     NULL, 0, sysctl_fast_gettime, "I", "Enable fast time of day");
2021
2022 uint32_t
2023 tc_fill_vdso_timehands(struct vdso_timehands *vdso_th)
2024 {
2025         struct timehands *th;
2026         uint32_t enabled;
2027
2028         th = timehands;
2029         vdso_th->th_algo = VDSO_TH_ALGO_1;
2030         vdso_th->th_scale = th->th_scale;
2031         vdso_th->th_offset_count = th->th_offset_count;
2032         vdso_th->th_counter_mask = th->th_counter->tc_counter_mask;
2033         vdso_th->th_offset = th->th_offset;
2034         vdso_th->th_boottime = boottimebin;
2035         enabled = cpu_fill_vdso_timehands(vdso_th);
2036         if (!vdso_th_enable)
2037                 enabled = 0;
2038         return (enabled);
2039 }
2040
2041 #ifdef COMPAT_FREEBSD32
2042 uint32_t
2043 tc_fill_vdso_timehands32(struct vdso_timehands32 *vdso_th32)
2044 {
2045         struct timehands *th;
2046         uint32_t enabled;
2047
2048         th = timehands;
2049         vdso_th32->th_algo = VDSO_TH_ALGO_1;
2050         *(uint64_t *)&vdso_th32->th_scale[0] = th->th_scale;
2051         vdso_th32->th_offset_count = th->th_offset_count;
2052         vdso_th32->th_counter_mask = th->th_counter->tc_counter_mask;
2053         vdso_th32->th_offset.sec = th->th_offset.sec;
2054         *(uint64_t *)&vdso_th32->th_offset.frac[0] = th->th_offset.frac;
2055         vdso_th32->th_boottime.sec = boottimebin.sec;
2056         *(uint64_t *)&vdso_th32->th_boottime.frac[0] = boottimebin.frac;
2057         enabled = cpu_fill_vdso_timehands32(vdso_th32);
2058         if (!vdso_th_enable)
2059                 enabled = 0;
2060         return (enabled);
2061 }
2062 #endif